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Abstract. Differentiating between snow and rainfall is cru-
cial for hydrological modeling and understanding. Commer-
cial microwave links (CMLs) can provide rainfall estimates
for liquid precipitation but show minimal signal attenua-
tion during dry snow events, causing the CML time series
during these periods to resemble non-precipitation periods.
Weather radars can detect precipitation also for dry snow, yet
they struggle to accurately differentiate between precipita-
tion types. This study introduces a new approach to improve
rainfall and dry snow classification by combining weather
radar precipitation detection with CML signal attenuation.
Specifically, events in which the radar detects precipitation
but the CML does not are classified as dry snow. As a ref-
erence method, we use weather radar, with the precipitation
type identified by the dew point temperature at the CML lo-
cation. Both methods were evaluated using measurements
from disdrometers located within 8 km of a CML, taken as
ground truth. The analysis used data from Norway, includ-
ing 550 CMLs in December 2021 and 435 CMLs in June
2022. Our results show that the use of CMLs can improve the
classification of dry snow and rainfall, presenting an advan-
tage over the reference method. In addition, our research pro-
vides valuable insight into how precipitation at temperatures
around 0 °C, such as sleet or wet snow, can affect CMLs,
contributing to a better understanding of CML applications
in colder climates.

1 Introduction

The precipitation phase is crucial for hydrological processes
in cold regions (Loth et al., 1993). Understanding the type
of precipitation aids in applications such as adjusting rain
gauges for wind undercatch (Kochendorfer et al., 2022) and
modeling hydrological responses, such as flooding. More-
over, specific precipitation conditions, like freezing rain,
can disrupt power lines and impede traffic, and snow may
cause transportation blockages. Rain-on-snow events have
also been associated with significant flooding (McCabe et al.,
2007) and with slush avalanches (Hestnes, 1985).

The formation of precipitation is a complex process. In
the high latitudes and mid-latitudes, most precipitation orig-
inates from mixed-phase or cold clouds, that is, clouds con-
taining ice (Stewart et al., 2015). The ice crystals grow in
size and mass through different microphysical mechanisms
such as vapor deposition and riming, until they reach a suffi-
cient mass to sediment out of the cloud base (Stewart, 1992).
A necessary condition for a cloud to generate solid-phase
precipitation is that its temperature is negative. Unless the
temperature of the layer of atmosphere underneath the cloud
remains below 0 °C, the precipitating ice will start melting
before reaching the ground (Lamb and Verlinde, 2011). The
melting process is not instantaneous, and an ice particle can
fall hundreds of meters before melting completely. There-
fore, originally solid precipitation can reach the ground in
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any intermediate state between solid and liquid, depending
on the elevation of the 0 °C isotherm (Paulson and Al-Mreri,
2011; Harpold et al., 2017). The melting process is also in-
fluenced by other elements of the atmospheric conditions.
Specifically, the stability of the atmosphere and the atmo-
spheric humidity profile have a significant influence because
the liquid water formed from the melting of ice will tend
to evaporate in dry conditions, cooling the atmosphere in
turn and hampering further melting (Harder and Pomeroy,
2013). Atmospheric conditions that determine the precipi-
tation phase can change relatively quickly. For instance, a
study by Marks et al. (2013) observed a significant increase
in the elevation of the melting layer within the same pre-
cipitation event. Determining the precipitation phase at the
ground level is therefore difficult, and models predicting the
precipitation phase typically need to be calibrated and vali-
dated against measurements (Harpold et al., 2017).

There are several ways of determining the precipitation
phase using ground-based observations. For example, Marks
et al. (2013) suggested using a combination of a tipping
bucket rain gauge and a heated weighing gauge. During rain,
the devices record similar amounts, but when it snows, the
snow clogs the funnel of the tipping bucket, leaving only the
weighing gauge to record precipitation. Other studies, such
as Matsuo et al. (1981), used human observers to directly
observe the precipitation phase. More advanced methods in-
clude using weather radars, especially with dual polarization,
to estimate and classify the precipitation phase (Grazioli et
al., 2015; Chandrasekar et al., 2013). Disdrometers also esti-
mate precipitation phase based on the physical properties of
hydrometeors (size and fall velocity), using semi-empirical
knowledge of how these properties vary with type (Löffler-
Mang and Joss, 2000; Yuter et al., 2006). However, each
method has its own limitations. Rain gauges, providing point
measurements, have limited spatial representation and can be
affected by wind-induced errors (Førland et al., 1996; Neš-
por and Sevruk, 1999; Kochendorfer et al., 2022; Wolff et
al., 2015). Human observations can be subjective and are not
suitable for continuous high-rate monitoring. Weather radars
can suffer from beam blockage (Berne and Krajewski, 2013)
overshooting and still have difficulties linking the estimated
precipitation type to ground measurements (Harpold et al.,
2017; Elmore, 2011). Like rain gauges, disdrometers are lim-
ited in spatial representation and can experience errors such
as splashing of drops against nearby structures, drops falling
on the edge of the measuring area, and wind altering the drop
trajectories (Friedrich et al., 2013).

