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Abstract. This study addresses the challenges of ice parti-
cle morphology classification from images of optical array
probes (OAPs) and proposes a more refined processing to
enable better interpretation of observational data. The con-
volutional neural network methodology is applied to train
classification tools for hydrometeor images from optical ar-
ray probes. Two models were developed in a previous work
for the Precipitation Imaging Probe (PIP) and 2D Stereo
(2D-S). In addition, three new models are introduced in this
study: one for the Cloud Imaging Probe (CIP), one for the
High Volume Particle Spectrometer (HVPS), and a global
model trained on a data set that merges all available data
from the above four instruments. The methodology of re-
trieving morphology-specific size distributions from OAP
data is provided. Size distributions for each morphological
class, obtained using both the specific and global classifi-
cation models, are compared for the data set of the ICE-
GENESIS (Creating the next generation of 3D simulation
means for icing) project, where all four probes were operated
simultaneously. The reliability and coherence of these newly
obtained machine learning classification tools are clearly
demonstrated. The analysis shows significant advantages of
using the global model compared to the specific ones. The
presented methodology retrieves morphology-specific crys-
tal size distributions that effectively allow systematic identi-
fication of microphysical growth processes from OAP data
sets mainly collected on research aircraft during measure-
ment campaigns. By combining the quantitative reliability of
OAP-derived total number and mass size distributions with
advanced machine learning morphological individual crystal
classification, this approach establishes a foundation for in-
vestigations on past OAP data sets to be reinterpreted.

1 Introduction

The topic of ice crystal shapes has stimulated the imagina-
tion of cloud enthusiasts for centuries. The morphology of
solid hydrometeors is closely related to their growth history.
These shapes reflect the occurrence of certain microphysical
processes inside ice clouds and, in some cases, even pinpoint
their location in time and space (Pasquier et al., 2023). Par-
ticle morphology, therefore, helps explaining different path-
ways to form atmospheric ice. In particular, the shape of solid
hydrometeors may be used to deduce environmental condi-
tions, such as temperature, humidity, and turbulence levels,
that influence crystal growth within clouds.

The 3D particle geometry accounts for numerous proper-
ties of ice particles, such as fall velocity (Vázquez-Martín
et al., 2021; Locatelli and Hobbs, 1974), capacitance (West-
brook et al., 2008), scattering properties (Wyser, 1999), or
melting behavior (Matsuo and Sasyo, 1981; Knight, 1979).
In addition, several phenomena arise from the natural differ-
entiation of hydrometeors. Extreme precipitation rates, elec-
trification, and extended cloud lifetimes are some of the vis-
ible consequences of ice particle interactions. These cloud-
scale features ultimately play important roles in the global
climate system and feedback on atmospheric conditions and
thus cloud formation itself. The intricate nature of these feed-
back mechanisms and their role in the emergence of new
cloud-scale properties are illustrated in the next paragraph
to emphasize the importance of morphology.

Among hydrometeor types, dendritic crystals stand out for
their high capacitance, a property arising from their specific
3D shape. They grow in the temperature region (−15 °C)
where supersaturation reaches its potential maximum (Prup-
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pacher and Klett, 2010). Moreover, their fall velocity is
relatively low (Fukuta and Takahashi, 1999), resulting in
extensive residence times in their original growth region.
Thus, dendritic crystals are draining significant amounts of
water vapor. In contrast, graupel particles fall rapidly and
have rimed surfaces that inhibit further depositional growth
(Jensen and Harrington, 2015). In addition, they are partic-
ularly resistant to melting. As a result, rimed particles sedi-
ment more effectively towards the ground, draining the cloud
of some of its condensed water. When graupel and dendrites
collide with one another, charge transfer happens (Emersic
and Saunders, 2010). The charging events from these colli-
sions lead to cloud electrification and can eventually trigger
lightning. Lastly, lightning strikes play important roles in the
climate system, such as the ignition of wildfires that release
massive amounts of gas species (including greenhouse gases)
into the atmosphere (Knorr et al., 2017). This example shows
that different hydrometeor types contribute more effectively
to different cloud processes, such as dissipation of supersat-
uration for dendrites and precipitation for graupel particles.
In the presented example, these processes partly control the
cloud life cycle and fallout rate, two key characteristics of
clouds. In addition, the existence of differentiated particle
types allows for the explanation of further phenomena, such
as lightning. Because ice morphology is central to ice cloud
mechanisms, habit classification of ice particles is, therefore,
essential to improving weather and climate models.

For airborne in situ measurements, morphology is often
limited to qualitative information because of instrumental
limitations (Zhu et al., 2015; McFarquhar et al., 2007). How-
ever, quantitative size distributions are produced by analyz-
ing data obtained with optical array probes (OAPs). Histor-
ically, the low resolution of OAP images made it difficult
to extract morphological information using feature-based ap-
proaches. Manual classification was limited due to the large
volume of images produced by these probes. However, the
eye of an experienced microphysicist is able to distinguish
particle shapes and assign the proper morphology to most
of the produced 2-D images. Feature-based approaches have
tried to capture this human skill using relevant geometric
characteristics of 2-D hydrometeor images (Duroure, 1982;
Rahman et al., 1981) with limited success and slow process-
ing speed (Praz et al., 2017).

In atmospheric science, the integration of machine learn-
ing (ML) techniques has already demonstrated transforma-
tive potential, from predicting weather patterns to analyzing
cloud organizations in satellite imagery. When it comes to
classifying ice particles, ML offers significant advantages
over traditional methods, such as manual classification or
feature-based algorithms. These conventional approaches of-
ten struggle with reliability, the sheer volume of data, and
subjective biases, whereas ML provides scalability, consis-
tency, and objectivity. With the advent of artificial intelli-
gence, the human ability to recognize shapes can finally be
emulated (Krizhevsky et al., 2012) with a neural network

architecture called convolutional neural networks (CNNs).
This type of network applies 2-D filters to input images and
subsequently created feature maps, thereby creating hierar-
chical complex abstractions of the image based on the data
sets they were trained with. In between these convolutions,
pooling layers are used in order to summarize and reduce the
size of the obtained feature maps. This step enables strong
generalization capabilities, which are required to account for
the high variability that is inherent to ice particle shapes and
orientations. Finally, fully connected layers are used to com-
bine the final abstractions of the initial image with a cate-
gory, learned from its manually labeled training data. CNNs
are particularly well-suited for image recognition tasks be-
cause they automatically learn to identify patterns and fea-
tures, without requiring human-defined rules, which are the
cause for the bad generalization of traditional feature-based
approaches.

