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Abstract. Carbon dioxide (CO2) and methane (CH4) are
the most important anthropogenic greenhouse gases and
the main drivers of climate change. Monitoring their con-
centrations from space helps detect and quantify anthro-
pogenic emissions, supporting the mitigation efforts urgently
needed to meet the primary objective of the Paris Agree-
ment, adopted at the 21st Conference of the Parties to the
United Nations Framework Convention on Climate Change
(UNFCCC) in 2015, to limit the global average temperature
increase to well below 2 °C above pre-industrial levels. In ad-
dition, satellite observations can be used to quantify natural
sources and sinks, improving our understanding of the car-
bon cycle. Advancing these goals is one key motivation for
the European Copernicus CO2 monitoring mission CO2M.
The necessary accuracy and precision requirements for the
measured quantities XCO2 and XCH4 (the column-averaged
dry-air mole fractions of CO2 and CH4) are demanding.
According to the CO2M mission requirements, the spatial
and temporal variability of the systematic errors (or spatio-
temporal systematic errors) of XCO2 and XCH4 must not
exceed 0.5 ppm and 5 ppb, respectively. The stochastic errors
due to instrument noise must not exceed 0.7 ppm for XCO2
and 10 ppb for XCH4. Conventional so-called full-physics al-
gorithms for retrieving XCO2 and/or XCH4 from satellite-
based measurements of reflected solar radiation are typically
computationally intensive and still usually require empiri-
cal bias corrections based on supervised machine learning
methods. Here we present the retrieval algorithm Neural net-
works for Remote sensing of Greenhouse gases from CO2M

(NRG-CO2M), which derives XCO2 and XCH4 from CO2M
radiance measurements with minimal computational effort
using artificial neural networks (ANNs). In addition, NRG-
CO2M also provides estimates of both the noise-driven un-
certainties and the averaging kernels of XCO2 and XCH4
for each sounding. Since CO2M will not be launched until
2026, our study exploits simulated measurements over land
surfaces from a comprehensive observing system simula-
tion experiment (OSSE) that includes realistic meteorology,
aerosols, surface bidirectional reflectance distribution func-
tion (BRDF), solar-induced chlorophyll fluorescence (SIF),
and CO2 and CH4 concentrations. We created a novel hybrid
learning approach that combines advantages of simulation-
based and measurement-based training data to ensure cov-
erage of a wide range of XCO2 and XCH4 values, making
the training data representative of future concentrations as
well. The algorithm’s postprocessing is designed to achieve
a high data yield of about 80 % of all cloud-free soundings.
The spatio-temporal systematic errors of XCO2 and XCH4
are 0.44 ppm and 2.45 ppb, respectively. The average single
sounding precision is 0.41 ppm for XCO2 and 2.74 ppb for
XCH4. Therefore, the presented retrieval method has the po-
tential to meet the demanding CO2M mission requirements
for XCO2 and XCH4. While the presented results are a solid
proof of concept, the actual achievable quality can only be
determined once NRG-CO2M is trained on real data, where
it is confronted, e.g., with unknown instrument effects and
systematic errors in the training truth.
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1 Introduction

Carbon dioxide (CO2) and methane (CH4) are the most im-
portant anthropogenic greenhouse gases because they are the
main drivers of climate change. Monitoring their concentra-
tions from space is essential to identify and quantify anthro-
pogenic emissions, thereby supporting the mitigation efforts
needed to achieve the primary objective of the Paris Agree-
ment of the United Nations Framework Convention on Cli-
mate Change (UNFCCC) to limit the global average temper-
ature increase to well below 2 °C above pre-industrial levels
(UNFCCC, 2015). In addition, satellite observations can be
used to study natural sources and sinks of these gases, con-
tributing to a better understanding of the carbon cycle and
thus improving climate predictions.

Advancing these goals is the motivation for the European
Copernicus CO2 monitoring mission CO2M (Meijer et al.,
2020; Lespinas et al., 2020; Sierk et al., 2021), which will
serve as a central element of the monitoring and verification
support (MVS) service capacity currently being developed
as an integral part of the Copernicus Atmosphere Monitor-
ing Service (CAMS). The mission involves the deployment
of a constellation of three satellites, with the launch of the
first CO2M satellite planned for 2026. CO2M builds on the
heritage of the CarbonSat concept (Bovensmann et al., 2010;
Velazco et al., 2011; Buchwitz et al., 2013; Broquet et al.,
2018).

The accuracy and precision requirements for the measured
quantities XCO2 and XCH4 (the column-averaged dry-air
mole fractions of CO2 and CH4) are demanding, and achiev-
ing them is a major challenge. Specifically, the mission re-
quirement document (MRD; Meijer et al., 2020) states that
the systematic errors of XCO2 and XCH4 should not ex-
ceed a maximum spatial and temporal variability of 0.5 ppm
and 5 ppb, respectively. The stochastic errors due to instru-
ment noise should not exceed 0.7 ppm for XCO2 and 10 ppb
for XCH4 for a reference scenario over vegetation. This is
why CO2M is equipped not only with the main CO2 im-
ager (CO2I) instrument, comprising four imaging spectrom-
eters, but also with the Multi-Angle Polarimeter (MAP),
which helps to better account for light scattering on aerosols
and the surface bidirectional reflectance distribution function
(BRDF), and the Cloud Imager (CLIM), which helps to iden-
tify clouds in the field of view.

Conventional so-called full-physics algorithms for retriev-
ing XCO2 and/or XCH4 (XGAS) from satellite-based mea-
surements of reflected solar radiation in the near-infrared
(NIR) and shortwave-infrared (SWIR) spectral region require
accurate radiative transfer (RT) and instrument simulations,
which are typically computationally expensive. Examples of
such retrieval methods are described in the publications of
Reuter et al. (2010, 2011, 2017a, b), Boesch and Di Noia
(2023), Noël et al. (2021, 2022), Kiel et al. (2019), Guer-
let et al. (2013), and Cogan et al. (2012). Three full-physics
algorithms for the analysis of CO2M data are currently also

being implemented in the EUMETSAT ground segment. One
of these methods is the Fast atmOspheric traCe gAs retrievaL
(FOCAL; Noël et al., 2024). The others are RemoTAP (Lu
et al., 2022) and FUSIONAL-P, a further development of the
algorithm described by Boesch and Di Noia (2023). It is an-
ticipated that continuous analysis of the data stream from a
single CO2M satellite using these three methods will require
the computing power of several thousand CPU cores, and re-
processing the data from two or more CO2M satellites will
require several times that amount.

Despite the high computing power required, there are still
a number of reasons that can lead to more or less large sys-
tematic inaccuracies in the retrieved XGAS quantities. Ex-
amples are simplifications of the RT (e.g., neglect of Raman
scattering, neglect of polarization, a suboptimal number of
streams, reduced accuracy of scattering phase functions, 3D
effects), which are necessary to keep the computation time
within acceptable limits. In addition, insufficiently charac-
terized geophysical input parameters (e.g., spectroscopic pa-
rameters, aerosol and cloud microphysical properties, surface
BRDF, all kinds of subpixel inhomogeneities) and insuffi-
ciently characterized instrument properties (e.g., inadequate
stray light correction, crosstalk or sensor nonlinearity) can
lead to biases.

For these reasons, currently existing full-physics retrievals
typically exploit more or less complex empirical bias correc-
tions in order to meet the demanding accuracy requirements.
This applies to established methods for instruments/satel-
lites, such as the Orbiting Carbon Observatory-2 (OCO-2;
Crisp et al., 2004), the Greenhouse Gases Observing Satellite
(GOSAT; Kuze et al., 2009), GOSAT-2 (Suto et al., 2021),
and the Scanning Imaging Absorption Spectrometer for At-
mospheric Chartography (SCIAMACHY; Burrows et al.,
1995; Bovensmann et al., 1999) (Reuter et al., 2017b, a; Kiel
et al., 2019; Noël et al., 2021, 2022; Boesch and Di Noia,
2023; Guerlet et al., 2013; Cogan et al., 2012; Schneising
et al., 2013, 2014), and it is not unlikely that the same will
apply to the CO2M XGAS retrieval algorithms currently be-
ing implemented by EUMETSAT, once they are confronted
with actual measurements.