Precipitation phase estimation often employs a tempera-
ture model. This involves modeling the rain–snow transition
based on temperature using, for instance, a single tempera-
ture threshold to separate rain and snow or two thresholds
that define mixed precipitation between the two (Kienzle,
2008). Jennings et al. (2018) found that, when using a sin-
gle temperature threshold, the threshold separating rain from
snow varies geographically, ranging from −0.4 to 2.4 °C

for most stations, with colder thresholds near the coast and
warmer thresholds in the mountains. They also found that
models incorporating humidity performed better than mod-
els considering air temperature alone, which is confirmed by
other studies (Matsuo et al., 1981). Although some studies
do not observe any benefit of including humidity (Leroux et
al., 2023), humidity is thought to be an important parame-
ter, since the atmospheric moisture level affects the melting
and evaporating precipitation, influencing whether precipita-
tion reaches the ground as solid or liquid (Kuhn, 1987). One
common measure combining humidity and temperature is the
dew point temperature, which is the temperature at which
the air becomes saturated with water vapor at constant pres-
sure and moisture content (Lawrence, 2005). In a dry atmo-
sphere, the dew point temperature is significantly lower than
the air temperature. In these conditions, melting is not fa-
vored and snow can be observed at positive air temperatures.
Conversely, the dew point and the air temperatures are equal
if the air is saturated, and solid precipitation will more likely
have melted before reaching the ground if the air tempera-
ture is above 0 °C (Feiccabrino, 2020; Harder and Pomeroy,
2013, 2014). However, a large degree of uncertainty in pre-
cipitation type classification remains even when temperature
and humidity are combined. Harpold et al. (2017) suggest
that current phase transition models are too simple to cap-
ture the process, especially in complex terrain. They sug-
gest, for instance, to improve this by better use of other at-
mospheric information and enhancing the validation network
with ground measurements such as disdrometers.

Commercial microwave links (CMLs) are radio links be-
tween radio communication towers. In the mid-2000s, it was
demonstrated by Messer et al. (2006) and Leijnse et al.
(2007) that CMLs can be used to estimate rainfall. This is
due to the relationship between signal attenuation and rain-
fall intensity. At around 30 GHz, the relation is close to lin-
ear, making it easier to estimate the average rainfall intensity
along the CML path. Among other applications, CMLs have
been used to estimate countrywide rainfall (Graf et al., 2020;
Overeem et al., 2016), transboundary rainfall fields (Blettner
et al., 2023) and CMLs have proven useful for estimating
runoff in urban hydrology (Pastorek et al., 2023). A crucial
step in CML rainfall estimation is the detection of rainfall,
often called wet periods, in the CML time series. There are
several ways of doing this, for instance, by classifying a pe-
riod as wet when the standard deviation of a moving window
is larger than a predefined threshold (Schleiss et al., 2013;
Graf et al., 2020), by using pre-trained classification models
(Polz et al., 2020; Øydvin et al., 2024), or by including in-
formation from nearby CMLs (Overeem et al., 2011). It is
also possible to use weather radar to estimate the CML wet
period, as done in Overeem et al. (2016).

Classification of precipitation types other than rain using
CMLs has previously been investigated by Cherkassky et al.
(2014). The authors used the fact that snow, sleet (defined
as a mixture of snow and rain), and rainfall are affected dif-
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ferently by different CML frequencies. Thus, by using three
CMLs operating at different frequencies in the same area,
they were able to distinguish periods of sleet and rainfall,
albeit only for two precipitation events, each lasting 3 d. Os-
trometzky et al. (2015) expanded on this study by using four
CMLs operating at different frequencies and clustered at a
single path to estimate the precipitation amounts generated
by rainfall and sleet. The study investigated four precipita-
tion events lasting a total of 16 d. A limitation of both of these
studies is that they focus on a low number of CMLs over a
few days. It is not known how well these methods general-
ize to longer time series and larger CML networks. Other
studies have focused on how CMLs are affected by colder
climates. Hansryd et al. (2010) reported that heavy snowfall
caused minimal signal attenuation, while a mix of rain and
snow, caused higher signal attenuation. During an event with
mixed precipitation, van Leth et al. (2018) observed that the
CMLs experienced a strong signal attenuation that persisted
for about 10 min after the precipitation event, possibly due
to the melting of snow from the antenna cover. Graf et al.
(2020) and Overeem et al. (2016) reported that CMLs tend to
overestimate the precipitation amount during winter months.
Both attributed this overestimation to melting snow, which
is known to cause up to 4 times the attenuation compared to
rainfall, depending on the mixture of snow and rain (Paulson
and Al-Mreri, 2011). Dry snow, on the other hand, is known
to cause signal attenuation so low that it cannot be detected
by CMLs (Pu et al., 2020; Paulson and Al-Mreri, 2011; Han-
sryd et al., 2010).

In this study, we explore the viability of classifying dry
snow by exploiting the fact that dry snow causes unnotice-
able attenuation in the CML data. This is done by first us-
ing the weather radar to detect precipitation and then classi-
fying the precipitation type based on whether the CML de-
tects rainfall or not. We compare these estimates to ground
truth observations from disdrometers operated by the road
authorities in Norway, as well as a reference method that uses
weather radar and dew point temperature to estimate the pre-
cipitation phase.

2 Methods

2.1 CML data

The CML dataset was provided by Ericsson and consists
of 2777 CMLs spread across Norway. Each CML records
the transmitted and received signal strength every minute
for data from 2 months: December 2021 and June 2022.
The CML signal attenuation, often called total loss (TL),
was computed by subtracting the received signal strength
from the transmitted signal strength. In our dataset, there
were some outliers where the transmitted signal strength
was less than −50 dBm. These signals produced negative
TL values, likely due to recording errors. We opted to com-

pletely remove CMLs with transmitted signal strength less
than −50 dBm such that the remaining CMLs did not have
any negative TL values. We also removed CMLs with more
than 15 % missing values. This resulted in 2179 CMLs for
the summer dataset and 2345 CMLs for the winter dataset.
Next, as suggested by Graf et al. (2020), we removed erratic
CMLs where the 5 h moving window standard deviation ex-
ceeded the threshold of 2 dBm more than 10 % of the month
and noisy CMLs where the 1 h moving window standard de-
viation exceeded the threshold of 0.8 dBm more than 33 % of
the month. Then CML-derived rain rates were estimated us-
ing the pycomlink software (Chwala et al., 2023) and a simi-
lar workflow as described in Graf et al. (2020), Blettner et al.
(2023), and Polz et al. (2020). For the classification of rainy
periods, we used the convolutional neural network (CNN)
developed by Polz et al. (2020), as this model was trained
on hourly data, and this study also evaluates estimates at an
hourly resolution. The baseline was estimated by using the
average signal attenuation 5 min before a rainy period. Water
droplets forming on the antenna cover cause additional atten-
uation, which we accounted for by using the semi-empirical
wet-antenna attenuation model proposed by Leijnse et al.
(2008), with the refined parameters suggested by Graf et al.
(2020). Finally, the rainfall rate was computed using the k–
R relation, with parameters defined by ITU (2005).

