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Abstract. A technique was developed to provide cloud phase
information using data collected by the NASA Langley air-
borne High Spectral Resolution Lidar systems with a par-
ticular emphasis on mixed-phase cloud conditions, where
boundaries and gradients in the distribution of ice and liq-
uid water are critically important for microphysical and ra-
diative processes. The method is based on the established
use of depolarization to identify ice particles but incorpo-
rates a new method to separate the ice depolarization from
the depolarization produced by multiple scattering in dense
liquid clouds. Clouds known to be liquid-only based on am-
bient temperature were used to train an empirical model of
the multiple-scattering depolarization that results at different
ranges from the lidar. The method classifies lidar observa-
tions as liquid-dominant, mixed-phase, and ice-dominant and
has an additional categorization for oriented ice. For evalu-
ation of the retrieval, a two-aircraft approach was used with
the lidar observing the same clouds that were concurrently
being sampled with in situ microphysical probes. Aircraft
matchups were able to track the individual cloud elements
and capture marked changes in the distribution of liquid and
ice across flight segments of typically 20–100 km. Qualita-
tive features relating to localized changes in the cloud-top
temperature, cloud morphology, and convective circulations
were generally replicated between the lidar phase classifica-

tion and the in situ microphysical data. Quantitative evalua-
tion of the phase classification was carried out using a subset
of 15 cloud scenes that satisfied strict aircraft collocation and
microphysical requirements. Using the in situ microphysical
data, it was found that ice extinction fractions of 14 % and
76 % most closely matched the upper and lower bounds of
the lidar mixed-phase classification.

1 Introduction

Mixed-phase clouds are an important component of the
Earth’s climate system (Tan et al., 2016; McCoy et al., 2015;
Hofer et al., 2024; Bodas-Salcedo et al., 2019) requiring ro-
bust observational strategies and appropriate physical treat-
ment in models. The specific arrangement of ice and liquid
water within a mixed-phase cloud system is a response to
the complex array of interconnected microphysical, thermo-
dynamic, and dynamic processes (Morrison et al., 2012; Ko-
rolev and Field, 2008). Ice particles, liquid water droplets,
and mixtures thereof can occupy distinct spatial subregions
of varying scales within a broader cloud system (Korolev and
Milbrandt, 2022; Hogan et al., 2003; Korolev et al., 2003;
Chylek and Borel, 2004; Ruiz-Donoso et al., 2020; Coop-
man and Tan, 2023; McFarquhar et al., 2007; Kirschler et al.,
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2023). In supercooled polar stratus clouds, ice formation and
subsequent precipitation are ubiquitous (Shupe et al., 2006;
McFarquhar et al., 2007; Moser et al., 2023), but questions
remain as to the significance of ice for the longevity and cli-
matic relevance of supercooled water layers (e.g., Silber et
al., 2021).

At the microphysical scale, the formation, maintenance,
and dissipation of mixed-phase cloud states rely on the vapor
pressure relationship between ice and water, the relative sur-
face areas available for condensation and deposition as well
as evaporation and sublimation, the abundance of cloud con-
densation nuclei to form droplets, and the primary and sec-
ondary mechanisms available to form ice crystals (Fridlind
and Ackerman, 2018; Solomon et al., 2018; Pinsky et al.,
2015; Field at al., 2017, Korolev and Leisner, 2020). At
larger length scales associated with dominant cloud circu-
lations and beyond, inhomogeneities in the distribution of
ice and water affect the net microphysical rates (e.g., Abel
et al., 2017; Korolev et al., 2003), with downstream impacts
on cloud evolution and life cycle, and present challenges for
parameterization in models (Tan et al., 2016). Clearly, it is
critical to provide improved observations of the vertical and
horizontal structure across the diverse range of mixed-phase
environments to improve our understanding of the variability
and distribution of the cloud phase at the sub-cloud-system
scale.

Ground-based, airborne, and spaceborne active remote
sensing techniques offer valuable capability to understand
mixed-phase cloud structure through vertically resolved
cloud profiles. Combined radar–lidar methods have been
used to leverage the typical size difference between super-
cooled water droplets (enhanced lidar backscatter) and ice
particles (enhanced radar reflectivity), often with thresholds
used to mask different regions (e.g., Shupe, 2007) or other
clustering methods (e.g., Romatschke and Vivekanandan,
2022). Lidar has been used extensively for cloud detection,
with polarization lidar specifically used to identify ice clouds
using the distinct depolarization signature (Sassen, 1991).
Airborne lidar offers a unique vantage point from which to
observe the three-dimensional arrangement of liquid- and
ice-containing layers and regions within complex cloud sys-
tems. However, in many scenarios relevant to airborne and
spaceborne remote sensing, dense water clouds also gener-
ate depolarization through photon multiple scattering (Platt
et al., 1999), which complicates a simple independent attri-
bution of depolarization to ice. In addition, the diversity of
ice particle types also results in a range of ice-only linear de-
polarization ratios (Okamoto et al., 2019; Noel et al., 2004).

In a recent analysis of Southern Ocean clouds, Mace et
al. (2021) suggested that satellite-lidar-based estimates of
mixed-phase clouds may be underestimated outside of con-
vective regions where, they claim, ice multiplication pro-
cesses and lofting to cloud tops make the ice more visible.
One challenge with downward-looking lidar systems in these
environments is the inability to probe deep into the cloud

layer; compounding this is the fact that in many scenarios
ice is optically insignificant within the mixture. It does, how-
ever, motivate the need to better connect cloud phase classifi-
cation algorithms and thresholds with physical quantities that
are relevant to microphysical processes, budgets, and climate
impacts because, at some limit, alleged mixed-phase clouds
are essentially supercooled water layers with negligible ice
contents.

Here we develop a method to utilize advanced high-
electrical-bandwidth airborne lidar systems to observe fine-
scale variability in the distribution of cloud phase using po-
larization. We seek to understand the capability of airborne
lidar to discriminate ice and water in dense clouds and use
collocated in situ measurements to quantify the microphys-
ical definition of our phase categorization. The paper is or-
ganized as follows: a new method for separating ice depolar-
ization enhancements from signatures generated from multi-
ple scattering is developed in Sect. 2. In Sect. 3, case studies
are described that involve a second aircraft sampling marine
clouds using in situ probes and that are synchronized to the
lidar observations. Section 4 provides quantitative evaluation
of the retrieved phase vertical distributions, aided by the in
situ measurements. A summary is provided in Sect. 5.

2 Methods

2.1 Preliminaries

2.1.1 NASA Langley airborne lidar systems

The cloud phase retrieval was developed for two NASA Lan-
gley Research Center airborne High Spectral Resolution Li-
dar (HSRL) systems: the second-generation airborne High
Spectral Resolution Lidar (HSRL-2) and the High-Altitude
Lidar Observatory (HALO). Both systems include HSRL ca-
pability at 532 nm and elastic backscatter at 1064 nm with
polarization detection (Hair et al., 2008). HSRL-2 also in-
cludes 355 nm HSRL measurements with polarization detec-
tion (Burton et al., 2018), and HALO includes a differen-
tial absorption lidar that can be configured for retrieval of
methane (Barton-Grimley et al., 2022) or water vapor (Car-
roll et al., 2022). The current method utilizes the 532 nm
channels common to both instruments, which have been op-
timized for dense cloud sampling.

