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Abstract. Reliable deep-convective cloud (DCC) climatol-
ogy relies heavily on accurate detection. Infrared-based al-
gorithms play a critical role, as they are the only ones that
can be applied to the 6.7 µm water vapour (WV) absorption
band and the 11 µm infrared (IR) window band. For over
40 years, the latter has been the only daytime/nighttime chan-
nel used in satellite cloud imaging. This study presents the
first global validation of three commonly used DCC detec-
tion methods, which use brightness temperature (Tb) in the
WV and IR bands. These methods are the infrared-window
method (IRW; Tb11), the brightness temperature difference
method (BTD; Tb6.7− Tb11), and the temperature difference
method with the tropopause method (TROPO; Tb11−Ttropo).
All methods were applied to 1 year (2007) of Moderate Res-
olution Imaging Spectroradiometer (MODIS) observations
and validated against collocated CloudSat-CALIPSO lidar–
radar cloud classifications. Results indicate that even with
optimal parameter configurations, DCC detection accuracy
remains moderate and is below 75 % (Cohen’s κ < 0.4) for all
methods. Global accuracy ranged from 56.6 % (for TROPO)
to 72.8 % (for BTD) using an optimal threshold of−2 K. Re-
gionally, the BTD method performs best, with an accuracy
of 72.9 % over Europe and 67.9 % over Africa. Misclassi-
fications are common with cloud types such as nimbostra-
tus and altostratus (single-layer cloud regimes) and cirrus
and altostratus (multilayer cloud regimes). Overall, the BTD
method slightly outperforms the others, while TROPO is the
least effective. Our study highlighted the high sensitivity of
these methods to threshold selection. Even a ±1 K change
in the threshold resulted in a 10 %–40 % variance in DCC
frequency. This finding is of particular importance for the
construction of homogenous DCC datasets, whether they are

global mosaics or time series spanning multiple generations
of satellite instruments.

1 Introduction

Deep-convective clouds (DCCs) are formed through moist
convection in the troposphere. DCC cloud top pressures may
exceed∼ 450–500 hPa, and clouds may reach the tropopause
or even penetrate the lower stratosphere. Although they are
the least-frequent cloud type on Earth (Sassen and Wang,
2008), DCCs are the focus of scientific concern due to their
role in the hydrological cycle (Nesbitt et al., 2006); their at-
mospheric chemistry (Wang and Prinn, 2000); and their asso-
ciation with severe weather events that include heavy precip-
itation, damaging wind, hail, tornadoes, or downburst phe-
nomena (Taszarek et al., 2020). According to the European
Environment Agency (2024), economic losses related to ex-
treme climate events amounted to EUR 738 billion in EU
member states, and one-third of that was caused by severe
storms.

With global warming, more energy is being held in the
atmosphere, and troposphere dynamics are changing. In the
midlatitudes, the Hadley circulation is weakening and ex-
panding poleward (Ceppi and Hartmann, 2016; Lu et al.,
2007), causing changes in the track and intensity of extra-
tropical storms (Baatsen et al., 2015; Bender et al., 2012;
Lehmann and Coumou, 2015). Consequently, convective
processes are expected to intensify, and the frequency of
DCC-related severe weather events may also increase (Au-
mann et al., 2008; Berthou et al., 2022). Identifying climate
trends requires DCC time series that span at least 3 decades
and a reliable reporting method.
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The traditional (non-instrumental) approach to reporting
is to observe the state of the weather visually (by a human
observer) and to report DCC-related phenomena such as cu-
mulonimbus clouds, hail, lightning, or thunder (Taszarek et
al., 2019). However, the limits of human perception make the
method subjective and inaccurate, and the spatial coverage is
limited (Eastman and Warren, 2014). Alternative techniques
rely on ground- or satellite-based remote sensing. An orbital
perspective is especially important for efficient mapping of
DCCs, notably through the use of imagers that provide fre-
quent observations with global coverage.