2.2 Radar data

Weather radar data for Norway were downloaded from
THREDDS (2024), a data-hosting platform for gridded me-
teorological data run by the Norwegian Meteorological Insti-
tute. The radar product is developed from 12 weather radars
in Norway. These radars are combined using a Constant Al-
titude Plan Position Indicator (CAPPI). The final result is a
grid with a spatial resolution of 1 km× 1 km and a tempo-
ral resolution of 5 min. Sea clutter and other large peaks in
the data are removed, and ground clutter is identified and
corrected using surrounding data. The radar reflectivity (Z
[dBz]) is converted to precipitation rates (R [mm h−1]) using
the Marshall–Palmer relation (Marshall and Palmer, 1948).
Radar precipitation rates were estimated along all CMLs us-
ing the weighted grid approach provided by pycomlink. Then,
in line with Polz et al. (2020), time steps with weather radar
rainfall rates above 0.1 mm h−1 were considered rainy.

2.3 Disdrometer data and colocated CMLs

As ground truth for the precipitation type, we used dis-
drometer data from the Norwegian road authorities. They
use two types of disdrometers, namely the OTT Parsivel
and OTT Parsivel2. The disdrometer data were downloaded
from Frost (2024), a data-hosting platform for meteorolog-
ical observations run by the Norwegian Meteorological In-
stitute. This dataset also contains precipitation type observa-
tions from other sensor types, such as the Vaisala PWD12/31
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and DRD11A. Using a registry provided by the road au-
thorities, we selected time series that were generated using
the OTT Parsivel and OTT Parsivel2. This was done to en-
sure a more controlled comparison between sensors. The
disdrometers are placed at least 4 m above the road at au-
tomated meteorological stations located along the roads in
Norway and provide an estimate of the precipitation type ev-
ery 10 min. The instruments classify precipitation as light
rain, rain, snow, and hail. No precipitation or dry weather
is denoted dry in the following. We simplified the classifi-
cation by merging the classes light rain and rain since they
should appear similar in the CML and radar. Additionally,
since hail events were rare in the dataset (less than 0.01 %)
and were not of interest to our study, we set time steps where
the disdrometer recorded hail to dry. This adjustment resulted
in negligible error while simplifying the methodology. Thus
from the simplifications, the disdrometers only report three
classes: dry, rain, and snow. Pairs of CMLs and disdrome-
ters within 8 km of each other were identified using methods
from poligrain (2024) and CMLs longer than 8 km were re-
moved. The threshold of 8 km was a trade-off between get-
ting a large number of CML–disdrometer pairs, while still
maintaining a good correlation between the pairs. This re-
sulted in 376 CMLs and 83 colocated disdrometers for De-
cember 2021, and 304 CMLs and 60 colocated disdrometers
for June 2020. We refer to these as the winter and summer
datasets respectively. The CMLs used in the study had signal
quantization equal to 0.3 dBm and lengths ranging from 0.4
to 8 km and operated at frequencies between 10 to 40 GHz,
with the majority (90 %) operating above 18 GHz (Fig. 1).

Temperature, humidity, and dew point temperature

Temperature and humidity data were downloaded from
THREDDS (2024). The temperature data are a downscaled
version of ERA5 data that are combined with ground ob-
servations on a 1 km grid with a temporal resolution of
1 h (MET, 2024; Lussana et al., 2021, 2019). Lussana et
al. (2019) provide an extensive analysis of the temperature
dataset, and the uncertainty of the data depends on several
factors, like distance to the closest observation station, ter-
rain complexity, and model assumptions. For each CML, we
extracted the temperature and humidity at the midpoint of
the CML. To account for air humidity, we calculated the
dew point temperature using the approximate relation with
air temperature provided by Lawrence (2005), given as

Td = Ta− ((100−RH)/5) , (1)

where Td (°C) is the dew point temperature, Ta (°C) is the air
temperature, and RH (%) is the relative humidity.

2.4 Classification of rainy and snowy hours using the
disdrometers, the CML–radar (CR) method, and
the radar–temperature (RT) method

The weather radar (5 min resolution), temperature model
(60 min resolution), CML (1 min resolution), and disdrom-
eter (10 min resolution) provide estimates at different loca-
tions and with varying time resolutions. This lack of synchro-
nization could potentially lead to erroneous comparisons. To
address this issue, we aggregated the precipitation type es-
timates to hourly intervals to help smooth out these differ-
ences.