2.1.2 Airborne field campaigns

Airborne field campaign datasets include the Aerosol Cloud
meTeorology Interactions oVer the western ATlantic Experi-
ment (ACTIVATE; Sorooshian et al., 2023) and the Convec-
tive Processes Experiment – Cabo Verde (CPEX-CV; Nowot-
tnick et al., 2024). ACTIVATE was conducted during 2020–
2022 based at NASA Langley Research Center and Bermuda
and included HSRL-2, while CPEX was based out of Sal,
Cabo Verde, during summer 2022 and included HALO.
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2.1.3 High Spectral Resolution Lidar technique

Full details of the NASA Langley HSRL technique and cali-
bration are provided elsewhere (Hair et al., 2008). Briefly, the
HSRL isolates the spectrally broadened molecular backscat-
ter from the total backscatter, which also includes aerosol
and cloud particles. This is achieved by operating two de-
tector channels on the co-polarized backscattered light that
discriminate the signal using an iodine filter (or a Michelson
interferometer at 355 nm). In doing so, (i) the lidar calibra-
tion simplifies to the determination of a channel gain ratio
because retrievals only rely on signal ratios, (ii) the parti-
cle backscatter coefficient can be determined with few addi-
tional assumptions because attenuation affects both channels
equally, and (iii) the molecular channel can be used to re-
trieve particle extinction independently from backscatter.

Outside the overlap region, expressions for the lidar sig-
nals corrected for range (r), channel gains (Gm, Gdep), and
the atmospheric-state-dependent filter transmission (F ) are
shown in Eqs. (1)–(3), corresponding to the co-polarized
total and molecular channels (P ‖, P ‖m) and cross-polarized
channel (P⊥), respectively. The scattering ratio (SR), defined
as the ratio of the particle backscatter coefficient (βp = β

‖
p+

β⊥p ) to the molecular backscatter coefficient (βm = β
‖
m+β

⊥
m ),

is calculated using Eq. (4), and the volume depolarization ra-
tio (δv) is obtained from Eq. (5).

X‖ ≡ P ‖r2
= c

(
β‖m+β

‖
p

)
T 2 (1)

X‖m ≡
P
‖
mr

2

F
Gm = cβ

‖
mT

2 (2)

X⊥ ≡
P⊥r2

Gdep
= c

(
β⊥m +β

⊥
p

)
T 2 (3)

SR=
X‖+X⊥

(1+ δm)X
‖
m
− 1 (4)

δv =
X⊥

X‖
(5)

In Eqs. (1)–(3), the raw lidar signals (P ) and corrected
signals (X) depend on a lidar system calibration (c) and
the atmospheric transmission (T ), but these terms cancel in
Eqs. (4) and (5). The molecular depolarization ratio (δm) is
set at δm = 0.0035 and assumed to be constant.

2.1.4 Cloud-top identification

While there is no universal optical definition for clouds, here
tops were identified as the last upward crossing of SR = 10
prior to the first upward crossing of SR= 50, examined along
a nadir profile. The SR > 50 requirement ensures that the
profile reaches and exceeds a cloud extinction of the order
1 km−1, and by retreating upwards from this threshold to
SR = 10, the definition of the cloud incorporates filaments
near the edge, while remaining elevated from the surround-
ing aerosol background. Although suitable for the datasets

investigated here, these thresholds may require adjustment
for clouds embedded within more enhanced aerosol layers.

2.1.5 Lidar signals in clouds

The backscatter coefficient in dense clouds can exceed the
backscatter associated with typical aerosol layers by 3 to 4
orders of magnitude. Under these conditions, a sufficiently
high contrast may not be achieved to ensure the molecular
channel remains completely free from particle contributions.
Moreover, the molecular signal quickly decays, causing the
SR to become increasingly susceptible to noise (Eq. 4).

Instead, we take an alternative approach of utilizing the
HSRL signal (X‖m) only above the cloud. The atmospheric
transmission at a given cloud depth, z, comprises the compo-
nent between the lidar and the cloud (Tnorm), the transmission
in the cloud due to molecules (Tm; assumed known), and the
transmission due to cloud particles, Tp,mult (Eq. 6). Tp,mult in-
corporates the apparent reduction in attenuation as a result of
multiple scattering. Rearranging Eq. (2) and averaging over
a normalization window (assigned to be 100 m) just above
the cloud top results in Eq. (7), which can then be used to
generate expressions for the co- and cross-polarized cloud-
attenuated backscatter coefficients (Eqs. 8 and 9).

T = Tnorm× Tm× Tp,mult (6)

cT 2
norm = 〈

X
‖
m

β
‖
m
〉norm (7)

β
‖

atten =
(
β‖m+β

‖
p

)
T 2

p,mult =
X‖

T 2
m〈

X
‖
m

β
‖
m
〉norm

(8)

β⊥atten =
(
β⊥m +β

⊥
p

)
T 2

p,mult =
X⊥

T 2
m〈

X
‖
m

β
‖
m
〉norm

(9)

For clarification, the attenuated backscatter coefficients
(Eqs. 8 and 9) involve only the attenuation caused by the
cloud particles and not any intervening layers between the
lidar system and the cloud (e.g., aerosol layers or other thin,
translucent clouds), made possible using the HSRL signal as
a normalization. Analogous to the standard HSRL backscat-
ter retrieval (Eq. 4), this method incorporates a lidar calibra-
tion (by canceling c) and employs a known state-dependent
profile for β‖m. The co- and cross-polarized integrated atten-
uated backscatter components can be written as

γ ‖(z)=

z∫
0

β
‖

attendz, (10)

γ⊥(z)=

z∫
0

β⊥attendz, (11)

such that γ = γ ‖+ γ⊥ and the depth coordinate, z, begins
at cloud top and extends down into the cloud. The volume
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depolarization ratio remains unaffected by the normalization
(Eq. 12), and the layer-integrated depolarization ratio (D) is
weighted by the backscatter and can be viewed as a mean de-
polarization ratio if instead γ ‖ is used as a depth coordinate
(Eq. 13).

δv(z)=
X⊥

X‖
=
β⊥atten

β
‖

atten

(12)

D(z)=
γ⊥(z)

γ ‖(z)
=

∫ γ ‖(z)
0 δvdγ ‖∫ γ ‖(z)

0 dγ ‖
(13)

2.2 Multiple-scattering depolarization (MSD) retrieval

Figure 1a shows a generic forward model framework (black
arrows) for lidar observations of dense water clouds where
the inputs are the extinction profile, the droplet size distribu-
tion (microphysics), and details of the lidar system including
the transmitter and receiver optics. Inversions are challenged
by a combination of suitably modeling the multiple scatter-
ing (e.g., by using Monte Carlo simulations; Hu et al., 2001)
without prohibitive computational cost and the fact that, in
many cases, the microphysics and structure of the cloud are
under-constrained (Sassen and Zhao, 1995). Reduced-order
models and lookup tables for multiple scattering (Malinka
and Zege, 2007; Donovan et al., 2015) and more information
gained from multiple-field-of-view systems (e.g., Schmidt et
al., 2013; Pounder et al., 2012; Jimenez et al., 2020) may al-
leviate the problem for inversions using optimal estimation
(Wang et al., 2022; Donovan et al., 2015). Hu et al. (2006)
found that for clouds containing spherical water droplets, the
relationship between depolarization and the integrated atten-
uated backscatter enhancement was essentially independent
of the cloud properties and the lidar geometry (red arrow)
so that the measured accumulated depolarization through a
cloud layer could be used to correct for multiple scattering
(Roy and Cao, 2010) and this inversion method (dashed red
arrow) could be independent of the lidar system.

The use of the convenient Hu relationship is no longer ap-
propriate if there are other mechanisms causing depolariza-
tion, as is assumed to be the case with ice-containing clouds.
However, by making a rudimentary, system-dependent esti-
mate of the enhancement in attenuated backscatter attributed
to multiple scattering then a simplified hypothetical liquid
water cloud extinction profile can then be used to model the
system-dependent multiple-scattering depolarization (MSD)
profile (Fig. 1b). The measured depolarization profile can
then be compared to the modeled MSD to predict the ver-
tical distribution of cloud phase, forming the cornerstone
of the method. It is worth noting that, in contrast to previ-
ous approaches (Hu et al., 2006, 2007; Roy and Cao, 2010),
these depolarization profiles are local rather than accumu-
lated from cloud edge, which is deemed more suitable for
identifying gradients in cloud phase.

