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Abstract. High-resolution spectrometers are composed of
different optical elements and detectors that must be modeled
as accurately as possible. Specifically, accurate estimates of
instrument spectral response functions (ISRFs) are critical in
order not to compromise the retrieval of trace gas concen-
trations from spectral measurements. Currently, parametric
models are used to estimate these response functions. How-
ever, these models cannot always take into account the di-
versity of ISRF shapes that are encountered in practical ap-
plications. This paper studies a new ISRF estimation method
based on a sparse representation of the ISRF in a dictionary.
The proposed method is shown to be very competitive when
compared to parametric models, yielding up to 1 order of
magnitude smaller normalized ISRF estimation errors. The
method is applied to different high-resolution spectrometers,
demonstrating its reproducibility for multiple remote sensing
missions.

1 Introduction

Space remote sensing makes it possible to remotely measure
the composition of the atmosphere or the troposphere and to
retrieve trace gas concentrations. It can also be used to moni-
tor molecule fluxes at the Earth’s surface, as is the case for the
MicroCarb mission that is designed to monitor CO2 fluxes
(Cansot et al., 2022) in order to provide a better understand-
ing of the carbon cycle, which is important in the context of
climate change. This can be done by analyzing the interaction

of the atmosphere with natural radiation, such as sunlight,
or artificial radiation, generated for example by a laser. In-
deed, the presence of some molecules in the path of radiation
modifies its spectral content at the characteristic wavelengths
of the different elements. The information directly obtained
from satellites is the atmospheric spectrum. By considering
some specific wavelengths of interest, it is possible to deter-
mine the concentration of the desired trace gases in a column
of atmosphere by comparing these measured spectra with a
reference spectrum obtained using a radiative transfer model.

The instruments used for gas concentration estimation are
high-resolution spectrometers. Spectrometers consist mainly
of an optical part (for example composed of a slit, a tele-
scope and dispersive grating) and a detector. In this config-
uration, the telescope projects the image of the Earth onto
the spectrometer slit and then onto the detector. Each pixel
of the detector is associated with a spatial direction (called
ACT for ACross Track) and a specific wavelength. A bin-
ning and an averaging along the ACT axis are performed in
order to improve the signal to noise ratio (SNR). For each
of the two parts (optical part and detector), a response func-
tion is defined, which leads to a continuous optical function
and another function associated with each pixel of the detec-
tor. This results in a global response function associated with
each pixel along the spectral axis, known as the instrument
spectral response function (ISRF), associated with a specific
wavelength. The ISRFs can vary significantly depending on
the instrument considered, and their shapes depend on the
central wavelength, among other factors. The estimation of
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trace gas concentrations is an inversion process that is per-
formed on the ground from spectrometer measurements and
the instrument ISRFs. The accuracy of this estimation highly
depends on the knowledge of these ISRFs for all pixels. For
some missions, ISRFs are expected to be known with a nor-
malized error of less than 1%, which represents a significant
challenge given that the variations in ISRF shape across the
entire band frequently exceed this threshold.

Spectrometers are first calibrated on the ground where
their associated ISRFs are estimated experimentally. How-
ever, the ISRFs are subject to in-flight changes due to me-
chanical movements associated with the launch of the instru-
ments, thermal changes in orbit, or certain sensitivities linked
to the instrument itself (such as the MicroCarb’s sensitiv-
ity to the scene). As a consequence, these ISRFs need to be
re-estimated regularly in flight throughout the mission. The
principle of the estimation is to take a measurement of a spec-
trally known scene and to compare it with a spectral model of
the scene convolved with the ISRFs at different wavelengths.
Parametric models have been widely used in the literature
to estimate ISRFs. Gaussian and generalized Gaussian para-
metric models (referred to as “Gauss” and “super-Gauss”)
were proposed in Beirle et al. (2017). Parametric models are
attractive for their simplicity and small number of parame-
ters. However, they are not flexible enough to represent the
diversity of ISRF shapes adequately. The ISRF estimation
problem and the most important parametric models that have
been considered in the literature are detailed in Sect. 2.

The objective of this work is to overcome the limitations of
the existing parametric ISRF estimation methods caused by
their insufficient accuracy. To this end, we propose as a first
major contribution a new estimation strategy based on sparse
representations of the ISRFs in a dictionary of well-chosen
atoms. More precisely, the ISRFs are decomposed in a dic-
tionary that is constructed using several ISRFs that are avail-
able from ground characterization for each instrument. The
dictionary can also be updated iteratively online. For each
instrument, each ISRF is then approximated by a linear com-
bination of a small number of atoms of the dictionary associ-
ated with the instrument. The proposed approach is detailed
in Sect. 3. We investigate and compare two different methods
for obtaining the sparse representations of ISRFs.

As a second contribution, we conduct an extensive numer-
ical study of the proposed ISRF estimation approach and
compare it to parametric methods for datasets from several
different spectrometers used in space missions, whose char-
acteristics are detailed in Sect. 4. The main focus is on the
MicroCarb instrument (Cansot et al., 2022), which is dedi-
cated to studying atmospheric carbon dioxide and oxygen,
with the objective of determining their concentrations at the
Earth’s surface. Additional results showing the applicability
of the proposed methodology to other spectrometers are re-
ported for the Orbiting Carbon Observatory 2 (OCO-2) spec-
trometer (Lee et al., 2017) and complemented by results for

several other spectrometers that are reported in the Supple-
ment.

Numerical results are reported in Sect. 5 and lead to the
conclusion that the proposed method yields significantly im-
proved flexibility and accuracy for ISRF estimation when
compared to previous state-of-the-art parametric methods,
consistently through the different datasets and scenarios,
with a small number of parameters that can easily and ef-
ficiently be estimated in real time. Moreover, the method is
shown to be robust with respect to design choices, the noise
corrupting the observed measurements, the ISRF changes de-
pending on the scene, or the possible mismatches on the prior
knowledge on the ISRFs or reference spectra.

2 Existing models and estimation methods

2.1 ISRF estimation model

The ISRF, which is sometimes referred to as the instrument
line shape (ILS) (Sun et al., 2017b) or slit function (Sun et al.,
2017a), is a function that describes the response of an instru-
ment to a given wavelength. In this work, we only consider
the spectral information, and thus each “pixel” l is associ-
ated with a specific wavelength λl , yielding an ISRF at this
wavelength.1 The in-flight identification of ISRFs is obtained
from scenes that are assumed to be perfectly known radio-
metrically and spectrally (such as the Sun, the Moon, uni-
form scenes such as a desert, etc.), which are referred to as
reference spectra. The principle of ISRF estimation is to de-
termine the in-flight ISRFs for each wavelength λl that min-
imize some similarity measure between the measured spec-
trum s(λl) and the reference spectrum r(λ) convolved with
the ISRF denoted as Il(λl):

s(λl)= (r∗Il)(λl)=

∫
R

r(λl−u)Il(u)du, l = 1, . . .,Nλ, (1)

where ∗ denotes convolution, and Nλ is the number of cen-
tral wavelengths λl , each associated with one ISRF Il . For
practical purposes, this equation can be discretized, leading
to

s(λl)≈

N/2∑
n=−N/2

r(λl − n1)Il(n1), l = 1, . . .,Nλ, (2)

where 1 is the sampling period between two consecutive
points of the ISRF, which is assumed to be regularly sampled.