The “CML–radar” (CR) method uses CML wet periods,
as predicted by the wet–dry estimation method, to classify
precipitation as rain. Next, since the CMLs are not notice-
ably attenuated by dry snow, radar precipitation without cor-
responding CML precipitation is classified as snow. To ag-
gregate the CR estimates to hourly resolution, we classified
hours as rainy if the CML rainfall classification algorithm
recorded any rainfall, snowy if the radar estimated any pre-
cipitation but the CML did not estimate rainfall, and dry oth-
erwise. The “radar–temperature” (RT) method uses surface
temperature and weather radar to determine precipitation oc-
currence and precipitation type. As recommended by Harder
and Pomeroy (2014), humidity is accounted for by using the
dew point temperature. The RT method then works by es-
timating the average precipitation along the CML and clas-
sifying precipitation above a dew point temperature thresh-
old as rain and below the threshold as snow. The dew point
temperature was evaluated at the pixel closest to the center
of the CML and was, in line with Marks et al. (2013), set
to 0 °C. Combining humidity-corrected temperature models
with weather radar is a common method and is often used
as a reference method (Casellas et al., 2021; Saltikoff et al.,
2015; Gjertsen and Ødegaard, 2005). To aggregate the RT es-
timates to hourly resolution we classified hours as dry if the
radar observed no precipitation. If the radar observed precipi-
tation, we classified the hours as rainy or snowy, respectively,
based on whether the dew point temperature was above or be-
low 0 °C. For the disdrometers, we classified hours as rainy
if the disdrometer recorded any rain during that hour, snowy
if the disdrometer recorded snow but no rain, and dry other-
wise.

The drawback of the aggregation method is that it overes-
timates the number of rainfall events, introducing more un-
certainties in the results. However, we consider this an ac-
ceptable trade-off, as it allows for a more consistent analysis.
The effects of the aggregation method are evaluated further
in the discussion.

2.5 Metrics

In this study, we consider both binary classification (for in-
stance, rain and not rain) and multiclass classification (rain,
snow, and dry). A common tool for visualizing the perfor-
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Figure 1. CML characteristics for the summer and winter dataset. (a) Distribution of CML frequencies. (b) Distribution of path lengths.
(c) Relationship between path length, frequency, and number of CMLs.

mance of a classification algorithm is the confusion matrix.
It compares the ground truth labels with the predicted labels,
allowing us to understand the types of errors made by the
classifier. In this study, the classifier is either the CR or RT
method, and the ground truth is provided by the disdrome-
ters. In the binary case, the labels are categorized as either
negative or positive (Table 1).

Using this confusion matrix, several metrics can be de-
fined. We will first consider the accuracy score, which relates
the proportion of true results to the total number of cases ex-
amined such that

accuracy=
TN+TP

TN+TP+FP+FN
. (2)

Because of its simplicity, accuracy is a widely used metric,
but it may not always be the best indicator of a classifier’s
performance, especially in cases of imbalanced datasets. To
better understand the performance of the classifiers, it is
therefore common to consider other metrics as well. The pre-
cision score focuses on the classifiers’ positive predictions
and provides the ratio between the false and true positive pre-
dictions, such that

precision=
TP

TP+FP
. (3)

It is also common to consider the recall score, which gives
the proportion of reference positive cases predicted by the
classifier,

recall=
TP

TP+FN
. (4)

Since any classifier typically must strike a balance between
false positives and false negatives, improving the precision
comes at the expense of the recall. To consider both recall
and precision, the F1 score estimates the harmonic mean of
the precision and recall, combining these two metrics such
that

F1= 2×
precision× recall
precision+ recall

=
2TP

2TP+FN+FP
. (5)

We also use the Matthews correlation coefficient (MCC) to
quantify the performance of the classification methods. The

MCC is a metric that has been shown to outperform the ac-
curacy and F1 score on imbalanced datasets, by indicating a
good correlation only when the classifier performs well on
both positive and negative cases (Chicco and Jurman, 2020).
The MCC is given by

MCC=
TP ·TN−FP ·FN

√
(TP+FP) · (TP+FN) · (TN+FP) · (TN+FN)

. (6)

The accuracy, precision, recall, and F1 score reach their best
value at 1 and worst score at 0. The MCC score of 1 indicates
a perfect prediction, 0 indicates a random guess, and −1 is a
perfect inverse prediction.

In the multiclass case, the hourly predicted estimates com-
pared to the hourly ground truth can be summarized in a mul-
ticlass confusion matrix (see Table 2).

The accuracy score can be extended to the multiclass case
as follows:

accuracy=
true dry+ true rain+ true snow

total number of instances
. (7)

The precision, recall, and F1 scores are slightly more com-
plicated to generalize, as they involve selecting specific parts
of the binary confusion matrix. In this work, we generalized
the precision, recall, and F1 scores using macro averaging,
which works by evaluating each class (dry, rain, and snow)
individually and then averaging them into a single number.

Following Gorodkin (2004), the MCC metric can be gen-
eralized to n classes, providing a balanced metric that uses
the full confusion matrix (Jurman et al., 2012). The MCC
between the reference x and the predictions y for the multi-
class case is given by

MCC=
cov(X,Y )

√
cov(X,X) · cov(Y,Y )

, (8)

where

cov(X,Y )=
1
N

N∑
k=1

cov(Xk,Yk) . (9)

Here, N is the number of classes, and cov(Xk,Yk) is the co-
variance between the reference Xk and the predictions Yk for
class k. All metrics were computed using scikit-learn (Pe-
dregosa et al., 2011).
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Table 1. Confusion matrix for binary classification. The positive class typically represents snow, rain, or both, while the negative class
represents all other conditions not included in the positive class.

Predicted: negative predicted: positive

Ground truth: negative true negative (TN) false positive (FP)
Ground truth: positive false negative (FN) true positive (TP)

Table 2. Multiclass confusion matrix of the ground truth (disdrometer) with predictions from the CR and RT methods.