The variance of the bias correction can be of the same
order of magnitude as the retrieval increment, i.e., the dif-
ference between a priori knowledge and the result (Reuter
et al., 2017a; Kiel et al., 2019), implying that the bias correc-
tion contributes a non-negligible fraction of the information
of the result.

Most bias correction methods are empirical and usu-
ally exploit supervised machine learning techniques. These
include simple multidimensional linear regressions (Kiel
et al., 2019) or more complex methods based on, e.g., ran-
dom forest regressors (Noël et al., 2022; Schneising et al.,
2019, 2023). For this reason, they also face the issues associ-
ated with data-driven methods, such as the need for a repre-
sentative training data set including ground truth.
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Consequently one motivation for this study is to try to
avoid the complicated and computationally intensive step
of full-physics algorithms and instead analyze the measured
spectra from the outset using a data-driven method. Mul-
tilayer perceptrons (MLPs) are artificial neural networks
(ANNs) that are well suited for this task and, once trained,
can analyze large amounts of data with minimal computa-
tional effort. An MLP is a nonlinear function whose parame-
ters are adjusted during training to best map the input features
(e.g., spectra, meteorological profiles, observation angles) to
the output target (e.g., XCO2, XCH4). This is called super-
vised learning, and it requires a representative set of input
features for which one or more known output target variables
exist. The principle of the method is analogous to that of lin-
ear regression, which is one of the simplest forms of super-
vised learning. A general introduction to MLPs can be found,
e.g., in the textbook of Rojas (1996).

As is known from other regressors with many free fit pa-
rameters, MLPs tend to be good interpolators but poor ex-
trapolators (Krasnopolsky and Schiller, 2003). This is par-
ticularly relevant because CO2 and CH4 increase over time,
and a training data set consisting of today’s measurements
is not representative of the future. Furthermore, MLPs can
learn from spurious correlations just as efficiently as from
actual physical relationships; i.e., they can give significant
weight to correlations between input and target that are not
directly caused by a physical relationship but by factors such
as similar seasonality (e.g., XCO2 and solar zenith angle).
However, generalized learning occurs only in the latter case,
and applying the MLP to unknown scenarios leads to accu-
rate data products only in this case. Another potential hurdle
is that MLPs can be affected by uncertainties in the training
target. Consequently, it is necessary to ensure that the train-
ing data set is representative of current and future conditions
and that the training target is not too far from the truth.

One possible solution to obtain representative training data
is to generate the training data set from simulated mea-
surements. This simulation-based approach is followed with
the nonlinear inference scheme (NLIS) algorithm developed
by Crevoisier (2023) for the retrieval of midtropospheric
CO2 and CH4 columns from Infrared Atmospheric Sounding
Interferometer (IASI) and Atmospheric InfraRed Sounder
(AIRS) measurements in the thermal infrared spectral region.
It is also applied by Xie et al. (2024) to retrieve XCO2 from
OCO-2 measurements over east Asia. However, building the
training data set from simulations does not only have advan-
tages. For the reasons discussed above, there are usually dif-
ferences between simulated and measured spectra that can-
not be explained by instrument noise. As with full-physics
methods, these can affect the quality of the data products and
again may require empirical bias correction.

A different approach was taken by David et al. (2021),
who trained an MLP to retrieve XCO2 using actual measured
OCO-2 data. This measurement-based learning has the po-
tential advantage of virtually eliminating many of the sources

of systematic errors discussed above. However, it turned out
that their ANN also appeared to have learned from spurious
correlations, as it was unable to detect known local increases.
After modifying the ANN and its input, Bréon et al. (2022)
were able to show that their ANN was now able to detect lo-
cal enhancements that were not part of the training data set.
However, the authors also state that their ANN is not suitable
for analyzing future data due to increasing CO2 concentra-
tions. In addition, they emphasize that despite the promising
results, it is difficult to ensure that their ANN does not learn
from a spurious correlation again, especially since the rea-
sons for the previous failure could not be fully determined.

In this paper we present the Neural networks for Remote
sensing of Greenhouse gases from CO2M (NRG-CO2M)
algorithm, which allows the use of actual measured spec-
tra for training, but they are modified to cover a much
larger range of XCO2 and XCH4 values. This type of hybrid
learning combines the advantages of simulation-based and
measurement-based learning. The characteristics of the ac-
tual measured spectra, including potential instrument effects,
are preserved, almost any meaningful CO2 and CH4 con-
centration can be trained, and the variability of the training
truth is dominated by prescribed artificial variations which
can suppress learning from spurious correlations.

Nevertheless, our method also requires estimates of the
true atmospheric concentrations to provide a representative
training data set. These could be obtained in the same way
as for empirical bias corrections (e.g., Noël et al., 2022;
Schneising et al., 2023; Kiel et al., 2019) or as for the training
data sets of other measurement-based ML methods (Bréon
et al., 2022). Since CO2M will not be launched until 2026,
for the time being our study uses simulated measurements
from an extensive observing system simulation experiment
(OSSE), which is a refinement of the OSSE described by
Noël et al. (2024). As we are dealing with simulations, the
true concentrations are known, and, similar to Noël et al.
(2024), we assume that there are no systematic errors in the
training truth. Obviously, such errors would have the poten-
tial to reduce the accuracy of the prediction, but a realistic
estimate of the to-be-expected error patterns of the training
truth is difficult and beyond the scope of this study. We do,
however, allow for stochastic deviations of the training data
from the true concentrations.

Section 2 describes the data sets and methods used, in-
cluding the OSSE; the hybrid learning method; the transfor-
mation of the input data using principal component analysis
(PCA); the method to modify the spectra; and the setup and
training of the MLPs to determine XCO2, XCH4, and the
corresponding uncertainties. Section 3 presents the results of
the study, and Sect. 4 provides a summary and conclusions.
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2 Data sets and methods

2.1 Observing system simulation experiment

A comprehensive observing system simulation experiment
(OSSE) was performed as part of a EUMETSAT study to
develop the FOCAL CO2M retrieval algorithm (Noël et al.,
2024). It contains simulated CO2M radiance data for nadir-
mode measurements over land, generated with the SCIA-
TRAN RT model (Rozanov et al., 2017), taking into account
realistic meteorology, surface BRDF, solar-induced chloro-
phyll fluorescence (SIF), aerosols, clouds, and vertical pro-
files of CO2 and CH4. The data set includes 2 years (2015
and 2020) of simulated CO2M orbit data with reduced sam-
pling, hereafter referred to as subset data, as well as a high-
resolution (HR) scene simulated with the full CO2M sam-
pling. It is an updated and extended version of the data set of
simulated CO2I measurements used by Noël et al. (2024) and
is therefore only briefly described here. The data set includes
2 years of subset data instead of one, and in addition to the
simulated CO2I measurements, it has been extended to also
contain simulated measurements from the MAP and CLIM
instruments. In addition, the spectral variation in the surface
BRDF within the instrument bands is now more realistic and
no longer constant.

The exact instrument characteristics of CO2M were not
fully defined at the time of our study, so we used the MRD
as a guide. The simulated main instrument CO2I consists of
four imaging spectrometers for the wavelength ranges 405–
490 nm (VIS, NO2), 747–773 nm (NIR, O2), 1590–1675 nm
(SWIR-1, CO2, and CH4), and 1990–2095 nm (SWIR-2,
CO2), having spectral resolutions of 0.6, 0.12, 0.3, and
0.35 nm, respectively. In line with currently available infor-
mation about CO2I, the instrument line shape functions are
assumed to be Gaussian with full width at half maximum,
corresponding to the respective spectral resolution.

In this study, we use CO2I data from the entire NIR
band (1930 spectral features) and from the same wavelength
ranges as used by Noël et al. (2024) in the SWIR-1 band
(1590–1670 nm, 931 spectral features) and SWIR-2 band
(1990–2090 nm, 953 spectral features). The VIS band is
mainly intended for the determination of NO2 atmospheric
columns and was therefore not simulated in this study.