Passive satellite imagers detect DCCs based on their ra-
diative properties. In the thermal infrared window (8–14 µm),
DCCs are among the coldest objects in the field of view. Con-
sequently, brightness temperature (Tb) thresholds can be set
to discriminate between DCCs and the warmer background
(Doelling et al., 2004; Gong et al., 2018; Govaerts et al.,
2018; Mu et al., 2017). However, the most important short-
coming of this method is that both DCCs and cirrus clouds
are characterized by low Tb thresholds in the infrared win-
dow. As a result, detection can be ambiguous; for example,
cirrus anvils associated with DCCs can be misclassified as
convective clouds.

The Tb threshold can be also applied to the water vapour
absorption band (5.5–8 µm). In these wavelengths, electro-
magnetic emissions leaving Earth are absorbed by water
vapour in the atmosphere as the signal propagates upward,
toward space. As a consequence, most radiance that is de-
tected by a satellite originates in the upper atmosphere, in-
cluding the highly elevated tops of DCCs (Ackerman, 1996;
Ai et al., 2017). However, the difficulties with this method are
similar to those that arise with the thermal infrared-window
approach. Here, cirrus clouds pose a threat as well.

DCCs can also be detected using shortwave radiation
(∼ 4 µm or less), a combination of shortwave and longwave
bands, or geophysical parameters retrieved from multispec-
tral radiances. One of the most widely adopted approaches
is the algorithm implemented by the International Satellite
Cloud Climatology Project (ISCCP; Rossow and Schiffer,
1999). The ISCCP characterizes clouds based on their op-
tical depth (COT; cloud optical thickness) and the atmo-
spheric pressure at the cloud top (CTP; cloud top pressure)
– measurements are based on 10.5 µm brightness tempera-
ture, 0.65 µm reflectance, and radiative transfer modelling.
As COT and CTP are continuous values, thresholds are ap-
plied to divide COT–CTP distributions into discrete classes.
DCCs are identified when COT> 23 and CTP< 440 hPa.

A key shortcoming of the ISCCP classification and of
other algorithms that exploit shortwave radiation is that they
are limited to daytime conditions. Tracking the diurnal DCC
cycle requires a method that relies solely on longwave in-
frared observations. The design of such an algorithm is
closely linked to the technical specifications of the cloud
imaging instrument. Most first-generation imaging sensors
implemented as few as three spectral bands, two of which

were dedicated to the infrared domain (Holmlund et al.,
2021). The infrared-window (IR-window) channel and the
water vapour (WV) absorption channel were typically cen-
tred at 11 and 6.5 µm, respectively. Advances in sensor tech-
nology have since made it possible to consider additional IR
spectral channels, such as the ozone thermal absorption band
at 9.7 µm (Jurkovic et al., 2015). However, the long history
of the 11 and 6.5 µm bands makes them indispensable for
climatology, as they are the only way to derive multidecadal
DCC time series.

One of the main disadvantages of IR-based approaches is
the need for a threshold: Tb (or the Tb difference) is used
to discriminate between DCCs and non-DCCs. Historically,
thresholds were set arbitrarily rather than being derived from
an empirical examination (see Sect. 2.2 for details). Notably,
DCC detections were not validated, and accuracy assess-
ments were not reported (e.g. a classical confusion matrix for
a binary classifier). The resulting DCC climatologies were
only compared with other (independent) datasets to check for
discrepancies among sources (Sarkar et al., 2022; Sassen and
Wang, 2008). Such cross-comparisons cannot be considered
a substitute for validation.