Predicted: dry Predicted: rain Predicted: snow

Ground truth: dry true dry false rain false snow
Ground truth: rain false dry true rain false snow
Ground truth: snow false dry false rain true snow

3 Results

3.1 Case study

To illustrate the RT and CR methods, we first focus on a case
study performed over a large area in mid-Norway, covering
36 CML–disdrometer pairs over 2 d from 18 to 20 December
2021 (Fig. 2). The area spans the Trondheim fjord and Nor-
wegian coast in the north and west to the Dovre mountain in
the south. For each CML, we counted the number of snowy
and rainy hours estimated by the RT method (a, d), the CR
method (b, e), and the nearby disdrometer (c, f). The total
snowy and rainy hours were then interpolated using inverse
distance weighting, with the midpoint of the CML indicat-
ing its position. We observe that, at the location of CML1
and CML2 (mountainous areas), the RT and CR methods es-
timate more snow and less rain compared to the disdrome-
ters. At the location of CML3, the RT method estimates more
snow and less rain compared to the CR method and disdrom-
eters.

Examining the time series for CML1 and CML2 (Figs. 3
and 4), we observe that before 18:00 UTC (for all times
throughout the text) on 18 December, the dew point tem-
perature (b) is mostly above 0 °C, and the CML signal level
fluctuates markedly (c), especially during periods when the
weather radar estimates rainfall. After 18:00, as the temper-
ature drops well below 0 °C, the CML signal loss shows a
different pattern, with much less fluctuation. At the same
time, the CR and RT methods estimate snow, while the dis-
drometer shifts between rain and snow. Before 18:00, the
RT method estimates some rainfall, while the CR method
estimates snow, possibly because the rainfall event was not
strong enough for the CML wet detection algorithm to iden-
tify it as rainfall.

The time series for CML3 indicate a different climatolog-
ical pattern compared to CML1 and CML2, with tempera-
tures above 0 °C before 18:00 on 18 December and hovering
around 0 °C afterward (Fig. 5). Observing the CML time se-
ries, we see that the signal loss fluctuates during all time steps

when the radar estimates precipitation. The disdrometer pri-
marily indicates rainfall, except for a period from 00:00 to
09:00 on 19 December, when it shows a mixture of rain and
snow. In contrast, the RT method indicates a longer snowy
period, lasting from 19:00 on 18 to 14:00 on 19 December.
The CR method primarily estimates rainfall but identifies
short snowy periods around the disdrometer’s snow period,
and estimates rainfall when the disdrometer indicates snow.

3.2 Overview of the data as a function of dew point
temperature

To get an overview of the full dataset used in the study, we
counted the total number of rainy and snowy hours estimated
by the disdrometers, RT method, and CR method for dew
point temperature intervals of 1 °C between −20 and 20 °C
(Fig. 6). Our data cover the full temperature range, with most
observations concentrated between −10 and 10 °C. The dis-
drometers record snow mainly below 0 °C (a), with some
snow events slightly above 0 °C. Most rainy hours recorded
by the disdrometers occur above 0 °C, but there are also a
substantial number of rainy hours recorded below 0 °C. The
CR method also estimates rainy hours below 0 °C, though
less frequently than the disdrometers, and it estimates a sig-
nificant number of snowy hours above 0 °C (c). The RT
method, by definition, predicts rainy hours above 0 °C and
snowy hours below 0 °C (b). Additionally, we observe that
the RT method estimates fewer rainy hours than the CR
method, even above 0 °C.

The difference between the estimated CML rainfall
amounts and the radar rainfall amounts is plotted as a func-
tion of dew point temperature (Fig. 7a). For dew point tem-
peratures below −2 °C, there is a positive bias where the
radar generally estimates more precipitation. Between 0 and
2.5 °C, there is a stronger negative bias, where the CML esti-
mates more precipitation. For dew point temperatures above
4 °C, the CML and radar estimates show a similar spread. In
panels (b) and (c), the color of each cell indicates the propor-
tion of rainy or snowy hours over total hours for the corre-
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Figure 2. Interpolated count of snowy (a–c) and rainy (d–f) hours for the RT method (a, d), the CR method (b, e), and disdrometers (c, f)
over a 2 d period starting on 18 December 2021. The Trondheim fjord and Norwegian coast (black line) are in the north and west, while the
Dovre mountains are in the south. White circles indicate the distorted positions (i.e., randomly shifted position to prevent exact retrieval of
coordinates) of the CMLs. The black x, the dot, and the star represent the locations of CML1, CML2, and CML3, respectively, with their
time series shown in Figs. 3, 4, and 5. The maps were interpolated using inverse distance weighting, with the midpoint of the CML indicating
its position.

Figure 3. Time series for CML1 located in the eastern mountain area of Fig. 2. Dew point temperature (b), CML signal loss (c), and radar
rainfall (d). Shaded areas indicate the precipitation type (rain or snow) estimated by the disdrometer (a), the CR method (c), and the RT
method (d).

sponding cell in panel (a). Generally, there is more rainfall in
observations above −2.5 °C and more snow in observations
below 2.5 °C. Additionally, for events where the CML esti-
mates more rainfall (i.e., negative bias), more rainy hours are
observed by the disdrometer.

3.3 The performance of the CR method vs. the RT
method

The performance of each CML–disdrometer pair for the RT
and CR methods is compared on the summer and winter
datasets using scatter density plots (Fig. 8a–e). In the lower
row (f–j), the mean dew point temperature of each CML dis-
drometer pair is shown. Note that some cells consist of sev-
eral CML–disdrometer pairs and that the indicated temper-
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Figure 4. Time series for CML2 located in the southern mountain area of Fig. 2. Dew point temperature (b), CML signal loss (c), and radar
rainfall (d). Shaded areas indicate the precipitation type (rain or snow) estimated by the disdrometer (a), the CR method (c), and the RT
method (d).