For the hypothetical MAP instrument, we assumed that it
has seven broadband channels (MAP1–7) with center wave-
lengths of 410, 443, 490, 555, 670, 760, and 865 nm, within
which it determines the Stokes parameters I , Q, and U for
each CO2I ground pixel at 45 equidistantly distributed along-
track observation angles. In reality, MAP will have a higher
spatial resolution, which will be aggregated to the CO2I mea-
surements, and its MAP6 channel will only measure inten-
sity, but this is not taken into account in this study.

The simulated CLIM instrument has three broadband
channels (CLIM1–3), the first two of which spectrally co-
incide with MAP5 and MAP6. The central wavelength of

CLIM3 is at 1370 nm in a strong absorption band of water va-
por, which makes this channel suitable for the identification
of cirrus clouds. In reality, CLIM will have a much higher
spatial resolution than CO2I, but this is also not taken into
account in this study, so only CLIM3 provides additional in-
formation here.

An example of the complete simulated radiance measure-
ments of a CO2I sounding, including co-located MAP and
CLIM radiance measurements, is shown in Fig. 1.

2.1.1 Subset data

CO2I will have ground pixels with a spatial resolution of
approximately 2 km× 2 km and 110 ground pixels per scan
line across track, and each orbit will comprise approximately
9200 daytime scan lines along track. In order to create repre-
sentative training, test, and evaluation data sets, a minimum
of 2 years of simulated CO2M data were desired. However,
accurate RT simulations are computationally expensive, so it
was not possible to simulate that many soundings in a rea-
sonable amount of time. Consequently, we adopted a strat-
egy of subsetting the data set by simulating only every 15th
ground pixel across track and every 20th ground pixel along
track. This approach reduced the computational cost by a fac-
tor of 300 while largely maintaining the spatial and temporal
coverage. For the SCIATRAN RT simulations, we used pres-
sure, temperature, specific humidity, cloud ice content, cloud
water content, and cloud fraction from the ECMWF ERA5
reanalysis (Hersbach et al., 2020). Since we focus mainly
on cloud-free conditions, we used static cloud microphysi-
cal properties for convenience, representing spherical water
droplets with a gamma particle size distribution with an ef-
fective radius of 12 µm and fractal ice particles with an ef-
fective radius of 50 µm (Fig. 3 of Reuter et al., 2010, shows
the corresponding volume scattering functions). Aerosol data
were derived from CAMS’ ECMWF atmospheric compo-
sition reanalysis EAC4 (Inness et al., 2019). CO2 profiles
were derived from the CAMS global CO2 atmospheric inver-
sion v20r2 (Chevallier et al., 2005, 2010; Chevallier, 2013),
and CH4 profiles were obtained from the CAMS global CH4
atmospheric inversion v20r1 (Segers, 2022). Surface reflec-
tivity was modeled using the Moderate Resolution Imaging
Spectroradiometer (MODIS) BRDF and albedo model pa-
rameter data set MCD43C1 version 6.1 (Schaaf and Wang,
2021). SIF was modeled using the MODIS Normalized Dif-
ference Vegetation Index (NDVI) MYD13C version 6.12
(Didan, 2021) as a proxy, following the approach outlined by
RAL (2022). The resulting data set includes approximately
2.13 million cloud-free soundings over land in 2015 and
2.15 million in 2020. In addition, the data set also includes
cloudy scenes that are sampled less densely depending on
the cloud optical depth (COD), in order to emulate an im-
perfect cloud-masking algorithm. Specifically, cloudy scenes
are computed with a probability of PCOD = 1−COD but at
least 0.05. This means that optically thin clouds are likely to
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Figure 1. Simulated radiance measurements of a random CO2I sounding, including co-located MAP and CLIM radiance measurements. For
MAP, the Stokes parameter I (total intensity) is shown for all simulated along-track observation angles α.

make it into the data set, while the probability of an optically
thick cloud is only 5 %. This results in nearly half a million
cloud-contaminated land scenes per year.

2.1.2 Berlin high-resolution scene

In addition to the subset data, we simulated a scene with the
full CO2M sampling. It is a 3 min orbit granule with geo-
physical conditions of 3 July 2015, and since it includes
Berlin (Germany), it is referred to as the Berlin HR scene.
This scene is also used in EUMETSAT’s CO2M preparation
activities, and HR model data are available for it. Our SCIA-
TRAN input for this scene is the same as for the subset data,
except for pressure, temperature, specific humidity, CO2, and
CH4, which have been provided by EUMETSAT and which
are based on the CAMS “nature run” model data with a spa-
tial resolution of about 9 km (Agustí-Panareda et al., 2022).
In particular, this means that the scene includes HR CO2 and
CH4 signals, such as XCO2 plumes from power plants in
eastern Germany, which are not resolved in the subset data.
For the Berlin HR scene we simulated 43 671 soundings over
land, of which 42 398 are cloud-free.

2.2 Noise

For key parts of our study (e.g., PCA and ANN training), we
need data scattering within realistic uncertainties, i.e., with
noise distributions reflecting the expected statistical variabil-
ity. In the case of the radiometric CO2M measurements, we
used the same noise models as Noël et al. (2024) and Meijer
et al. (2020). Based on the study by Salstein et al. (2008), we
assume that the uncertainty in the dry-air column is 2.5 ‰.
We further assume that the atmospheric temperature is un-
certain by 1 K, achieved by a shift in the entire profile. The
atmospheric humidity is assumed to be uncertain by 10 %,
achieved by profile scaling. For all observation angles, we

define the uncertainty as 0.1°. The target quantities XCO2
and XCH4 used as training truths are assumed to have un-
certainties of 1 ppm and 5 ppb, respectively, which are some-
what larger than the differences between models and ground-
based measurements found by Knapp et al. (2021) and Ku-
lawik et al. (2016) and somewhat smaller than those found by
Tu et al. (2020). The uncertainty in the CO2 and CH4 a pri-
ori profiles is accounted for by multivariate noise computed
with the same a priori error covariance matrices used by Noël
et al. (2024), scaled so that the a priori XCO2 and XCH4
scatter around the truth with a standard deviation of 4 ppm
and 20 ppb, respectively. All uncertainty specifications in this
section represent 1σ values of normally distributed random
variables. It should be noted that the input data for the RT
simulations of the OSSE are free of noise. The main use of
noise in our analyses is to generate realistically noisy training
data (Sect. 2.5.2).

2.3 Modification of spectra

As discussed in Sect. 1, learning from simulated spectra can
lead to biases for the same reasons as for conventional full-
physics retrieval methods, namely because of inaccuracies in
the RT and/or instrument simulation. This is why we prefer
to learn from measured spectra. However, this approach also
has some potential disadvantages: XCO2 and XCH4 increase
over time so that today’s concentrations are not representa-
tive of the future, XCO2 and XCH4 may have correlations
to quantities such as albedo or observation geometry from
which an ANN can learn as efficiently as from spectral fea-
tures, and uncertainties in the training truth may exist. For
these reasons, we use a method to modify measured spec-
tra as if they include more or less of the target gases. Since
CO2M was not yet operational at the time of our study, these
measured spectra are simulations, i.e., the measurements of
our OSSE simulated with SCIATRAN (Sect. 2.1).
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An obvious way to modify a spectrum would be to use
a synthetic Jacobian to simulate linear changes with respect
to the geophysical state. However, due to nonlinearities of
the RT, a more accurate alternative is to use the ratio of two
synthetic spectra, i.e., a reference spectrum and a perturbed
spectrum, for the modification. Since both the Jacobian and
the ratio of the synthetic spectra depend on the geophysical
state, it is necessary to first estimate it from the measurement.

In the following, we describe how we estimate the state
from the measurement and generate the synthetic reference
spectrum; how we perturb the state to make it representative
of a wider range of conditions; how we generate the modified
synthetic spectrum from it; and, finally, how we compute the
modified measurement using the ratio of the synthetic spec-
tra.

