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Abstract. Among aerosol characterization methods, limb
scattering measurements provide both near-global coverage
and information about how aerosol is vertically distributed
through the atmosphere. Near-real-time retrievals of aerosols
produced by volcanic eruptions are particularly important for
aviation safety, but the radiative transfer modeling of scatter-
ing processes performed by traditional retrieval methods can
be too computationally expensive for near-real-time appli-
cations without simplifying assumptions, depending on the
instrument and available computational resources. Here we
present a near-real-time approach based on neural networks
(NNs) for aerosol retrievals from the Ozone Mapping and
Profiler Suite’s Limb Profiler (OMPS LP) instrument aboard
the Suomi National Polar-orbiting Partnership satellite. We
find it is at least 60 times faster than the current operational
code and on average achieves agreement within 20 % at most
altitudes and latitudes with sensitivity and non-negligible
aerosol abundances. We also apply our trained NNs to mea-
surements of the recent Shiveluch and Ruang eruptions from
NOAA-21’s OMPS LP and find results consistent with the
operational retrieval algorithm, indicating our methodology
generalizes to future iterations of the same instrument with-
out retraining the NNs.

1 Introduction

Stratospheric aerosols play a key role in the atmospheric ra-
diation budget. Negative radiative forcing due to background
sulfate aerosols can slow the rate of increase in surface tem-

perature (Solomon et al., 2011), and the increased aerosol
load from eruptions like El Chichón, Pinatubo, and Hunga
can lead to periods of increased outgoing shortwave radia-
tion and cooler temperatures in the lower troposphere (San-
ter et al., 2014; Schoeberl et al., 2023). Major wildfires can
trigger pyrocumulonimbus (pyroCb) events and cause strato-
spheric warming (Christian et al., 2019; Das et al., 2021).
Characterizing these stratospheric aerosols therefore con-
strains climate and chemical modeling.

Stratospheric aerosols can be characterized through in situ,
ground-based, and space-based measurements (see Sect. 4
of Kremser et al., 2016 for a detailed review). In situ (e.g.,
Junge et al., 1961; Hofmann et al., 1975; Jonsson et al., 1995;
Brock et al., 2000; Hermann and Wiedensohler, 2001; Bor-
rmann et al., 2010) and ground-based lidar (e.g., Fiocco and
Grams, 1964; Poole and McCormick, 1988; Osborn et al.,
1995; Barnes and Hofmann, 1997; Jäger, 2005; Chouza et al.,
2020) measurements can provide high vertical resolution at
the expense of limited spatial coverage. Space-based mea-
surements, on the other hand, offer much broader spatial
coverage. Solar occultation measurements (e.g., McCormick
et al., 1982; Chu et al., 1989; Hervig et al., 1996; Hayashida
et al., 2000; Lumpe et al., 2002; Thomason and Taha, 2003;
McElroy et al., 2007) allow for the highest precision and
accuracy among space-based methods and provide informa-
tion about the vertical distribution of aerosols, but are only
possible during sunrise/sunset and thus have limited spatial
and temporal coverage. Space-based nadir lidar measure-
ments (e.g., Vernier et al., 2011; Kar et al., 2019) provide
better spatial and temporal coverage, but the measurements

Published by Copernicus Publications on behalf of the European Geosciences Union.



2524 M. D. Himes et al.: Using neural networks for near-real-time aerosol retrievals

typically have low signal-to-noise ratios for stratospheric
aerosol, limiting their precision. Additionally, they measure
polarization and aerosol backscatter coefficient rather than
aerosol extinction, and they have more significant power re-
quirements compared to other space-based methods. Limb-
scattering (LS) measurements (e.g., Llewellyn et al., 2004;
Rault and Taha, 2007; Taha et al., 2011; Loughman et al.,
2018; von Savigny et al., 2015) serve as a middle ground
among space-based methods, providing near-global coverage
of the vertical distribution of aerosols with lower cost and
power requirements compared to other measurement tech-
niques.

The Ozone Mapping and Profiler Suite (OMPS) Limb
Profiler (LP) instrument (Flynn et al., 2006) was launched
aboard the Suomi National Polar-orbiting Partnership
(SNPP) satellite in 2011 and subsequently aboard the
NOAA-21 satellite in 2022. OMPS LP measures LS radi-
ances between 290 and 1000 nm with a 1 km vertical sam-
pling through three slits; the lines of sight for the left and
right slits are separated by approximately 4.25° with respect
to the center slit. On SNPP, measurements are made of the
sunlit limb 180 times per orbit for 14–15 orbits per day.