For emphasis, the conceptual difference between the two
approaches shown in Fig. 1 is that in (a), by assuming or
using prior knowledge that the cloud contains exclusively
liquid droplets, the measured accumulated depolarization
is leveraged as a universal predictor of multiple-scattering
attenuated backscatter enhancement, while in (b) system-
dependent knowledge is used to estimate the depolarization
generated by a hypothetical water cloud that produced the
observed attenuated backscatter profile. In adopting (b), it
is recognized that the trained empirical model is system-
dependent, but, while the parameters derived for HSRL-2
and HALO may be unsuitable for other lidar systems, the
methodology should be transferrable.

2.2.1 Examination of water-only clouds

Clouds that were sufficiently warm to guarantee a liquid
phase were used to evaluate the lidar observations across
a range of operating conditions. Four water cloud control
cases were investigated spanning the range of viewing ge-
ometry expected from most airborne operations (Table 1)
and included cases from both HALO and HSRL-2. The
viewing geometry is predominantly affected by the range
to cloud (RTC) because both systems have the same HSRL
transmitter–receiver architecture (e.g., 1 mrad field of view
with a transmit–receive geometry).

Control case CPEX comprised a low stratocumulus cloud
located over the eastern tropical Atlantic near the coast of
Africa, control case ACTLOW was a widespread stratus deck
situated over the cool coastal waters between the Gulf Steam
and the Atlantic seaboard of the United States, and control
case ACTHIGH was an altocumulus cloud associated with
a weak frontal boundary over the western North Atlantic.
ACTLOW1 and ACTLOW2 were two crossings of the same
cloud region separated by about 4 h. The GRD control case
occurred during ground calibration and testing in the labora-
tory and captured a region of stratus ahead of a warm front
(i.e., with the airborne lidar facing zenith). These warm cloud
control cases were selected because the clouds were mostly
opaque, assumed to be well-mixed, and had relatively uni-
form tops.

Except for GRD, control cases were further screened to
isolate individual profiles that are sharp-edged with high-
extinction, near-adiabatic, opaque signatures that are collec-
tively determined by (i) complete attenuation of the lidar,
(ii) above-median peak β‖atten, and (iii) below-median peak
β
‖

atten rise depth. Across all control cases, screened statistics
of the integrated quantities (Fig. 2a) show that an increase
in integrated backscatter is associated with an increase in in-
tegrated depolarization ratio. The control cases closely con-
form to the expected relationship between the enhancement
of integrated attenuated backscatter and depolarization (Hu
et al., 2006), with a cloud lidar ratio (Sc) set to a suitable
value for non-precipitating water clouds (Sc,ref = 19 sr; Hu
et al., 2021; O’Connor et al., 2004). As the RTC increases,
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Figure 1. (a) A generic forward model flow diagram for polarization lidar measurements of dense water clouds (black lines) and the use
of the depolarization–multiple scattering relationship to retrieve extinction (red lines). (b) System-dependent method for estimating the
depolarization associated with water clouds as part of a polarization cloud phase retrieval.

Table 1. Water cloud control cases used to evaluate multiple scattering.

Control case View Inst. Campaign Date Time (UTC) Platform Cloud Cloud tempe-
altitude (m) altitude (m) rature (°C)

GRD Zenith HALO – 2024-02-28 21:06–21:11 – 1540± 5 14
ACTLOW1 Nadir HSRL-2 ACTIVATE 2022-05-05 13:22–14:14 8831± 20 600± 150 7–14
ACTLOW2 Nadir HSRL-2 ACTIVATE 2022-05-05 17:51–19:49 8805± 29 500± 80 6–13
ACTHIGH Nadir HSRL-2 ACTIVATE 2022-06-18 13:54–14:02 8904± 7 4580± 130 0
CPEX Nadir HALO CPEX-CV 2022-09-15 19:05–20:12 11996± 4 900± 45 23

the integrated attenuated backscatter increases (Fig. 2b) com-
pared to an opaque single-scattering reference value (γ ‖ref =

1/2Sc,ref) after Platt (1973).

2.2.2 Extinction inversion

An estimate of the extinction is a necessary intermediate step
for the MSD retrieval, and Eqs. (14)–(16) show the steps
taken to calculate an estimated extinction profile (α∗). The
result of calculating α∗ should be viewed as the extinction
profile of a hypothetical water cloud with Sc = Sc,ref that pro-
duces the measured γ ‖(z) and not necessarily an estimate of
the true extinction. As an example, α* would underestimate
the true extinction profile for conditions where Sc > Sc,ref
that may occur with sufficient ice content; however, the un-
derestimate usually benefits rather than hinders ice discrimi-
nation.

The value of γ ∗ is set to the maximum value of the γ ‖(z)
profile and serves as a normalization coefficient for the sub-
sequent extinction calculation. In addition, a lower-bound
threshold on γ ∗ was prescribed using a predetermined, RTC-
dependent, opaque cloud value (γ ‖rtc) that was generated from
a linear fit through the minima (10th percentile) of the nadir
water cloud control case data (Fig. 2b). It is important that γ ∗

be at or above the maximum of γ ‖(z) to ensure that Eq. (16)
provides physical solutions. When the profile maximum is
above γ ‖rtc, it typically implies an opaque profile, and the sur-
plus is caused by the combination of a lower Sc and/or more
multiple scattering than the control case. Capping the lower

limit at γ ‖rtc partially circumvents problems that arise with
translucent clouds, where further constraints on the lower
boundary condition for the cloud are needed (e.g., Young,
1995). Opaque clouds do not need limits placed on γ ∗, so
it is justifiable to establish γ ‖rtc using the minimum levels of
multiple-scattering enhancement from the control case data.
S∗ incorporates the multiple-scattering effects into a col-

umn effective lidar ratio, but in cases with ice we lack knowl-
edge of how the multiple scattering builds through the pro-
file to employ the method of Roy and Cao (2010). How-
ever, we can leverage the boundary condition at the top
of the cloud where single scattering prevails, γ ‖→ 0 and
T 2

p,mult→ 1, which results in the scaling factor, Sc,ref/S
∗, ap-

plied to Eq. (16). Additional steps showing the derivation of
Eq. (16) are provided in Appendix A.

A novel aspect of this approach is that the co-polarized
signal was used rather than a total integrated backscatter be-
cause the cross-polarized backscatter from spherical droplets
only arises from multiple scattering, while the co-polarized
component results from both single and multiple scattering.
Since the single-scattering properties are needed to estimate
the extinction, retaining the cross-polarized component pro-
vides no benefit and requires a larger correction for multiple
scattering that may result in greater uncertainty. For imple-
mentation of the method, 1z is allowed to vary to keep in-
crements in γ ‖ constant (up to the native acquisition of the
measurement, 1z= 1.25 m), and this has the advantage of
mitigating the decrease in signal-to-noise ratio with depth in
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Figure 2. (a) Opaque water cloud layer total integrated attenuated backscatter and layer-integrated depolarization caused by multiple scat-
tering and their relationship with the Hu parameterization at Sc = 19 (dashed pink curve). (b) The effect of range to cloud (RTC) on the
enhancement of co-polarized integrated backscatter due to multiple scattering. A linear fit though the nadir-facing data points (see text) at
the 10th percentile is used to establish a minimum multiple-scattering threshold.

the cloud that affects both α∗ and δ.