1In practice, the wavelength associated with the pixel is obtained
as the center (maximum, median or barycenter) of the measured
ISRF at the given pixel. However, there are some effects, such as
the smile effect (in ACT), or some gaps in our knowledge about
the wavelengths (in along track) that can result in spectral shifts,
which can degrade the estimation of ISRFs. These aspects are not
considered in the present work. Thus, it is assumed that each pixel
is associated with one wavelength which is known, and we address
the ISRF estimation problem by solving an inverse problem.
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In other words, a vector I l = [Il(−N2 1), . . ., Il(
N
2 1)]

T
∈

RN+1 needs to be estimated for each ISRF, corresponding
to the values that it takes on the wavelength grid at which the
ISRFs are sampled. 1= {−N2 1,. . .,

N
2 1} ∈ R

N+1. The ob-
jective of the ISRF estimation problem is to solve the inverse
problem (Eq. 2) assuming knowledge of both the reference
spectrum r(λ) and the measurements s(λl).

A major difficulty with the inverse problem (Eq. 2) is
that there is only one measurement per fixed wavelength λl ,
which makes it impossible to estimate the vector I l with-
out further assumptions. Two approaches can be used to
make this estimation problem identifiable.2 The first idea is
to consider knowledge of several reference spectra for ev-
ery wavelength. The problem is that this would require not
only a sufficient number of calibration scenes to be avail-
able, but also that they substantially differ for each wave-
length in order to provide complementary information on the
shapes of the ISRFs. The second method, which is consid-
ered in this paper, has the advantage that it makes use of
only one reference spectrum and is based on the assump-
tion that the ISRFs for adjacent wavelengths λl are similar;
i.e., they exhibit slight variations along the spectral axis be-
tween λl and λl+1. It is expected that the average of the nor-
malized absolute error between the ISRFs in a window of
Nobs+ 1 observations and the central ISRF at wavelength
λl is below a given criterion for the ISRF estimation error.
Note that the larger this variation, the more important the
discrepancies in ISRF shapes. The small-variation assump-
tion is not valid for the whole set of wavelengths, and the
size of the sliding window must be adjusted in order to solve
the ISRF estimation problem. This is a reasonable assump-
tion for the ISRFs of real-world spectrometers. To estimate
the ISRF at wavelength λl , we propose considering a vec-

tor sl =
[
s(λ

l−
Nobs

2
), . . ., s(λ

l+
Nobs

2
)
]T
∈ RNobs+1 of Nobs+1

observations, including those from the neighboring ISRFs as
well. Rewritten in matrix form, Eq. 2 simplifies to

sl = RlI l,

where Rl =
[
r
l−

Nobs
2
, . . .,r

l+
Nobs

2

]T
∈ R(Nobs+1)×(N+1) con-

tains the values r l =
[
r(λl −

N
2 1), . . ., r(λl +

N
2 1)

]
∈ RN+1

of the reference spectrum covered by the different ISRFs in
the neighborhood (see algorithm in Appendix A1). Given a
model for the ISRF, estimating I l can then be conducted
for each wavelength λl by minimizing the residual error
||sl −RlI l ||22.

2.2 Parametric models

It is difficult to analytically construct accurate forward mod-
els with a small number of parameters for ISRFs because

2Additional measurements could in principle be obtained ex-
perimentally using, e.g., a spectrally tunable onboard calibration
source, albeit at an extra cost.

they would need to incorporate a significant number of “con-
tributors” associated with the instrument optics (slit, mirror,
lens, separator, dispersing element), the detector or the acqui-
sition mode. The state of the art therefore considers simple
parametric models. A classical way to model and estimate
the ISRF at wavelength λl is to use a parametric Gaussian
model defined by

I l,βG(x)= AG exp

[
−
(λl − x−µG)

2

2σ 2
G

]
,

l = 1, . . .,Nλ, x ∈1, (3)

where βG = [AG,µG,σ
2
G]
T is the unknown vector of param-

eters to be estimated.
An alternative ISRF model was studied (Beirle et al.,

2017) using a generalized Gaussian distribution referred to
as super-Gaussian in order to better fit the ISRF shapes:

I l,βSG(x)= ASG exp

[
−

∣∣∣∣λl − x−µSG

wSG

∣∣∣∣kSG
]
,

l = 1, . . .,Nλ, x ∈1, (4)

where βSG = [ASG,µSG,wSG,kSG]
T is the unknown param-

eter vector to be estimated. This model reduces to the Gaus-
sian model when wSG = 2σ 2

G and kSG = 2. The parameters
wSG and kSG are the scale and shape parameters of the distri-
bution, allowing more or less flat shapes to be modeled.

When using the parametric models (Eq. 3) and (Eq. 4), the
ISRF estimation problem consists of estimating the unknown
model parameters for each sliding window. This estimation
can be performed using the least squares method, which min-
imizes the following cost function:

Cl(β)=

N+1∑
n=1
||sl −RlI l,β ||22, l = 1, . . .,Nλ, (5)

where β ∈ {βG,βSG} is the unknown parameter vector and
I l,β = [I l,β(δ1), . . .,I l,β(δN+1)]

T .
Simple parametric models, such as Gaussian or general-

ized Gaussian models, are attractive for their simplicity and
small number of parameters, yet can struggle to take into
account the variety of different ISRF shapes that can be
observed in practice. An illustration is provided in Fig. 1,
which shows examples of ISRFs for the MicroCarb mission.
Clearly, these ISRFs cannot be accurately modeled by bell-
shaped Gaussian distributions or by generalized Gaussians
(because of the dip at the center, for example). This moti-
vates the study of a new estimation method for ISRFs.

3 Sparse approximations of ISRFs

This paper investigates the use of sparse representations for
ISRFs in a dictionary of well-chosen atoms. Models based
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Figure 1. Illustration of a superposition of 1024 ISRFs with cen-
tered wavelengths λl = 758.3, . . .,768.3 nm around their central
wavelengths. The ISRFs were simulated for band B1 of the Mi-
croCarb instrument using uniform scenes.

on sparse approximations and on dictionary learning have
been widely and successfully used for different signal and
image processing applications (Zhang et al., 2015). These
applications include image denoising, image classification,
image reconstruction, compressed sensing or dimensionality
reduction and involve large varieties of signals and images
(Figueiredo et al., 2007; Tošić and Frossard, 2011). However,
sparse representations have never been investigated for ISRF
estimation, which is precisely the objective of this work.