Taha et al. (2022) introduced version 2.1 of the OMPS
LP aerosol retrieval algorithm, which improved on the con-
vergence criteria used in version 2.0 (Taha et al., 2021). It
uses the Gauss–Seidel LS radiative transfer model (Lough-
man et al., 2004) to retrieve the aerosol extinction coefficient
up to 38.5 km at wavelengths of 510, 600, 675, 745, 869,
and 997 nm. Each wavelength is retrieved independently. For
more details, see the aforementioned references.

Near-real-time (NRT) characterization of aerosols is par-
ticularly important for informing aviation flight paths in the
vicinity of a recent volcanic eruption, as well as providing ad-
vance notice to coordinate ground-based or in situ follow-up
measurements. Aerosol retrieval algorithms like that of Taha
et al. (2022) provide parallelizable, deterministic, physics-
based results, but their runtime can be prohibitive to NRT
applications unless compromises are made, such as retrieving
at a reduced number of wavelengths and/or slits, depending
on the available computational resources. In the case of the
NASA Atmospheric Composition Processing System used to
produce the NASA OMPS LP aerosol product, the available
computational resources result in just over 2 h to process one
SNPP orbit (and more than double that for NOAA-21 orbits),
not including the time to downlink the data and process it into
the Level 1 Gridded (L1G) radiance product. At present, this
does not meet NASA’s prevailing NRT definition of within
3 h of the observations. While these runtimes can be reduced
by newer computing hardware, processing speed improve-
ments can be offset by updates to the realism of the radiative
transfer and retrieval models (e.g., tomographic retrievals as
in Zawada et al., 2018).

Deep learning, a subfield of machine learning that focuses
on neural networks (NNs; Goodfellow et al., 2016), offers a
potential solution to this problem. Given a set of correspond-

ing input–output pairs, NNs can learn to approximate com-
plex, nonlinear relationships between inputs and outputs via
a sequence of weighted transformations, without knowledge
about the underlying physical processes that connect the in-
puts and outputs. This can be particularly useful to approx-
imate a computationally expensive algorithm (e.g., Baydin
et al., 2019; Cranmer et al., 2020; Munk et al., 2020; Kasim
et al., 2021; Himes et al., 2022), such as aerosol retrievals
from limb-scattered radiances. The trained NN model intro-
duces some error in the outputs, but provided that the error is
small enough for the desired applications, the resulting NN
can be used in place of the computationally expensive al-
gorithm. Werner et al. (2023) recently demonstrated this for
NRT products from the Aura Microwave Limb Sounder; they
found that NNs trained on the level 2 products generally out-
performed the optimal estimation-based NRT product.

Here we present an NRT data product for retrieved aerosol
extinction and related parameters from OMPS LP measure-
ments based on NNs. In Sect. 2 we detail our methodology.
We present comparisons with the existing aerosol data prod-
uct and discuss our results in Sect. 3. Finally, we present our
conclusions in Sect. 4.

2 Methods

In this study, we seek to train NN models that can accurately
retrieve the aerosol extinction coefficient from SNPP OMPS
LP measurements.

2.1 Data selection

Much of the OMPS LP record measures low stratospheric
aerosol loading; elevated stratospheric aerosol from major
volcanic and wildfire events can last for months to years, de-
pending on the amount of aerosol produced. We utilize mea-
surements during specific periods between October 2013 and
December 2022 (Table 1). The periods were determined from
Fig. 10 of Peterson et al. (2021) to capture a quiescent base-
line as well as major volcanic and wildfire events that have
occurred during SNPP’s lifetime. We randomly select 10 %
of these dates, totaling 1.24 million profiles spread through-
out 241 d, to form the data set that will be used for our ma-
chine learning approach.

Utilizing these data, we prepare the input–output pairs to
use during NN training. For each case, the inputs are com-
prised of

– the version 2.6 OMPS LP gridded sun-normalized mea-
sured radiances (Jaross, 2023) between 0.5 and 40.5 km,
with altitude normalization at 38.5 km;

– atmospheric pressure and temperature from the NASA
Global Earth Observing System Forward Processing
for Instrument Teams product (GEOS FP-IT; Lucchesi,
2015);
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Table 1. Date ranges of OMPS LP data considered for the machine
learning data set.

Date ranges Notable events

October 2013–October 2014 Quiescent period
May 2015–November 2016 Calbuco
August 2017–June 2018 Pacific Northwest wildfires
June 2019–June 2021 Raikoke, Ulawun, Australian

wildfires
January–December 2022 Hunga

Notes. We select 10 % of the above dates for our machine learning data set,
totaling 241 d, which is subsequently split into training, validation, and test sets
(see Sect. 2.2). We specifically exclude the dates where OMPS LP initially
measured the plume from the Hunga eruption from the training data so they can be
used as test cases.