The primary reason for the lack of validation was the ab-
sence of a reliable ground truth. In cloud research there is
no 100 % accurate dataset on cloud types, mostly due to the
lack of a single unambiguous (i.e. method-independent) def-
inition of cloud types. For instance, visual observers define
DCCs by verbal description and the co-occurrence of DCC-
associated weather phenomena. On the other hand, DCCs in
the ISCCP project are defined by the physical parameters of
the cloud: a certain optical thickness and tops above a certain
height. As a consequence any validation of cloud type detec-
tion is in fact a relative comparison assuming that one source
of observations is – for well-justified reasons – more reli-
able than the other dataset (i.e. the one being validated). Cur-
rently, the state-of-the-art data for validating cloud products
originated from the CloudSat and Cloud–Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) mis-
sions. CloudSat hosted a cloud profiling radar, and CALIPSO
hosted a cloud profiling lidar. Rather than imaging the hor-
izontal distribution of cloud, lidar and radar provide a ver-
tically resolved structure of the atmosphere. Due to this
unique ability, clouds are classified both during the day and
at night based on their horizontal extent, height, thickness,
homogeneity, and the presence of precipitation rather than
column-integrated radiances (Stephens et al., 2002; Winker
et al., 2003). An important consideration is that CloudSat
and CALIPSO were configured to fly in close formation
with the Aqua satellite (Vincent and Salcedo, 2003), enabling
quasi-simultaneous observation of clouds by lidar, radar, and
Aqua’s Moderate Resolution Spectroradiometer (MODIS)
instrument (Barnes et al., 1998).

The CloudSat-CALIPSO cloud typing algorithm was in-
troduced by Wang and Sassen (2001), and its accuracy has
been demonstrated with surface-based lidar and radar ob-
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servations. It was initially validated against visual (manual)
cloud genera observations performed at the lidar–radar loca-
tion and in accordance with the World Meteorological Or-
ganization standards. The validation study consisted of 540
cases, of which only 4 (according to reference data) or 9 (ac-
cording to the lidar–radar classification) were DCCs. Wang
and Sassen (2001) stated that the overall accuracy of their
classification was 70 % but provided no specific details for
DCCs.

Sassen and Wang (2008) ran a post-launch assessment
of the classification. The authors focused on 1 full year
of CloudSat observations (CALIPSO was excluded). Rather
than performing a typical accuracy assessment, they only
compared zonally averaged frequencies of individual cloud
types. They found that the radar classification reported fewer
DCCs than ISCCP or surface-based data did and reported
more altostratus (As) and nimbostratus (Ns) clouds than the
remaining databases. A similar study by Sarkar et al. (2022)
noted that the difference between CloudSat-CALIPSO, IS-
CCP, and surface-based visual observations was highest for
DCCs. These authors hypothesized that this difference may
be related to the fuzzy logic used in the lidar–radar clas-
sification algorithm. Further validation studies of CloudSat
data have considered specific geophysical parameters, no-
tably cloud base height (Candlish et al., 2013), precipitation
(Kodamana and Fletcher, 2021), or cloud phase (Wang et al.,
2024), but not the cloud classification.

Despite limitations, CloudSat and CALIPSO data, espe-
cially when combined into one joint product, have been
tested and adopted for validation purposes, including DCCs.
Specifically, Yang et al. (2023) successfully demonstrated the
potential of combining MODIS, CloudSat, and CALIPSO
data to validate IR-based DCC detection methods. How-
ever, their work only focused on the tropics (±25° N), where
DCCs and nimbostratus were merged into a single category.
Furthermore, their main objective was to establish a bench-
mark for their machine learning approach to DCC detection.
Consequently, we still do not know how accurate traditional
IR-based DCC detection methods are on a global scale. Are
current thresholds appropriate, and do they guarantee optimal
DCC detection accuracy? How sensitive is a DCC climatol-
ogy to the selected threshold?

Given the importance of the IR and water vapour (WV)
heritage bands in long-term climatology, we perform the
first comprehensive global-scale validation of critical IR-
based DCC detection methods that relies on state-of-the-
art CloudSat-CALIPSO lidar–radar cloud observations. Our
overall question is how consistent DCC climatologies that
are based on different IR methods and different DCC detec-
tion thresholds are.