3.1 Construction of the dictionary

Sparse representations express a given signal as a linear com-
bination of a small number of signals that belong to a collec-
tion of reference patterns, or atoms, which is called a dictio-
nary. This paper proposes decomposing the ISRF in a dictio-
nary of atoms 8 ∈ R(N+1)×ND :

I l ≈ I
K
l =8αl =

K∑
k=1

8γkαl,k, l = 1, . . .,Nλ, (6)

where 8γk is the γkth selected atom, i.e., the γkth column
of the dictionary 8, and αl,k is the corresponding non-zero
coefficient of the sparse vector αl = [αl,1, . . .,αl,K ]T ∈ RND .
The dictionary is built in such a way that linear combinations
of a small number of its atoms (i.e., its columns) provide an
efficient representation of the ISRF. Different methods allow-
ing the dictionary to be built have been proposed in the lit-
erature. These methods are based on probabilistic learning,
clustering, vector quantization or Bayesian inference (Tošić
and Frossard, 2011). Dictionary learning usually involves a
two-stage optimization structure, consisting first of a sparse-
coding step to find the sparse vector αl , which minimizes the

objective function ||I l−8αl ||22 for a fixed dictionary8, and
then a dictionary update step, where the dictionary is esti-
mated given a fixed sparse vector αl . Depending on the ap-
plication, the dictionary can be updated using a closed-form
solution, gradient descent or ground truth data. In this work
we investigate two different ways of building the dictionary
8. The first method constructs 8 by using the ND singular
vectors associated with the largest singular values of the sin-
gular value decomposition (SVD) of a matrix composed of
representative ISRF examples, as described in the algorithm
of Appendix A2. The second method uses the K-SVD al-
gorithm of Aharon et al. (2006), which belongs to the state
of the art and is recalled in the algorithm of Appendix A5.
The K-SVD algorithm is a generalization of theK-means al-
gorithm in which the dictionary is updated by changing its
columns separately and sequentially and applying K SVDs
on an appropriate error matrix. Figure 2 displays the first
atoms of dictionaries constructed using these two methods
for band B1 of MicroCarb. These dictionaries are found to
be similar, especially the first two atoms that correspond to
the most energetic singular values. The first two atoms can be
interpreted as the approximate average of all ISRFs used to
build the dictionary (first atom) and a correction for adjusting
the different widths of the ISRFs for different wavelengths
(second atom), as seen in Fig. 1. The higher-order atoms ob-
tained with SVD and K-SVD are slightly different but have
similar shapes overall.

3.2 Inverse problem

Assuming that the ISRF can be decomposed in the dictionary
8 as in Eq. (6), the measured spectrum can be written as
follows:

sl ≈ RlI l ≈ Rl8αl =9 lαl,
l = 1, . . .,Nλ.

Thus, the ISRF estimation problem reduces to finding the
sparse vector αl that minimizes the residual ||sl −9 lαl ||22.
This sparse-coding problem has been mathematically formu-
lated in different ways (Zhang et al., 2015). One can use the
l0 pseudo-norm regularization ||·||0 with a penalty parameter
µ, leading to the following problem:

argmin
αl
L(αl,µ)= argmin

αl
||sl −9 lαl ||

2
2+µ||αl ||0,

l = 1, . . .,Nλ. (7)

This problem is non-convex and NP hard, and many approx-
imations and heuristics have been proposed in the literature
to find an approximate solution. A standard method consists
of using greedy algorithms such as the orthogonal match-
ing pursuit (OMP). OMP is a modification of the match-
ing pursuit (MP) algorithm, which improves convergence by
adding an orthogonalization step (Mallat and Zhang, 1993;
Pati et al., 1993). The atoms of the dictionary that minimize
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Figure 2. Representation of the first four atoms of the dictionary of ISRFs, 8, constructed using an SVD on the matrix of representative
ISRFs (a) or using the K-SVD algorithm using the same matrix of representative ISRFs (b) for the MicroCarb spectrometer (band B1).

the data fidelity term ||sl−9 lαl ||22 are iteratively determined
by minimizing the remaining residual error. The OMP algo-
rithm is summarized in the algorithm of Appendix A3. An-
other method replaces the pseudo-norm l0 in Eq. (7) by the l1
norm, which leads to a convex problem known as the LASSO
problem (Tan et al., 2015):

argmin
αl
L(αl,µ)= argmin

αl
||sl −9 lαl ||

2
2+ γ ||αl ||1,

l = 1, . . .,Nλ, (8)

and the related algorithms studied in, e.g., Figueiredo et al.
(2007) and Kim et al. (2007).

The OMP and LASSO algorithms provide a highly flexible
decomposition of the ISRF, as the choice of the dictionary is
not constrained to a specific form. Indeed, the basis functions
can be learned, for example by using the K-SVD algorithm
in conjunction with various matching pursuit algorithms. An-
other advantage of these methods is that they do not necessi-
tate any prior assumption on the shape of the ISRFs (such as
Gaussian ISRFs) and estimate them in a non-parametric way.

In the following, this paper compares the use of fixed dic-
tionaries obtained by a single SVD and dictionaries estimated
by K-SVD (alternation between SVD to update the dictio-
nary and OMP to update the sparse code). The proposed
approach using OMP and LASSO (or other sparse formula-
tions) and either fixed or re-estimated dictionaries is referred
to as SPIRIT, meaning SParse representation of Instrument
spectral Response Functions using a dIcTionary.

4 Instruments, datasets and preprocessing

The spectrometers used in this study are passive push-broom
spectrometers, mainly hyperspectral dispersive spectrome-
ters, such as the MicroCarb high-resolution spectrometer and
the OCO-2 instrument. 3

4.1 Synthetic data generation

Reference spectra used in this study were generated us-
ing Automatized Atmospheric Absorption Atlas OPerational
(4A/OP) software (NOVELTIS et al., 2012). This soft-
ware is based on a fast and accurate line-by-line trans-
fer model that can be integrated in operational process-
ing chains including inverse problem processing (Armante
et al., 2013). It was selected as the official radiative
model and reference code by the Centre National d’Etudes
Spatiales (CNES) for the MicroCarb mission. The pro-
files originate from the Thermodynamic Initial Guess Re-
trieval (TIGR) database, which is hosted by Aeris data.
Data are available at https://www.aeris-data.fr/en/projects/
thermodynamical-initial-guess-retrieval-tigr/ (last access:

3Alternative designs, such as Fourier transform infrared spec-
troscopy (FTIR), are also employed in practice, and the associated
ISRFs can be obtained through the inverse Fourier transform. How-
ever, in certain applications, applying the Fourier transform can be-
come more challenging (i.e., when undersampling is necessary or
when the optical path difference varies depending on the position).
If the problem can be modeled as a linear inverse problem, sparse-
representation-based methods can be used with these spectrometers
to estimate ISRFs. The proposed method is not specific to any in-
strument and can be applied to any instrument for which the prob-
lem can be formulated as a linear inverse problem.
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31 March 2025). An example of a profile was selected from
this database for the generation of a reference spectrum. The
measured spectra were then obtained by convolving the ref-
erence spectrum with the ISRFs (normalized to area 1 for
each instrument; see details in the next paragraphs) and em-
bedded in additive Gaussian noise to generate representative
measurements. The advantage of this data generation method
is to provide ground truth ISRFs, which can be used to assess
the performance of the different methods in a controlled sce-
nario.