– single-scattering angle (calculated from quantities avail-
able in the L1G radiance data product);

– solar zenith angle; and

– spacecraft-centered solar azimuth angle.

These parameters were selected given their use in the opera-
tional aerosol retrieval algorithm and availability in the L1G
version 2.6 data product and the associated ancillary files.
Each case within the data set is comprised of the above listed
inputs paired with the corresponding aerosol extinction co-
efficient reported in the OMPS LP aerosol retrieval version
2.1 data product (V2.1; Taha et al., 2022). For the radiances
and aerosol extinction coefficients, we consider wavelengths
of 510, 600, 675, 745, 869, and 997 nm, as in the V2.1 prod-
uct. At altitudes where the aerosol extinction coefficient was
not retrieved, we assume a value of 10−8 km−1, which is ef-
fectively treated as zero aerosol extinction in V2.1. This re-
placement is required as the NNs cannot handle missing data.
During post-processing, any values predicted by the NN to be
less than 10−8 km−1 are replaced with a fill value of −999,
for consistency with the V2.1 data product. To determine the
altitude of clouds and aerosols, we utilize an updated version
of the detection algorithm of V2.1, since it is already suffi-
ciently fast and does not require further speed improvements
from ML.

When preparing the input–output pairs, slit position is not
included as a parameter or dimension. The resulting trained
NN can therefore be applied to measurements from any of the
three slits, thereby minimizing the up-front computational
costs of training the NN and enabling retrievals in situations
where only one or two slits have valid measurements.

We highlight that the current OMPS LP aerosol retrieval
algorithm (V2.1) uses the version 2.5 radiances, while here
we use the version 2.6 radiances as input because it is the
only version of radiances processed in NRT. This compli-
cates the relationship between inputs and outputs, as the
version 2.6 radiances use different tangent height and stray
light corrections. These correction methods introduce differ-
ences in the retrieved aerosol extinction coefficient, and so

our input–output pairs do not have a perfect one-to-one rela-
tion. However, at the time of this work, no NASA OMPS LP
aerosol retrieval version uses the version 2.6 radiance data
as input, and retroactively processing the OMPS LP record
using that version is computationally prohibitive. Since the
differences in correction methods can be viewed as differ-
ent transformation functions applied to the same underlying
data, our methodology ignores them and assumes that the NN
will learn to perform the transformation from version 2.6 ra-
diances to V2.1 aerosol extinction coefficients. To confirm
the validity of this assumption, we processed a limited num-
ber of retrievals on L1G version 2.6 and trained NNs as de-
scribed below (see the end of Sect. 3.1 for a discussion of
these results).

2.2 Neural network training and evaluation

The aforementioned 241 d of data are split into training, val-
idation, and test sets. We enforce that the days which contain
extrema for each input/output parameter must be within the
training set. The remaining days are randomly split among
the training, validation, and test subsets, in a proportion of
approximately 70 %, 20 %, and 10 %, respectively. To pre-
process these data and train the NNs, we use the open-source
Python package MARGE (Himes et al., 2022), which is built
on TensorFlow (Abadi et al., 2016). We normalize these data
by taking the base-10 logarithm of the radiances, pressure,
and aerosol extinction, then scaling each input and output
parameter to be within the closed interval [−1,1] based on
their training set extrema.

To determine NN architectures which are well suited to
solve the problem of interest, we perform a Bayesian hyper-
parameter optimization. We consider models with two to five
convolutional and/or fully connected hidden layers. The con-
volutional layers are allowed to have 2x feature maps with
6≤ x ≤ 8, while the fully connected layers are allowed to
have 2y nodes with 6≤ y ≤ 10. These parameters are related
to the overall complexity that can be captured by the NN. For
each hidden layer, we consider rectified linear unit (ReLU),
exponential linear unit (ELU), leaky ReLU (LReLU), sig-
moid, and hyperbolic tangent (tanh) activation functions,
which introduce nonlinearities into the model such that it can
approximate complex behaviors. For ELU and leaky ReLU
activation functions, we allow their free parameter to vary
between 0.01 and 0.6. For all models, the input and output
layers have linear activations, and the output layer is a fully
connected layer with a number of nodes based on the target
outputs (6 wavelengths × 41 altitudes). During the Bayesian
optimization, each considered model is optimized according
to the validation mean-squared-error (MSE) loss and trained
for 60 epochs (number of iterations over the data set; relates
to model convergence) using the Adam optimizer (controls
how the NN weights and biases are updated), a batch size of
256 (number of samples considered in each training iteration;
relates to variance in the gradient and thereby how the model
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learns), and a cyclical learning rate (scaling factor for mag-
nitude of model updates; cycling reduces number of epochs
needed to train model to a certain performance, e.g., Smith,
2015; Himes et al., 2022) that linearly cycles between 10−5