γ ∗ =max[γ ‖max , γ
‖

rtc] (14)

S∗ =
1

2γ ∗
(15)

α∗ (z)=
−1log

(
1− 2S∗γ ‖ (z)

)
21z

Sc,ref

S∗
(16)

2.2.3 MSD empirical model

Primed with an estimate of the extinction profile, we can
now approach the task of predicting the MSD profile pro-
duced by a hypothetical water cloud. To do this we will uti-
lize the nadir-facing warm cloud control cases, but first we
need to establish a framework to empirically model the MSD.
In anticipation that the MSD profile responds to the accumu-
lated cloud properties along the path, we choose to base the
model framework on a first-order ordinary differential equa-
tion (ODE) of the form

δ′ (z)= f
(
δ (z) ,α (z) ,α′ (z)

)
. (17)

One potential organizing framework is to express the gra-
dient in depolarization as summations of a relaxation term
(δ′ ∼−δ), an accumulation term (δ′ ∼ αb), and a propor-
tional term

(
δ′

δ
∼

α′

α

)
. The relaxation term provides a way

to capture both the physical upper limit of the depolarization
ratio and the progressive loss of scattered photons from the
field of view. The accumulation term captures the growth of
depolarization with optical depth and recognizes the fact that
more extinction creates a more rapid increase (b > 0). The
proportional term aims to capture the fact that rapid frac-

tional changes in the extinction may physically create de-
polarization gradients that are otherwise not mathematically
captured by the other terms. This was deemed important to
include in the model based on the observed characteristics of
multi-layered clouds and where a marked step in the extinc-
tion was embedded within a single cloud layer. Combining
these terms results in the following expression (α = α(z) and
δ = δ(z) are implicit for brevity):

δ′ =−r1δ+ r2α
b
+ k

α′

α
δ , (18)

where k = k+ for α′ > 0 and k = k− for α′ < 0 to allow dif-
ferent physical processes associated with increasing and de-
creasing extinction gradients to be captured. The five free pa-
rameters (r1, r2, b, k+, k−) remain to be optimized but are as-
sumed to be model constants, the extinction profile is the in-
put, and the output is the MSD profile. The model was solved
numerically along the beam path using a simple implicit Eu-
ler method using increments 1z, initial condition δi=0 = 0,
and the estimated extinction profile, α ∗ (z):

δi+1 =
δi +1zr2α

∗

i+1
b

1+1zr1− k
(
α∗i+1−α

∗

i

)
/α∗i+1

(19)

with k = k+ for α∗i+1 > α
∗

i and k = k− for α∗i+1 < α
∗

i .

2.2.4 Determining optimal model parameters

Optimal model parameters (r1, r2, b, k+, k−) were those that
minimize the root mean squared error (RMSE) between the
measured depolarization and modeled MSD profiles for the
nadir-facing control case datasets (Table 1) and are shown in
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Table 2. MSD model coefficients determined from residual minimization of each control case dataset. The final coefficients were compared
against all nadir control cases.

CPEX ACTLOW1 ACTLOW2 ACTHIGH Final

r1 0.048 0.039 0.038 0.040 0.039
r2 0.110 0.090 0.086 0.088 4.094× 103 RTC + 0.06449
b 0.55 0.59 0.57 0.62 0.608
k+ −0.66 −0.39 −0.52 −0.34 −0.554
k− −0.43 −0.46 −0.56 −0.14 −0.469
RMSE 0.0220 0.0249 0.0237 0.0242 0.0248
RMSE (using final) 0.0237 0.0257 0.0245 0.0267 –

Table 2. Although the training sets were independent, there
was consistency in the relationships amongst the parameters.
Of note was the consistency in k < 0 capturing a decrease in
depolarization at an upward gradient in extinction, perhaps
caused by a temporary increase in the relative importance
of single scattering. The opposite effect (i.e., an increase in
depolarization when extinction decreases) was a feature of
multiple-scattering simulations of multi-layered clouds (Roy
and Tremblay, 2022).

An increase in the r2 accumulation rate term with RTC was
expected based on the behavior of integrated values (Fig. 2a),
and a suitable set of final values could be achieved by hold-
ing the other parameters fixed within a region of overlap
(i.e., relaxing the requirement to be held at the depolariza-
tion RMSE minimum). The final parameters (Table 2) trade
a small penalty in RMSE for model simplicity and are found
to be satisfactory for the current usage, acknowledging that
improvements may be possible with additional training sets.

2.2.5 Modeled and measured MSD

Figure 3 shows example comparisons between the measured
depolarization profile and the predicted MSD, following the
above steps. The β‖atten profiles (Fig. 3a, d, g) are used to gen-
erate α∗ profiles (Fig. 3b, e, h), and then the MSD model pro-
duces predicted δ profiles that are compared to the measured
δ profile (Fig. 3c, f, i). The first profile (Fig. 3a–c), chosen
from the CPEX control case, shows a relatively constant ex-
tinction (after the first 15 m) and a depolarization profile that
grows monotonically. The second profile (Fig. 3d–f) is taken
from the ACTLOW1 control case and has a marked step up in
the extinction profile at a depth of approximately 40 m with
an associated temporary decrease in depolarization. The third
profile (Fig. 3g–i) shows a translucent cloud record taken
from ACTHIGH, and in this case the MSD model overesti-
mates δ and may indicate that translucent clouds and/or lower
RTC conditions have been penalized by the compromise in
the choice of final parameters in Table 2. However, the MSD
is generally lower for lower RTC, making ice discrimination
under these types of conditions less ambiguous.

In each example, the sensitivity to a ± 5 % perturbation
in the value of S∗ is evaluated with respect to its impact

on α∗ and predicted δ. The α∗ sensitivity is negligible near
cloud top but grows very rapidly with depth in the first two
cases, ultimately resulting in the retrieval diverging (and be-
coming undefined) because of negative transmission in the
case of positive S∗ anomalies. However, until the point where
the profile becomes undefined, the MSD model prediction is
comparatively less sensitive. This quality motivates the ap-
proach of calculating the extinction as an intermediate step,
despite the simplistic multiple-scattering assumptions.

In contrast, and as an introduction to the next section,
Fig. 4 shows three example profiles taken from a supercooled
cloud cluster (< 25 km separation) sampled as part of ACTI-
VATE during a cold-air outbreak event on 29 March 2022.
The format of Fig. 4 is the same as Fig. 3, but here the
measured δ profile (Fig. 4c, f, i) diverges from the MSD
model, clearly highlighting the regions of the profile where
ice can be identified. In the first example (Fig. 4a–c), there
is a consistent enhancement in the measured δ, suggesting a
mixed-phase profile, while in the second example (Fig. 4d–f)
the profile is initially similar to the translucent water cloud
(Fig. 3g–i), but after approximately 100 m, there is a marked
increase in δ indicative of a transition to ice-dominant condi-
tions. The third example (Fig. 4g–i) shows the opposite con-
figuration with an ice-dominant signature occurring atop a
liquid-dominant layer.

2.3 Identification of ice-containing layers

2.3.1 Phase mask

If a region within the cloud has a depolarization ratio that sig-
nificantly exceeds the MSD profile, then it is assumed to con-
tain randomly oriented, irregular ice (Yoshida et al., 2010;
Hu et al., 2007, 2009; Mace et al., 2020). Here, the measure
of significance is a buffer region around the MSD profile ac-
counting for measurement error (such as unresolved polar-
ization effects) and uncertainty in the empirical model, pri-
marily to minimize false positives in warm clouds (Fig. 5).
The buffer region was set to exceed the MSD by 10 % plus
an additional 0.06, which kept the threshold above the 95th
percentile across the range of MSD and also maintained an
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Figure 3. (a–c) Example profiles showing the measured co-polarized attenuated backscatter (β‖atten), estimated extinction (α∗), and compared
MSD model (blue) with measured (gray) depolarization ratio (δ) for a cloud profile with a relatively simple structure. Panels (d)–(f) are as
(a)–(c) except that the example cloud profile contains a marked upward jump in extinction. Panels (g)–(i) are as (a)–(c) except for an example
translucent cloud profile. In the panels showing the profiles of α∗ and δ the shaded region shows the sensitivity of a ± 5 % change to S∗ in
the retrieval. In the panels showing profiles of β‖atten, the solid line is the native lidar bin resolution, while the markers show the re-gridded
depth increments (see text).

overall false-positive frequency between 0.48 % and 2.2 %
depending on the control case.