Let Im(x) be the measured CO2I intensity, i.e., a
SCIATRAN-simulated measurement of our OSSE
(Sect. 2.1). It is a function of the true state x including
the true atmospheric concentration profiles of CO2 and CH4.
In reality, when working with real measurements instead of
simulations, the true state is of course not known. We fit this
measurement using the FOCAL retrieval as described by
Noël et al. (2024) but with some adaptations, guaranteeing
that the vast majority of soundings converge. Specifically, we
enlarge the measurement error covariance by assuming an
unrealistically large forward model uncertainty of 1 % of the
continuum radiance in all four fit windows and by allowing
up to 40 iterations. The fitted radiance, i.e., the synthetic
reference spectrum, is If(x̂), where x̂ is the retrieved state
containing the retrieved concentration profiles ˆCO2 and
ˆCH4. These profiles consist of five layers, each representing

the same number of dry-air particles.
It is important to note that FOCAL’s RT is much simpler

than the RT of SCIATRAN used to simulate the measure-
ments so that a perfect spectral fit is usually not possible,
which is likewise the case when applying FOCAL to actu-
ally measured satellite data (Noël et al., 2021, 2022; Reuter
et al., 2017a). As a result, the retrieved concentrations can
significantly vary from the true atmospheric state, especially
in scenes with enhanced scattering due to aerosols or clouds.
This is more likely to be the case than in the earlier studies
by Noël et al. (2021, 2022, 2024) and Reuter et al. (2017a)
because we here forced FOCAL to almost always converge,
and we applied no filtering or bias correction. However, this
is not an issue for our study, since we are mainly interested
in relative spectral changes, and we show that it is even suffi-
cient to use a simple non-scattering RT model that considers
only gaseous absorption.

In the next step, we compute the perturbed concentration
profiles ˜CO2 and ˜CH4 by adding delta profiles, which we
calculate as explained as follows using the example of CO2.

– We randomly select two five-layer CO2 profiles of
the year 2015 from the Simple cLImatological Model
(SLIM) for atmospheric CO2 or CH4 (Noël et al.,

2022) and compute the difference concentration profile
1CO2.

– We randomly increase or decrease 1CO2 in the low-
ermost layer according to a normal distribution with a
standard deviation of 10 ppm, emulating the signal of a
local source or sink.

– We compute the profile anomaly; i.e., we subtract the
column average of 1CO2 from 1CO2.

– We randomly shift the entire1CO2 profile according to
a uniform distribution between −40 and +40 ppm.

In this way, the shape of the delta profile1CO2 has large but
not unrealistic variations with height, and the variation in its
column average1XCO2 is large enough to be representative
of atmospheric growth of many years.
1CH4 and 1XCH4 are calculated using the same method

but with all variations multiplied by a factor of 5× 10−3.
This means that the standard deviation of the random CH4
perturbation in the lowermost layer becomes 50 ppb instead
of 10 ppm, and the range of the uniform distribution for
the random shift in the profile in the last step becomes
[−200 ppb,+200 ppb] instead of [−40 ppm,+40 ppm]. Note
that the perturbations of CH4 are independent of those of
CO2.

As discussed above, the FOCAL-retrieved dry-air column
averages ˆXCO2 and ˆXCH4 of our study may be signifi-
cantly biased, and we here consider them to be represen-
tative of only the apparent light path. However, the corre-
sponding climatological values XCO2SLIM and XCH4SLIM
are relatively close to reality (Noël et al., 2022). Therefore,
we scale the delta profiles 1CO2 and 1CH4 by a factor of
ˆXCO2/XCO2SLIM and ˆXCH4/XCH4SLIM, respectively, be-

fore performing the FOCAL forward run. This primarily af-
fects scenarios with large deviations between retrieved and
true concentrations.

˜CO2 = ˆCO2+1CO2
ˆXCO2

XCO2SLIM
(1)

˜CH4 = ˆCH4+1CH4
ˆXCH4

XCH4SLIM
(2)

These modified concentration profiles are part of the per-
turbed state x̃, which we use to perform an additional FO-
CAL forward run, i.e., RT and instrument simulation, in or-
der to compute the modified synthetic spectrum If(x̃). This is
then used to approximate what the measured radiance would
look like if 1CO2 and 1CH4 were added to the true CO2
and CH4 profiles.

Im(x+1x)≈ Im(x)
If(x̃)

If(x̂)
(3)
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Figure 2. Spectrum of the approximation error (approximation minus SCIATRAN simulation) and instrumental noise for a typical scene and
a 10 ppm shift in the CO2 profile in the SWIR-1 (a) and SWIR-2 (b). Median (blue line) ±1σ (light blue area) of the approximation error
χ2 statistics for all cloud-free soundings of one orbit of subset data from 3 July 2015 as a function of the profile shift for the SWIR-1 (c) and
SWIR-2 (d).

The quality of this approximation can be determined by
comparing radiances approximated by Eq. (3) with corre-
sponding SCIATRAN simulations. For this purpose, we se-
lected one orbit of subset data of 3 July 2015, including many
cloud-free scenes above Europe and Africa, and shifted the
entire CO2 profile from −40 to +40 ppm in steps of 1 ppm.
Figure 2 shows an example spectrum of the approximation
error in the SWIR-1 (Fig. 2a) and SWIR-2 (Fig. 2b) bands
for a 10 ppm shift in the CO2 profile. The figure shows that
the approximation error, i.e., the difference between the ap-
proximation and the SCIATRAN simulation, is much smaller
than the instrumental noise. As can be seen in Fig. 2c and
d, the approximation error disappears for small profile shifts
and steadily increases towards larger profile shifts. It is usu-
ally 1 order of magnitude larger in the SWIR-2 than in the
SWIR-1. However, it is always significantly smaller than the
instrumental noise. As an example, for a 10 ppm shift, the
median χ2 amounts to 0.0003 in the SWIR-1 and 0.0041 in
the SWIR-2. This means the approximation is valid within a
range much larger than the current annual growth rate, thus
allowing us to generate a training data set from modified
measured spectra that is also representative of atmospheric
conditions several years in the future.

2.4 Principal component analysis

Atmospheric spectra, such as those measured by CO2I, con-
tain a large amount of redundant information. In such cases,
PCA is an efficient tool for dimensionality reduction with-
out losing important information (e.g., Liu et al., 2006). It
can significantly reduce the size of the training data set and
improve the learning efficiency of ANNs.

We used every seventh sounding of all even weeks in the
2015 subset data set and performed a PCA on different in-
put data sets: the NIR band, the combination of both SWIR
bands, the combination of all three bands, the MAP data, and
the meteorological profiles of temperature and humidity.

The choice of the number of principal components used is
not trivial and is somewhat subjective. Using a large number
of components ensures that no information is lost, but the di-
mensionality reduction is small. If only a few components are
used, the dimensionality reduction is high, but important in-
formation may be lost. We found that 25 components are suf-
ficient for the NIR band, 90 for the combined SWIR bands,
100 for the combination of all three bands, 100 for the MAP
data, and 5 for the temperature and humidity profiles.

We based our choice of the number of components on
calculations of the unexplained variance, the χ2 of the re-
construction error, and the number of components that lead
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to a minimization of the denoising error. The unexplained
variance is equal to 1 minus the explained variance, which
is commonly used in the context of PCA (e.g., Jolliffe and
Cadima, 2016). The χ2 of the reconstruction error is cal-
culated from the residual of the reconstructed and original
measurements relative to the noise estimate of the measure-
ments. The denoising error analyzes the residual between the
reconstructed noisy data and the noise-free original data. It
depends on the number of components used and reaches a
minimum when the use of additional components would pre-
dominantly lead to fitting noise but not signal (Aires et al.,
2002; Di Noia et al., 2015). The χ2 of the reconstruction er-
ror and the denoising error were only determined for the ra-
diation measurements where the noise estimates are known
and reliable.

As an example, for the combination of the NIR and both
SWIR bands, we find that when using 100 components, the
fraction of unexplained variance amounts to 4.2× 10−9. The
χ2 of the reconstruction error is 1.1× 10−3, which means
that the instrumental noise can be expected to be about
1000 times larger than the reconstruction error. The denois-
ing error becomes minimal when using 75 components. Se-
lecting a significantly larger number of components can re-
sult in fitting noise, while selecting a significantly smaller
number can result in loss of information. The results of all
PCA studies are summarized in Table 1.

