

Supplement of

A comprehensive characterization of empirical parameterizations for OH exposure in the Aerodyne Potential Aerosol Mass Oxidation Flow Reactor (PAM-OFR)

Qianying Liu et al.

Correspondence to: Dan Dan Huang (huangdd@saes.sh.cn) and Yong Jie Li (yongjieli@um.edu.mo)

The copyright of individual parts of the supplement might differ from the article licence.

List of the supporting information:

Tables.

	Table S1: List of OFR185 trace-gas decay experiments under different conditions. SO ₂ or CO was used as the source of external OH reactivity (OHR _{ext}). Each set of experiments was performed under 5–9 lamp intensity settings
5	Table S2: List of OFR254 trace-gas decay experiments under different conditions. SO ₂ or CO was used as the source of OHR _{ext} . Each set of experiments was performed under 5–9 lamp intensity settings
	Table S3: In OFR185 mode, the range of various experimental conditions involved in the different datasets when fitting parameters <i>a</i> - <i>f</i> and evaluating their applicability. 5
10	Table S4: In OFR254 mode, the range of various experimental conditions involved in the different datasets when fittingparameters $x-z$ and evaluating their applicability.6
	Table S5: In OFR185 mode, the parameters $a-f$ for the OH _{exp, est} estimation were obtained from different data sets7
	Table S6: In OFR254 mode, the parameters $x-z$ of the OH _{exp, est} estimation were obtained from different data sets
Fi	gures.
15	Figure S1: The schematics of the PAM-OFR experimental setup for trace-gas decay experiments in (a) OFR185 mode and (b) OFR254 mode
	Figure S2: The examples of a set of experiments conducted in (a) the OFR185 mode and (b) the OFR254 mode, respectively. A set of experiments was operated with light voltage settings stepping decreasing from 10V to 0V. The highlighted areas indicate the periods when all conditions had reached a steady state and the tracer gas was sampled.
20 25	Figure S3: The regression results of $OH_{exp, est}$ and $OH_{exp, dec}$ when variations occurred in (a1–a3) residence time, (b1–b3) water vapor mixing ratio, and (c1–c3) output O ₃ concentration under atmospheric relevant OHR_{ext} level (4–23 s ⁻¹). Compared to panels a1, b1, and c1, panels a2, b2, and c2 respectively incorporated additional data points with lower t, H ₂ O, and O _{3, out} values, but still utilized the fitting parameters <i>a</i> – <i>f</i> obtained from the higher condition range to estimate $OH_{exp, est}$. In panels a3, b3, and c3, all data points within the extended condition range were used to re-fit the parameters <i>a</i> – <i>f</i> , which were employed to estimate $OH_{exp, est}$.
-	Figure S4: (a1–a3) The variations of $c \times OHR_{ext}^d \times \log(O_{3, out} \times 180/t)$, $e \times OHR_{ext}^f \times [\log(O_{3, out} \times 180/t)]^2$ and their sum with respect to OHR_{ext} when using the fitted values of $c-f$ (-0.13922, 0.26786, 0.0026332, 0.4917) obtained from the low OHR_{ext} data points. (b1–b3) The variations of $c \times OHR_{ext}^d \times \log(O_{3, out} \times 180/t)$, $e \times OHR_{ext}^f \times [\log(O_{3, out} \times 180/t)]^2$ and their sum with respect to OHR_{ext} when using the fitted values of $c-f$ (-0.079114, 0.36805, 0.0041654, 180/t)] ²
30	0.38722) obtained from the data points with a wider range of OHR _{ext} condition

Tables.

Experiment ID	Species	Initial concentration(ppb)	$OHR_{ext} (s^{-1})$	Residence time (s)	Water vapor mixing ratio (%)				
1		182.8	4.27	33.3	0.58				
2		191.0	4.46	33.3	0.63				
3		193.2	4.52	33.3	0.64				
4		274.0	6.40	99.8	0.79				
5		291.0	6.80	99.8	0.69				
6		331.0	7.74	295.6	1.60				
7		366.0	8.55	181.4	1.55				
8		379.4	8.87	33.3	0.63				
9		380.3	8.89	33.3	1.05				
10	SO_2	383.1	8.96	33.3	0.87				
11		489.4	11.44	61.4	0.62				
12		513.0	11.99	199.5	0.66				
13		650.0	15.19	181.4	2.72				
14		750.0	17.53	181.4	1.98				
15		789.1	18.45	33.3	0.74				
16		973.2	22.75	33.3	1.19				
17		8556.4	197.98	61.4	0.52				
18						8556.4	200.00	33.3	0.38
19		8718.6	203.79	33.3	0.53				
20		10247.8	60.58	33.3	1.15				
21		12298.2	72.70	33.3	0.86				
22	CO	103238.4	610.27	33.3	0.95				
23	0	103852.8	613.91	33.3	0.86				
24		207445.7	1226.27	33.3	0.97				
25		207496.6	1226.58	33.3	0.89				

Table S1: List of 25 sets of OFR185 trace-gas decay experiments under different conditions. SO_2 or CO was used as the35source of external OH reactivity (OHR_{ext}). Each set of experiments was performed under 5–9 lamp intensity settings.