4.2 MicroCarb mission

MicroCarb is a mission developed by the CNES, whose
aim is to ensure continuity with other carbon measuring
missions such as OCO-2 and GOSAT, in order to monitor
CO2 fluxes at the Earth surface and determine CO2 atmo-
spheric concentrations. The MicroCarb mission uses a com-
pact and low-cost space instrument that is smaller than cur-
rent spectrometers. The instrument is capable of acquiring
four spectral bands with a single detector. The first band,
B1 (758.3–768.3 nm), is an O2 band with a spectral reso-
lution of about 0.01 nm. Bands B2 (1596.7–1618.9 nm) and
B3 (2023–2051 nm), with respective spectral resolutions of
about 0.02 and 0.03 nm, are sensitive to the concentration
of CO2 and have CO2 absorption lines. The last band, B4
(1264–1282.2 nm), is a second O2 band with a spectral res-
olution of about 0.02 nm. The wavelengths associated with
this last band are closer to the CO2 wavelength and can be
used for validation of space-based greenhouse gas observa-
tion (Bertaux et al., 2020). The whole dataset has been deliv-
ered by the French Space Agency (CNES, Toulouse) contain-
ing 1024 ISRFs associated with 1024 spectral measurements
for the different bands. The data used for this experiment are
the first band of MicroCarb with Nλ = 1024 ISRFs and a
sample size of N = 895. The design of the MicroCarb in-
strument, obtained from Castelnau et al. (2019), is displayed
in Fig. 3. More details about MicroCarb can be found on the
CNES website (see https://microcarb.cnes.fr/en, last access:
11 December 2024). A particularity of this mission is that
the shapes of the ISRFs are strongly dependent on the scene
observed by the instrument, which is discussed in Sect. 5.3.3.

5 Results and discussion

5.1 Numerical experiments and performance
evaluation

The performance of the different ISRF estimation methods is
evaluated in terms of ISRF estimation quality and the resid-
ual between the spectral measurements and their estimates.
The quality of ISRF estimation can be quantified by the nor-

malized absolute error between the ISRF and its estimate:

El =

N/2∑
n=−N/2

|Il(n1)− Îl(n1)|.

Note that for the instruments studied here, the ISRFs are as-
sumed to be normalized to the unit area. The residual be-
tween the spectral measurements and their estimates is de-
fined for each λl by

ρl = ||sl − r l Î l ||
2
2

and summarized for an entire band in terms of the average
residual:

ρ =
1
Nλ

Nλ∑
l=1

ρl .

In the MicroCarb mission, the ISRFs are considered to be
well estimated when their normalized errors satisfyEl < 1%
for each wavelength. The performance of 1 % on the ISRF
knowledge is an objective of the MicroCarb mission in or-
der to provide an accurate determination of CO2 concentra-
tions. The 1 % requirement accounts for uncertainty, acqui-
sition noise of ISRFs and interpolation and is used as a tar-
get in this work. The proposed SPIRIT method is compared
to the parametric methods based on Gaussian and super-
Gaussian models. The parameters of these models are es-
timated using the non-linear least squares algorithm based
on the Nelder–Mead optimization algorithm (Lagarias et al.,
1998) (MATLAB function fminsearch). This iterative algo-
rithm requires an initialisation and a stopping criterion. For
the initialization of the Gaussian model, the mean µG0 was
set to the sample mean of the ISRFs, the full width at half
maximum (FWHM) was used for the standard deviation σG0

and the amplitude was initialized as AG0 = (2πσG0)
−1/2.

For the super-Gaussian model, the initialization was de-
fined as µSG0 = µG0 , kSG0 = 2, wSG0 =

√
2σG0 and ASG0 =

kSG0
2wSG0

0(1/kSG0), where 0 is the gamma function. The al-
gorithm was stopped after a maximum number of iterations
equal to 20000. The dictionary used by SPIRIT was con-
structed using an SVD of a collection of approximately 10 %
of the total number of ISRFs within the band of interest or es-
timated using the K-SVD algorithm initialized with this col-
lection. In our experiments, we used ND = 25. Two different
sparse-coding methods based on LASSO (Tibshirani, 1996)
and OMP are investigated after dictionary construction. The
first method uses a MATLAB implementation of LASSO
with a parameter µ > 0 adjusted to obtain a desired number
of atoms. The non-zero coefficients obtained with LASSO
were re-estimated in order to reduce the shrinking bias inher-
ent to this method (Zhang and Huang, 2008). The implemen-
tations of the OMP and LASSO algorithms are summarized
in Appendixes A3 and A4.

Atmos. Meas. Tech., 18, 2573–2590, 2025 https://doi.org/10.5194/amt-18-2573-2025
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Figure 3. Principle design of the MicroCarb instrument reproduced from Castelnau et al. (2019).

5.2 ISRF estimation performance

5.2.1 ISRF estimation for the MicroCarb mission

An example of an ISRF simulated for the MicroCarb mission
and the estimates obtained with the different methods is dis-
played in Fig. 4. The results clearly illustrate the advantage
of using SPIRIT for ISRF estimation, which leads to nor-
malized estimation errors of less than 1%, significantly be-
low those obtained using the parametric estimation methods.
A comparison between the different sparse approximations
(OMP, LASSO) and dictionaries (SVD, K-SVD) that can be
used by SPIRIT shows that OMP works better than LASSO
for this example. Moreover, using the K-SVD algorithm does
not significantly improve the results with respect to SVD, al-
though it has significantly higher computational complexity.

The spectral measurements displayed in Fig. 5 were sim-
ulated by the CNES for the B1 wavelength range (758.4–
768.9 nm). The results show that, for the MicroCarb spec-
trometer, the use of the super-Gauss parameterization re-
duces the residual error and ISRF approximation errors com-
pared with the Gaussian model. SPIRIT yields significantly
better results, with ISRF approximation errors below 1% and
of the order of 0.1 % for certain wavelengths. LASSO leads
to overall less accurate approximations of the ISRFs than
OMP, at a significantly higher computational cost, and the
use of OMP is overall and consistently beneficial.