Using CNNs, Przybylo et al. (2021) and Schmitt et al.
(2024) have developed classification tools for other instru-
ments that record ice particle shapes: the Cloud Particle Im-
ager (CPI), which is a high-resolution CCD imager, and the
Particle Phase Discriminator mark 2 and the Small Ice Detec-
tor, which are 2-D scattering probes. CPI images are highly
valuable due to their high resolution and 256 grayscale lev-
els. In contrast, optical array probes (OAPs) produce larger
data sets of particle images because of their much larger
sample volumes. However, their lower resolution and the
fact that those images are mainly black-and-white images
also pose significant challenges for traditional classification
techniques. Using CNN algorithms, Wu et al. (2020), Jaf-
feux et al. (2022), and Zhang et al. (2023) achieved reliable
automatic classification with single probe data sets. These
studies demonstrated that with a sufficiently large and well-
labeled data set, CNNs can achieve accuracy comparable to
that of microphysics specialists in recognizing the complex
shapes of ice particles for OAP images. The current study
extends the previously developed CNN models, in order to
retrieve a most realistic description of the sampled environ-
ments. This is achieved by combining OAP-derived quanti-
tative concentration measurements, which have historically
provided reliable data for particle concentrations and size
distributions, with advanced automatic classification tools
to enhance morphological analysis. These newly obtained
morphology-specific size distributions are a major step in
understanding the dynamics of the interactions between dif-
ferent ice particle populations that grew under different mi-
crophysical regimes and that were clearly identified as the
source for related cloud-scale phenomena.

While classification methodologies have been developed,
comparisons of coherent observations from different imag-
ing instruments remain scarce. This research gap presents
an opportunity to explore data sets and validate classifica-
tion tools. Multiple OAPs are often mounted on research
aircraft in order to cover complementary size ranges with
some overlap. This setup ensures instrumental redundancy
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and enables comparisons, while also capturing the broad-
est possible spectrum of particle sizes. This study intro-
duces a methodology for splitting particle size distributions
into morphology-specific distributions for respective OAP
probes, enabling multi-probe comparisons to be performed
for each hydrometeor category. These comparisons not only
validate classification tools but also reveal the ability of each
probe to capture morphological details of ice particles across
different sizes and shapes. Furthermore, a new classifica-
tion tool is trained in this study and used to process images
from four different OAP instruments with different pixel res-
olution and size ranges, while all previous works on OAP
CNNs only used single probe data sets. The obtained spectra
cover 2 orders of magnitudes in size, consisting in most of
the upper range of the particle size spectrum (from 300 µm
up to 1.9 cm), and overlap largely in the case of the ICE-
GENESIS data set, which contains OAP data sampled si-
multaneously with the four most used OAP instruments (2D
Stereo (2D-S), High Volume Particle Spectrometer (HVPS),
Cloud Imaging Probe (CIP), and Precipitation Imaging Probe
(PIP)). This instrumental setup, combined with the machine
learning classification tools, provides a first basis to analyze
and compare habit-dependent particle size distributions over
large size ranges. The use of the global CNN model versus
CNN models limited to solely probe-specific data sets is a
key focus of the article.

The procedure that leads to quantitative estimates of
morphology-specific particle size distributions for different
OAP instruments is detailed in the first section. First, two al-
ready existing classification tools, one for the 2D-S and one
for the PIP, are presented, tested, and improved for the ICE-
GENESIS data set. Then, three additional CNNs that were
developed for the CIP, HVPS, and all four probes simultane-
ously are quickly presented. Finally, the extracted morpho-
logical information and the quantitative bin concentration es-
timation are combined. In a second part, the data set is briefly
presented in terms of the encountered cloud conditions (e.g
temperature range, cloud depth, and cloud origins) and total
OAP data. After that, the compatibility and coherence of the
five classification tools are explored on this data set by study-
ing morphology-specific size distributions for each class. The
final section provides a summary of the content of the arti-
cle; conclusions on the size distribution analysis, including
potential improvements and recommendations; and finally, a
discussion on the benefits of the use of the developed tools
for the scientific community.

2 Methodology

CNNs are able to solve the problem of shape recognition by
reaching human levels for single images (Krizhevsky et al.,
2012). Nonetheless, these algorithms are not flawless, es-
pecially because they rely on manually gathered data sets.
Faulty class attributions may stem from the arbitrary defini-

tion of image classes or the possibility of encountering un-
defined particle types in acquired data. Understanding that
CNNs are black-box algorithms whose mistakes are diffi-
cult to decipher is the main motivation for their testing. It
is indeed necessary to address this weakness and evaluate
the quality of the extracted morphological data. Jaffeux et al.
(2022) developed two classification algorithms for the Pre-
cipitation Imaging Probe (PIP) and the 2D-S probes. To these
two instruments, the CIP and HVPS have been added.

The CNN structure used in this study is similar to the one
of the AlexNet model (Krizhevsky et al., 2012) (as shown
in Fig. 1). It consists of two parts: a feature extractor and a
classifier. The first part takes a fixed size image as input and
follows a hierarchical structure of successive convolution and
subsampling layers. This part converts the initial image and
the subsequently created feature maps into smaller, summa-
rized, higher level feature maps. The convolution layer ap-
plies the dot product to the values of each pixel and its sur-
rounding in a 3 by 3 square and 3 by 3 filters (also called ker-
nels), which are trained to account for abstracted features.
Then, the subsampling layer reduces the obtained feature
map to its more crucial information using a 2 by 2 max pool-
ing filter, thus dividing the number of pixels of the feature
map by 4. Since these operations do not result in an increase
in computational cost, the number of filters applied within
each convolution layer is accordingly doubled as the feature
map reaches deeper levels of the feature extractor. The two-
layer types are applied one after the other until the size of the
feature maps reaches one. The number of convolution lay-
ers depends therefore on the size of the initial image. In the
case of the ones obtained with the 2D-S and HVPS, which
both have 124 photodiodes, a size of 200 by 200 was used,
resulting in six convolution layers. In the case of the CIP and
PIP probes, which both have 64 photodiodes, a size of 110
by 110 was used, resulting in five convolution layers.

Finally, the classifier, a fully connected perceptron with a
single hidden layer, is used to attribute classes to the com-
bination of the most abstracted features that were extracted.
During the training, 20 % of the labeled data are randomly
taken out for the final testing, 16 % are used for valida-
tion during training, and 64 % are used for training the fil-
ter weights and the synapses from the fully connected lay-
ers. The images are padded to the adequate input size. Then,
they undergo a random flip operation (vertically, horizon-
tally, both, or none) in order to produce more variety in the
orientation of the particles without requiring pixel interpola-
tion. Bayesian parameter optimization is performed for hy-
perparameter tuning, including the number of neurons used
in the classifier dropout (Srivastava et al., 2014) for every
convolution and the fully connected layers.

The goal of this first section is to describe the training data
and the morphological classes associated with each CNN
model and to report the results of the training using confu-
sion matrices and training reports obtained on test data sets.
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Figure 1. Structure of the convolutional neural network used in this study. For more details, see Jaffeux et al. (2022).

2.1 Morphological classes

When considering clouds and their potential to produce pre-
cipitations, ice particles can be separated into three general
types: pristine crystals, intermediary particles, and ultimate
precipitating particles. Their respective number and mass
size distributions and concentrations reflect the strength of
the processes governing their appearance, growth and con-
sumption. Because revealing and measuring these effects is
the end goal of the developed tools, the classes defined in this
subsection fall into these three categories.