Experiment ID	Species	Initial concentration (ppb)	OHR _{ext} (s ⁻¹)	Input O ₃ concentration (ppm)	Residence time (s)	Water vapor mixing ratio (%)	Relative humidity (%)
1		286.2	6.69	4.27	69.6	1.65	27.8
2		283.3	6.62	5.91	69.0	2.46	39.6
3		283.8	6.63	6.17	69.0	0.99	18.1
4		289.9	6.78	6.30	69.0	1.52	28.7
5		575.5	13.45	6.20	69.0	1.07	17.0
6		575.2	13.44	6.08	69.0	2.45	43.8
7		583.5	13.64	6.15	69.0	1.62	29.2
8		868.6	20.30	6.23	69.0	2.22	44.0
9		874.7	20.45	6.05	69.0	1.57	27.7
10		868.9	20.31	6.32	69.0	0.97	16.9
11		454.9	10.63	7.77	69.0	0.96	17.1
12		450.2	10.52	8.16	69.0	2.17	41.8
13		450.7	10.53	6.58	69.0	1.41	28.6
14		737.9	17.25	8.32	69.0	0.88	16.9
15	80	746.8	17.46	7.77	69.0	2.20	39.9
16	SO ₂	747.0	17.46	9.38	69.0	1.50	26.8
17		204.0	4.77	2.62	34.4	2.11	42.8
18		201.9	4.72	3.00	34.4	1.32	27.9
19		196.9	4.60	2.90	34.4	0.94	19.0
20		282.6	6.61	6.07	34.4	0.79	17.3
21		572.9	13.39	6.11	34.4	0.82	17.6
22		908.6	21.24	6.08	34.4	0.78	17.3
23		204.7	4.78	4.47	43.7	0.86	18.2
24		402.8	9.41	5.47	47.4	2.14	42.0
25		459.9	10.75	5.34	54.0	1.91	36.4
26		840.2	19.64	9.82	111.5	1.74	36.1
27		262.7	6.14	8.23	70.9	2.27	43.0
28		430.8	10.07	8.19	70.6	2.23	45.5
29		260.1	6.08	13.17	69.6	2.38	40.6
30		511.4	11.95	19.39	125.5	2.61	45.2

Table S2: List of 37 sets of OFR254 trace-gas decay experiments under different conditions. SO_2 or CO was used as the source of OHR_{ext}. Each set of experiments was performed under 5–9 lamp intensity settings.

Experiment ID	Species	Initial concentration (ppb)	OHR _{ext} (s ⁻¹)	Input O ₃ concentration (ppm)	Residence time (s)	Water vapor mixing ratio (%)	Relative humidity (%)
31		4909.4	29.02	3.15	19.8	0.91	19.0
32		4685.6	27.70	5.06	37.4	0.83	20.8
33		4958.3	29.31	4.13	47.1	0.78	15.9
34	СО	4829.8	28.55	5.59	69.4	2.20	43.3
35		4358.0	25.76	2.95	34.5	1.78	36.2
36		5034.5	29.76	4.82	46.8	2.18	39.4
37		4438.5	26.24	12.95	95.2	2.25	40.4