2.5 Artificial neural networks

2.5.1 Setup

In our study, we examined four different input compositions.
The baseline setup is the standard setup used in this study.
All other setups differ only in their details in order to study
their influence on the ANN’s prediction quality separately.
The baseline setup exists in a variant for XCO2 and a variant
for XCH4. For simplicity, all other input setups exist only for
XCO2.

The baseline input consists of the scores of the 100 most
significant principal components (PCs) of the combined NIR,
SWIR-1, and SWIR-2 spectra; the scores of the 100 most
significant PCs of the MAP data; the CLIM3 radiance; the
scores of the five most significant PCs of the meteorologi-
cal temperature and humidity profiles; the number of dry-air
particles in the atmospheric column; the solar zenith angle;
the satellite zenith angle; and the azimuth difference. As for
conventional retrievals based on optimal estimation, the input
also contains a noisy/uncertain a priori CO2 or CH4 profile
(Sect. 2.2), which in our case consists of five atmospheric
layers, each containing the same number of dry-air particles.
Figure 3 illustrates the baseline ANN training setup on the
example of XCO2.

The no-MAP input differs from the baseline input only in
that it does not contain MAP and CLIM data. In addition to
the missing MAP data, the no-NIR input also lacks data from

the NIR band. The non-scat. setup is the same as the baseline
setup, except that the modified spectra used for the training
data set were generated by a FOCAL variant that only con-
siders absorption but not scattering in the atmosphere.

All results were generated using MLP regressors with
three hidden layers of 150, 30, and 150 neurons. The idea be-
hind this ANN architecture is to improve the generalization
capabilities of the network by adding a so-called informa-
tion bottleneck in the middle layer, which holds the informa-
tion of intermediate meta-parameters. Conceptually, there are
parallels to first performing a conventional retrieval and then
using the set of output parameters as input to a bias correc-
tion. We used the logistic, i.e., sigmoid, activation function
and trained the MLPs with the Adam stochastic optimization
method (Kingma and Ba, 2014) of the scikit-learn Python li-
brary (Pedregosa et al., 2011).

2.5.2 Training and test data set

To construct a representative and realistic training data set,
we use noisy input and target data (see Sect. 2.2), which
we construct from the data of all even weeks of the 2015
subset data set (Sect. 2.1.1). The data of the odd weeks are
mainly reserved for testing. Separating the data sets on a
weekly basis ensures that seasonal variations are sampled
finely enough while avoiding strong correlations between the
two data sets that could occur with random sampling. It is
important that the training data set contains noise, as all in-
put and target features will of course be subject to inherent
uncertainties during later training with real CO2M data. In
addition, the noise supports generalized learning and sup-
presses overfitting. The subset data contain a small fraction
of cloudy scenes (Sect. 2.1.1), which we also expect to be
the case in real data due to imperfect cloud masking. In order
to create a realistic data set and to make the prediction less
sensitive to residual cloud contamination, we filter out only
clouds with an optical thickness greater than 0.05. From each
remaining sounding, we generate 10 soundings whose SWIR
spectra have been modified as described in Sect. 2.3. Only
these modified soundings, which have artificially increased
XGAS variabilities, are the basis of our training data set.

2.5.3 Prediction of uncertainties

Interpretation of XCO2 or XCH4 satellite data requires ap-
propriate uncertainty estimates. There are a number of ways
to estimate the uncertainty in an ANN’s prediction from the
uncertainty in its input. The simplest approach is to present
an existing ANN with multiple realizations of the input, mod-
ified according to its error characteristics, and then statisti-
cally analyze the predictions. However, there are more so-
phisticated methods, such as the use of probabilistic ANNs
(Mohebali et al., 2020). Here, we use a simple but efficient
method by training MLPs to predict the XGAS uncertain-
ties σXCO2 and σXCH4 from the same inputs used to pre-
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Table 1. PCA results for various input data sets: NIR band, combination of both SWIR bands, combination of all three bands, MAP data, and
meteorological profiles of temperature and humidity. Input data sets used for the baseline configuration of the ANNs (see later sections) are
highlighted in bold. The table lists the number of components used, the corresponding unexplained variance and the χ2 of the reconstruction
error, and the number of components for which the denoising error is minimal. Note: NA – not available.

NIR SWIR-1+ 2 NIR+SWIR-1+ 2 MAP Temperature Specific
humidity

Components used 25 90 100 100 5 5
Unexplained variance 2.9× 10−9 3.5× 10−9 4.2 × 10−9 2.4 × 10−5 1.3 × 10−2 8.8 × 10−3

Reconstruction error χ2 2.4× 10−4 9.9× 10−4 1.1 × 10−3 9.5 × 10−2 NA NA
Components with minimal denoising error 17 55 75 120 NA NA

Figure 3. Baseline ANN training setup on the example of XCO2, including the amount of noise added to the training features and to the
target variable (Sect. 2.2) and the PCA components used (Sect. 2.4). When training with actual measured data in the future, the addition of
noise will be omitted. Inst – noise of the instrument model, IL – input layer, HL – hidden layer, OL – output layer.

dict XCO2 and XCH4, except that no a priori information is
used. More specifically, we apply the XGAS MLPs to the
test data set (Sect. 2.5.2) and compute the squared predic-
tion mismatches (prediction minus training truth) 1XGAS2

and use them as training targets for additional MLPs that pre-
dict the XGAS variances σXGAS2, as suggested by Bishop
(1996). The rationale behind this is that the expected value
of 1XGAS is small, enabling the variance VAR(XGAS) to
be approximated by the expected value of 1XGAS2. We use
data from the test period instead of the training period be-
cause the prediction mismatches 1XGAS can be considered
more realistic.

2.5.4 Column averaging kernel

In addition to reliable uncertainty estimates, the interpreta-
tion of XCO2 or XCH4 satellite data also requires informa-
tion about the column averaging kernel (AK). The AK quan-
tifies the retrieval’s sensitivity to changes in the target gas
concentration profile and is defined by

AKi =
1
wi

∂ ˆXGAS
∂GASt

i

, (4)

where ˆXGAS is the retrieved XGAS, GASt
i the true gas con-

centration in the height layer i, and wi the relative dry-air

weight of that layer; i.e., the number of dry-air particles in
sub-column i divided by the total number of dry-air parti-
cles in the atmospheric column. In the context of retrieval
comparison studies or surface flux inversions (e.g., Reuter
et al., 2011; Bergamaschi et al., 2007; Wunch et al., 2011),
1−AK can be interpreted as the influence of or the depen-
dence on the a priori used. While we do not have direct access
to the column averaging kernel, the influence of the a pri-
ori ∂ ˆXGAS/∂GASa

i can be easily determined numerically by
predicting XGAS for perturbed a priori profiles GASa and
approximating

AKi ≈ 1−
1
wi

∂ ˆXGAS
∂GASa

i

. (5)

2.5.5 Postprocessing

As with conventional greenhouse gas retrieval algorithms,
we filter out the least promising scenes during postprocess-
ing. To do this, we analyzed the 2015 evaluation data set
(Sect. 2.5.6) and computed a threshold for the maximum
allowed predicted uncertainty (Sect. 2.5.3) that filters out
10 % of the cloud-free 2015 evaluation data. From the re-
maining data, we computed a threshold for the maximum al-
lowed dependence on the a priori, which filters out another
11.11 %. In this way, the most promising 80 % of all cloud-
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free soundings remain after both filters. The thresholds are
setup-specific and are listed in Table 2.

Additionally, we used the 2015 evaluation data set to com-
pute a setup-specific overall offset (Table 2), which we sub-
tract from the prediction during postprocessing.

For each sounding, the a priori dependence is computed
from the profile average sensitivity of the prediction to the
a priori (Sect. 2.5.4). For example, if the dependence on the
a priori was 5 %, then adding 1 ppm to the CO2 a priori would
increase the XCO2 prediction by 0.05 ppm.

Similar to the dependence on the a priori, we compute the
relative dependence of the prediction on the dry column. This
quantity specifies how dry-column errors propagate to XGAS
prediction errors. For example, if the dependence on the dry
column was 5 %, then a 1 % error in the dry column would
result in a 0.05 % error in the predicted XGAS. This quan-
tity is not used directly during postprocessing but is analyzed
when interpreting the results.