1. Pristine crystals are single crystals formed through the
initiation of ice particles that grow by the deposi-
tion of vapor. Pristine crystals disappear through self-
aggregation, scavenging by other particle types, and
shape alteration via riming or secondary deposition
regimes (in the special case of capped columns). These
particles include plates and dendrites that are designed
under a common class named hexagonal planar crys-
tals (HPCs). Because plates and dendrites grow in adja-
cent environments (Fukuta and Takahashi, 1999), they
are considered a continuum here. Columns and needles
(Co) are the other types of pristine crystals defined for
the models.

2. Intermediary particles are formed from pristine crystals
and the intermediary particles themselves. They grow
through the aggregation of pristine crystals and inter-
mediary particles, including self aggregation and sec-
ondary deposition. They are consumed by collection
and riming. Based on the available OAP data sets, com-
bination of bullets and columns (CBCs), complex as-
semblages (CAs), fragile aggregates (FAs), and capped
columns (CCs) are the defined classes corresponding
to this intermediary type. Combinations of bullets and
combinations of columns are hardly differentiable with
the coarse resolution and binary nature of OAP images.
Both particle types follow the definition of intermediary
types; for this reason, they were put together. Particles
with complex shapes and sharp edges, which exhibit

transparency and are often composed of spatial plates,
are commonly obtained but only with the 2D-S. The
corresponding particles likely formed through the ag-
gregation of pristine crystals and/or significantly grew
by deposition in different environments. These observa-
tions motivated the definition of the CA class for the 2D-
S. In some cases, the individual elements composing
an aggregate cannot be identified, either because these
elements are too small with respect to the pixel reso-
lution or because the elements are individually amor-
phous (e.g., aggregates of ice fragments). The FA class
corresponds to these aggregate types in cases where the
bounds between the monomers are relatively thin.

3. Ultimate precipitating particles are formed and grow
by the riming and aggregation of any type of crys-
tal, including self aggregation. The mass fall rate (or
downward mass flux) of ultimate particles is thereby
roughly constant. Two classes are defined to correspond
to this definition: compact particles (CPs) and rimed
aggregates (RAs). Both of these morphological classes
are close in terms of shapes and mostly designate two
archetypes of dense ice particles, CPs being the most
compact and RAs being defined as particles that visibly
contain several monomers.

All the classes defined above are summarized in Fig. 2
with actual examples from the training data for each of the
four probes. It can be noted that for the 2D-S and CIP, a water
droplet (WD) class was added. In addition to these classes,
two artifact classes were defined for each of the SPEC in-
struments: a diffracted class for the 2D-S (Dif) and a frag-
mented particle class for the HVPS (FP). These classes con-
firm the fact that despite the use of inter-arrival time algo-
rithm (Field et al., 2006), and treatment of diffracted images
(Vaillant de Guélis et al., 2019), some of these artifact im-
ages are still found within OAP images. All training data
sets and codes for the training can be found in the GitHub
repository (see https://doi.org/10.5281/zenodo.15573218,
Jaffeux, 2025). The 2D-S, CIP, PIP, and HVPS training data
sets are composed of 6561, 5163, 3281, and 4290 images,
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Figure 2. The nine morphological classes defined for the classification algorithms for the 2D-S, CIP, and PIP (Jaffeux et al., 2022).

respectively. The building of these training data sets is the
result of an iterative process of training, testing, and gather-
ing more pertinent data. An appreciable number of images in
each class is a not a necessary condition to allow the CNN
model to train and, more importantly, generalize success-
fully.

As mentioned in the Introduction, the entirety of the train-
ing data for each probe was gathered into a single data set
with the aim to train a model adapted for the data of any
OAP. Two noticeable adjustments were made in the making
of this new data set: additional 2D-S dendrite and hollow col-
umn images were added, capped columns for the PIP were
added, and the RA images were included in the CP class.
The CA, Dif, and FP morphological classes only include data
from one probe (2D-S for the CA and Dif and HVPS for SP).
The consequences of the decision to keep these classes in a
general model are discussed in the analysis section. In total,
21390 images constitute this “global” data set. This number
can be put into perspective with the 24 720, 9000, and 33 300
images used in Przybylo et al. (2022), Schmitt et al. (2024),
and Zhang et al. (2023), respectively, and which used transfer
learning for similar number of classes with the same objec-
tive of classifying ice particle shapes.

Hereafter, the quality of the training of each CNN, asso-
ciated with each data set, is demonstrated. The CIP, HVPS,
and “global” data sets are essentially built with data from
the ICE-GENESIS campaign. For the three corresponding
CNNs, the confusion matrices and training reports are shown

and described briefly. For the 2D-S and PIP algorithms,
which were obtained in Jaffeux et al. (2022) with data ac-
quired prior to the ICE-GENESIS campaign, additional spe-
cific testing and assimilation are presented instead.

2.2 Additional CNNs: the Cloud Imaging Probe (CIP),
High Volume Particle Spectrometer (HVPS), and
global model

2.2.1 CIP

The CIP has a 25 µm resolution and 64 pixels, providing mea-
surements of hydrometeors in the 12.5 to 1600 µm range.
As for any OAP instrument, the upper size limit can be ex-
tended at the cost of measurement statistics and bias in un-
dersizing truncated particles, when reconstructing those. The
2D-S classes are used except for the CA class, which was
characterized by some level of transparency which could
not be found within available CIP images. The same train-
ing methodology was used for the CIP CNN as for the PIP
and 2D-S ones; see Jaffeux et al. (2022). The CIP CNN was
trained exclusively on ICE-GENESIS data, as opposed to the
PIP and 2D-S CNNs. The associated training confusion ma-
trix and training report can be found in Fig. 3. The most
noticeable confusion happens between CPs and HPCs, but
this confusion happens at the expense of the precision of the
CP class, which is a good outcome considering the reason-
ing given in the previous subsection. The total accuracy is
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slightly below 90 %. It can be noted that both Co and WD
classes are very well recognized.

2.2.2 HVPS

The HVPS has 150 µm resolution and 128 pixels, providing
measurements of hydrometeors in the 75 to 19 200 µm range.
For the HVPS, all defined PIP classes are used, with the addi-
tion of the FP class. The HVPS CNN was trained exclusively
on ICE-GENESIS data, similarly to the CIP CNN. The re-
sulting confusion matrix and training reports are shown in
Fig. 4. Few HPCs were found within the HVPS data sets
(318), leading to low precision for this class. The most no-
ticeable confusion happens between aggregate classes, in
particular the CNN identifies some RAs and CBCs as FAs.
The total accuracy is around 85 %.

2.2.3 Global model

On the validation set, accuracy reached 96.8 %, and testing
resulted in the confusion matrix and training reports shown in
Fig. 5. Relatively low confusion was found between the FA,
CBC, and CP classes on the one hand and between CPs and
HPCs on the other hand. The quality of the obtained model
matches that of the specific models. Consistently with the
specific models of 2D-S and CIP, Co and WD classes are
well recognized in the test data set.