Figure 5. Time series for CML3 located in the northwestern coastal area of Fig. 2. Dew point temperature (b), CML signal loss (c), and
radar rainfall (d). Shaded areas indicate the precipitation type (rain or snow) estimated by the disdrometer (a), the CR method (c), and the
RT method (d).

ature then is the average of all pairs in the cell. In terms of
accuracy (a, f), both the CR and RT methods perform simi-
larly well, with a few CMLs performing less well using the
CR method. For precision (b, g), we observe that, on aver-
age, the RT method outperforms the CR method, indicating
that the RT method’s positive predictions are more trustwor-
thy than those of the CR method. However, the CMLs for
which the CR method performs less well tend to have an av-
erage temperature above 5 °C, while at colder temperatures,
the RT and CR precision scores are more similar. In terms of
recall (c, h), the CR method performs slightly better than the

RT method, indicating that the CR method is better at cor-
rectly identifying the disdrometer precipitation type. Look-
ing at the F1 score (d, i), which combines the precision and
recall score, we observe that the CR method performs worse
on average when the temperature is above 5 °C, but better
when the temperature is below 5 °C. Lastly, looking at the
MCC score (e, j), the CR method outperforms the RT method
for most CML–disdrometer pairs.

To investigate the effect of temperature on the CR and RT
predictions we plotted the multi-label confusion matrix of
the two methods for the three temperature intervals −20 to
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Figure 6. Number of hours classified as snowy or rainy for dew point temperature (Td) intervals of 1 °C, ranging from −20 to 20 °C, for the
disdrometers (a), RT (b), and CR (c) estimates.

Figure 7. (a) Difference between hourly precipitation amounts measured by the radar and CML for dew point temperature (Td) intervals of
1 °C, ranging from −10 to 10 °C. (b) The ratio of rain and (c) the ratio of snow in each cell as observed by the disdrometer. Cells with fewer
than four events are not shown.

−2 °C (a, d), −2 to 2 °C (b, e), and 2 to 20 °C (c, f) (Fig. 9).
The corresponding accuracy, precision, recall, F1, and MCC
scores for the individual classes (rain and snow), as well as
the multiclass score, are shown in Table 3. We can observe
that, compared to the RT method, the CR method generally
identifies more correct rainfall events. It also identifies more
snowfall events in the temperature interval −2 to 2 °C.

4 Discussion

4.1 Evaluation of the disdrometers’ performance

The disdrometer data suggest that rain is more frequent be-
low 0 °C than snow is above 0 °C (Fig. 6), which could indi-
cate that the disdrometer overestimates the number of rainy
hours. For example, looking at the CML time series (Fig. 3),
the disdrometer shows a mix of rain and snow, while the
CR and RT methods indicate only snow. This discrepancy
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Figure 8. Scatter density plots (a–e) comparing the accuracy, precision, recall, F1, and MCC score for the CR and RT methods for each
CML–disdrometer pair. Average dew point temperature of each cell (f–j).

Table 3. Accuracy, precision, recall, F1, and MCC score for the RT and CR methods for different temperature intervals. The “Rain”, “Snow”,
and “Multi” columns indicate whether the metric was evaluated against rainfall only or snow only or if it used the generalized multiclass
metric to evaluate both rain and snow.

−20 to −2 °C −2 to 2 °C 2 to 20 °C All temperatures

Rain Snow Multi Rain Snow Multi Rain Snow Multi Rain Snow Multi

Accuracy RT 0.93 0.88 0.83 0.81 0.86 0.71 0.85 1.00 0.85 0.88 0.93 0.82
Accuracy CR 0.91 0.89 0.81 0.81 0.86 0.72 0.88 0.94 0.83 0.88 0.91 0.81
Precision RT 0.93 0.69 0.66 0.65 0.67 0.55 0.68 1.00 0.68 0.68 0.70 0.59
Precision CR 0.52 0.69 0.47 0.68 0.67 0.58 0.74 0.50 0.50 0.71 0.62 0.56
Recall RT 0.50 0.65 0.44 0.56 0.61 0.46 0.66 0.50 0.44 0.61 0.65 0.51
Recall CR 0.51 0.65 0.44 0.68 0.63 0.55 0.77 0.51 0.52 0.70 0.64 0.56
F1 RT 0.48 0.67 0.44 0.57 0.63 0.47 0.67 0.50 0.45 0.63 0.67 0.53
F1 CR 0.50 0.67 0.45 0.68 0.64 0.56 0.76 0.49 0.50 0.71 0.63 0.56
MCC RT 0.00 0.34 0.30 0.19 0.27 0.28 0.34 0.00 0.34 0.28 0.34 0.32
MCC CR 0.02 0.34 0.27 0.35 0.30 0.39 0.52 0.00 0.47 0.41 0.25 0.39

could be due to the spatial distance between disdrometers
and CMLs, with temperature differences at these locations
possibly causing rain to be recorded at colder temperatures.
However, if this effect were significant, we would also expect
to see more snow recorded at temperatures above 0 °C, which
we do not observe. Another explanation for these discrep-
ancies could be the aggregation method, where rainy hours
are given priority over snowy hours, creating the impression
that there are more rainy hours below 0 °C. However, if the
disdrometer was correct and 10 min of an hour were indeed
rainy, this would still represent a significant amount of rain
during that hour. Moreover, comparing the CR rain distribu-
tion with the disdrometer rain distribution (Fig. 6), we can
see that the CR method observes fewer rainy hours below
0 °C, indicating that the disdrometers overestimate the num-
ber of rainy hours below 0 °C.