Measurements that fall under this threshold are essen-
tially indistinguishable from water-only clouds (WATER
category), while those lying above are attributed to either
mixed-phase (MIX category) or conditions dominated by
randomly oriented, irregular ice (ICE category). The distinc-
tion between MIX and ICE is set at a depolarization ratio
of 0.35 based on airborne HSRL measurements of ice parti-
cle depolarization at low SR (Burton et al., 2012). When the
MSD > 0.35, no MIX category exists and MSD defines the
boundary between WATER and ICE, recognizing that identi-
fying ice in these scenarios is likely to be highly ambiguous
(Yoshida et al., 2010).

Regions containing pristine oriented ice represent an-
other potential scenario where crystal facets produce non-
depolarizing, strong specular reflections (Platt, 1978). Hu et
al. (2007) explored quantifying varying contributions of ori-
ented ice using an end member with very low lidar ratio and
depolarization. Here, if the signature of oriented ice is strong
enough, the extinction, estimated using water cloud assump-
tions, will be overpredicted, artificially boosting the MSD,

while the observed depolarization ratio will tend to decrease.
Therefore, if the depolarization ratio drops significantly be-
low the MSD profile, then this region is assumed to contain
oriented ice (HOI category). Additionally, if the integrated
backscatter exceeded the maximum water cloud backscat-
ter enhancement expected for that RTC (Fig. 2b) then re-
gions within the profile defined as WATER were replaced
with HOI.

The mixed-phase cloud environments studied here were
not expected to be dominated by pristine ice because of the
expectation of rime (Chellappan et al., 2024), which may en-
hance ice depolarization (Sassen, 1991), but a method to flag
any oriented ice was necessary to avoid misclassification in
the WATER category. At cruise altitude during ACTIVATE,
the King Air was flown with a fuselage pitch angle of be-
tween 2 and 4° nose-up depending on the speed. This resulted
in an offset from nadir that further reduced the influence of
oriented ice signatures in this dataset. With this method, dis-
tinct subregions and layers categorized as ICE or HOI are
usually obtainable; however, true mixtures containing ori-
ented ice in varying proportion may result in some level of
misclassification as WATER or MIX.
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Figure 4. As Fig. 3 but for (a–c) a mixed-phase profile, (d–f) a profile with liquid-dominant conditions above ice-dominant, and (g–i) a
profile with ice-dominant conditions above liquid-dominant.

2.3.2 Auxiliary categories

Regions below cloud top that are otherwise classified as WA-
TER but have low extinction are recategorized as non-cloudy
mainly to aid in situ validation. If these regions were re-
tained, it would likely bias any statistical comparison be-
cause they no longer meet the definition of a water cloud.
These regions are categorized as DIM to highlight that the
low backscatter could result from a cloud-free zone or poten-
tially an underprediction of S∗.

The threshold defining cloud top may be too high to in-
clude weak ice signatures that are otherwise useful for pro-
viding additional context. If the region above the cloud has
a volume depolarization above 0.2, these regions are cate-
gorized as δABOVE, and the use of volume depolarization
means that low-SR regions are automatically filtered out.
These auxiliary categories provide context but are not used
in the quantitative validation.

3 Results and testing

3.1 ACTIVATE flight strategy

During ACTIVATE, a unique sampling strategy was em-
ployed where a remote sensing turboprop aircraft (King Air
B200 or UC12, henceforth King Air) was flown at 8–9 km
in coordination with a low-flying in situ platform (Dassault
HU-25 Falcon, henceforth Falcon) that operated at multiple
altitudes to sample aerosols and clouds. The use of these spe-
cific aircraft and operating altitude ranges allowed both to
remain approximately matched in flight speed and offer an
unparalleled dataset for remote sensing validation.

3.2 Aircraft coincidence

Even though the two aircraft were well suited to remain
speed-matched over long transects, in practice there was of-
ten some deviation from perfect coincidence, and usually this
related to a small difference in the time at which each aircraft
passed over a point along a common flight track. There were
also some flights where relative deviations in flight track
occurred, either planned or unplanned. Therefore, a coinci-
dence algorithm was developed to allow the mapping of Fal-
con datasets onto the King Air, which served as the reference.
For each time-stamped King Air position, a centered 30 min
window (i.e., ±15 min) of Falcon data was searched for the
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Figure 5. Comparison of the MSD modeled with the measured δ for control cases (a) CPEX, (b) ACTLOW1, (c) ACTLOW2, and (d) AC-
THIGH. In each panel a 1 : 1 line is included (gray dash), as are 5 % and 95 % bounds in the measured δ for increments of MSD (red), the
boundary of the WATER–MIX classifications (blue), and the false-positive fraction in the upper left.

optimal match. In this case, optimal is defined as the min-
imum linear distance after implementing a linear advection
approximation to account for the wind drift over the time
differential. Wind profiles used for the advection are esti-
mated using linear interpolation between dropsonde vector
wind profiles. In the limiting case of perfect aircraft collo-
cation, the wind correction is irrelevant, and the match point
is synchronized in time; however, when there is a time lag,
this method incorporates the lateral offset that would accu-
mulate in the case of the Falcon experiencing crosswinds or
the additional adjustment in the match point that would be
needed to account for headwind or tailwind components. It
was found that, despite the tight constraints on collocation,
accounting for wind was advantageous for analyzing the air-
craft matchups.

3.3 In situ datasets

In situ cloud microphysical properties were evaluated us-
ing the combination of a SPEC Inc. fast cloud droplet
probe (FCDP; Kirschler et al., 2023) and a SPEC Inc. two-
dimensional stereo optical array probe (2D-S; Lawson et al.,
2006). The FCDP and 2D-S measure particle size distribu-
tions from 3–50 and 28.5–1465 µm, respectively. Particle im-
ages acquired by the 2D-S were used to discriminate liquid

and ice particles by identifying non-spherical shapes, but be-
cause the method required sufficient pixels to be occluded
on the diode array, the minimum size was 90 µm for phase
determination.

For this study, four microphysical classes were defined:
droplets, supercooled large drops (SLDs), drizzle, and ice.
Droplets comprised the particles measured by the FCDP and
extended to 50 µm diameter, with an underlying assumption
that this size range was exclusively liquid water and spher-
ical, irrespective of the temperature. Number concentration
and extinction were calculated by integrating the particle
size distribution applying suitable cross-sections according
to Mie theory. The SLD class comprised the particles iden-
tified as liquid by the 2D-S when the ambient temperature
was below 0 °C and therefore corresponded to drop diam-
eters > 90 µm. The drizzle class was otherwise identical to
SLD for non-supercooled conditions (> 0 °C), and therefore
these classes never occurred simultaneously. Number con-
centration and extinction for these classes were calculated
with the same assumptions as for droplets. Ice was limited
to particles sizes > 90 µm, and the ice number concentration
was calculated by integrating the particle size distribution of
ice classified particles, while the extinction was determined
using the empirical relationships provided in Platt (1997).
Based on the thresholds set for the image processing, it is
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assumed that ice false positives were negligible (estimated at
< 1%), while ice false negatives may comprise 10 %–15 %
of the data otherwise attributed to SLD and reflect an uncer-
tainty in the data classification.

The number concentration and fractional extinction of
each class were determined at 1 Hz, and to summarize, the
following caveats should be highlighted: (i) very small ice
< 50 µm, if present, would be misclassified as cloud droplets;
(ii) the region of the particle size distribution 50–90 µm is
completely ignored because phase discrimination is ambigu-
ous with the available instruments; and (iii) estimates of ice
particle extinction are expected to carry more uncertainty.