2.3 CNN-specific test and data assimilation

In order to specifically evaluate the performance of the pre-
viously trained algorithms (for PIP and 2D-S) and improve
their representation for each class, 200 images were man-
ually extracted from the whole ICE-GENESIS data set for
each class for the PIP and 2D-S, in order to test both CNNs
with respect to their accuracy concerning each morphologi-
cal class. If the algorithm shows significant amounts of error,
data assimilation has to be performed to hopefully resolve the
issues. The authors strongly encourage manual inspection by
the reader of the 200 images extracted for each class as their
selection is inherently subjective. Such manual verification is
required to help in understanding the predictions of the CNN
models in subsequent analysis.

2.3.1 2D-S

Figure 6a describes the results of the specific testing. While
columns are perfectly recognized, and generally most classes
are well identified, some porosity between CBCs and FAs,
on the one hand, and between HPCs and CPs, on the other
hand, is found in reasonably limited amounts. However, the
model iteration completely fails to recognize WD. Compar-
ison between the test data and training data shows that the
test droplets are vertically elongated, while the training ones
were either horizontally elongated or spherical. This differ-
ence stems from the processing methodology used at the

Laboratoire de Météorologie Physique (LaMP), which is the
setup of a high default true air speed (TAS) for OAPs rather
than an online direct update from the plane’s central com-
puter. While size parameters are corrected, since the default
TAS is higher than the real one, images are not resized ac-
cordingly. In other words, depending on the plane’s speed,
different levels of 2-D image deformation were experienced
for the droplets. Since water droplets have very characteris-
tic shapes, the CNN is highly disturbed by this change and
does not recognize water droplets from the ICE-GENESIS
data at all. Finding a remedy to this problem is required, not
only because identifying WD is essential to the microphysi-
cal analysis but also because their presence currently harms
the precision of the CP and HPC classes.

The tested data were assimilated into the training set in
order to obtain a model that is performing even better with
the ICE-GENESIS data. A substantial improvement for wa-
ter droplet recognition was required, and thus a supplemen-
tary number of 700 images of water droplets of all sizes was
added to the training data set. The results of this second in-
spection are presented in Fig. 6b. The final testing results im-
proved significantly: the overall accuracy rose from 60 % to
82 %, with 100 % recall for WD and 92 % accuracy. The re-
sults for the HPC class changed considerably as well. While
before the assimilation many additional images would have
been misidentified as HPCs, after the assimilation, even if
the class-specific recall is lower (from 73 % to 52 %) the ac-
curacy is higher (from 42 % to 88 %). This shows that the
updated version of the model circumvents one of the diffi-
culties humans are also subject to; namely, a heavily rimed
plate and a spherical graupel particle are difficult to distin-
guish from OAP images, with the lack of surface informa-
tion being one of the reasons. While it is acceptable to clas-
sify heavily rimed HPCs as CPs, the inverse classification is
problematic for the study of microphysical processes. Over-
all, the above test improved the algorithm’s predictions and
its scientific interpretability.

2.3.2 PIP

Figure 7a describes the results of the class-specific testing.
Co and CBC classes have acceptable recall and precision.
The expected porosity between RAs, FAs, and CPs is con-
firmed. The porosity occurs at the expense of the FA class,
which is an acceptable outcome. A result that has to be men-
tioned is the low accuracy of the HPC class (59 %) and the
inclusion of a high number of CPs in the HPC predictions.
In order to try and rectify this confusion, initial testing data
were assimilated and produced the results shown in Fig. 7b.
The overall accuracy improved from 66 % to 72 %. Porosity
between FAs and CBCs and between CPs and RAs is still
considerable. A significant number of images of columns of
only a few pixels are sometimes identified as FAs. Never-
theless these errors are acceptable because they do not harm
the ability to make physical interpretations since they re-
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Figure 3. (a) Confusion matrix for the CIP CNN. (b) Training report for the CIP CNN.

Figure 4. (a) Confusion matrix for the HVPS CNN. (b) Training report for the HVPS CNN.

spectively emanate from the same microphysical processes.
Finally, the most problematic class in the original testing,
HPCs, was fixed after data assimilation with an accuracy of
91 % and a recall of 72 %.

2.4 Computation of number and mass size
distributions for different morphological classes

The four probes have pixel resolutions of 150, 100, 25, and
10 µm, for the HVPS, PIP, CIP, and 2D-S, respectively. The
2D-S and HVPS have arrays of 128 photodiodes and the
CIP and PIP of 64. Habit recognition requires the definition
of minimum particle size this lower size threshold was set
to 20 pixels for the HVPS, PIP, and CIP and 30 pixels for
the 2D-S. This difference is motivated buy the high num-
ber of artifact particles that was obtained from 2D-S images

with the 20 pixel requirement. In addition, truncated images
were excluded from the classification. The “entire-in” cri-
terion provides the best shape recognition capabilities, en-
sures the quality of the extracted 2-D information, and it the
original sampling volume computation formula, providing an
accurate calculation of particle concentrations (Knollenberg,
1970). Nonetheless, this criterion reduces the number of ana-
lyzed images especially for size ranges nearing the length of
the photodiode array, beyond which, only elongated particles
oriented perpendicularly to the detection array are kept. De-
spite this artificial filtering, no upper size limit has been set
for any of the probes used. In particular because this filtering
heavily depends on particle shapes, the classification opens
the possibility to even quantitatively explore this effect.

Since the classification tool is not yet integrated within the
processing tools of OAP images at the LaMP (Leroy et al.,
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Figure 5. (a) Confusion matrix for the “all-OAP” CNN. (b) Training report for the all-OAP CNN.

Figure 6. Results of specific evaluation for the 2D-S classes in number (100 images per class). The horizontal axis describes user classification
and the vertical one the CNN algorithm results. (a) First evaluation. (b) After assimilation of the data from panel (a) and additional water
droplet images.

2016), single images are extracted, tagged with timestamps
and identification keys, so that they can be merged with rou-
tinely processed image features such as perimeter and sur-
face area. After padding the raw images, they are processed
by the classification tool, and each image is registered as
one line in a table (pandas DataFrame) with its identification
keys, timestamp, geometric features, and classification score
for each class (the sum of which is normalized). The clas-
sification score is rounded so that it becomes a categorical
binary array (one 1 and zeros). In addition, the aircraft data,
in particular altitude, temperature, humidity measurements,
and position, are resampled and concatenated in additional
columns. Estimation of the sample volume is necessary in or-

der to link classification results to quantitative concentration
values. Computing the sample volume, in the existing code,
is a dynamic operation that takes into account all recorded
particles within the time frame of 1 s and the operational time
of the probes. No direct method can therefore retrieve a parti-
cle by particle sample volume. In the future, the classification
tool has to be integrated within the existing feature extrac-
tion IDL routines. For now, a simple approach was developed
to retrieve class-specific number and mass size distributions,
which easily translate to number and mass concentrations.
The method is detailed below and illustrated in Fig. 8.
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Figure 7. Results of specific evaluation for the PIP classes in number (100 images per class). The horizontal axis describes user classification
and the vertical one the CNN algorithm results. (a) First evaluation. (b) After data assimilation.