Figure #	Residence time (s)	Water vapor mixing ratio (%)	Output O ₃ concentration (molecules cm ⁻³)	External OHR (s ⁻¹)	OHR source	
Fig. 1a1	33		, , , , , , , , , , , , , , , , , , ,			
Fig. 1a2	22,200	0.54–1.48	$1.44 \times 10^{12} 1.89 \times 10^{14}$	4–23	SO_2	
Fig. 1a3	33-200					
Fig. 1b1		0.49–0.99				
Fig. 1b2	33–200	0.40.2.76	$1.44 \times 10^{12} 2.03 \times 10^{15}$	4–18	SO_2	
Fig. 1b3		0.49–2.76				
Fig. 1c1			$1.44 \times 10^{12} 6.79 \times 10^{13}$			
Fig. 1c2	33–296	0.49–1.62	1 44 1012 2 02 1015	4–23	SO_2	
Fig. 1c3			$1.44 \times 10^{12} - 2.03 \times 10^{13}$			
Fig. 2a				4–23		
Fig. 2b	33–296	0.49–2.76	$1.44 \times 10^{12} 2.03 \times 10^{15}$	4 204	SO_2	
Fig. 2c				4–204		
Fig. 3a	33–296	0.38–2.76	$1.44 \times 10^{12} 2.03 \times 10^{15}$	4-204	SO_2	
Fig. 3b	33	0.85–1.17	$1.95 \times 10^{12} 1.88 \times 10^{14}$	61–1227	CO	
Fig. 3c	33–296	0.38–2.76	$1.44 \times 10^{12} 2.03 \times 10^{15}$	4–1227	$SO_2 + CO$	
Fig. S3a1	100–296	_				
Fig. S3a2	22 206	0.63–2.76	$8.16 \times 10^{12} 2.03 \times 10^{15}$	6–18	SO_2	
Fig. S3a3	33-290					
Fig. S3b1		1.04–2.76				
Fig. S3b2	33–296	0 40 2 76	$3.31 \times 10^{12} 1.16 \times 10^{15}$	8–23	SO_2	
Fig. S3b3		0.49–2.76				
Fig. S3c1			$8.45 \times 10^{13} 2.03 \times 10^{15}$			
Fig. S3c2	33–296	0.50–2.76	1.44×10^{12} 2.02 $\times 10^{15}$	4-23	SO_2	
Fig. S3c3			$1.44 \times 10 - 2.05 \times 10^{10}$			

Table S3: In OFR185 mode, the range of various experimental conditions involved in the different datasets when fitting parameters a-f and evaluating their applicability.

Figure #	External OHR (s ⁻¹)	Output O ₃ concentration (molecules cm ⁻³)	r _{O3}	OHR source	
Fig. 4a1	5–14				
Fig. 4a2	5 01	$6.46 \times 10^{13} 4.77 \times 10^{14}$	0.42 - 1.00	SO_2	
Fig. 4a3	5-21				
Fig. 4b1		$6.46 \times 10^{13} 1.62 \times 10^{14}$			
Fig. 4b2	5–21	$(10^{13}, 10^{13}, 177, 10^{14})$	0.66–1.00	SO_2	
Fig. 4b3		$0.40 \times 10^{10} - 4.77 \times 10^{11}$			
Fig. 4c1			0.69–0.90		
Fig. 4c2	6–20	$1.05\times 10^{13} 3.24\times 10^{14}$	0.61.0.00	SO_2	
Fig. 4c3			0.01-0.99		
Fig. 5a	5–21	$6.46 \times 10^{13} 4.77 \times 10^{14}$	0.42-1.00	SO_2	
Fig. 5b	26–30	$7.28 \times 10^{13} 3.19 \times 10^{14}$	0.66-1.00	СО	
Fig. 5c	5–30	$6.46 \times 10^{13} 4.77 \times 10^{14}$	0.42 - 1.00	$SO_2 + CO$	

Table S4: In OFR254 mode, the range of various experimental conditions involved in the different datasets when fitting45parameters x-z and evaluating their applicability.

OED 195	Г: #	Data sata	ED	Coefficient					
UFK185	Figure #	Data sets	FP	а	b	с	d	e	f
	Fig. 1a1	short t	ED	1 2566	0 57072	-0.062233	0.47836	0.0027988	0.55255
Residence time	Fig. 1a2	adding long t	ΓΓ st, 185	4.2300	0.37973				
	Fig. 1a3	adding long t	FP _{et, 185}	4.5772	0.58603	-0.10617	0.40819	0.004321	0.50352
	Fig. 1b1	low H_2O	ED	5 5000	0.62134	-0.23848	0.27915	0.0071196	0.42689
Water vapor mixing ratio	Fig. 1b2	adding bigh ILO	FP _{1H2O, 185}	5.5622					
	Fig. 1b3	adding high H_2O	FP _{eH2O, 185}	4.2899	0.70966	-0.21378	0.23242	0.0052289	0.39371
	Fig. 1c1	low O _{3, out}	FP _{103, 185}	3.3154	2.3046	-1.74	0.033076	0.0061601	0.29402
Output O ₃ concentration	Fig. 1c2								
	Fig. 1c3	adding nign O _{3, out}	FP _{eO3, 185}	3.5229	2.2995	-1.7422	0.027553	0.0050063	0.29182
	Fig. 2a	low OHR _{ext}		3.2404	0.74398	-0.13922	0.26786	0.0026332	0.4917
External OHR	Fig. 2b		FP _{10HR} , 185						
	Fig. 2c	adding high OHR _{ext}	FP _{eOHR, 185}	3.5103	0.62481	-0.079114	0.36805	0.0041654	0.38722
	Fig. 3a	SO_2	FP _{SO2, 185}	3.2759	0.65745	-0.10638	0.23087	0.0050212	0.24198
OHR source	Fig. 3b	СО	FP _{CO, 185}	4.1575	0.55935	-0.86966	-0.17843	0.089848	-0.2993
	Fig. 3c	$SO_2 + CO$	FP _{SO2&CO, 185}	2.1665	0.78424	-0.13214	0.089098	0.0036945	0.03358