and 10−3 over 12 epochs.
Based on this optimization, we selected an architecture

with hidden layers of Conv3D(256)–LReLU(0.0733)–
FC(1024)–tanh–FC(512)–ELU(0.2944)–FC(1024)–ReLU,
where Conv3D(m) denotes a three-dimensional convo-
lutional layer with m feature maps, LReLU(s) denotes
a leaky ReLU activation with slope parameter s, FC(n)
denotes a fully connected layer with n nodes, tanh denotes
a hyperbolic tangent activation, and ELU(α) denotes an
ELU activation with scaling parameter α. We note that
while different architectures result in variations in model
performance, many different architectures can achieve
similar performance; the training data, its pre-processing,
and the training methodology had a more significant effect
on the resulting model accuracy.

Using the selected architecture, we train two separate NNs,
as we found poor performance at 510, 600, and 675 nm in the
southern hemisphere, where OMPS LP observes backscat-
tered radiation, when using a single NN. For each NN, we
determine a cyclical learning rate range based on the range
test described in Himes et al. (2022). Unlike in Himes et al.
(2022), here we utilize real data during NN training; our
problem requires that the minimum learning rate must be in-
creased above that determined via the range test described in
Himes et al. (2022) to avoid overfitting the validation data.
We train one NN using a cyclical learning rate varying be-
tween 3×10−6 and 10−3, and an MSE loss; it is used for the
northern hemisphere at 675 and 745 nm and for all latitudes
at 869 and 997 nm. We train the second NN with a cyclical
learning rate over the range of 10−5–2× 10−3 and a custom
loss function which minimizes the maximum MSE across
wavelength channels; it is used for all latitudes at 510 and
600 nm and in the southern hemisphere for 675 and 745 nm.
We allow each NN to train until engaging early stopping after
a patience of 60 epochs. To retrieve on one orbit predictions
are made with both models, and then the aforementioned rel-
evant subsets of predictions from each model are combined.

To thoroughly evaluate the NN performance, we com-
pare the retrieved extinction coefficient and the stratospheric
aerosol optical depth with the current OMPS LP aerosol data
product over January 2019–December 2023 and compute a
mean percent error with respect to altitude and latitude. We
also test the NN predictions for the 2022 Hunga eruption to
ensure the models can be applied to extreme cases beyond
those seen in the training set, as well as the 2023 Shiveluch
and 2024 Ruang eruptions to ensure the models are accurate
when applied outside the range of years considered in the
training data set. We also utilize the 2024 Ruang eruptions to
demonstrate how visualizations from our NRT product can
accurately track the transport of a volcanic plume. Finally,
given that OMPS LP is planned to launch on multiple ad-

ditional satellites over the next decade, we briefly consider
the NN performance when applied to selected orbits from
NOAA-21’s OMPS LP that measured the recent Shiveluch
and Ruang eruptions to investigate the applicability of our
SNPP NRT approach to OMPS LP measurements in general.

3 Results and discussion

3.1 Comparison with OMPS LP Version 2.1 aerosol
data product

Figure 1 summarizes the difference in zonal means between
the NRT and V2.1 aerosol data products over the period Jan-
uary 2019–December 2023. This period is marked by a se-
ries of volcanic eruptions and massive wildfires that injected
large amounts of aerosols into the stratosphere in both hemi-
spheres. Errors are generally within 20 % in regions with
non-negligible aerosol extinction. The notable exceptions to
this are lower altitudes in the southern hemisphere at shorter
wavelengths and in the troposphere, where the percent er-
rors increase to > 50%. The former regime generally has a
small aerosol scattering index, which causes the retrieval al-
gorithm to struggle to provide consistent results (Taha et al.,
2021); consequently, the NNs also struggle in this regime.
The large differences in the troposphere are mostly caused
by cloud interference, which may cause inaccurate retrievals
for both algorithms.