Figure 8. Plots of morphology-specific size distributions from 2D-S data obtained in (a) Step 3, (b) Step 4, and (c) Step 5 of the computation
of habit-specific particle size distribution (PSD). The data plotted correspond to the data gathered during flights 6, 7, and 8 of the ICE-
GENESIS field campaign between +2 and −9 °C (see Sect. 3.1).
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1. Particles are filtered, in time, in space (including alti-
tude), or by relevant physical parameters such as tem-
perature. The result of this step is a collection of parti-
cles gathered under user-defined filters.

2. A binned Dmax is calculated for each particle. Particles
are then grouped (summed) within bins corresponding
to the bins used in the LaMP routine for particle size
distribution (PSD) computation: the bin width is 10 µm
(100 µm), and the first bin center is 5 µm (50 µm) for the
2D-S (PIP). The result is a pseudo class-specific PSD,
uncorrected by the sample volume.

3. The number of images per class is normalized by the
total number of particles in each bin, yielding a fraction
of each type of particle in each bin (see Fig. 8a).

4. After applying the filters (used in step 1) to the PSD
obtained through the LaMP routine, a PSD correspond-
ing to the obtained class-specific normalized PSD is
obtained. By multiplying the normalized class-specific
pseudo PSD by its corresponding PSD bin by bin, the
class-specific PSD is obtained (see Fig. 8b). The stacked
PSD’s envelope is the former PSD, obtained with the
LaMP routine.

5. Plotting each morphology separately yields class-
specific PSDs such as in Fig. 8c. And consequently, the
sum of each PSD gives concentration values.

As a side note, the corresponding mass PSD can also
be retrieved using the estimated mass of each particle,
though Baker and Lawson (2006) combined single param-
eter parametrization or mass laws specific to each particle
type. However, this step is not within the scope of this paper.

3 Application of the methodology to the
ICE-GENESIS campaign

3.1 The ICE-GENESIS data set

The January 2021 ICE-GENESIS field campaign took place
in the Swiss Jura mountains, over the Lachaux-de-Fond air-
port (Billault-Roux et al., 2023). The primary objective of
this airborne experiment is to document snow conditions in
the 0 to −8 °C temperature range, in terms of hydrometeor
number concentrations, sizes, and shapes. Snowfall environ-
ments were found by sampling winter frontal clouds, whose
precipitation were enhanced through the orographic effect of
the mountainous terrain. OAPs were used to obtain the re-
quired measurements with high reliability. Of the most com-
monly used OAPs, four were mounted on the SAFIRE ATR-
42, including a 2D-S, a 25 µm resolution CIP, a PIP, and
an HVPS. The variety of resolution and size ranges of the
probes provided measurements of hydrometeors in the 10 µm
to 1.9 cm size range, with two extensive overlap regions be-
tween the 2D-S and CIP and between the PIP and HVPS. In

addition, it allowed us to have adapted resolution for parti-
cles of various sizes, meaning that, given the CNN models
presented in Sect. 2, morphological recognition of particles
was possible from 300 µm up to 19.2 cm. Results of the cam-
paign documenting snow with these OAP measurements are
presented in two conference papers (Jaffeux et al., 2023a, b).

The airborne RASTA W-band radar reflectivity vertical
profiles for flights 6, 7, and 8 of the ICE-GENESIS cam-
paign are presented in Fig. 9. Five cloud segments have been
selected, corresponding to rather deep frontal clouds that
were sampled continuously. For segment 3, a warm front was
sampled and for the other segments cold fronts. Together,
they represent 7 flight hours, where the cloud tops reached
temperatures below −20 °C with bases nearing the melting
point of water, meaning dendrites, plate-like, and columnar
crystal types could be observed simultaneously with large
snowflakes and rimed particles. In the present section, the
data gathered within these periods are examined as a whole.

Figure 10 shows the flight distance corresponding to 1°C
temperature intervals. About 25 % of the total 3473 km
were performed around −2 °C. The dendritic and plate-
like growth regions (between −20 to −12 °C, and between
−12 to −8 °C, respectively) were not sampled, but some
large precipitating crystals of these types were reported dur-
ing the flights, and some smaller ones could be observed
within larger aggregates. However, the columnar growth re-
gion (−8 to −5 °C) was well explored. Supercooled liq-
uid droplet pockets were marginally detected by the Cloud
Droplet Probe outside the melting layer’s vicinity.

The total PSDs were obtained with the all-in method and
are presented in Fig. 11 for each OAP. With the exception of
the ends of the spectra of both DMT instruments (CIP and
PIP), where values tend to fall off before Dmax reaches the
photodiode array length, the four probes agree well over their
overlapping range. In addition, the junction of both pairs of
spectra is straightforward. In summary, all four spectra are
very compatible.

For the 2D-S, only the horizontal channel was processed.
In total, 410 882, 578 164, 986 965, and 257 103 images met
the size requirements and all-in criterion for the 2D-S, CIP,
PIP, and HVPS, respectively. They were analyzed by both
specific and global CNN models. It can be noted that com-
parable numbers of usable images were gathered in just 7
flight hours of a single campaign with each of the four OAPs
as in Przybylo et al. (2022), which obtained 970 000 images
from 12 full campaigns using the CPI. This contrast high-
lights the limitations of the CPI and the advantages of using
OAPs instead, even for morphological analysis. Using the
methodology described in Sect. 2.4, the results of the shape
recognition were combined with the total PSD presented in
Fig. 11. The obtained PSDs are described in the next subsec-
tion. For each morphology-specific PSD, total concentration
values were obtained by summing all the bins of each spec-
trum. These concentrations were then normalized to give the
pie charts shown in Table 1. They reflect the type of ice parti-
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Figure 9. RASTA reflectivity time series for each flights and identification of the five selected cloud segments, symbolized by the black
rectangles and numbered accordingly.

Figure 10. Flight distance during legs as a function of temperature
during the five selected flight segments shown in Fig. 9.

cles that were encountered within the data set for each probe
and identified with the global and specific models presented
in Sect. 2.2 and 2.3.

For the fine-resolution probes (2D-S and CIP), Co is the
most frequent hydrometeor type, followed by CPs. For the
coarser-resolution probes (PIP and HVPS), CPs, RAs, and
FAs are the most frequent types. Both the specific and global
models exhibit the same general trend: as pixel size gets
larger, the relative concentration of Co decreases, and the rel-

ative concentration of FA increases. The specific and global
models are consistent for the 2D-S, CIP, and HVPS, keeping
in mind that the RA class is included in the CP one for the
global model. Concerning the PIP, significantly fewer FAs
are identified by the global model in comparison with the
specific model. This discrepancy likely stems from differ-
ent class definitions inferred from the corresponding training
sets. This disparity shows that the definitions of the FA, CP,
and RA classes differ between the PIP-specific and global
models. The consistency of the classes across various instru-
ments is, in this regard, a significant benefit of the global
model.