Sum of two generalized Gaussians

ISRFs can also be modeled using other parametric models,
such as the sum of two generalized Gaussians with different
shifted center wavelengths, although this has not yet been
reported in the literature. As displayed in Fig. 6, this novel
parametric approach yields enhanced outcomes as compared
to the use of Gaussian and super-Gaussian models. How-

Figure 4. Example of a simulated ISRF for the MicroCarb mission
and its estimates using parametric methods and SPIRIT.

ever, the performance is still not competitive with respect to
sparse-representation-based methods and necessitates more
parameters to estimate. A more detailed study of such more
complex parametric models is left for future work.

5.2.2 ISRF estimation for the Orbiting Carbon
Observatory 2 (OCO-2) spectrometer

This section studies the applicability of the proposed method
to the Orbiting Carbon Observatory 2 (OCO-2) spectrometer.
The OCO-2 spectrometer is used in a NASA Earth observing
satellite mission that was launched in July 2014. This mis-
sion is dedicated to the study of atmospheric carbon dioxide
and oxygen and aims at characterizing the global CO2 sea-
sonal cycles and to quantify the sources and sinks of carbon.
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Figure 5. Illustrations of (a) the measured spectrum reconstruction, (b) the difference between the measured spectrum and the reconstructed
spectra, (c) the residuals ρl for each wavelengths, (d) the ISRF approximation error versus the wavelength, and (e) the mean ISRF approxi-
mation error versus the number of selected atoms for different methods (Gauss, super-Gauss, OMP, LASSO, SVD and K-SVD) and for band
B1 of the MicroCarb instrument.

Figure 6. Results obtained using the different methods with a dictionary constructed using 103 ISRFs from band B1 for the sparse-
representation-based methods.
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OCO-2 is composed of three high-spectral-resolution imag-
ing spectrometers for narrow spectral ranges. The character-
ization of ISRFs for this spectrometer is highly challenging
and crucial due to this high spectral resolution. The ISRFs
are measured for each pixel using a tunable diode laser dur-
ing pre-flight calibration (Lee et al., 2017), and the results
are stored in a look-up table. The data used in this article
can be downloaded on the NASA data website EarthDATA
(OCO-2 Science Team/Gunson and Eldering, 2019) (data
available at https://disc.gsfc.nasa.gov/datacollection/OCO2_
L1B_Calibration_11r.html, last access: 15 November 2023).
The product considered in this study is the OCO-2 Level
1B version 11r for science acquired in March 2023, and the
fourth footprint is used. Specification on the data product can
be found in Crisp et al. (2021). Some of the ISRFs are de-
clared as invalid due to radiometric, spatial, spectral or po-
larization problems (and are thus not considered for ISRF
estimation). The ISRFs associated with bad pixels have not
been considered in our experiments, resulting in a number of
ISRFs lower than the number of pixels. To identify the IS-
RFs at the missing nominal wavelengths λl , a linear interpo-
lation between two specified nominal wavelengths λa and λb
with known ISRFs was employed. The resulting interpolated
ISRF is defined by

Il =
λl − λa

λb− λa
Ib+

λb− λl

λb− λa
Ia . (9)

Note that the number Nλ of wavelengths after interpola-
tion may differ from the number of pixels of the instrument,
which occurs if the ISRFs associated with the first and/or
last pixels are missing. The ISRFs used for the experiments
come from the O2 A band of OCO-2 with Nλ = 859 ISRFs
and a sample size N = 895. Figure 7 displays an example
of an ISRF from the OCO-2 dataset. A visual comparison
with Fig. 5 shows that the ISRF shapes can differ signifi-
cantly depending on the considered wavelength and the in-
strument. This observation suggests that the dictionary must
be adapted to the spectrometer. Another interesting observa-
tion is that although the super-Gaussian distribution should
theoretically always provide a better fit than the Gaussian
distribution, it is not systematically the case in practice be-
cause of convergence issues for the iterative methods used
to solve the non-linear least squares problem for parameter
estimation. Specifically, the model parameters are estimated
using a simplex-based optimization method (MATLAB func-
tion fminsearch) that aims at minimizing the residuals be-
tween the measured and estimated spectra, which does not
always converge to a better solution for the super-Gaussian
model than for the Gaussian model.

Figure 8 displays performance results for the OCO-2 mea-
surements obtained using the data for the O2 band (757–
772 nm). The measured spectrum is reconstructed with the
proposed sparse-representation methods for K = 5 atoms
chosen using a dictionary constructed using SVD or K-SVD.
The results indicate that the super-Gaussian model delivers

Figure 7. Example of an ISRF retrieved for the OCO-2 mission and
its estimates using parametric methods and SPIRIT.

slightly better results than the Gaussian model in terms of
residual error and mean ISRF approximation error. However,
for the smaller wavelengths of the band, the ISRF approx-
imation errors are slightly larger with the super-Gaussian
model, as already observed in Fig. 7 for a single ISRF. Both
parametric models yield close to 10% ISRF approximation
errors. The proposed sparse-representation approach again
yields far better ISRF approximations and measurement fits,
with the best results obtained using OMP and SVD.

5.2.3 Conclusions

Overall, the conclusions from these experiments are as fol-
lows. First, the super-Gaussian parameterization often yields
better performance than the Gaussian one, corroborating the
results reported in Beirle et al. (2017). However, the normal-
ized ISRF approximation errors obtained with these para-
metric methods are consistently larger than 1%, for both
instruments and for all wavelengths. In contrast, the pro-
posed SPIRIT approach based on sparse approximations of
ISRFs in a suitable dictionary yields significantly better re-
sults. This result is due to the fact that the ISRF shapes de-
pend strongly on the spectrometer and can vary across wave-
lengths, which cannot be accommodated easily with a simple
parametric model. On the contrary, decompositions in ap-
propriate dictionaries that depend on the spectrometer and
the chosen wavelength offer sufficient flexibility for all use
cases considered in this paper. Regarding the estimation al-
gorithms, SVD overall provides an estimation performance
close to K-SVD, and OMP leads to better estimation than
LASSO. There is no theoretical reason for OMP to provide
better performance than LASSO. However, it is important to
note that the OMP and LASSO algorithms address two dis-
tinct problems: the OMP algorithm provides an approximate
solution to the problem with an `0 penalty, and the LASSO
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Figure 8. Illustrations of (a) the measured spectrum reconstruction, (b) the difference between the measured spectrum and the reconstructed
spectra, (c) the residuals ρl for each wavelength, (d) the ISRF approximation error versus the wavelength, and (e) the mean ISRF approxi-
mation error versus the number of selected atoms using different methods (Gauss, super-Gauss, OMP and LASSO with SVD or K-SVD) for
the O2 A band of the OCO-2 instrument.

algorithm solves the relaxed problem using an `1 regulariza-
tion. Certain limitations of the LASSO algorithm have been
highlighted in numerous publications, including Tibshirani
(1996), and may also be at the origin of our observation. The
results overall suggest the use of SVD for building the dic-
tionary and OMP for ISRF estimation.