Figures 2 and 3 show the stratospheric aerosol optical
depth (sAOD) and aerosol extinction at 20.5 km, respectively,
at 997 nm between January 2019 and December 2023 for the
V2.1 and NRT aerosol data products. The NRT results gener-
ally agree with V2.1, capturing increases in aerosol loading
due to both eruptions and wildfires during this period. For
example, aerosol due to the Raikoke eruption and northern
hemisphere wildfires in 2019 are clearly visible in Fig. 2;
the NRT product correctly infers the decrease in sAOD over
time as well as the transport southward into the mid-latitudes.
Similarly, the increased sAOD throughout 2022 associated
with the Hunga eruption agrees both in the initial months af-
ter the eruption and later in the year when the aerosol was
transported toward the southern pole. Most errors are within
20 %, consistent with Fig. 1. Some periods have larger per-
cent errors, which are mostly associated with small sAOD
and extinction values, such as the period leading up to the
Ulawun eruption in 2019. We similarly see larger percent er-
rors during the southern polar vortex, which is attributable
to the small aerosol extinction within the vortex; outside the
vortex, we find that biases are generally consistent with the
temporal mean.

The Hunga eruption is the only event in this five-year pe-
riod where the NRT product consistently underpredicts the
extinction at 20.5 km at 997 nm (Fig. 3) compared to V2.1.
The NRT results show a bias up to −50% between May–
September 2022 and November 2022–January 2023; the lat-
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Figure 1. Plot of the mean differences in percent between OMPS LP NRT and V2.1 aerosol extinction profiles for the center slit at (a) 510,
(b) 600, (c) 675, (d) 745, (e) 869, and (f) 997 nm, zonally averaged at 5° latitudes for the period between January 2019 and December 2023.
The dashed line is the zonal mean GEOS FP-IT tropopause altitude. Contours are shown for ±20% errors. Errors <−50% are shown in
white; this occurs where aerosol extinction is typically negligible (upper altitudes) and where the aerosol retrieval algorithm struggles to
provide consistent results (lower altitudes in the southern hemisphere at shorter wavelengths; Taha et al., 2021).

ter period corresponds to transport into the northern hemi-
sphere. This is likely attributable to the extreme nature of the
event. Despite this, the NRT predictions for Hunga are quali-
tatively consistent with V2.1, and errors are generally within
20 %.

Considering results for individual orbits, the NRT results
generally agree with V2.1, capturing similar structures and
magnitudes across the orbit. Figure 4 compares the V2.1 and
NRT results at 997 nm for the OMPS LP orbit on 16 Jan-
uary 2022 that first measured Hunga’s plume. This orbit fea-
tures aerosol extinctions that are more extreme than those
included in the training data set. Though it slightly overes-
timates the extinction below the plume and below the cloud
tops in the southern hemisphere, the extinction values near
the top of the plume are consistent and the plume height
agrees well. Figure 5 shows the V2.1 and NRT results at
997 nm for the center slit of the OMPS LP orbit that mea-
sured Shiveluch shortly after the eruption on 11 April 2023.
While a relatively small eruption, Shiveluch highlights the
importance of NRT aerosol retrievals: numerous flights to
and from Alaska were canceled due to volcanic ash at air-
plane cruising altitudes. Despite being outside the temporal
range of data that trained the NNs, the NRT approach agrees
with V2.1.

Another example is the Ruang volcano in North Sulawesi,
Indonesia that erupted on 16 April 2024 and continued inter-
mittently through 23 April. The largest emissions occurred
on 17 April, and plumes reportedly reached up to almost
20 km and generally drifted west of the island (Global Vol-
canism Program, 2024). Late on 29 April, Ruang began
erupting again, with OMPS LP measuring the plume reach-
ing up to 23.5 km. Figure 6 shows the average retrieved ex-
tinction coefficient between 19.5 and 21.5 km at 997 nm for
the operational and NN-based algorithms for all orbits on
1 May. Aerosol from the first eruption can be seen stretch-
ing from eastern Africa to the eastern Pacific near the coast
of South America, while aerosol from the second eruption
can be seen over Borneo and the Indian Ocean. We also pro-
cessed the orbits between 16 April and 13 May to produce
a time-lapse animation of the average retrieved aerosol ex-
tinction between 19.5 and 21.5 km; see the video supplement
(Himes et al., 2024b). This visualization represents one use
case of our NRT product, enabling the tracking of volcanic
plumes and (in combination with wind fields) predicting their
future transport, e.g., to coordinate balloon-borne measure-
ments or inform aviation flight paths.