2.5.6 Evaluation data sets

We quantified the ANNs’ prediction quality by applying
them to three evaluation data sets that were not used for train-
ing: (i) the unmodified 2015 subset data set (Sect. 2.1.1),
which we divided into a training and test period because
it served as the basis for computing the training and test
data sets (Sect. 2.3); (ii) the unmodified 2020 subset data
set (Sect. 2.1.1) with geophysical conditions and greenhouse
gas concentrations not seen during the training; and (iii) the
Berlin HR scene (Sect. 2.1.2), also with geophysical condi-
tions and greenhouse gas plumes that were not part of the
training data set.

3 Results

For the input setups described in Sect. 2.5.1, MLPs with the
properties described in the same section were trained to pre-
dict XCO2 and the associated uncertainty. In the case of the
baseline setup, MLPs were also trained to predict XCH4 and
its uncertainty. In order to analyze the prediction quality,
the MLPs were applied to the evaluation data described in
Sect. 2.5.6, and the prediction was compared with the truth.

Since the CO2M mission requirements are defined for
cloud-free conditions, we filtered the evaluation data accord-
ingly. Additionally, we applied the postprocessing filters de-
scribed in Sect. 2.5.5. Most of the analyses were performed
with noise-free input data, so the prediction errors can be
considered purely systematic.

The results for the 2020 subset evaluation data and the
Berlin HR scene are the most conclusive because their input
is the most independent of the training data set. In the follow-
ing, we focus on the results for these data sets obtained with
the baseline setup. However, Table 2 summarizes the main

results for the analysis of all evaluation data sets and input
configurations.

3.1 Column averaging kernels

We analyzed the XCO2 and XCH4 AKs of the 2020 sub-
set evaluation data set. Figure 4a shows that the XCO2 AKs
are close to optimal, i.e., close to unity, in large parts of the
atmosphere. Significantly lower values are observed only in
the stratosphere. The XCH4 AKs also decrease in the strato-
sphere but show a slight overestimation of departures from
the a priori in other layers (Fig. 4b).

3.2 Stochastic errors

In order to determine the overall retrieval precision due to
instrumental noise, we predicted XCO2 and XCH4 from in-
put with and without instrumental noise and calculated the
standard deviation of the difference. For the postprocessed
2020 evaluation data set and the baseline setup, it amounts to
0.41 ppm for XCO2 and 2.74 ppb for XCH4.

As can be seen in Table 2, these values are basically iden-
tical to those obtained for the training and test periods of the
2015 evaluation data set and similar to those obtained for the
Berlin HR scene.

The stochastic XCO2 error does not change for the non-
scat. setup (Sect. 2.5.1) but increases slightly to 0.45 ppm
when the MAP instrument is not used. We see a more sig-
nificant increase to 0.66 ppm when also not using the NIR
band.

In addition to the analysis of the overall precision, we val-
idated the MLPs predicting the retrieval uncertainty in the
individual soundings (Sect. 2.5.3). For this purpose, we de-
fined 15 bins, each containing the same number of soundings,
for the predicted XCO2 or XCH4 uncertainty. For each bin,
we determined the average predicted uncertainty, which we
compared to the actual precision in that bin.

Figure 5 shows that the XCO2 and XCH4 uncertainties are
well predicted by the MLPs. The predicted XCH4 uncertain-
ties are almost accurate. The predicted XCO2 uncertainties
behave similarly but with a small offset of about 0.03 ppm.

3.3 Systematic errors

3.3.1 Overall statistics

We compute systematic errors by comparing postprocessed
predicted XCO2 and XCH4 values with corresponding true
values for noise-free input data. Figure 6 shows such a com-
parison for the 2020 subset data and the baseline setup.

With 0.04 ppm for XCO2 and 0.20 ppb for XCH4, the
mean bias (prediction minus truth) for the 2020 subset data
is negligible. It is not surprising that this is also the case for
the 2015 subset data, as this data set has been used to derive
the postprocessing offset correction (Sect. 2.5.5). The mean
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Table 2. Algorithm setup, postprocessing parameters, and main results generated from the evaluation subset data sets of 2015 and 2020 and
from the Berlin HR scene for the baseline (bold), no-MAP, no-NIR, and non-scat. configuration.

Baseline No-MAP No-NIR Non-scat.

Setup

Target XCO2 XCH4 XCO2 XCO2 XCO2
NIR yes yes yes no yes
SWIR-1+2 yes yes yes yes yes
MAP+CLIM yes yes no no yes
Modification method scat. scat. scat. scat. non-scat.

Postprocessing

Max σXCO2/σXCH4 [ppm/ppb] 0.71 5.15 0.71 0.74 0.69
Max a priori dependence [%] 16.1 0.4 17.0 32.2 15.6
Subtracted offset [ppm/ppb] −0.11 0.64 0.17 0.04 −0.00

Evaluation results 2015 subset data

Soundings [no.] 1 704 695 1 699 842 1 704 595 1 704 181 1 702 525
Throughput [%] 80 80 80 80 80
Precision train/test [ppm/ppb] 0.41/0.41 2.72/2.72 0.46/0.46 0.65/0.65 0.41/0.41
Accuracy train/test [ppm/ppb] 0.39/0.42 2.20/2.37 0.42/0.46 0.38/0.42 0.39/0.43
Mean bias [ppm/ppb] −0.00 0.00 0.00 −0.00 −0.00
Mean a priori dependence [%] 9.2 −4.7 9.2 13.5 9.1
Mean dry-column dependence [%] −6.2 −4.7 −16.5 −60.6 −5.6

Evaluation results 2020 subset data

Soundings [no.] 1 704 349 1 724 657 1 691 721 1 685 554 1 679 922
Throughput [%] 79 80 79 78 78
Precision [ppm/ppb] 0.41 2.74 0.45 0.66 0.41
Accuracy [ppm/ppb] 0.44 2.45 0.48 0.44 0.44
Mean bias [ppm/ppb] 0.04 0.20 0.02 −0.04 0.00
Mean a priori dependence [%] 9.6 −4.8 9.3 14.2 8.7
Mean dry-column dependence [%] −5.9 −4.7 −16.0 −60.1 −5.2

Evaluation results Berlin HR scene

Soundings [no.] 41 757 41 685 41 390 41 189 41 888
Throughput [%] 98 98 98 97 99
Precision [ppm/ppb] 0.44 3.12 0.47 0.70 0.43
Accuracy [ppm/ppb] 0.31 1.72 0.40 0.39 0.34
Mean bias [ppm/ppb] −0.18 −2.13 −0.29 0.22 −0.36
Mean a priori dependency [%] 11.4 −5.2 12.3 18.7 11.0
Mean dry-column dependency [%] −3.9 0.8 −17.3 −70.8 −2.4

bias for the Berlin HR scene is −0.18 ppm for XCO2 and
−2.13 ppb for XCH4 (baseline setup).

Surface flux inverse modeling and emission estimation re-
sults are much more sensitive to spatially and/or temporally
varying biases than to constant offsets. Therefore, we con-
sider the standard deviation of the difference between the
predicted and true values of XGAS as a measure of accuracy.
For the 2020 subset data and the baseline setup it amounts to
0.44 ppm and 2.45 ppb for XCO2 and XCH4, respectively.

The accuracy values determined from the 2015 subset data
are slightly smaller. The modification of the spectra used for
the training can introduce small spectral errors (Sect. 2.3).

These can erode the prediction quality the further we depart
from the concentrations of the training year 2015. Addition-
ally, we observe that the prediction accuracy is about 10 %
better for the training period than for the test period.

For the Berlin HR scene and the baseline setup, we obtain
an accuracy of 0.28 ppm and 1.49 ppb for XCO2 and XCH4,
respectively.

As can be seen in Table 2, the XCO2 accuracy depends
only slightly on the setup, particularly for the subset evalua-
tion data. At first glance, this appears to be surprising because
it would imply that the NIR band and the MAP instrument
have only little influence on the systematic errors, which is
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Figure 4. Normalized density distribution of the XCO2 (a) and XCH4 (b) column averaging kernels of all postprocessed soundings of the
2020 subset evaluation data set. Mean values and standard deviations are overlaid. The profiling splits the atmospheric column into five
layers, each containing the same number of dry-air particles. Layer 1 is the closest to the surface and includes the boundary layer, and the
stratosphere extends into layer 5. 6 represents the total number of soundings.