It is important to remember that when we use the term val-
idation, referring to DCC detection methods and CloudSat-
CALIPSO observations, we always mean a relative compar-
ison between these datasets, assuming lidar–radar data to be

more accurate (since they are active remote sensing methods
and combine optical and microwave observations).

2 Data and methods

2.1 Database of collocated observations

Our validation of IR-based DCC detection methods required
us to develop a dedicated database. Data consisted of tem-
porally and spatially collocated observations of clouds per-
formed with the MODIS (Aqua), CloudSat, and CALIPSO
instruments. Aqua, CloudSat, and CALIPSO were three in-
dependent spacecraft and passed over the same location se-
quentially: CALIPSO was 15 s behind CloudSat, and Cloud-
Sat was 60 s behind Aqua. In Sect. 4, we address the potential
impact of the sampling regime on the results of the valida-
tion. The specific data products we used were the following.

– 2B-CLDCLASS lidar, version P1_R05. Data are the re-
sult of a joint analysis of lidar (CALIPSO) and radar
(CloudSat) profiles and provide information on the
cloud type. CALIPSO’s lidar sampled the atmosphere
at two wavelengths (532 and 1064 nm) every 333 m
along the ground track, with a 90 m diameter foot-
print. CloudSat’s radar operated similarly but at a much
longer wavelength,∼ 3190 nm (94 GHz), and with a no-
ticeably larger footprint, 1.1× 1.4 km. The two instru-
ments were complementary: radar impulses can pene-
trate most cloud layers but miss optically thin clouds,
while the lidar signal is quickly attenuated but is very
sensitive to the cirriform type. The 2B-CLDCLASS
lidar is designed to take advantage of both systems,
merging separate lidar and radar data into a single pro-
file. The classification algorithm is run on cloud clus-
ters rather than on individual profiles. Hence, the first
step is to identify a cluster: namely, a group of hor-
izontally connected cloud layers with similar vertical
extents. Next, each cluster is characterized with re-
spect to its geometrical and geophysical parameters
(e.g. top and base heights, phase, temperature, maxi-
mum radar reflectivity, the presence of precipitation).
Results are passed to a combined rule-based and fuzzy
logic classifier, which assigns them to one of eight pos-
sible categories: cumulus (Cu); stratus (St); stratocumu-
lus (Sc); altostratus (As); altocumulus (Ac); nimbostra-
tus (Ns); “deep-convective cloud” (cumulonimbus, Cb);
and “high clouds”, which includes all cirriform clouds
(cirrus, cirrostratus, cirrocumulus). For a more detailed
description of the algorithm, see Sassen et al. (2008) and
Wang and Sassen (2001). The data structure of the 2B-
CLDCLASS lidar product supports reporting of up to
10 cloud layers within a single profile. In our analysis,
if at least one deep-convective cloud label was found
within a profile, the whole profile was designated DCC
or was designated no-DCC if this was not the case.
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– MYD021KM version C061. These products provide
calibrated radiances registered in 20 reflective solar
bands (0.4–2.2 µm) and 16 thermal emissive bands (3.6–
14.3 µm). The instrument operated as a passive im-
ager, circling Earth twice each day, with a 2330 km
wide swath (Barnes et al., 1998). At nadir, the spa-
tial resolution of MODIS imagery ranges from 250 m
per pixel to 1 km per pixel, although atmospheric data
products are released at a 1 km per pixel or coarser
resolution (Platnick et al., 2003). In order to match
MODIS with CloudSat-CALIPSO observations, we
only used 1 km data and only for the two spectral
bands of interest: 6.535–6.895 µm (central wavelength
of 6.715 µ m, MODIS band 27), and 10.780–11.280 µm
(central wavelength of 11.030 µm, MODIS band 31).
From these, we were able to calculate brightness tem-
perature (Tb): specifically, TbWV or Tb6.7 for the WV
absorption band and TbIR or Tb11 for the IR-window
band. Geolocation information was necessary to spa-
tially match MODIS with the 2B-CLDCLASS lidar data
obtained for auxiliary MODIS products, namely the
MYD03 geolocation fields.