When analyzing a given orbit on our processing system
using both algorithms, the NRT approach requires ∼ 2 min,
achieving a∼ 60× speedup in terms of wall-clock time com-
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Figure 2. (a) OMPS LP V2.1 daily stratospheric aerosol optical depth (sAOD) at 997 nm for the center slit, calculated in 5° latitude bands
by integrating the aerosol extinction from the tropopause altitude to 37.5 km. (b) The same but for NRT. (c) The daily zonal differences
between (a) and (b) in percent. Black markers indicate volcanic eruption or pyroCb smoke plumes.

pared to V2.1 while utilizing fewer computational resources.
This speedup metric does not include the ∼ 13 h spent train-
ing each model on an NVIDIA V100 graphics processing
unit; aside from requiring specialized hardware, this total
runtime is comparable to the time required to process 1 d
of data with the standard physics-based algorithm. The NN-
based NRT approach significantly reduces the delay between
obtaining and processing the data, which is particularly im-
portant for aviation safety in the wake of a volcanic eruption.
Much of the NRT processing time is spent loading the NN
models into memory; typically a total of ∼ 20 s is spent pre-
dicting the aerosol extinctions using just eight cores on our
processing system. Thus, processing a range of orbits where
the NN models can remain loaded in memory can substan-
tially increase this speedup factor (e.g., processing 10 or-
bits would result in approximately 400× less computational
time).

When developing this data product, we originally at-
tempted to train a single NN to retrieve aerosol extinction
for the entire orbit by minimizing the MSE. However, we
found that this led to the NN only performing accurately
in the northern hemisphere and at longer wavelengths, with
strong biases in the southern hemisphere and shorter wave-
lengths. This is likely due to a combination of increased
Rayleigh scattering at shorter wavelengths and OMPS LP’s
Sun-synchronous orbit and viewing direction. As OMPS LP
ascends from the south pole towards the north pole, the
single-scattering angle changes throughout the orbit, result-
ing in measurements of backscattering in the southern hemi-
sphere and forward-scattering in the northern hemisphere.
This leads to a weaker aerosol scattering signal in the south-
ern hemisphere, which can be on the order of or smaller than
the Rayleigh scattering signal. To address this, we consid-
ered custom loss functions; we found that separately calcu-
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Figure 3. (a) OMPS LP V2.1 daily 20.5 km retrieved aerosol extinction at 997 nm for the center slit, calculated in 5° latitude bands. (b) The
same but for NRT. (c) The daily zonal differences between (a) and (b) in percent.

lating the MSE per wavelength channel and minimizing the
maximum MSE across wavelengths significantly improved
performance in the southern hemisphere and at shorter wave-
lengths, but the northern hemisphere and longer wavelengths
generally performed worse compared to just minimizing the
MSE. Consequently, we chose to use a combination of those
models to achieve acceptable performance in both hemi-
spheres at all wavelengths.

We also considered a more traditional surrogate model-
ing approach by applying the aerosol retrieval code to the
L1G version 2.6 radiances for the same 241 selected days
and training the NNs on these data; it achieved similar per-
formance to that presented here (not shown). This confirms
our approach’s implicit assumption that the NNs can learn
to handle the minor differences in corrections applied to the
radiances between versions 2.5 and 2.6, circumventing the

need to reprocess the aerosol retrievals after future updates
to the radiance data product.

3.2 Limitations

Our NRT approach is subject to two types of limitations:
those inherent in the operational retrieval code that produced
the training data, and those specific to the NN approach
used here. The operational retrieval code generally struggles
to provide consistent results at high altitudes where aerosol
abundances are small, and in the southern hemisphere due to
the aforementioned weak aerosol backscattering signal and
increased scattering at shorter wavelengths. It also struggles
when aerosol reaches the normalization altitude of 38.5 km,
which happened with Hunga (Taha et al., 2022). Readers in-
terested in more details on these limitations are directed to
Taha et al. (2021, particularly Fig. 7) and Taha et al. (2022).
For high altitudes and in the southern hemisphere, the NRT
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Figure 4. (a) OMPS LP V2.1 retrieved aerosol extinction at 997 nm for the center slit of orbit 52958 on 16 January 2022, measured shortly
after the Hunga eruption. (b) The same but for NRT. The plume is visible around 20° S latitude, reaching roughly 30 km in altitude.

Figure 5. (a) OMPS LP V2.1 retrieved aerosol extinction at 997 nm for the center slit of orbit 59342 on 11 April 2023, measured shortly
after Shiveluch’s eruption. (b) The same but for NRT. The plume appears above the tropopause at approximately 57° N latitude.

algorithm does not always yield results consistent with V2.1;
it tends to predict small aerosol values. In the case where
aerosol reaches the normalization altitude, the NRT algo-

rithm produces artifacts in the retrieved extinction not seen
in V2.1, but this situation can be identified by the reported
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Figure 6. (a) V2.1 average retrieved aerosol extinction coefficient between 19.5 and 21.5 km at 997 nm for 1 May 2024, which shows aerosol
from Ruang’s recent eruptions stretching from Borneo to the eastern Pacific Ocean. (b) The same but using the NRT algorithm. Individual
points are colored by the mean extinction coefficient value at each measurement location.

enhanced aerosol altitude occurring at or above the normal-
ization altitude.