The proposed methods can also be applied to other instru-
ments, such as Avantes, GOME-2, OMI and TROPOMI used
in Beirle et al. (2017). Results obtained with these instru-
ments are available in the Supplement and lead to similar
conclusions.

5.3 Robustness analysis and ablation study

5.3.1 Robustness to additive noise

Monte Carlo simulations were conducted to study the robust-
ness of the different ISRF estimation methods to the presence
of measurement noise. Independent white Gaussian noise
was added to the spectral measurements with several sig-
nal to noise ratio (SNR) levels to take into account thermal
noise and spatial binning: spatial binning involves the arbi-

trary division of the imaged area on Earth into distinct fields
of view (FOVs) (e.g., three FOVs for MicroCarb). The mea-
sured spectrum for each FOV is obtained as an average of the
measured spectra within that FOV. 4 Table 1 reports the ob-
tained residual approximation errors and the normalized av-
erage ISRF approximation errors for the two instruments Mi-
croCarb and OCO-2. Approximation errors less than < 1%
are highlighted in italic. These results show that the proposed
sparse representations meet this target for SNRs larger than
20 dB. Moreover, OMP is found to be more robust to noise
than LASSO and yields the best results overall. The para-
metric models again lead to large errors. It is interesting to
note that these errors do not vary significantly with the noise
level. This indicates that errors due to model misfit are larger
than those induced by the noise degradations. To conclude,
OMP combined with SVD provides the best results overall
for ISRF estimation, also in the presence of additive noise.

4In the case of the MicroCarb mission, the binning represents
a compromise between the objective of achieving a good signal to
noise ratio (SNR) and maintaining a suitable ground grid, which has
a resolution of 13.5 km in ACT and 9 km along the track.
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Table 1. Mean residual and approximation errors for different SNRs and different methods (Gauss (G), super-Gauss (SG) and OMP and
LASSO, SVD and K-SVD). The best results are highlighted in bold, while ISRF approximation errors less than 1 % are shown in italics.

Mean ISRF approximation error (%) Residual error

Instrument SNR G SG OMP OMP LASSO LASSO G SG OMP OMP LASSO LASSO
SVD K-SVD SVD K-SVD SVD K-SVD SVD K-SVD

20 dB 16.28 3.39 4.58 4.37 14.38 14.23 185.5 116.4 112.3 112.4 112.7 112.9
MicroCarb 40 dB 16.27 2.04 0.54 0.56 2.05 2.37 70.2 1.56 1.32 1.32 1.53 1.70
band B1 55 dB 16.27 2.03 0.29 0.33 1.33 1.66 69.21 0.43 0.23 0.24 0.38 0.61

80 dB 16.27 2.03 0.28 0.32 1.27 1.68 69.2 0.39 0.20 0.20 0.34 0.60

20 dB 8.11 8.10 4.50 3.98 6.58 5.82 174.6 165.1 121.2 122.0 120.8 121.8
OCO-2 40 dB 8.04 7.80 0.79 0.74 1.12 0.96 46.35 38.60 2.33 2.35 2.34 2.35
band 1 55 dB 8.03 7.79 0.54 0.56 0.84 0.76 45.11 37.36 1.15 1.17 1.18 1.16

80 dB 8.03 7.79 0.52 0.55 0.83 0.73 45.07 37.32 1.11 1.13 1.14 1.13

5.3.2 Sensitivity to parameter tuning for SPIRIT

The proposed approach requires the choice of a small number
of parameters, namely the size of the sliding window Nobs,
the size of the dictionary ND and the number of atoms K .
The choice of K has been studied above, and the best results
were obtained forK ≈ 4−5 for both instruments; see Figs. 5
and 8 and the corresponding discussions in Sect. 5.2.2. Here,
we further study the impact of Nobs and ND on the ISRF
approximation errors. To this end, Figs. 9 and 10 show the
approximation errors (in log10 scale) as a function of Nobs
for the Gaussian and super-Gaussian parameterizations and
as functions ofNobs andND for SPIRIT. Results are reported
for the two instruments OCO-2 and MicroCarb and averaged
for all ISRFs. The ISRF estimation errors decrease as Nobs
increases, as expected. However, this decrease is more im-
portant for SPIRIT (e.g., forNobs = 80, the mean ISRF errors
for Gauss and super-Gauss are equal to 16.27 % and 2.04 %,
whereas they are equal to 0.29 % for OMP/SVD, 0.33 %
for OMP/K-SVD, 1.23 % for LASSO/SVD and 1.40 % for
LASSO/K-SVD), showing the interest of exploiting sparsity
for ISRF estimation. The results in Figs. 9 and 10 also in-
dicate that it is beneficial to use dictionaries of modest size,
since the ISRF estimation errors increase for large dictionar-
ies (ND ≤ 100 for OMP andND ≤ 25 for LASSO). Based on
this observation, ND = 25 was used in all the experiments.

5.3.3 Robustness to ISRF changes

The ISRFs considered in the previous sections were obtained
from uniform scenes referred to as “ISRF IN” for the Micro-
Carb mission. However these ISRFs can change depending
on the scene observed by the instrument.

ISRFs for non-uniform scenes

The design of the MicroCarb instrument makes the ISRF sen-
sitive to the slit illumination during the integration time. Such
dependence on the scene can impact a multitude of instru-

ments. 5 Eight different scenes of the Earth’s surface that
are directly observed by the spectrometer’s slit and subse-
quently recorded by the instrument’s detector during the in-
tegration period are considered and are displayed in Fig. 12.
These images were obtained in the ACT direction, and each
image was divided along the ACT direction into three equal
parts, resulting in three defined FOVs, labeled FOV 1, FOV
2 and FOV 3. The spatial pixels in each FOV are averaged to
increase the spectral SNR. This binning and averaging step
allows three measured spectra per imaged area to be deter-
mined, whose ISRFs have to be estimated. Figure 11 shows
ISRFs from uniform scenes (left), randomly selected out of
the 1024 ISRFs, and ISRFs from non-uniform scenes (right),
randomly selected from the total set of eight scenes and three
FOVs, highlighting the differences in ISRF shapes depending
on the scene: the ISRFs can be more asymmetric for non-
uniform scenes and are thus harder to estimate.6 It is inter-
esting to note that the ISRF of a desert scene is very similar
to the ISRF of a uniform scene, contrary to the ISRF of a
horizontal coast profile, which makes the slit blinded during
one-third of the integration time and leads to an asymmetric
left-distorted ISRF, which is harder to estimate.