3.4 Cloud scene identification

Only a small fraction of the total ACTIVATE data sampling
involved the Falcon flying near cloud top, even though a large
fraction of flights took place with cloudy conditions. Fur-
thermore, many of the clouds were not supercooled or did
not contain SLD or ice and therefore were not useful cases
to evaluate cloud phase distributions. Each of the 162 joint
flights were reviewed to evaluate flight segments where the
matched Falcon data involved sampling of cloudy regions
containing varying distributions of droplets, SLD, and ice
that were also observable by HSRL, and Table 3 shows the
details of the segments that were reserved for further anal-
ysis. Segments were 5–24 min in duration, Falcon average
cloud temperatures varied from−13 to−3 °C, and the largest
time offset was approximately 5 min.

3.5 Example 1: 28 February 2020

Example 1 comprised a transect across a region of aggregated
shallow convection associated with a deep unstable marine
boundary layer (Fig. 6). In the center of the cloud scene, ac-
tive convective cells resulted in locally higher cloud tops,
while the surrounding regions contained surface-decoupled
stratiform layers that also extended beyond the boundary of
the segment. The Falcon transect involved ascending and de-
scending altitude ramps bracketing a constant altitude leg
crossing the deepest region of the cloud. The initial ascent
through the cloud (at 10–12 km along-track; Fig. 6b, c) ex-
clusively involved small liquid droplets corroborating the
HSRL retrieval in this region. After a brief period above,
the Falcon re-entered the rising cloud tops and encountered
mixed-phase conditions with varying influence from ice and
supercooled drops (18–48 km along-track) before reverting
to liquid-only conditions after 52 km. While the track of the
Falcon for these regions was often deeper in the cloud than
the extinction limit of the lidar and therefore not appropri-
ate for quantitative validation, the horizontal representation
of the ice-containing regions was certainly captured and in
agreement.

3.6 Example 2: 2 April 2021

Figure 7 shows a multi-layered cloud structure comprising a
broken stratiform upper layer with tops near the inversion
base at 3 km and a second layer with cumulus cloud tops
mostly around 2.3 km. In two regions (verified using onboard
camera imagery) the cumulus clouds were more vertically
developed and coupled the otherwise distinct layers at 50–
60 and 70–90 km along-track, respectively. The Falcon tran-
sect involved an ascent profile up to an above-cloud-top level
leg followed by an in-cloud level leg nominally just below
the tops. Similar to Example 1, the initial climb involved a
penetration through liquid-dominant cloud (10–14 km along-
track) and verified both the aircraft matchup and HSRL phase
identification in this region. Descending into cloud, the Fal-
con encountered a mixed-phase environment with subregions
of ice with some SLD punctuated by liquid-dominant cores.
Although retrievals were not always available at the Falcon
altitude, the location of the liquid-dominant cores can be
traced to regions of dense water cloud above, identified by
HSRL. This is particularly evident with the cores observed at
85 and 89 km along-track where the agreement in the spatial
position of the phase discrimination is captured with excel-
lent fidelity.

3.7 Example 3: 27 January 2022

In this example, cloud tops were quite uniform and mostly
constrained to the 1.5–1.7 km range for the first 40 km, where
the coordinated cloud sampling took place (Fig. 8). The
dropsonde release used to constrain the temperature profile
(Fig. 8a) occurred at the end of the segment, located over the
Gulf Stream, and may explain the increase in cloud tops and
the increase in the inversion base (2.3 km, not shown). An-
other dropsonde was released approximately 250 km prior to
the start of the segment over cooler waters with an inversion
base marking the boundary layer top at 1.5 km and −8.9 °C
and may be a closer representation of the profile near the start
of the segment despite the greater distance.

This example represents a significant challenge for the li-
dar because the cloud-top region is assumed to be dominated
by water extinction, making any ice difficult to identify. The
Falcon sampled 200–300 m below the cloud tops (first 40 km
along-track) and observed a slowly varying background of
ice and SLD with more rapid variability in the droplet num-
ber. This pattern is interpreted as the aircraft transecting nu-
merous embedded liquid-dominant mixed-phase cells, caus-
ing the cloud phase fraction to be mostly driven by the liq-
uid variability. From the observed attenuation of the lidar, it
can be inferred that these liquid-dominant cells spread lat-
erally near the inversion, obscuring the view of most of the
structural variability observed by the Falcon. The exception
was one region (20–25 km along-track) where the liquid-
dominant cloud tops became more tenuous, allowing the li-
dar to penetrate deeper and observe the presence of ice at the
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Table 3. ACTIVATE cloud scenes used for validation.

Scene Date Flight Time Max. lateral Lag Overlap HSRL cloud top Falcon T ∗

index leg offset (min/max) duration (5 %/median/95 %) altitude∗

UTC (km) (s) (s) (km) (km) (°C)

1 2020-02-28 L2 20:47–20:53 0.2 −220/−86 150 2.74/3.12/3.87 2.90 −8.4
2

2021-04-02 L1
13:32–13:46 1.4 −69/−20 378 1.69/2.88/3.14 2.81 −8.8

3 14:19–14:31 0.6 −17/46 250 2.79/3.19/3.40 2.80 −5.9
4 2021-04-02 L2 18:44–19:06 1.6 −264/263 472 2.20/3.43/3.77 3.32 −11.0
5 2021-12-09 L1 14:11–14:33 3.6 145/267 461 1.02/1.64/1.93 1.37 −3.0
6 2022-01-11 L1 15:22–15:31 1.3 160/247 152 0.85/2.48/2.66 2.15 −12.9
7 2022-01-11 L2 20:46–20:52 0.9 −87/−44 308 1.64/1.78/1.93 1.69 −12.6
8 2022-01-15 – 14:51–14:58 0.5 −127/−65 285 1.72/1.80/1.89 1.67 −4.9
9 2022-01-18 L1 15:08–15:32 2.6 −306/88 541 2.08/2.47/2.77 2.13 −9.8
10 2022-01-19 L1 15:12–15:19 0.7 104/166 418 2.13/2.18/2.21 1.94 −3.6
11 2022-01-27 L1 14:55–15:04 0.5 121/234 388 1.47/1.56/1.61 1.43 −13.6
12 2022-01-27 L2 19:46–19:57 0.1 −21/22 248 1.48/1.64/1.72 1.33 −3.6
13 2022-02-26 L1 14:49–15:12 1.5 −8/196 608 0.97/1.75/1.93 1.67 −9.6
14 2022-03-29 L1 14:16–14:40 1.4 −257/288 319 0.74/2.00/2.32 1.21 −5.2
15 2022-03-29 L2 19:06–19:16 0.9 53/321 452 1.46/1.91/2.06 1.82 −7.1

∗ Cloud-weighted average.

Falcon altitude. This structure was also captured in the Fal-
con data with the more extensive high ice extinction fraction
measured in that region. A further notable feature of Example
3 is the ubiquity of more pristine column ice (Fig. 8d) com-
pared to the rimed and aggregated particles observed in the
previous two examples. Specular reflections from ice facets
may tend to produce lower depolarization ratios for these
ice crystals compared to the other cases, potentially explain-
ing the predominance of the MIX category instead of ICE
in high-ice-extinction-fraction regions. Therefore, the natural
variability in the depolarization caused by different crystal
habits and particle growth mechanisms (e.g., riming) high-
lights some of the limitations with a depolarization threshold
for discriminating MIX and ICE categories.