The most significant NN-specific limitations are related to
the input data. Our methodology relies on a diverse data set
that samples low, moderate, and extreme aerosol loading in
order to train NNs to correctly interpret the radiances under
these conditions. These trained NNs are only applicable to
OMPS LP; they cannot be reliably applied to data from any
other instrument. As future improvements are made to the
gridded radiances data product, these NNs may need to be
retrained. Similarly, future improvements to the aerosol re-
trieval code may necessitate reprocessing the selected dates
used to train the NNs, then retraining the NNs to predict
those data. However, these situations may require only re-
training the weights associated with the relevant layer (trans-
fer learning), reducing the computational cost of training up-
dated models. Future work should explore this possibility in
detail.

More broadly, these NNs are limited by the extrema en-
countered in the training data. This limits the applicability
of this methodology to recently launched instruments due
to a lack of diverse data records that sample multiple ma-
jor eruptions and wildfire events in both hemispheres. While
the Hunga case presented above demonstrates that the NNs
can be applicable to more extreme radiances and extinctions
than those encountered during training, this does not neces-
sarily hold true for all anomalous events, nor for the other
input parameters.

3.3 Application to NOAA-21 OMPS LP

Our methodology is challenged when applied to a new in-
strument due to the short data record that has likely not
measured sufficiently diverse conditions to train generalized
NNs. NOAA-21 was launched in November 2022; the OMPS

LP instrument onboard has been operational since Febru-
ary 2023 and thus represents an ideal test case to determine
whether the SNPP NRT model can be reliably applied to
NOAA-21 data, thereby circumventing the data record lim-
itation and enabling our method to be applied to new in-
struments in situations where our NRT approach has already
been applied to an earlier version of the same instrument.

When applying the NN models trained using SNPP re-
trievals to select NOAA-21 orbits, we find that they agree
qualitatively and quantitatively with the operational results,
with biases that are broadly in agreement with Fig. 1. For
more detailed comparisons, we present two cases. Figure 7
shows the operational and NN-based retrieval at 869 nm for
the NOAA-21 orbit that initially measured the plume from
the Shiveluch eruption. The NN retrieves aerosol extinction
profiles that are consistent with the operational retrieval al-
gorithm, both for background stratospheric aerosol as well
as Shiveluch’s plume. The Ruang eruptions have been the
most significant events measured by NOAA-21’s OMPS LP
to date and thus represent an ideal test case to ensure our
SNPP-trained NNs are applicable to major events measured
by NOAA-21. Figure 8 shows the retrieved aerosol extinction
coefficient at 997 nm for the operational and NN algorithms
for the NOAA-21 orbit that measured the plume on 30 April
from Ruang’s eruption on the prior day. The inferred plume
height (∼ 23 km) and retrieved extinction values agree well
throughout the orbit.

Despite the calibration of the NOAA-21 data not being fi-
nalized yet, these results suggest that the methodology pre-
sented here can produce NNs that are applicable to other
OMPS LP instruments beyond SNPP without the need to re-
train the models. For cases where there are future iterations
of the same instrument, our methodology can circumvent the
limiting requirement of a long, diverse record to train gener-
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Figure 7. (a) NOAA-21 OMPS LP retrieved aerosol extinction at 869 nm for the right slit of orbit 2153 on 11 April 2023, measured shortly
after Shiveluch’s eruption. (b) The same but using the SNPP NRT algorithm. The plume appears above the tropopause at approximately
57° N latitude.

Figure 8. (a) NOAA-21 OMPS LP retrieved aerosol extinction at 997 nm for the left slit of orbit 7618 on 30 April 2024, which measured
the plume from Ruang’s second major eruption that month over Borneo. (b) The same but using the SNPP NRT algorithm. Both algorithms
found that the plume reached a height of approximately 23 km, with similar magnitudes for the extinction throughout the plume as well as
background aerosol throughout the orbit.
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alized NNs by utilizing measurements from the older instru-
ment.