One explanation for this overestimation could be that wet
snow makes the disdrometer alternate between snow and
rain, creating the impression that there is more rain be-
low 0 °C. Moreover, different precipitation type sensors are
also known to disagree during mixed precipitation events
(Bloemink, 2005; Pickering et al., 2021), indicating that
these events are hard to classify. However, while wet snow
could explain some of the rainfall events below 0 °C, the
large proportion of rainy hours below −10 °C remains puz-
zling, as wet snow is not expected at such low temperatures.
Another explanation could be misclassification by the dis-
drometer due to factors such as strong winds and particles
falling through the edges of the sampling area and splashing.
Although correction algorithms exist (Friedrich et al., 2013),
they typically require the full velocity-drop size distribution
matrix, which our disdrometers do not provide. This limita-
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Figure 9. Confusion matrices for the RT (a–c) and CR (d–f) meth-
ods for three temperature intervals.

tion may lead to less accurate classifications. Additionally,
cars spraying water from salted roads could contribute to the
high number of rainfall events recorded below 0 °C. Conse-
quently, while the disdrometers provide valuable estimates,
they do not perfectly represent the ground truth, especially
during mixed precipitation events.

4.2 The case study

The case study indicated that the CR and RT methods es-
timated a similar number of snow events in the mountains,
while along the coast (for instance, at CML3), the CR es-
timates were more in line with the disdrometer estimates,
suggesting an advantage of using the CR method in certain
climatic zones. This could be due to the warmer conditions
along the coast, which keep the temperature around 0 °C, a
range where the RT method has more uncertainties. How-
ever, looking at the time series of CML3 (Fig. 5), we see that
the CR method estimates rainfall during the true snow event,
lasting from 00:00 to 10:00 on 19 December. It also wrongly
estimates snowfall before and after the true snowfall event.
Thus, while the case study map suggests a better agreement
between the CR and disdrometer estimates (Fig. 2), there is
still a significant discrepancy between the CR and disdrom-
eter estimates in the hourly time series (Fig. 5). This dis-
crepancy could be due to the spatial difference between the
CML and disdrometer, or disdrometer misclassification, as
discussed above. Another explanation could be that the dis-
drometers classify mixed precipitation, such as wet snow, as
snow, while the CMLs classify wet snow as rainfall, lead-
ing to a misclassification by the CMLs. This phenomenon is
clearly observable during the true snowfall event lasting from
00:00 to 10:00 on 19 December (Fig. 5), where the CML es-
timates a long rainy period and the disdrometer estimates a
mixture of rainfall and snow.

4.3 The classification performance of the CR and RT
methods

For snowfall classification at temperatures between −2 and
2 °C, the CR method holds a slight advantage over the RT
method, as reflected in a slightly higher MCC (0.3 vs. 0.27)
and recall score (0.63 vs. 0.61) (Table 3). This indicates that
the CR method is slightly better at identifying true snow
events (higher recall) while maintaining reliable estimates
(equal precision of 0.67). Looking at the confusion matrix
for the same temperature interval, we observe that, compared
to the RT method, the CR method correctly identified 2986
true snowy hours, an increase of 453 h, while wrongly clas-
sifying 3731 h as snow, an increase of 434 h (Fig. 9). In other
words, the CR method identifies more true snowfall events,
while also wrongly classifying rainy and dry events as snow.
The large number of false snow events estimated by the CR
method, also observable above 2 °C (Fig. 6), might be due
to several factors. Low-intensity rainfall events could fail in
triggering the CML rainfall detection algorithm, for instance,
due to the quantization of the CML signal. Further, due to the
spatial difference between the radar beam and the CMLs, the
precipitation might hit the radar, but miss the CML, trigger-
ing the CR method to estimate snow. Finally, hardware issues
with the CML, or database errors, could result in a flat sig-
nal level, causing the CR method to misinterpret conditions
and estimate snow. Better quality control of the CMLs, for
instance, by checking their correlation against the weather
radar during rainfall events, could improve the CR estimates.
Next, at temperatures below −2 °C (Fig. 6), both the CR
and RT methods snow classification produced recall scores
of 0.65, indicating that the weather radar misses many of the
snowfall events recorded by the disdrometers. This could be
due to the spatial difference between the CML and disdrome-
ter or disdrometer misclassification, as discussed above. An-
other explanation could be that blowing winds or road traffic
transport snow horizontally, causing the disdrometers to de-
tect snow that does not originate from the sky.

In terms of rainfall classification, the CR method performs
as well as, or outperforms, the RT method for all tempera-
tures above −2 °C (Table 3). For instance, for temperatures
above 2 °C, the binary accuracy score for rainfall increases
from 0.85 with the RT method to 0.88 with the CR method,
and the binary MCC for rainfall increases from 0.34 to 0.52.
However, both the RT and CR methods still miss many of
the rainfall events observed by the disdrometer, which is ev-
ident in their recall scores of 0.66 and 0.77, respectively. As
discussed above, this could be due to the spatial difference
between the CML and disdrometer, or, for instance, splash-
ing from the roads, leading the disdrometers to estimate rain-
fall that is not detected by the CML or weather radar. The
increased performance of the CR method, compared to the
RT method, could be due to radar overshooting or the radar
beam being blocked by mountains.
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For classifying snowfall and rainfall, both methods have
their own strengths and weaknesses. The CR method shows
a better ability to classify precipitation in the interval −2
to 2 °C (MCC= 0.39) but falsely estimates a large num-
ber of snowfall events above 2 °C. The RT method, on the
other hand, provides reliable precipitation classification be-
low −2 °C (MCC= 0.30) and above 2 °C (MCC= 0.34),
while its performance is not as good within the interval −2
to 2 °C (MCC= 0.28). Consequently, combining the RT and
CR methods would be optimal. This could, for instance, be
done by using the CR method in the interval −2 to 2 °C and
the RT method below−2 °C. Above 2 °C, precipitation could
be classified as rainfall if either the RT or CR method detects
rainfall.