3.2 Analysis of morphology-specific size distributions

In the present subsection, particle size distributions obtained
with specific and global models are compared for each class
or set of classes. The objectives are to assess the compati-
bility of the distributions obtained for each instrument and
to evaluate which of the specific or global models yields the
better results.

3.2.1 Compact particles and rimed aggregates

Images of quasi-spherical, densely rimed graupel-like parti-
cles make up the CP class. RA images are rimed in a simi-
lar way, but their shapes suggest underlying aggregates. This
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Figure 11. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set. Transparency and dots are used to
distinguish the regions of each spectrum below the size threshold and above the photodiode array length.

leads to a significant porosity between these two categories.
These two classes are designed to reveal the occurrence of
riming and/or aggregation in clouds. The CP and RA cate-
gories of the HVPS and PIP may contain more particles than
their 2D-S or CIP counterparts because unrimed aggregates
cannot be distinguished from these particles at higher pixel
resolutions. Therefore, the PIP and HVPS classes should
likely overestimate the number of these particles compared
to the 2D-S and CIP ones. Figure 12 presents the CP- and
RA-specific particle size distributions for all four probes and
both models.

The results obtained with the specific models for the RA
class (Fig. 12a) show some consistency between the PIP and
HVPS. The agreement between 2D-S and CIP for the CP
class (Fig. 12b) is satisfactory, but the agreement between
PIP and HVPS is significantly worse. At 3 mm, the HVPS
curve is 1 order of magnitude above the PIP, and this dif-
ference only grows larger with increasing particle size. The
curves corresponding to the 2D-S and CIP do not match well
with the curves from the PIP and HVPS, the former begin-
ning at values 1 order of magnitude below the highest CIP bin
size. This could be due to the absence of a RA class for the
two lower-resolution probes. The addition of the RA and CP
class for the HVPS and PIP was performed and yielded the
data shown in Fig. 12c. This operation only marginally im-
proves the coherence of the two sets of curves, contradicting
the earlier hypothesis that the HVPS and PIP should overes-
timate the number of these particles. However, there is one

element of explanation left to investigate: the class defini-
tion for each model. Every model constructs an abstraction
of what a CP or RA ought to be based on the training sets
linked to the particular classes as well as in comparison to
the other classes that have been defined. As can be seen in
Fig. 12d, the possibility to fill in the size range gap for the
CP class (that now includes the former RA class) improves
significantly when a single model is utilized to identify the
images from the various probes. However, the overlaps be-
tween the two pairs of OAP are slightly worse in comparison
with the specific models.

3.2.2 Columns

Co consists of images of single columns or needles. This
class is meant to identify deposition growth in the colum-
nar regime. Throughout the training and testing phases, the
precision of this class was remarkable for every model. How-
ever, elongated particles are not necessarily columns, and
with coarse pixel resolution, misidentification of images is
possible if the training set does not include enough elongated
particles in other classes, such as FAs. The corresponding
specific PSDs are presented in Fig. 13.

Figure 13a presents the Co-specific particle size distribu-
tions obtained with the specific models. These results are
consistent across the 2D-S and CIP, but the PIP and HVPS
disagree strongly, with values 1 order of magnitude above
the PIP ones. The curves from the CIP or 2D-S match rela-
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Table 1. Pie charts representing the hydrometeor fractions for total number concentration, by morphological class, and for each OAP identi-
fied with the global and specific models from the ICE-GENESIS data set.

tively well with the PIP or HVPS ones, and it is difficult to
figure out whether the PIP or the HVPS matches best with the
higher-resolution probes. Concerning the global model (see
Fig. 13b), both the 2D-S-CIP and the PIP-HVPS pairs agree
well on their respective overlap ranges. In addition, joining
the highest CIP and lowest PIP size bins is straightforward.

3.2.3 Capped columns

The CC class features images of capped columns that may
appear as “H”-shaped particles depending on their orien-
tation. These particles are generally of sizes below 2 mm.
Aggregates of a few columns can be mistaken for capped
columns, especially with lower-resolution probes. The PSDs
corresponding to this class are shown in Fig. 14.

For the specific models (Fig. 14a), only the 2D-S and
CIP are available. Except for a few points, both distribu-
tions are very different, in particular for the smaller bins.

Below 500 µm, the 2D-S points are very high. The corre-
sponding images show diffracted columns that look very sim-
ilar to capped columns. Such diffraction patterns were al-
ready reported in Jaffeux et al. (2022). For the global model
(Fig. 14b), both CIP and 2D-S distributions show similar
shapes and agree above 600 µm. CC distributions are also
now obtained for the PIP and HVPS. With respect to the
2D-S spectrum, much fewer diffracted columns are wrongly
classified in the first bins. Important to note is the absence
of HVPS images within the training set. Significantly more
HVPS CCs are found for size bins below 5 mm compared
to the PIP. The visual inspection of these images revealed
pictures of aggregates of a few columns or fragile aggre-
gates with an H shape, which can understandably be mis-
taken for capped columns, constituting legitimate identifica-
tion errors. Similarly, for the PIP distribution, it is unlikely
that 6 mm capped columns were encountered during the three
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Figure 12. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set for the CP and RA classes and identified
with specific models (a, b, c) and the global model (d). The black points show the distribution points above the photodiode array length.

Figure 13. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set for the Co class and identified with specific
models (a) and the global model (b). The black points show the distribution points above the photodiode array length.

ICE-GENESIS flights. This implies that the rarely identified
capped columns are particles whose images look like capped
columns rather than real capped columns. However, the to-
tal concentrations associated with this class are significant
for the coarse resolution instruments (3.44 % and 3.42 % of
the mean concentrations for the HVPS and PIP, respectively
– values from Table 1) above the CBC concentrations. For
these two instruments, the CC class could be grouped with

the CBC or FA classes. Alternatively, the global training set
could be enriched through the assimilation of some of the
misclassified particles. This may result in increased preci-
sion and giving the classification algorithm the ability to bet-
ter distinguish capped columns from other particle types for
the PIP and HVPS.
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Figure 14. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set for the CC class and identified with
specific models (a) and the global model (b). The black points show the distribution points above the photodiode array length.

3.2.4 Combinations of bullets and columns

Images of aggregates of columns and bullet rosettes can be
found in the CBC class. Members of this class can only be
classified by identifying individual columnar monomers in a
larger image. Higher-resolution images provide a more pre-
cise view of individual columnar monomers, aiding in accu-
rate classification. This means that the pixel resolution has a
major influence on this class. CBCs that are detected by high-
resolution probes are typically aggregates of smaller columns
than those that are imaged and detected at coarser resolution.
Figure 15 shows the corresponding PSDs.

The results of the specific models are presented in Fig. 15a.
For the 2D-S and CIP, plateaus are reached above 400 and
1000 µm, respectively. Below 1 mm, the difference between
the two curves is likely a consequence of the previously men-
tioned resolution effect, considering the 2D-S and CIP reso-
lution are significantly different (10 and 25 µm, respectively).
The PIP bin concentration values are higher for the PIP over
its optimal range compared to the HVPS, which can be simi-
larly explained. However, the PIP and HVPS resolutions are
relatively close (100 and 150 µm, respectively). A possible
explanation is the difference between the two definitions of
the CBC class for each probe. The global model shows sim-
ilar results, but it brings the PIP and HVPS much closer to
one another in particular above 5 mm.