4 Conclusions

We presented a near-real-time (NRT) aerosol retrieval prod-
uct for OMPS LP based on neural networks (NNs). We found
good agreement with OMPS LP’s operational version 2.1
(V2.1) aerosol retrieval product, achieving zonal-mean er-
rors that are generally within 20 % at altitudes with sensitiv-
ity and non-negligible aerosol extinction. The NRT product
exhibits the smallest biases in zonal means at 997 nm, with
869 nm providing similar accuracy but with slightly higher
biases at low altitudes in the southern hemisphere. Given that
Taha et al. (2021) recommend focusing on 869 and 997 nm
for scientific studies using the operational product, we simi-
larly recommend that users focus on these wavelengths when
using the NRT product, particularly 997 nm given its more
consistent performance.

The NRT approach is ∼ 60× faster than V2.1, requir-
ing roughly 2 min to retrieve the extinction for an entire or-
bit. More quickly providing information on volcanic plume
height after an eruption can be especially useful for groups
like the Volcanic Ash Advisory Centers to inform aviation
flight paths, as well as providing advance notice to coordi-
nate ground-based or in situ follow-up measurements just af-
ter large eruption or pyroCb events. With around 97 % of the
runtime spent loading the NNs into memory, this speedup
factor can grow by more than an order of magnitude when
processing a range of orbits. We found it necessary to train
separate NNs for the southern hemisphere / short wave-
lengths and northern hemisphere / long wavelengths in order
to achieve more consistent performance at all wavelengths
and latitudes. If a single NN could reliably perform in both
hemispheres at all wavelengths, the factor speedup would
double; future work should explore approaches to achieve
this. Additionally, future work should consider how includ-
ing ozone profiles among the NNs’ inputs impacts the result-
ing accuracy, particularly at the shorter wavelengths consid-
ered in this study, which are sensitive to ozone.

Our approach has two types of limitations: those related
to the aerosol retrieval code, and those related to the NN ap-
proach. The limitations associated with the aerosol retrieval
code inherently cannot be circumvented by our methodol-
ogy; the NNs similarly struggle in situations where the re-
trieval code struggles to provide a consistent result or where
it cannot retrieve the extinction (e.g., when the aerosol plume
reaches the normalization altitude; Taha et al., 2022). The
NN-specific limitations are associated with the training data.
In general, these NNs cannot be reliably applied to other in-
struments or different versions of radiances/extinctions with-
out retraining; future work should explore applications of
transfer learning to reduce the burden of updating the mod-
els as new versions of radiances/extinctions are developed.

While applying NNs to data beyond those encountered dur-
ing training can produce poor results, we found sufficient ac-
curacy when applied to the Hunga eruption, which was more
extreme than any events included in the training data set. The
NRT approach also accurately identified the plumes for the
recent Shiveluch and Ruang eruptions, which occurred out-
side the temporal range covered by the training data. Our re-
sults indicate that the NNs generalized for the problem and
can be applied to future events measured by OMPS LP.

We also found that the NNs trained on SNPP data are con-
sistent with the operational retrieval algorithm when applied
to data from NOAA-21’s OMPS LP without retraining. With
multiple successors to SNPP and NOAA-21 planned over the
next decade, future work should explore this in more detail,
as it offers a way to circumvent the methodology’s require-
ment of an extensive data record to apply our NRT approach.

Code and data availability. The MARGE software is available on
GitHub at https://github.com/exosports/MARGE (Himes, 2022).
All MARGE-related data and results for this work are pub-
licly available at https://doi.org/10.5281/zenodo.11477425 (Himes
et al., 2024a). The SNPP OMPS LP version 2.6 L1G data prod-
uct is available at https://doi.org/10.5067/YVE3FSNJ59RQ (Jaross,
2023). The SNPP OMPS LP version 2.1 L2-AER daily data prod-
uct is available at https://doi.org/10.5067/CX2B9NW6FI27 (Taha,
2020). The NRT aerosol data product’s seven most recent days
are available at https://cmr.earthdata.nasa.gov/search/concepts/
C3186057053-OMINRT.html (Himes, 2024). Imagery for the NRT
product at 997 nm are available at NASA Worldview (https://
worldview.earthdata.nasa.gov/, NASA Worldview, 2025) and the
NASA Ozone and Air Quality site (https://ozoneaq.gsfc.nasa.gov/
data/aerosols/#tab=image&prods=158&view=1, NASA Ozone &
Atmospheric Composition, 2025).

Video supplement. An animation of the V2.1 and NRT average re-
trieved extinction coefficient between 19.5 and 21.5 km at 997 nm
for the 2024 Ruang eruptions has been made available under a
Creative Commons Attribution Non-Commercial No Derivatives
2.0 Generic license at https://doi.org/10.5281/zenodo.14623952
(Himes et al., 2024b).
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