Table S5: In OFR185 mode, the parameters *a*–*f* for the OH_{exp, est} estimation were obtained from different data sets.

OED 254	Eigung #	Doto ooto	ED	Coefficient			
UFK254	Figure #	Data sets	ГР	Х	У	Z	
	Fig. 4a1	low OHRext		12.798	0.34588	0.00.50.50	
External OHR	Fig. 4a2	adding high OUP	FP _{10HR} , 254			0.085063	
	Fig. 4a3	adding night Officest	FPeOHR, 254	13.151	-17.172	0.12986	
	Fig. 4b1	low O _{3, in}					
Input O ₃ concentration	Fig. 4b2	adding high O	FP _{103, 254}	13.459	-19.285	0.11153	
	Fig. 4b3	adding high O _{3, in}	FPeO3, 254	13.325	-19.393	0.12029	
	Fig. 4c1	medium r _{O3}	ED	12 080	0.0122	0 12694	
r _{O3}	Fig. 4c2	11 . 1 1	ΓΓ _{mrO3, 254}	12.989	-9.9122	0.13084	
	Fig. 4c3	adding extended r_{O3}	FP _{erO3, 254}	13.213	-18.921	0.13111	
	Fig. 5a	SO_2	FP _{SO2, 254}	13.145	-18.669	0.13316	
OHR source	Fig. 5b	СО	FP _{CO, 254}	16.161	-92.945	0.11466	
	Fig. 5c	$SO_2 + CO$	FP _{SO2&CO, 254}	13.075	-15.698	0.13741	

Table S6: In OFR254 mode, the parameters x-z of the OH_{exp, est} estimation were obtained from different data sets.

Figures.

Figure S1: The schematics of the PAM-OFR experimental setup for trace-gas decay experiments in (a) OFR185 mode and (b) OFR254 mode.

Figure S2: The examples of a set of experiments conducted in (a) the OFR185 mode and (b) the OFR254 mode, respectively. A set of experiments was operated with light voltage settings stepping decreasing from 10V to 0V. The highlighted areas indicate the periods when all conditions had reached a steady state and the tracer gas was sampled.

Figure S3: The regression results of OH_{exp, est} and OH_{exp, dec} when variations occurred in (a1–a3) residence time, (b1–b3) water vapor mixing ratio, and (c1–c3) output O₃ concentration under atmospheric relevant OHR_{ext} level (4–23 s⁻¹). Compared to panels a1, b1, and c1, panels a2, b2, and c2 respectively incorporated additional data points with lower t, H₂O, and O_{3, out} values, but still utilized the fitting parameters *a*–*f* obtained from the higher condition range to estimate OH_{exp, est}. In panels a3, b3, and c3, all data points within the extended condition range were used to re-fit the parameters *a*–*f*, which were employed to estimate OH_{exp, est}.

Figure S4: (a1–a3) The variations of $c \times OHR_{ext}^d \times \log(O_{3, out} \times 180/t)$, $e \times OHR_{ext}^f \times [\log(O_{3, out} \times 180/t)]^2$ and their sum with respect to OHR_{ext} when using the fitted values of c-f (-0.13922, 0.26786, 0.0026332, 0.4917) obtained from the low OHR_{ext} data points. (b1–b3) The variations of $c \times OHR_{ext}^d \times \log(O_{3, out} \times 180/t)$, $e \times OHR_{ext}^f \times [\log(O_{3, out} \times 180/t)]^2$ and their sum with respect to OHR_{ext} when using the fitted values of c-f (-0.079114, 0.36805, 0.0041654, 0.38722) obtained from the data points with a wider range of OHR_{ext} condition.