The results of the specific models are presented in Fig. 15a.
For the 2D-S and CIP, plateaus are reached above 400 and
1000 µm, respectively. Given that the 2D-S and CIP resolu-
tions are significantly different (10 and 25 µm, respectively),
the difference between the two curves below 1 mm is likely
due to the resolution effect discussed above. The PIP bin con-
centration values are higher for the PIP over its optimal range
compared to the HVPS, which can be similarly explained.
However, the PIP and HVPS resolutions are relatively close
(100 and 150 µm, respectively). A possible explanation is the
difference between the two definitions of the CBC class for

each probe. Comparable results are obtained with the global
model for the 2D-S, CIP, and HVPS. However, the values
of the PIP distribution decrease by a factor of 2, bringing
it much closer to the HVPS distribution, in particular above
5 mm. This suggests that the differences between the PIP and
HVPS using specific models may be due to variations in how
the CBC class is defined for each probe.

3.2.5 Complex assemblages

CAs constitute a class of ice particles whose images show
sharp edges and transparency and frequently display multi-
ple plates or sector plates. The corresponding particles indi-
cate the occurrence of deposition in highly saturated environ-
ments and possibly the aggregation of plates and dendrites.
The high level of detail that is required for their identification
was only found in 2D-S images. The PSDs obtained for this
class are shown in Fig. 16.

Out of the four specific models, only the one trained for
the 2D-S possesses this class (see Fig. 16a). For the global
model (Fig. 16b), this class appears for each probe. Con-
cerning the 2D-S global model output, it corresponds to the
specific model almost point by point. For the CIP, a similar
curve is produced but with much lower concentration values
and at larger bin sizes. The inspection of the corresponding
images is surprising as they share a common feature with
the 2D-S defined class: the sharpness of their edges. The CA
class was therefore neither discarded nor assimilated into an-
other class in the global model. For PIP and HVPS, the dis-
tributions are bell-shaped curves centered at 5 and 7 mm, re-
spectively. These curves exhibit a staggered pattern compa-
rable to the CBC curves. This implies that pixel resolution
has a similar effect on the CA class. For probes other than
the 2D-S, the CA class is, however, very marginally seen
within the present data set for probes other than the 2D-S, ac-
counting for 2.98 %, 0.49 %, 0.28 %, and 0.15 % for the 2D-
S, CIP, PIP, and HVPS total number concentration, respec-
tively. Significant uncertainty is associated with the identi-
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Figure 15. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set for the CBC class and identified with
specific models (a) and the global model (b). The black points show the distribution points above the photodiode array length.

Figure 16. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set for the CA class and identified with
specific models (a) and the global model (b). The black points show the distribution points above the photodiode array length.

fication of CA particles with probes other than the 2D-S.
However, the shapes of the curves obtained are encourag-
ing with respect to the potential to identify particle morphol-
ogy in poorly resolved images beyond human capabilities.
In this instance, a model trained on high resolution images
was used on lower-resolution images, yielding satisfactory
results. These findings suggest that the identification of CA
particles using probes other than the 2D-S may be feasible
with further research.

3.2.6 Hexagonal planar crystals

HPCs are the class of single plates and dendrites. The 6-fold
symmetry and the planarity of the corresponding particles are
the two defining features of this class. Learning these charac-
teristics was found to be particularly challenging and showed
relatively low precision or recall during the testing for ev-
ery model. As a reminder, recall was low for 2D-S and CIP,
precision was low for the HVPS, and both were low for the
PIP. With respect to its dependency on pixel resolution, the
HPC is a special case. A minimum size greater than the mini-

mum threshold for each probe might be needed to accurately
identify them because of the effect of pixelization on sharp
edges of a few pixels in length. However, with an adequate
pixel number, resolution should have no impact. The PSDs
obtained for the HPC class are shown in Fig. 17.

For the specific models (see Fig. 17a), a large difference is
noted between the 2D-S and CIP below 1 mm, with the CIP
being about 1 order of magnitude above the 2D-S. Despite
their divergence at large bin sizes, the PIP and HVPS curves
are generally close, with the PIP values being higher than the
HVPS. This discrepancy can be attributed to the high recall
and low precision on the HVPS testing set, indicating a pos-
sible overestimation on the HVPS side. For the global model
(Fig. 17b), the CIP and 2D-S curves are much closer, with
the few first CIP values decreasing and those of the 2D-S
increasing slightly in comparison with the specific models.
The HVPS and PIP curves are also relatively closer to one
another. Overall, the results suggest that the global model
may provide a more accurate identification for the HPC class
compared to the specific models. However, the visual inspec-
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Figure 17. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set for the HPC class and identified with
specific models (a) and the global model (b). The black points show the distribution points above the photodiode array length.

tion of the classified images shows that improvements are
still desired to reduce the number of particles that were mis-
classified in this class. Further data assimilation could poten-
tially enhance the accuracy of the global model for classify-
ing HPC particles.

3.2.7 Fragile aggregates

Weakly linked aggregates with monomers that cannot be rec-
ognized as specific crystal types make up the FA class. Be-
cause it is likely to contain CBC or CA particles, whose de-
tails could not be obtained for low-resolution probes, this
class depends on pixel size. Figure 18 displays the PSDs that
were obtained for the FA class.

For the specific models (Fig. 18a), the 2D-S and CIP agree
for bin sizes above 500 µm to some extent. Similarly to the
results obtained for CPs with the particular models, the PIP
and HVPS curves show a significant divergence. The 2D-
S–CIP and HVPS–PIP distributions are difficult to join, in
agreement with the previously mentioned resolution depen-
dency of this class. The classification with the global model
(Fig. 18b) considerably alters the shape of the CIP distribu-
tion, with a minimum at 1 mm. The 2D-S size distribution
is only significantly lower in the first bins compared to the
specific curve. Finally, the PIP and HVPS curves are closer
using the global model. This result is reassuring considering
the similar pixel resolution between both instruments. For
the FA class, which is more loosely defined compared to the
other class, many of the slight differences between the differ-
ent morphology-specific PSDs might have implications for
the FA PSD.

3.2.8 Water droplets

The WD class is composed of very smooth, spherical im-
ages that can be attributed to water droplets. These classes
were originally defined for the 2D-S and CIP only because
of the difficulty of finding liquid or frozen droplets above

2 mm within the data available to pick from. This class was
well trained for all the models. It can be noted that finding
water droplets in OAP images can be particularly useful to
study mixed-phase clouds. The current method is restricted
to sizes greater than a certain pixel threshold, but it should
perform better than more established approaches that distin-
guish water droplets using the circularity parameter. The ob-
tained PSDs are presented in Fig. 19.