We considered a full year (2007) of MODIS and CloudSat-
CALIPSO observations. The initial database consisted of
175 666 879 matchups. In order to maximize data consis-
tency, all MODIS data were parallax-corrected following
the method reported in Wang et al. (2011). We decided to
narrow the sample by rejecting observations that were too
warm to feature a DCC. Specifically, all observations with
TbIR−TbWV<−10 K were rejected. This procedure was im-
plemented by Yang et al. (2023), although the authors used
a stricter threshold of −5 K. We used a more liberal thresh-
old in order to increase the number of potentially non-DCC
clouds in the vicinity of a DCC. This left 9 507 319 matchups
that were evaluated. Table 1 provides more details on the
composition of the sample.

2.2 DCC detection methods

We assess the accuracy of the following three IR-based meth-
ods.

– The infrared-window (IRW) method. In principle, this
method is very simple. The only requirement is to set a
Tb value that can discriminate between DCCs (assumed
to be colder) and a warmer background (either a cloudy
or a cloud-free atmosphere). There is no universal TbIR
threshold for DCC detection, and different values have
been used. Examples include 210 K (Aumann and Ruz-
maikin, 2013), 225 K (Aumann et al., 2018), 230 K
(Hendon and Woodberry, 1993; Tissier and Legras,
2016), 235 K (Wall et al., 2018), and up to 245 K (Kubar
et al., 2007). This ambiguity in threshold selection is
reflected in studies by Mapes and Houze (1993) and
Hong et al. (2006), who decided to adopt two values:

TbIR< 235 K for the detection of high clouds in general
and TbIR< 208/210 K exclusively for DCCs.

– The brightness temperature difference (BTD) method.
In earlier work, Ackerman (1996) observed that in some
regions, Tb at 6.7 µm could be greater than that at 11 µm.
In the tropics and midlatitudes, the TbWV− TbIR differ-
ence was explained by the presence of thick clouds, no-
tably DCCs. In general, a difference greater than 0 K co-
incides with clouds of TbIR< 210/215 K, and the differ-
ence is highest when clouds reach the tropopause (Kolat
et al., 2013). Although Ackerman (1996) suggested that
TbWV−TbIR could be used to detect thermal inversion in
the polar troposphere, the method has been widely used
to map DCCs, including the detection of overshooting
tops (Bedka et al., 2010; Martin et al., 2008).

– The TROPO method. Convective clouds cool as their
tops penetrate up through the troposphere, and even-
tually the cloud top temperature matches that of the
tropopause. Hence, the difference between TbIR and the
tropopause temperature (Ttropo) has been suggested as
a DCC detection method. Zou et al. (2021) used TbIR
at 8.1 µm and suggested that a feature could be consid-
ered a DCC when TbIR− Ttropo≤ 7 K. A similar value
(6 K) was adopted by da Silva Neto (2016), who used
TbIR− Ttropo at the same time as a more conventional
TbWV− TbIR approach. Aumann and Ruzmaikin (2013)
set a TbIR− Ttropo threshold of 2 K but used a climato-
logical Ttropo value instead of an actual (meteorological)
value. The application of the TROPO method relies on
Ttropo data being available. In this study, the parame-
ter was obtained from the Reanalysis Tropopause Data
Repository (Hoffmann and Spang, 2022). Specifically,
we refer to the first tropopause as defined by the World
Meteorological Organization and identified based on the
ERA5 reanalysis.