Estimation performance

This section studies the performance of SPIRIT in estimating
non-uniform scene ISRFs for the first band (band B1) of the

5It can be possible to defocus the instrument in order to avoid
this dependence on the slit illumination. However, the introduction
of a defocus can potentially compromise the precision of the instru-
ment, and thus it was ultimately decided to exclude this option from
the MicroCarb instrument.

6In practice, there is no information available regarding the non-
uniformity of a given scene from the measured spectra. It is only
during the inversion process, when estimating the ISRFs, that it be-
comes apparent (by looking at the measured spectra and the asso-
ciated residuals) that the ISRFs have been modified. For a given
reference spectrum, non-uniform scenes are generated using asym-
metric ISRFs; see Pittet et al. (2019) for more details.

https://doi.org/10.5194/amt-18-2573-2025 Atmos. Meas. Tech., 18, 2573–2590, 2025



2584 J. El Haouari et al.: In-flight estimation of instrument spectral response functions

Figure 9. Mean approximation errors for OCO-2 and the different estimation methods (Gauss, super-Gauss, OMP and LASSO with SVD or
K-SVD) versus the number of observations Nobs and the dictionary size ND for K = 5.

Figure 10. Mean approximation errors for MicroCarb and the different estimation methods (Gauss, super-Gauss, OMP and LASSO with
SVD or K-SVD) versus the number of observations Nobs and the dictionary size ND for K = 4.

MicroCarb spectrometer. Two cases are considered: estima-
tion using the original dictionary learned by examples of uni-
form ISRFs (ISRF IN) and estimation after modification of
this dictionary to account for the diversity of ISRFs. Specif-
ically, the second dictionary is constructed from a set of 103
ISRF INs (1 out of 10) and 3 ISRF scenes (out of 24). The
second dictionary is then composed of ND = 25 new atoms
obtained by SVD from this collection of representative IS-
RFs. Results obtained using SPIRIT with OMP are displayed
in Fig. 13. In the first case (dictionary learned by uniform IS-
RFs, Fig. 13 top row), the resulting normalized ISRF errors
exceed 1 % for several scenes and FOVs, pointing to the fact

that the dictionary is not well adapted for representing ISRFs
for non-uniform scenes. The results obtained using the sec-
ond dictionary are presented in the bottom part of Fig. 13.
Using only three additional examples of ISRF scenes in the
dictionary again allows ISRF estimation errors to be smaller
than 1 %. Note that the lowest approximation errors are ob-
tained in most cases using K = 3 to K = 6 atoms from the
dictionary, as before. To conclude, these results show that
the proposed method can easily adapt to more complex ISRF
shapes by considering more diverse ISRF examples in the
dictionary estimation step.
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Figure 11. Examples of ISRFs from uniform scenes (ISRF IN – a) and from different non-uniform scenes displayed in Fig. 12 and FOVs
(ISRF scene – b) (MicroCarb band B1).

Figure 12. Eight types of scenes (a) with the corresponding ISRFs (FOV 2) (b) for the MicroCarb instrument.

Figure 13. ISRF estimation errors for ISRF scenes obtained using a dictionary of uniform ISRFs (a, b, c) and mixed ISRFs (d, e, f).
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Figure 14. Illustration of the generated ISRF (red) at pixel l = 500
in the presence of pixel errors as compared to the original ISRF
(black) for band B1 of MicroCarb.

5.3.4 Robustness to pixel errors

Instrumental errors within a single pixel l can distort the
shape of the ISRF of this pixel, leading to the creation of an
outlier. This section investigates the impact of such outliers
on ISRF estimation. To simulate this scenario, an ISRF from
the OCO-2 instrument was inserted in pixel l = 500 of band
B1 of MicroCarb data, simulating an outlier in this pixel. The
initial ISRF of the 500th band of MicroCarb and its new ver-
sion are displayed in Fig. 14 (see black and red curves respec-
tively). The corresponding estimation results, compared to
those from the previous study without outliers, are displayed
in Fig. 15. These results demonstrate that the presence of an
erroneous ISRF in the sliding window leads to an increase
in estimation errors for the windows containing the outlier
since the ISRF estimation becomes more challenging. How-
ever, the results also indicate that the outlier ISRF could first
be identified by inspecting the residuals between the mea-
sured spectrum and the ISRF reconstructions and then not be
considered for ISRF estimation.

5.3.5 Impact of uncertainties about the reference
spectra and reference ISRFs

This section analyzes the impact of uncertainties about the
ISRFs used to build the dictionary and the reference spec-
trum on the ISRF estimation performance.

Uncertainties about the ISRFs

To evaluate the impact of uncertainties affecting the ISRFs,
Gaussian noise is added to one-third of the ISRFs used to
construct the dictionary, with SNR= 40 and SNR= 60 dB.
The noisy ISRFs are then made positive by taking their ab-
solute values and normalized to have a unit area. The results,
displayed in the left part of Fig. 16 (using K = 4 atoms for
the plot in the top row), show that as noise increases, better
results are achieved with smaller values of K in the presence

of noise with an increase in ISRF estimation errors. However,
the estimation is relatively robust to the presence of noise
affecting ISRFs used to build the dictionary since approxi-
mation errors remain below 1 % on average for both noise
levels.

Uncertainties about the reference spectrum

In a second experiment, Gaussian noise is added to the ref-
erence spectrum, with SNR= 20, SNR= 40 and SNR=
60 dB. The results are shown in the right part of Fig. 16 (us-
ing K = 4 atoms for the plot in the top row). Using a ref-
erence spectrum corrupted by additive noise clearly has a
smaller impact on estimation performance when compared
to degradations affecting ISRFs used to build the dictionary.
Note that high noise levels (SNR = 20 dB) are necessary to
significantly increase ISRF estimation errors, probably be-
cause of an averaging effect when computing spectral mea-
surement by convolution of the reference spectrum with the
ISRF.

Overall, these results indicate that the proposed method is
robust to uncertainties in both the ISRFs and the reference
spectrum, with ISRF approximation errors remaining below
1 % for realistic SNR levels.

6 Conclusions

This paper studied a new method for estimating the instru-
ment spectral response functions (ISRFs) of spectrometers.
This method is based on a sparse decomposition of the IS-
RFs into a dictionary of basis functions called atoms. The
proposed method can be applied to a large variety of instru-
ments as long as the ISRF estimation problem can be for-
mulated as a linear inverse problem with a sufficient num-
ber of measurements (either because the ISRFs do not vary
much in a small observation window, in the spectral or spa-
tial domains, or because observations from several reference
spectra can be obtained for the same ISRF). The method also
requires that a sufficient number and variety of reference IS-
RFs have been identified and characterized on the ground to
construct the dictionary. We recommend using the SVD algo-
rithm to build the dictionary using representative ISRFs and
the orthogonal matching pursuit (OMP) algorithm to decom-
pose the ISRFs into this dictionary. The performance of these
algorithms is excellent at the price of a very modest com-
putational cost, which suggests its practicality for in-flight
scenarios. Another interesting property of the proposed esti-
mation method is that it is not impacted significantly by the
shapes of the ISRFs to be estimated, allowing accurate esti-
mations for different types of scenes. Numerical experiments
presented in this paper also showed that the ISRFs of the Mi-
croCarb and OCO-2 spectrometers can be estimated with ap-
proximation errors smaller than 1 %, which is very promis-
ing. Other results available in the Supplement confirm this
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Figure 15. Residuals (a) and ISRF estimation errors (b) obtained in the presence of pixel errors for the MicroCarb spectrometer using the
different methods (Gauss, super-Gauss, SVD/KSVD and OMP/LASSO).