Figure 5. Comparison of the predicted and true XCO2 (a) and XCH4 (b) retrieval uncertainties due to instrumental noise for the postprocessed
2020 subset data. 6 represents the total number of soundings. The figure also contains the results of a linear regression.

not necessarily the case. Our analyses of systematic errors
do not consider systematic errors in the input, such as the dry
column or the a priori, which will exist in reality. When re-
moving MAP from the input, the average dependence of the
XCO2 prediction on the dry column increases from −5.9 %
to−16.0 %. Additionally, removing the NIR band further in-
creases the dry-column dependence to −60.1 % and also in-

creases the mean a priori dependence from 9.6 % to 14.2 %.
For comparison, the dry-column dependence of the FOCAL
CO2M XCO2 retrieval is 100 % by design (Noël et al., 2024),
and the dry-column dependence of the operational OCO-2
XCO2 retrieval (v11.1) is approximately 85 % (Jacobs et al.,
2024).
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Figure 6. Comparison of postprocessed predicted XCO2 (a) and XCH4 (b) with corresponding true values for noise-free 2020 subset input
data. 1 represents the average prediction error (prediction minus true), σ the standard deviation of the prediction error, and 6 the total
number of soundings. The figure also contains the results of a linear regression.

3.3.2 Large-scale features

In order to investigate the spatial structures of the system-
atic errors, we generated global maps for XCO2 (Fig. 7) and
XCH4 (Fig. 8), showing the postprocessed predicted and cor-
responding true values, as well as their difference for the
noise-free subset input data of April and August 2020. First,
the maps show a dense sampling because the postprocessing
filters are designed to have a high throughput of about 80 %
for all cloud-free soundings (Sect. 2.5.5).

The maps of the predicted and true XGAS show expected
large-scale features, like low XCO2 values in northern mid-
dle and high latitudes in August at the end of the growing
season or relatively high XCH4 values in the tropics. The dif-
ferences between predicted and true XGAS values are gen-
erally much smaller than those of the large-scale features.
However, the differences are not purely random and exhibit
some country- to continental-scale systematic features, such
as the small XCO2 and XCH4 high bias in Greenland in April
or the small XCH4 high bias in northern Africa in August.

There are some similarities between the XCO2 and XCH4
bias patterns, which may indicate that some systematic errors
could cancel out in a proxy product when using, e.g., the ratio
XCH4 /XCO2 as a training target.

The global monthly average biases are small, and the cor-
responding standard deviations are similar to the annual av-
erages.

3.3.3 Seasonal cycle

Systematic errors may also have a seasonal component, e.g.,
due to seasonal variations in illumination conditions, albedo,
or aerosols. Figure 9 shows the XGAS prediction error as
a function of the week in the year 2020. According to this
figure, the average systematic XCO2 prediction error slowly

drifts around zero, with the largest values of about 0.2 ppm
in late (northern hemispheric) spring and the smallest val-
ues of about −0.1 ppm in autumn. The standard deviation
of the XCO2 error is larger in spring and summer (up to
about 0.55 ppm) compared to autumn and winter (down to
about 0.40 ppm). Various reasons can cause this behavior;
e.g., sampling in summer covers a wider latitude range and,
therefore, also more surface types and observation angles
than in winter, and the CO2 profiles vary more during the
(northern hemispheric) growing season. The weekly average
prediction error in XCH4 has no clear seasonal cycle and is
always smaller than ±1 ppb. Its standard deviation varies be-
tween about 2.2 and 3.3 ppb.

3.3.4 Aerosols

Aerosols modify the light path and can for this reason be an
important source of XGAS retrieval errors. Figure 10 shows
the XGAS prediction error as a function of aerosol optical
depth (AOD) for noise-free 2020 subset data. As can be seen,
the XCO2 average prediction error stays close to zero up to
an AOD of 0.2. For larger AODs up to 0.5, the average pre-
diction error steadily increases to values of about 0.1 ppm.
The standard deviation of the prediction error increases with
AOD from about 0.35 to about 0.60 ppm. The average XCH4
prediction error is usually below ±0.5 ppb, and its standard
deviation increases from about 2.0 ppb for basically aerosol-
free scenarios to about 3.2 ppb for scenarios with an AOD of
up to 0.5.

3.3.5 Berlin HR scene

Since the AKs are close to unity in large parts of the atmo-
sphere (Fig. 4), the prediction can be considered to be dom-
inated by the measurement but not the a priori. In order to
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Figure 7. Global maps of postprocessed predicted XCO2 (a, d) and the corresponding true values (b, e), as well as their difference (c, f) for
noise-free subset input data of April (a–c) and August (d–f) 2020. µ represents the average prediction error (prediction minus true), σ the
standard deviation of the prediction error, and 6 the total number of soundings.

Figure 8. Global maps of postprocessed predicted XCH4 (a, d) and the corresponding true values (b, e), as well as their difference (c, f) for
noise-free subset input data of April (a–c) and August (d–f) 2020. µ represents the average prediction error (prediction minus true), σ the
standard deviation of the prediction error, and 6 the total number of soundings.
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Figure 9. XCO2 (a) and XCH4 (b) prediction error as a function of the week for noise-free 2020 subset input data. The dots and bars
represent the mean and standard deviation, respectively. 6 represents the total number of soundings.

illustrate this, we used scene-wide constant a priori profiles
instead of the true concentration profiles to analyze the Berlin
HR scene. Specifically, we used the scene-wide average true
CO2 and CH4 concentration profiles as a priori.

Figures 11 and 12 show that the predictions reproduce
the true concentrations well, even though the meteorologi-
cal conditions and gas concentrations, including plumes from
strong CO2 and CH4 sources, were not part of the training
data or the a priori.

The variability of the difference structures is much smaller
than the variability of the atmospheric signals. The XCO2
prediction error has a standard deviation of 0.31 ppm and
an average of −0.18 ppm. It shows no obvious correlations
with the XCO2 pattern, especially the CO2 plumes from the
coal-fired power plants Jänschwalde, Schwarze Pumpe, and
Boxberg in eastern Germany.

The prediction error in XCH4 is on average−2.13 ppb and
has a standard deviation of 1.72 ppb. However, the map of the

XCH4 prediction error (Fig. 12) shows an interesting feature
at about 50.53° N, 13.61° E in the Czech Republic. There is
a strong CH4 plume at this position, the strength of which is
obviously overestimated by the prediction.

As a reminder, the AKs describe the behavior of the re-
trieval in over- or underestimating differences between the
true and the a priori concentrations. The plume stands out
from the scene average concentrations, i.e., the a priori, at
roughly 90 ppb. The XCH4 AKs in the lowermost layer can
have values of up to 1.3, which would result in an overesti-
mation of the departure from the a priori by 30 %, i.e., 27 ppb
in this case. It should be noted that this would not result in
an overestimation of the emission strength, if AKs are con-
sidered appropriately.

When using the true CO2 and CH4 profiles as a priori,
the difference maps look similar, except that there is no such
overestimation of the CH4 plume because the departure from
the a priori becomes much smaller (Figs. A1 and A2).

https://doi.org/10.5194/amt-18-241-2025 Atmos. Meas. Tech., 18, 241–264, 2025



256 M. Reuter et al.: Retrieving CO2 and CH4 from CO2M

Figure 10. XCO2 (a) and XCH4 (b) prediction error as a function of AOD for noise-free 2020 subset input data. The dots and bars represent
the mean and standard deviation, respectively. 6 represents the total number of soundings.

4 Summary and conclusion

In preparation for the analysis of the large number of radi-
ance measurements from the CO2M satellite mission, we de-
veloped the computationally efficient ANN-based algorithm
NRG-CO2M to retrieve XCO2 and XCH4 with high accuracy
and precision and high data yield.