The ISCCP scheme for DCC detection only was included
for comparison. In the ISCCP approach, the cloud type clas-
sification is based on cloud optical thickness (COT), and
cloud top pressure (CTP). Like the IRW, BTD, and TROPO
methods, the ISCCP requires thresholds – for COT and CTP
– which are also somewhat arbitrary (Rossow and Schif-
fer, 1999). Hahn et al. (2001) demonstrated that the ISCCP
classes follow the traditional classification (i.e. the one im-
plemented by the World Metrological Organization) but fol-
low them less strictly. Under the ISCCP paradigm, DCC de-
tection requires COT and CTP information. Both were ob-
tained from the MODIS MYD06 standard product (Platnick
et al., 2003), with geometry and coverage that are identi-
cal to the MYD21KM and MYD03 products. ISCCP results
only refer to daytime conditions, while the IRW, BTD, and
TROPO results are combined for day and night.
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Table 1. Cloud-free (no DCC) and cloudy (DCCs and other cloud types present) percentages in the lidar–radar profile data sample investi-
gated in this study. Europe is defined as 35–60° N, 15° W–45° E, and Africa is defined as 5–15° N, 20° W–35° E (see Sect. 3 for details on
subregions).

Region Total number of Cloud-free Cloudy

observations No DCC Only DCC Not only DCC

Global n= 9 507 319 3.7 % 89.2 % 7.1 % < 0.1 %
Europe n= 289 537 2.5 % 94.3 % 3.2 % 0.0 %
Africa n= 105 293 < 0.1 % 85.0 % 14.9 % < 0.1 %

2.3 Measures of accuracy

The joint CloudSat-CALIPSO cloud classification was used
as a reference. MODIS WV, IR Tb, COT, and CTP data were
used in the IRW, BTD, TROPO, and ISCCP methods to de-
tect DCCs. Agreement between the reference and validated
methods was assessed based on a confusion matrix and re-
lated measures.

A confusion matrix is used to evaluate the performance
of a binary classifier. It considers four possibilities: true-
positive and true-negative detection, when a method and the
reference agree on the presence or absence of DCCs, respec-
tively; false-positive detection, when a method finds DCCs
but the reference does not; and false-negative detection, when
a method reports no DCCs but the reference does. The per-
formance of a DCC detection algorithm can then be assessed
with respect to its overall accuracy, the probability of DCC
detection (PoD), the DCC false-discovery rate (FAR), and
Cohen’s Kappa coefficient (κ; Cohen, 1960):

Accuracy=
TP+TN

TP+TN+FP+FN
, (1)

PoD=
TP

TP+FN
, (2)

FAR=
FP

FP+TP
, (3)

κ =
2 · (TP ·TN−FP ·FN)

(TP+FN) · (FN+TN)+ (TP+FP) · (FP+TN)
, (4)

where TP, TN, FP, and FN are the total number (counts) of
true-positive, true-negative, false-positive, and false-negative
detections, respectively.

Values for a perfect classifier would be the following: ac-
curacy and PoD equal to 100 %, FAR as low as 0 %, and κ
approaching 1.0 (κ approaching 0.0 suggests that agreement
between datasets was only achieved by chance regardless of
the actual accuracy).

DCCs only made up 7 % of the CloudSat-CALIPSO ob-
servations investigated in this study, meaning that the sam-
ple was significantly unbalanced. It is reasonable to assume
that the resulting accuracy measures are biased by the fre-
quency of negative detections, which are far more likely than
positive detections. To avoid this, we implemented bootstrap
sampling (DiCiccio and Efron, 1996; Efron, 1979). First,

the number of DCCs in our CloudSat-CALIPSO reference
dataset was determined. Then the reference dataset was ran-
domly sampled to identify exactly the same number of non-
DCC observations. As a result, the count of DCC and non-
DCC detections was equal. Next, instantaneous accuracy
measures were derived from this subsample and recorded.
This procedure was repeated 1000 times, resulting in 1000
accuracy estimations. In the final step, all estimations were
averaged, returning a single value (a bootstrap estimate),
which is reported in this paper. During each iteration, the
DCC sample was the same and only the non-DCC subsample
changed.