Figure 16. Results obtained using SVD and OMP for the different scenarios of noisy ISRFs in the construction of the dictionary (a) and
noisy reference spectra (b) for band B1 of MicroCarb.

conclusion for other spectrometers such as Avantes, GOME-
2, OMI and TROPOMI.

Future work includes the consideration of radiometric and
spectral errors (such as stray light, residual errors of calibra-
tion, temporal drifts or spectral shifts) that can degrade the
performance of ISRF estimation. These errors are expected
to affect some specific wavelengths, which suggests the im-
portance of investigating specific algorithms, jointly correct-
ing errors and estimating the ISRFs. The resulting problem is
more challenging since there are non-linear relationships be-
tween the spectrometer measurements and these radiometric
and spectral errors. Another interesting prospect is to analyze
the potential of other methods, e.g., based on Gaussian mix-
tures or machine learning algorithms, for error correction and
ISRF estimation. Finally, it would be interesting to assess the
impact of potential uncertainties about the reference spectra
and the ISRFs used to build the dictionary more extensively.

Appendix A: Algorithms

Appendix A describes the algorithm used to create the matrix
of reference spectra, the OMP algorithm and the K-SVD al-
gorithm. The LASSO algorithm was implemented using the
MATLAB function lasso.m. The method used to select the
hyperparameter µ is also presented.

A1 Reference spectrum matrix

The algorithm takes as an input the reference spectrum as a
vector, the corresponding wavelengths λr , the wavelengths
associated with the measured spectrum λ and the wave-
lengths associated with the ISRF 1 introduced in Sect. 2.

Algorithm A1 Generation of the reference spectrum matrix.

Input: reference spectrum r , wavelengths of r denoted as λr ,
wavelengths of the measured spectrum λ, and ISRF wavelength
1

Output: reference spectrum matrix for all wavelengths R.
1: for l = 1, . . .,Nλ do
2: λl = λ(l)

3: λresp = λl +1
4: R(l, :)= interp(λr ,r,λresp)
5: end for
6: return R
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A2 Construction of the dictionary

This appendix describes the construction of the dictionary 8
that is used in the sparse-representation-based algorithms K-
SVD, LASSO and OMP.

Algorithm A2 Construction of the dictionary.

Input: matrix of selected ISRFs I , size of the dictionary Nobs
Output: dictionary of ISRFs 8.

1: [U ,0,V ∗] = SVD(I )
2: 8= V (:,1 :Nobs)
3: return 8

A3 OMP algorithm

Appendix A3 describes the OMP algorithm used to find the
sparse representation of the ISRF I l of interest usingK non-
zero coefficients in the dictionary8 from the measured spec-
trum sl and the reference spectrum matrix Rl contained in
the sliding window.

Algorithm A3 Orthogonal matching pursuit (OMP) algo-
rithm.

Input: measured spectrum sl , reference spectrum matrix Rl ,
dictionary of ISRFs 8 and sparsity parameter K
Output: sparse vector αl .

1: 9l =Rl8
2: U1 = sl
3: for k = 1, . . .,K do
4: Find 9γk ∈9l that maximizes the scalar product

|〈Uk,9γk/||9γk ||〉|

5: Find [αγ1 , . . .,αγk ] ∈ αl that solves argminα ||Uk −∑k
k′=1αγk′9γk′ ||

2
2

6: Uk+1 = sl −
∑k
k′=1αγk′9γk′

7: end for
8: return αl

A4 LASSO algorithm

The MATLAB function lasso.m is used to find the sparse rep-
resentation of the ISRF I l in the dictionary 8 using K non-
zero coefficients, from the measured spectrum sl and the ref-
erence spectrum matrix Rl associated with the sliding win-
dow. A dichotomic search is used to obtain the sparsity pa-
rameter µ that leads to a given number non-zero coefficient
K . The associated algorithm is described in Algorithm A4.

A5 K-SVD algorithm

The K-SVD algorithm of Aharon et al. (2006) is described
in Algorithm A5. At each step, the dictionary is updated by
changing its columns separately and sequentially and apply-
ing K singular value decompositions (SVDs) on the appro-
priate error matrix Ej .

Algorithm A4 LASSO algorithm.

Input: measured spectrum sl , reference spectrum matrix Rl ,
dictionary of ISRFs 8, sparsity parameter K , minimum value
of the LASSO sparsity parameter µmin and maximum value of
the LASSO sparsity parameter µmax
Output: sparse vector αl .

1: 9l =Rl8
2: αresp = lasso(9l,sl,“lambda”
3: while sparsity( αresp) 6=K do
4: µ=

µmin+µmax
2

5: αresp = lasso(9l,sl,“lambda”,µ,“Alpha”,1)
6: if sparsity(αresp) <K then
7: µmax = µ
8: else
9: µmin = µ

10: end if
11: end while
12: Find the non-zero components in αresp to form the vector
[γ1, . . .,γK ]

13: Re-estimate the non-zero sparse coefficients: find
[αγ1 , . . .,αγk ] ∈ αl that solves argminα ||sl−

∑k
k′=1αγk′9γk′ ||

2
2

14: return αl

Algorithm A5 Construction of the dictionary using the K-
SVD algorithm.

Input: matrix of selected ISRFs I , number of selected ISRFsL,
size of the dictionary Nobs, dictionary 8 obtained using SVD
in Algorithm (2) and sparsity parameter K
Output: new dictionary of ISRFs 8.

1: while not converging do
2: Sparse-coding step: xl = OMP(I l,8,K) ∀ l = 1, . . .,L
3: Dictionary update:
4: for j = 1, . . .,Nobs do
5: Define the group of examples that uses the j th column of

the dictionary j , wj = {l|1≤ l ≤N,x
j
T
(l) 6= 0}

6: Compute the overall representation error matrix, Ej =
I −

∑
i 6=jφix

i
T

7: Build ER
j

from Ej using the columns corresponding to
wj

8: SVD [U ,0,V ∗] = SVD(ER
j
)

9: Update the dictionary column φj as the first column of U

and the vector xj
R

as the first column of V0(1,1).
10: end for
11: end while
12: return 8
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