4 Validation

For each collocated cloud scene, the HSRL vertically re-
solved cloud phase was compared to the cloud microphysics
measured by the Falcon. For the purposes of validation,
phase extinctions derived from the in situ cloud microphysics
are treated as truth despite the limitations of the probe size
ranges and the separation of cloud phase, as described in
Sect. 3.3. While the qualitative interpretation discussed for
the three examples demonstrates the utility of the cloud phase
retrieval, there are many possible methods to assess the skill
of the retrieval within the constraints of the sampling strat-
egy. At the core of the retrieval validation is the fact that air-
craft collocation errors remain co-mingled and neither HSRL
nor Falcon measurements provide an unbiased statistical rep-
resentation of the cloud scene’s vertical cross-section. The

Falcon was limited to its flight altitude, which varied rel-
ative to the local cloud topography even during level legs.
The HSRL penetration depth varies inversely with the ex-
tinction such that dense layers at cloud top, which are usu-
ally liquid-dominant, obscure lower levels where the cloud
phase distribution may be different. Furthermore, the HSRL
phase classification does not directly translate to the Falcon’s
microphysical measurements, and therefore it is sensitive to
choices for thresholds on both the definition of cloud and the
amount of ice required to be classified as mixed-phase.

To minimize bias, each scene was screened to reject
records, for both platforms, where there was no overlap with
HSRL phase data vertically within a 300 m zone above and
below the Falcon. This vertical scale was selected as a com-
promise between minimizing potential collocation errors and
filtering out too much data. The analysis was found to be in-
sensitive to vertical zone size in the 200–500 m range. The
ice thresholds bounding the mixed-phase classification for
the in situ data were left as adjustable parameters, with the
logic being that they could be adjusted to better define the
bounds of the HSRL MIX category. An ice mixing fraction
was defined:

µice =
αice

αice+αSLD+αD
, (20)

where subscripts ice, SLD, and D (droplets) refer to the in
situ extinction fractions defined earlier. The in situ defini-
tion of cloud was set to 0.05 km−1, and an in situ record was
counted as containing ice if

µice > µthresh. (21)

Each cloud scene was divided into subsegments with length
1x (a tuneable parameter) with overlap such that sequen-
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Figure 6. An ACTIVATE flight segment from 28 February 2020, showing the matched King Air and Falcon cloud data. (a) HSRL phase
categorization (colors), cloud-top height (black), Falcon flight track (gray), and a nearby dropsonde used to provide the temperature scale
highlighting the inversion structure (right axis). (b) Number concentrations of microphysical classes: droplets (< 50 µm), supercooled large
drops (SLDs; > 90 µm), and ice (> 90 µm). (c) Extinction fraction of microphysical classes for periods in cloud. (d) Selected samples of
2D-S particle imagery corresponding to the locations marked in (a).

tial subsegments were oversampled with offset 1x/4. The
in situ frequency of ice-containing cloud was calculated as
the ratio of data points that satisfy Eq. (21) to the total num-
ber of cloudy points within the subsegment, subject to the
vertical collocation screening. The frequency of HSRL ice-
containing cloud phase retrievals was similarly calculated by
counting range bins classified as MIX, ICE, and HOI across
all qualifying records within the segment divided by the total
classified cloud bins. Together these frequencies indicate the
statistical probability of the respective cloud phase classifica-
tion of the two aircraft matchup within the qualifying subvol-
ume. A 20 % counting threshold was set for both the fraction
of in situ cloud-containing points and the fraction of quali-
fied HSRL records to reject comparison for sparsely popu-
lated subsegments. For a given 1x, each cloud scene con-
tained a different number of suitable subsegments because of
the variable length of the scene, the degree of aircraft col-
location, and the specifics of the cloud morphology. If the
subsegment window exceeded the scene length it was trun-

cated and no further subsegments were examined; hence, by
increasing1x, the number of subsegments per scene was re-
duced until all scenes contained one subsegment. A cartoon
illustration of this quantitative matchup method is shown in
Fig. 9.

Figure 10a shows the comparison between the HSRL
and in situ subsegment probabilities, with µthresh = 0.14 and
1x = 40 km, and serves as a measure for validating the
skill of the HSRL phase retrieval of ice-containing cloud
for these scenes and aircraft collocation. The mean abso-
lute error (MAE) was 0.12 and incorporates both retrieval
uncertainty and any remaining sampling collocation errors,
despite efforts to minimize them. The procedure was re-
peated (Fig. 10b), adjusting the HSRL classification to only
include ICE and HOI (i.e., disallowing the MIX category)
and altering the comparison to µthresh = 0.76, which exam-
ines the skill of the HSRL phase retrieval for identifying ice-
dominant cloud. Here the slightly lower MAE of 0.09 is at-
tributed to the reduced dynamic range offered by these cases,
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Figure 7. As Fig. 6 but for a flight segment on 2 April 2021.

since few scenes contained significant ice-dominant seg-
ments. The few segments with any influence from HOI clas-
sifications are highlighted by the magenta border in Fig. 10a
and b (HOI > 2%). As previously mentioned, oriented ice
creates an additional complication for this method, which
is primarily designed to assess binary mixtures of water
droplets and depolarizing irregular ice. If the HOI category
was not differentiated from WATER, particularly for Scene
6, the retrieval skill would have been unjustifiably penalized.

The sensitivity to the parametric choice of µthresh was ex-
amined by evaluating the MAE for ice-containing and ice-
dominant comparisons across the full range (Fig. 10c) with
fixed 1x = 40 km. A higher density of computations was
conducted in the regions near the optimal thresholds, which
correspond to the aforementioned selections for Fig. 10a and
b. Also shown for reference are the values of the correlation
coefficient (R), which was considered as a secondary metric
for performance in addition to the MAE. The consequence
of the sensitivity analysis is that the optimal threshold values
of 0.14 and 0.76 represent the best estimate of the lower and
upper bounds of the ice extinction fraction of the HSRL MIX
category. Put another way, when the ice extinction is less than
14 % of the total, on average the cloudy volume would be

indistinguishable from liquid only conditions, while greater
than 76 % ice would have sufficient depolarization to sat-
isfy the ice-only minimum. Evaluation across a greater num-
ber of scenarios is needed to determine if these lidar thresh-
olds are consistent and whether they suitably bracket mixed-
phase conditions from the perspective of microphysical pro-
cesses and cloud radiative effects. Additional information
content from lidar wavelength dependence, combined radar–
lidar, and combined active–passive strategies may further re-
fine phase classification and improve the detection of ice in
liquid-dominant conditions.

The sensitivity to the parametric choice of 1x was also
evaluated by maintaining the respective µthresh values at their
optimal values. At low 1x, collocation errors become in-
creasingly dominant in response to strong variability in the
cloud properties at the scale of individual cloud elements
(e.g., discrete convective eddies), where it is difficult to guar-
antee that both aircraft encountered statistically represen-
tative transects. At intermediate 1x, the collocation errors
plateau but increasing segment size diminishes the dynamic
range of ice frequencies, explaining the decrease in R. The
increase in MAE at the highest1x is less intuitive but is par-
tially attributed to the relative weight applied to the scenes
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Figure 8. As Fig. 6, but for a flight segment on 27 January 2022. Note that Falcon classes also include the drizzle (DZ) class, substituting
SLD for altitudes lower than 0 °C.