3 Results

Rather than assuming a specific threshold for a DCC de-
tection method, we tested a wide range of possible values
(Fig. 1). First, the full statistics were derived for each in-
stantaneous threshold, then we selected the threshold with
the highest overall accuracy (or the highest κ value, as both
measures peaked at the same location). This value was then
considered the optimal threshold, indicating that it guaran-
teed the best-possible accuracy for a method.

All results were obtained for land and ocean lying between
60° N and 60° S (the global domain) and for two smaller
regions of interest: Europe (a midlatitude moist convection
environment; 35–60° N, 15° W–45° E) and equatorial Africa
(an intertropical convergence zone with very intense moist
convection; 5–15° N, 20° W–35° E).

3.1 Highest achievable accuracy

The validation of the IR-only DCC detection methods
obtained with the CloudSat-CALIPSO lidar–radar dataset
showed that the highest achievable accuracy was moderate
(Fig. 1). Depending on the method and on a global scale, it
varied between 56.6 % (TROPO with a 15 K threshold) and
72.9 % (BTD with a −2 K threshold). Regionally, accura-
cies were between 67.7 % (IRW with a 231 K threshold) and
72.9 % (BTD with a −2.5 K threshold) for Europe and from
65.6 % (IRW with a 217 K threshold) to 67.9 % (BTD with a
−1 K threshold) for Africa.
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Figure 1. Accuracy of DCC detections using the infrared-window (IRW) method, the WV-IR brightness temperature difference (BTD)
method, the IR− tropopause temperature difference (TROPO) method, and the ISCCP method. Accuracy measures are shown as a function
of the selected threshold (horizontal axis), except for ISCCP, which uses a single set of parameters globally. Kappa (κ) values were multiplied
by 100 to match the 0 %–100 % range.

Our results showed that the IRW and BTD methods per-
formed almost equally well when global data were exam-
ined. Differences in overall accuracy, detection probability,
and the false-alarm rate did not exceed ∼ 5 % at the global
scale. However, changing the spatial domain to Europe dou-

bled discrepancies; the IRW method was less accurate, while
the BTD method performed just as efficiently as on the global
scale. On the other hand, the comparison for tropical Africa
found that both the IRW and BTD methods were less accu-
rate.
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Narrowing the spatial scale had the most significant impact
on the performance of the TROPO approach. Using a sin-
gle global threshold for the temperature difference between
10.8 µm and the tropopause proved impractical – the method
detected DCCs with an overall accuracy of 56.6 % and a κ
coefficient of 0.13. At the regional scale, performance notice-
ably improved: DCC detection probabilities doubled from
30 % to 60 %, resulting in a boost in overall accuracy of 14 %
in Europe and 9 % in tropical Africa.

When the IRW, BTD, and TROPO methods were com-
pared with the ISCCP daytime-only approach, the latter was
found to be more reliable in all respects. Not only did it out-
perform the other methods with respect to overall accuracy
(76 %–77 % regardless of the spatial domain), but the DCC
detection probability was also higher (80 %–85 %), and, in
general, the false-alarm rate was lowest among all of the
methods investigated (25 %–28 %).

3.2 Variability in thresholds

Inconsistency between global and regional results motivated
us to test whether the optimal threshold for a method de-
pended on the latitude. We therefore derived accuracy mea-
sures for zones of 5° in latitude, starting at the Equator. Cal-
culation of the accuracy for 5° zones essentially repeated the
methods used for the global domain, except for the input data
preselection: they were only limited to the 5° zone under
consideration. With only 1 full year of observations, it was
impossible to obtain reliable results for latitudes above 40–
50° N/S (i.e. where DCCs are relatively infrequent).

Our experiment revealed a clear relation between latitude
and the optimal threshold. For the IRW method, DCC detec-
tion across all latitudes was most accurate when the thresh-
old was changed from ∼ 218 K in the tropics to ∼ 230 K in
the midlatitudes. The corresponding adjustment for the BTD
method was only 2 K (from −1 K in the tropics to −3 K in
the midlatitudes). Similarly, for the TROPO method, the op-
timal threshold changed between the low latitudes and mid-
latitudes. However, in this case, in the tropics (20° S–20° N)
it was constant (25 K), but it dynamically decreased (to 10–
15 K) at 40° N/S.