It adapts a novel hybrid learning method that is designed
to use measured spectra modified to represent a wider range
of XCO2 and XCH4 values. The approach combines the ad-
vantages of simulation-based and measurement-based learn-
ing, preserving the characteristics of the real spectra, includ-
ing instrumental effects, while allowing learning over a wide
range of CO2 and CH4 concentrations.

It minimizes learning from spurious correlations by domi-
nating the variability of the training data with prescribed arti-
ficial variations. However, the method still requires estimates
of the true atmospheric concentrations for a representative

training data set, which can be obtained similarly to methods
used for empirical bias corrections.

It should be noted that the method could be applied to
other instruments and applications. In addition to generating
representative training data, spectra could also be modified,
e.g., to study the ability of a machine learning model to pre-
dict changes in its target variable.

Since the CO2M mission will not be launched until 2026,
our study is based on simulated measurements from an
OSSE. These simulations assume no systematic errors in the
training truth, although they do account for stochastic devia-
tions from true concentrations.

Due to the design of the OSSE used, we have focused in
this study only on soundings over land in nadir geometry, but
the methods presented should be equally applicable to mea-
surements over water surfaces and under glint conditions.

From our analyses of the 2020 subset data, we find that
the systematic XCO2 and XCH4 errors scatter with a stan-
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Figure 11. Postprocessed predicted XCO2 (a) and the corresponding true values (b), as well as their difference (c) for noise-free Berlin HR
input data. µ represents the average prediction error (prediction minus true), σ the standard deviation of the prediction error, and 6 the total
number of soundings.

Figure 12. As Fig. 11 but for XCH4.
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dard deviation of 0.44 ppm and 2.45 ppb, respectively. This
compares to mission requirements for spatio-temporal sys-
tematic errors below 0.5 ppm for XCO2 and 5 ppb for XCH4
(MRD; Meijer et al., 2020). The average single sounding pre-
cision is 0.41 ppm for XCO2 and 2.74 ppb for XCH4 com-
pared to mission requirements for stochastic errors due to
instrumental noise of less than 0.7 ppm for XCO2 and 10 ppb
for XCH4 defined for a specific vegetation scenario (MRD;
Meijer et al., 2020). Therefore, we conclude that the pro-
posed retrieval method has the potential to meet the demand-
ing CO2M mission requirements for systematic and stochas-
tic XCO2 and XCH4 errors.

Our results are qualitatively similar to those of Noël et al.
(2024). They estimated the spatio-temporal systematic errors
in their FOCAL setup to be 0.5 ppm for XCO2 and 3.7 ppb
for XCH4 and the stochastic errors to be 0.5 ppm for XCO2
and 5.0 ppb for XCH4. However, unlike Noël et al. (2024),
we did not divide the systematic error into long correlation
length parts, which are relevant for the application of large-
scale surface flux inversions, or short correlation length parts,
which are relevant for the application of small-scale (e.g.,
point source) emission estimation. Our results for the Berlin
HR scene illustrate how this affects estimates of the relevant
systematic errors. The total systematic error in this scene
comprises a variable-part scattering with a standard devia-
tion of 0.28 ppm for XCO2 and 1.49 ppb for XCH4 and a
scene-wide bias of −0.18 ppm for XCO2 and −2.12 ppb for
XCH4. However, only the variable part of the systematic er-
ror is relevant for the application of small-scale (e.g., point
source) emission estimation. It should also be noted that our
postprocessing is designed to globally reject about 20 % of
the least promising soundings compared to a rejection rate of
about 37 % used by Noël et al. (2024).

We trained the ANNs with (modified) spectra from the
year 2015. Consequently, it can be expected that the modi-
fication error becomes more important the further we devi-
ate from the training year. Nevertheless, we observe that the
quality of the prediction erodes only slowly because com-
pared to 2020, the accuracy is only slightly better during the
test period in 2015 (0.02 ppm for XCO2, 0.08 ppb for XCH4),
and the precision is the same. This shows that the introduced
spectrum modification method is able to efficiently improve
the representativeness of the training data for future concen-
tration years ahead.

We used a conventional XCO2 and XCH4 retrieval to mod-
ify the spectra used for the training data set. It is a variant of
the FOCAL algorithm described by Noël et al. (2024), which
takes into account scattering in the atmosphere. However, our
results show that using an absorption-only retrieval for this
task leads to results with essentially the same accuracy and
precision.

As a test, we also trained ANNs without MAP data. This
had an apparently small effect on accuracy and precision,
which is not consistent with the results of Lu et al. (2022),
whose retrieval method became significantly less accurate

under these conditions. We can only speculate about possible
reasons for this. (i) We use a different aerosol microphysical
model, which is consistent with the MACC aerosol model
but is less complex than the one used by Lu et al. (2022).
(ii) Their CO2I-only retrieval method is fundamentally dif-
ferent from ours and also from FOCAL, which may result in
different sensitivities to aerosol-induced biases. In this con-
text, it should be noted that our CO2I-only results are in good
agreement with those of Noël et al. (2024), suggesting that
it may be possible to meet the CO2M mission requirements
without using MAP. (iii) The statistics computed by Lu et al.
(2022) to quantify the systematic and stochastic errors differ
from those computed by us.

However, we observe that the dependence of the XCO2
prediction on the dry column increases when MAP is not
used, which may introduce systematic errors of the order of
0.1 ppm in reality when perfect knowledge of the dry column
cannot be expected. Additionally, removing the NIR band
further increased the dependence on the dry column but also
the dependence on the a priori, making it less likely to meet
the CO2M mission requirements.

It is expected that several thousand CPU cores will be re-
quired to continuously analyze the data stream from a single
CO2M satellite using conventional full-physics algorithms,
which are currently being implemented by EUMETSAT. In
comparison, the computational requirements of the presented
ANN retrievals, once trained, are negligible and can be con-
sidered to be driven by pre- and postprocessing as well as
input and output operations.

However, the development of neural networks for retrieval
of greenhouse gases from satellite-based measurements of
reflected solar radiation in the NIR and SWIR is still in its
early stages, while there is much experience with full-physics
methods. This includes how they respond to instrumental ef-
fects, such as spectral artifacts or temporal changes, and ma-
chine learning strategies for bias correction. In addition, it
should be noted that the results of Noël et al. (2024) suggest
that 1 month of training data may be sufficient for a machine-
learning-based bias correction. In contrast, we used 1 year of
training data for our ANN-based approach, which can make
a difference in the early phase of a satellite mission when
little data are available.

In order to use NRG-CO2M to retrieve XCO2 and XCH4
as well as the associated uncertainties and averaging kernels
from real CO2M radiance measurements, once available, the
PCAs and the training of the ANNs would have to be re-
peated with real data. In this case, the training truth could,
e.g., consist of model data confirmed by an ensemble of
models, as done for NASA’s OCO-2 XCO2 bias correction
(O’Dell et al., 2018), or by corresponding TCCON measure-
ments, as done for FOCAL’s GOSAT and GOSAT-2 XCO2
bias correction (Noël et al., 2021). We expect that at least 1
full year should be used for training, although the modifica-
tion of the training spectra makes them representative of a
wider range of atmospheric conditions.
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In the analysis of real data, several effects, detailed inves-
tigation of which is beyond the scope of this paper, may lead
to somewhat degraded retrieval quality. These include un-
known systematic errors in the training truth, a priori, and
met profiles; non-ideal sampling of the training data set; and
potential instrument or RT features that are not well approx-
imated by our spectrum modification method. Therefore, the
actual retrieval quality achievable can only be determined af-
ter NRG-CO2M has been trained on and applied to real data.

However, due to the quality achieved in the analysis of
synthetic CO2M data, the proposed retrieval algorithm NRG-
CO2M can be considered a promising candidate for meet-
ing the high accuracy and precision mission requirements of
CO2M while providing high data yield and negligible com-
putational requirements, making it a valuable addition to the
ensemble of conventional algorithms.

Appendix A

Figure A1. As Fig. 11 but using the true CO2 concentration profiles as a priori instead of their scene-wide average.
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Figure A2. As Fig. 12 but using the true CH4 concentration profiles as a priori instead of their scene-wide average.

Data availability. We used meteorological data from the ECMWF
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