Figure 9. Cartoon vertical cross-section diagram showing the
matchup method for comparing in situ cloud measurements with the
HSRL cloud phase classification. Within each comparison subseg-
ment, denoted by the dashed box, the frequencies of HSRL cloud
phase categories (WATER: red, MIX: cyan, ICE: blue) are com-
pared to the distribution of the in situ ice extinction fraction.

because of the number of segments. Large 1x also tends to
retain a low cloud fraction and less well-matched subregions
because achievement of the 20 % rejection thresholds is al-
most guaranteed for any of the scenes, which may increase
MAE. Although no such constraints were imposed, it is both
interesting and encouraging that the optimal 1x = 40 km
was found to be consistent between the ice-containing and
ice-dominant sensitivity tests. A possible explanation is that
this length scale corresponds to a dominant mesoscale mode
of boundary layer cloud organization that affects these cases.
The fingerprint of mesoscale organization serves to maxi-
mize the spatial variability of the cloud phase distribution,
which is effectively captured when the size of validation
segments is close to this length scale. It should be clari-
fied that this interpretation is a consequence of these specific
cloud environments and the 1x parameter used to validate
the retrievals and is not necessarily universal. Ultimately,
mesoscale gradients serve to maximize dynamic range across
a cloud scene while minimizing collocation error.
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Figure 10. Comparison of the frequency of (a) ice-containing HSRL categories (MIX, ICE, HOI) and (b) ice-dominant categories (ICE,
HOI) with the frequency of Falcon observations that exceed an ice extinction fraction of 0.14 and 0.76, respectively. Each comparison point
represents a subsegment (see text) of a matchup cloud scene where the scene indices (Table 3) are shown in the legend. (c) Sensitivity of
the ice extinction fraction thresholds, as assessed by the mean absolute error (MAE) and correlation coefficient (R) of the data shown in (a)
and (b). (d) Sensitivity of the subsegment length (1x) when the ice extinction fraction thresholds are held at their optimal values.

5 Summary

A polarization-based, vertically resolved cloud phase re-
trieval has been developed with specific application to the
NASA Langley airborne HSRL instruments. The method
seeks to separate the depolarization associated with ice par-
ticles from multiple scattering, in accordance with other
polarization-based phase classification algorithms. However,
the novel approach of this method is to interrogate the
range-resolved depolarization profile at the smallest avail-
able scales to extract additional information about the verti-
cal distribution pertinent to mixed-phase cloud environments
that is not attainable from layer-integrated approaches.

An empirical model to describe the MSD profile from
dense water clouds was established using lidar observations
of verified water-only, high-extinction, non-precipitating
clouds at various ranges. With airborne lidar, the range to
cloudy targets is sufficiently variable to modulate the influ-
ence of multiple scattering. The present empirical model is
specific to the NASA Langley airborne HSRL viewing ge-
ometry, but because the model is trained using known water
clouds, the approach may be trainable on other systems. Ice-

containing clouds are subsequently identified as regions of
the depolarization profile that deviate substantially from the
MSD profile.

The ACTIVATE field campaign employed a unique coor-
dinated approach where a low-flying aircraft sampled marine
boundary layer clouds in situ, while a high-flying aircraft
that included the HSRL-2 instrument flew the same flight
line aloft. A total of 15 cloud scenes were evaluated from
the ACTIVATE dataset that satisfied stringent requirements
for aircraft coordination, the availability of collocated mea-
surements, supercooled cloud temperatures, and observed ice
and/or supercooled large drops.

Evaluation of the frequency of ice-containing and ice-
dominant conditions, which represent the boundaries of a
mixed-phase categorization, indicated that these thresholds
were most closely associated with in situ ice extinction mix-
ing fractions of 14 % and 76 %, respectively. Using these
threshold mixing fractions, matchup probabilistic compar-
isons made on 40 km subsegments of each cloud scene ex-
hibited a mean absolute error of 0.12 and 0.09, respectively.

While ACTIVATE prioritized the coordination of the air-
craft horizontally for all the survey flights (nominally <
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10 min flight time separation), a tighter synchrony and a
cloud-top-focused strategy would be needed to further untan-
gle collocation errors from the retrieval uncertainty. The AC-
TIVATE cases often comprised mixed-phase environments
with significant riming and aggregation of ice particles, lead-
ing to high depolarization ice signatures, which was advanta-
geous to this method. While the current algorithm has some
ability to identify oriented ice regions, it is not possible to un-
tangle ternary mixtures comprising water, irregular ice, and
oriented pristine ice. Indeed, mixtures involving any oriented
ice component are currently ambiguous and require addi-
tional intensive properties (e.g., wavelength dependence) to
increase the dimensionality.

Nonetheless, the degree of qualitative agreement of fea-
tures observed in individual cases and the quantitative valida-
tion demonstrate the utility of this method to capture detailed,
high-resolution information about ice and water distribution
in complex multiphase cloud systems.

Appendix A: Derivation of α∗

The attenuated backscatter due to single scattering from
spherical water droplets can be written in a form analogous
to Eq. (8):

β
‖

atten,s = βatten,s =
(
βp+βm

)
T 2
p,s, (A1)

where

T 2
p,s = exp

(
−2

∫
αdz

)
, (A2)

dT 2
p,s

dz
=−2αT 2

p,s . (A3)

Defining a lidar ratio for cloud droplets as Sc =
α
βp

, substitut-
ing Eq. (A3) into Eq. (A1), and assuming βp� βm produces

β
‖

atten,s =
−1
2Sc

dT 2
p,s

dz
. (A4)

Integrating Eq. (A4) subject to the boundary condition
T 2
p,s (0)= 1 and γ ‖s (0)= 0 gives

γ ‖s =
1

2Sc

(
1− T 2

p,s

)
. (A5)

The single-scattering and co-polarized integrated attenuated
backscatter can be linked by a range-dependent function

A(z)=
γ
‖
s

γ ‖
, which is an unknown, except for the boundary

condition: A(0)= 1. Roy and Cao (2010) used the layer
accumulated depolarization relationship provided by Hu et
al. (2006) to constrain their A(z), noting that in their case
the parameter from Hu et al. (2006) used both co- and
cross-polarized integrated backscatter. However, depolariza-
tion cannot be used in this instance because it can arise from

sources other than multiple scattering (e.g., ice particles). In-
corporating A(z) yields

γ ‖ =
1

2ASc

(
1− T 2

p,s

)
. (A6)

In the case of an opaque cloud, at some depth zmax,
T 2
p,s (zmax)≈ 0 and γ ‖ (zmax)= γ

‖
max = γ

∗. Using the defi-
nition provided in Eq. (15) (S∗ = 1

2γ ∗ ) and applying it at this
boundary condition produces

A(zmax)=
S∗

Sc,ref
. (A7)

Note that a prescribed reference value, Sc = Sc,ref = 19 sr, is
now required. It is worth mentioning a similar approach em-
ployed by Roy and Cao (2010), where a prescribed reference
lidar ratio was used to provide a lidar calibration from the
cloud return, subject to knowing A(z). For this purpose, it is
not actually necessary to independently constrain A(z) and
Sc at the zmax boundary condition, only their product, which
is S∗. Therefore, in the absence of knowing the full shape of
A(z), two limiting expressions can be written for the regions
close to the boundary conditions:

T 2
p,s→ 1− 2γ ‖Sc,ref for z→ 0, (A8)

T 2
p,s→ 1− 2γ ‖S∗ → 0 for z→ zmax. (A9)

One expression that satisfies both Eqs. (A8) and (A9) is

log
(
T 2
p,s

)
= log

(
1− 2γ ‖S∗

) Sc,ref

S∗
, (A10)

where the approximations log(1− x)≈−x and exp(x)≈
1+ x are utilized to satisfy Eq. (A8), where γ ‖Sc,ref� 1.
Rearranging Eq. (A2) and substituting Eq. (A10) gives

α∗ (z)=
−1 log

(
1− 2S∗γ ‖ (z)

)
21z

Sc,ref

S∗
. (A11)

In the case of a translucent cloud, T 2
p,s (zmax) > 0 and it is

not possible to use γ ‖max = γ
∗ to determine S∗ as this would

artificially enhance the extinction to completely attenuate
the signal at cloud base. Instead, γ ∗ = γ ‖rtc provides a ref-
erence value that represents the minimum threshold reached
by accumulating the potential remaining signal below the
translucent cloud. For purposes of the extinction estimate,
γ
‖
max > γ

‖

rtc is the threshold for an opaque cloud.
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