The 2D-S results for the specific and global models are
remarkably similar (Figs. 19a and 19b). However, because
there were too few big water droplets in the CIP training
set, the CIP-specific model failed to detect larger droplets,
whereas the global model could. In addition, it could find
WD in the PIP data but not in the HVPS. The differences in
performance between the specific and global models high-
light the importance of having a diverse training data set. By
incorporating data from multiple sources, the global model
was able to better generalize and detect larger water droplets
across different instruments.

3.2.9 Artifact classes: fragmented and diffracted
particles

Two artifact classes were originally defined for the 2D-S
(Dif) and the HVPS (FP). Their purpose is to remove arti-
facts that remain after routine artifact treatments. In the case
of diffracted images, these are very specific to the 2D-S. The
fragmented particles that were found in the HVPS data are
significantly different compared to what is usually denoted
as shattering in the literature (Korolev and Isaac, 2005). They
are not the very small particles that appear in high amounts in
the size distribution and that do not affect the current method-
ology since a relatively high size threshold is used. Instead,
this class refers to rather large particles which appear as a
“cloud of particles” on a single image. The corresponding
size distributions are shown in Fig. 20.
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Figure 18. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set for the FA class and identified with
specific models (a) and the global model (b). The black points show the distribution points above the photodiode array length.

Figure 19. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set for the WD class and identified with
specific models (a) and the global model (b). The black points show the distribution points above the photodiode array length.

The Dif PSD obtained with the 2D-S specific model is
plotted in Fig. 20a and exhibits the same shape as the PSD re-
sulting from the use of the global model on the same data (see
2D-S curve in Fig. 20b). However, the values are much lower
in the case of the global model, which shows in the total
concentration fraction varying from 7.59 % for the specific
model to 4.73 % for the global model (see Table 1). The ap-
plication of the global model to the data gathered with other
probes yielded very few images in the Dif class, resulting in
0.78 %, 0.06 %, and 0.05 % of the total concentration for the
CIP, PIP, and HVPS, respectively. For the FP class, the spe-
cific model for the HVPS identifies more FPs compared to
the global model, with 1.79 % against 1.28 %. However, the
corresponding curves exhibit a similar shape once more (see
HVPS PSD in Fig. 20c and d). The global model identified a
significant number of FPs for the CIP that amounts to 3.23 %
of the total measured concentration for this instrument. A vi-
sual examination of the corresponding pictures demonstrated
that these identifications were, in fact, accurate. The singu-
larly high number of FPs within the CIP compared to the

other instruments may be attributed to differences in optics
and electronics and the design of its arms with respect to
the position of its laser beam. Compared to the probe with
the most similar optics and electronics, the arms of the PIP
extend outwards, whereas the arms of the CIP are parallel,
which could produce more of these shattering events. In any
case, the FP PSD deserves further investigation for the CIP.

4 Conclusions

In the present article, morphological data from OAPs were
used in a new way. First, three new CNNs were trained, two
of which were specific models for the CIP and HVPS, and
the last one of which was a global model that can be used
on all OAPs. Two CNNs that were previously developed for
the 2D-S and the PIP were tested and improved. A methodol-
ogy was presented to obtain size distributions specific to mor-
phology by combining particle size distributions with CNN
models for particle identification.
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Figure 20. Total particle size distributions for each OAP obtained with the ICE-GENESIS data set for the Dif (a, b) and FP (c, d) classes and
identified with specific models (a, c) and the global model (b, d). The black points show the distribution points above the photodiode array
length.

Then, the ICE-GENESIS data set, which comprises all
four OAPs, was presented. The morphology-specific PSDs
were described and discussed at a high level of detail for each
probe and for both specific and global models. For compact
particles, columns, combinations of bullets and columns,
hexagonal planar crystals, and water droplets, the global
model had the advantage of unifying the results obtained
from the different instruments compared to the specific mod-
els. For capped columns and complex assemblages, the
global model was able to extrapolate, with relative success,
the classes of the higher-resolution probes to the coarser-
resolution ones. However, major uncertainty about the ac-
curacy of these classes remains when used on PIP or HVPS
images, especially for capped columns. For the present data
set, these two classes are of minor importance in the HVPS
and PIP size range. For the artifact classes, namely diffracted
and fragmented particles, using the global model decreased
the number of images identified for the specific probes for
which these classes were originally defined. However, it re-
vealed a high number of fragmented particles within the CIP
images. This constitutes, in itself, an important result of the
study. Further investigations on other data sets will help to

determine the limitations and strengths of the global model
in classifying different types of particles in OAP images.

The study demonstrated the effectiveness of utilizing CNN
models for morphological data interpretation and, in partic-
ular, the advantages of using a single global CNN model.
The obtained morphology-specific particle size distributions
represent a major step in the characterization of atmospheric
ice and water particles. A few areas of improvement could
be identified in the process of examining these spectra. With
the training methodology now perfected, these can be rec-
tified through data assimilation, further enhancing the accu-
racy and reliability of the global CNN model in analyzing
OAP data.

The developed models can be applied to decades of OAP
data. Since they were developed, these instruments have been
the cornerstone of in situ aircraft measurements of clouds
and the gold standard for cloud model outputs. By reduc-
ing 50 years of hydrometeor observation across the world
to their most pertinent features (size, shape, and concentra-
tion), significant improvements in the current understanding
of cloud processes can likely be achieved. However, putting
morphology at the center of ice cloud observation requires
rethinking how ice clouds are conceptualized and modeled.
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The differentiation of cloud and precipitation particles into
several interacting populations brings forward the complex-
ity of the interactions between different hydrometeor types.
During collisions between two hydrometeors, breakup, rim-
ing, or aggregation may happen depending on their respec-
tive types and sizes. These are important events that trigger
secondary ice production and influence precipitation rates.
This approach therefore has the potential to improve the un-
derstanding of precipitation patterns and cloud life cycles, for
example.

Convolutional neural networks are semi-supervised learn-
ing algorithms that deduce image features that can character-
ize individual morphological classes from manually sorted
data. Under the condition that the training is successful, the
obtained classification model can be considered an objective
class definition tool that matches the human ability beyond
any worded description. The presented models are efficient
and were among the first to be developed for optical array
probes. For these reasons, the training sets gathered at the
LaMP may be considered the first reference data sets after
manual inspections and validation by other ice microphysics
specialists from different research facilities around the globe.
The data set can of course be expanded and evaluated regu-
larly. This will allow for harmonized, consistent, and com-
parable results across different research teams utilizing au-
tomatic classification tools. Finally, sharing the training data
will promote collaboration and exchanges in the fields of ice
microphysics and cloud research. With the recent advances
in artificial intelligence, the authors believe that collabora-
tion and transparency in data sharing should be promoted and
that, collectively, scientists can create the next generation of
analysis tools. The present contribution has already shown
that such developments are possible in the field of cloud mi-
crophysics with ice particle images.

Code and data availability. Training and testing data, as well as
trained CNN models, are publicly available at https://github.com/
LJaffeux/JAFFEUX_et_al_AMT_2024 (last access: 24 May 2025,
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