4.4 Uncertainties, the impact of the aggregation
method, and mixed precipitation types

The impact of mixed precipitation, such as wet snow, on
the observation methods (disdrometers, CR method, and RT
method) remains a significant source of uncertainty in this
study. This uncertainty arises from the fact that none of the
observation methods can reliably classify mixed precipita-
tion. Additionally, accurately classifying hours that may con-
tain both snow and rain when aggregating the data to hourly
intervals poses a challenge. One solution is to introduce a
mixed class, classifying hours with both snow and rain as
mixed precipitation. However, it remains unclear whether
true mixed precipitation, like wet snow, would consistently
cause the disdrometer, CR, and RT methods to alternate be-
tween detecting rain and snow, which could make the mixed
class less physically meaningful and lead to inconsistent rep-
resentations across different estimation methods. While other
studies, such as Pickering et al. (2021), aggregated multi-
ple precipitation type data from different sensors to longer
periods using a Boolean algorithm, we found that the sen-
sors used in our study differed too much for a similar ap-
proach. For instance, the RT method uses temperature data
with hourly resolution, which complicates accurately cap-
turing hours with both wet and solid precipitation types.
While some studies introduce mixed precipitation estimates
by classifying precipitation within a fixed temperature inter-
val as mixed (Harpold et al., 2017), the true precipitation type
within this interval could still be purely rain or purely snow,
leading to inaccurate classifications. Furthermore, since the
radar might estimate precipitation slightly before the CML,
the CR method is prone to estimate snow before rainfall
events, leading to an overestimation of mixed precipitation.
This could be addressed by aggregating the CML wet period,
so that the radar precipitation estimates fall within the wet pe-
riod, but this would require further tuning to avoid estimating
too many rainfall events at the expense of fewer true mixed
events. This work uses a simplified aggregation method in or-
der to avoid introducing too many parameters. We found that,
while this approach produces a higher rain-to-snow ratio for

negative temperatures, the assumptions are stated more ex-
plicitly, and the final results and conclusion remain similar to
what we got using other aggregation methods.

Around 0 °C, the CMLs estimate larger rainfall amounts
compared to the weather radar (Fig. 7). The same temper-
ature interval is also characterized by the disdrometers ob-
serving both rainfall and snow. This suggests that significant
discrepancies between the CML and radar estimates around
0 °C may be attributed to wet snow. This effect has been
observed before in previous studies, such as Overeem et al.
(2016) and Graf et al. (2020), where a marked positive CML
bias during the winter months was observed. Further, Fig. 7
reveals that the CML bias as a function of temperature, fol-
lows a smooth transition. This indicates that wet snow, as
observed by the CML, does not belong to a homogeneous
group, but instead follows a gradual transition from snow to
rainfall while melting.

Another source of uncertainty lies in the temperature data
used for the RT method. The temperature data are a down-
scaled version of ERA5 data that are combined with ground
observations. Lussana et al. (2019) found that the expected
RMSE of the temperature data ranged between 1–2 °C in ob-
servation dense areas and 2–2.5 °C in observation sparse re-
gions. The RT method performance could thus be worse in
areas with complex terrain and sparse ground observations.

While studies such as Gjertsen and Ødegaard (2005),
Casellas et al. (2021), and Saltikoff et al. (2015) have eval-
uated the performance of temperature-based precipitation-
phase classification methods, these studies typically vary in
methodology, terrain complexity, radar technology, and the
instruments used to estimate the ground truth. This variabil-
ity introduces challenges when comparing results across dif-
ferent studies. Although the disdrometers used in this study
provide a large dataset, they have some limitations; in par-
ticular, the large number of rainy events recorded below 0 °C
and the lack of mixed class classification introduce uncer-
tainties specific to this study. Further, any type of wet precip-
itation can cause the CML signal level to drop, potentially
leading to precipitation being falsely classified as rainfall.
Another source of uncertainty is the spatial distance between
the disdrometer and the CML, where, for instance, temper-
ature variations due to elevation and spatial differences can
affect precipitation classification. Moreover, the temperature
model used is based on model data and could be improved
by using ground-based sensors. Combined, these factors in-
troduce large uncertainties in this study and further make it
challenging to directly compare the CR and RT estimates in
this study to those from similar studies.

Nevertheless, our study demonstrates that CMLs can be
used to enhance the classification of snow and rainfall around
0 °C, which are useful for hydrological applications such as
in predicting hydropower production, flooding, avalanches,
and slush avalanches.
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5 Conclusions

In this work, we have compared two methods for classify-
ing rain and snow. The “radar–temperature” (RT) method
works by classifying weather radar precipitation below 0 °C
as snow and above as rain, using dew point temperature de-
rived from downscaled ERA5 data. The “CML–radar” (CR)
method exploits the fact that dry snow causes minimal signal
attenuation in the CML signal level and works by classify-
ing time steps where the weather radar detects precipitation
and the CMLs do not detect precipitation as snowy. Time
steps where the CML detects rainfall are set to rainy. The
estimates were compared to estimates from nearby disdrom-
eters located along roads in Norway.

Our results show that the CR method outperforms the RT
method for dry snow detection between −2 and 2 °C and,
in general, for rainfall detection, suggesting that CMLs can
be used to better classify rain and snow. Further, our results
indicate that wet snow is classified as rainfall by the CMLs
and that during these events the disdrometers tend to esti-
mate a mix of rainfall and snow. Future work should investi-
gate methods for CML wet snow detection, preferably using
several different precipitation-type sensors as ground truth,
as suggested by Pickering et al. (2021). Future work should
also investigate how the CR estimates impact hydrological
models.

Overall, our findings suggest a new application for using
CMLs to identify dry snow and contribute to a better under-
standing of how CMLs behave during events of mixed pre-
cipitation.
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