Despite these adjustments in the threshold for differ-
ent latitudes, the resulting DCC detection accuracy differed
between zones. Variability was greatest for the TROPO
method, with ∼ 15 % amplitude for the overall accuracy in-
dex (Fig. 2g) and an even more evident difference for the κ
coefficient (from 0.15 to 0.5; Fig. 2g). Additionally, the high-
est and lowest scores differed most over the Northern Hemi-
sphere (30 and 50° N). While this pattern was common to all
methods, it was much less apparent (by 50 %) for the IRW
(Fig. 2e) and BTD (Fig. 2f) methods compared to TROPO.

Compared to IR-based approaches, the ISCCP DCC detec-
tion scheme performed almost equally well at all latitudes.
The DCC detection probability remained high (80 %–90 %),
and the false-alarm rate was relatively low (20 %–30 %), re-

sulting in a constant overall accuracy of ∼ 78 %–80 % re-
gardless of the latitude. Like IR-based methods, the ISCCP
scheme performed better in the northern midlatitudes, but the
improvement was small and was mostly seen in an increasing
κ coefficient (the consequence of a slight increase in detec-
tion probability).

3.3 DCC misclassification

Accuracy below 100 % necessarily indicates a certain degree
of DCC misdetection by a given method. This could be either
false negatives, when CloudSat-CALIPSO indicated a DCC
but a method reported no DCC, or false positives, when ref-
erence data recorded no DCC, but a method reported one. In
our study, false positives accounted for 8 %–17 % of obser-
vations (mean 13 %), while false negatives constituted 8 %–
15 % (mean 17 %) depending on the method and the spatial
domain (global, Europe, or tropical Africa).

The lowest rate of false-negative detections (8 %–10 %)
was found for the ISCCP method, but when only the IR
method was considered, it was 15 % at best for the BTD
method regardless of the subregion of the study. Globally
and over Europe, DCCs were most frequently missed by
the TROPO method (35 % and 19 % of cases, respectively),
while in Africa they were missed by the IRW method (23 %
of cases). The better performance of the BTD method was
at the price of a higher rate of false-positive detections: the
methods classified non-DCCs as DCCs in 12 % (Europe,
global) and 17 % (Africa) of cases.

Since CloudSat-CALIPSO data label clouds at each level
in the atmospheric profile, we were able to identify typical
scenarios where a non-DCC observation was mislabelled as
a DCC. We identified two underlying patterns. First, three
types of clouds were most frequently (> 90 % of cases) mis-
classified as DCCs: high clouds, As, and Ns. Second, which
of these three types dominated depended on whether we in-
vestigated a single- or a multilayer cloud scenario (Table 2).

IR-based methods classified As and Ns as DCCs most fre-
quently when clouds occurred as a single layer. This error
accounted for over 35 % of misclassifications for each cloud
type – both globally and for Europe. However, in tropical
Africa, high clouds were more often mislabelled as DCC,
although never as frequently as As or Ns were (with the ex-
ception of in the BTD method).

The situation changed significantly in a multilayer cloud
environment. In this scenario, we only focused on the top-
most (highest) cloud layer – the first to be detected when
sensing from orbit. Our results showed that under such cir-
cumstances, IR methods falsely reported DCCs when the at-
mospheric profile was topped with As or high (cirrus-like)
clouds. The co-occurrence of high clouds with other cloud
types was the most challenging scenario, as this constituted
up to 66 % (TRW, TROPO) or 84 % (BTD) of false-positive
detections. In the multilayer environment, Ns were not a
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Figure 2. The optimal threshold for each method as a function of latitude (a–c), together with corresponding latitude-resolved measures of
accuracy. Kappa (κ) values were multiplied by 100 to match the 0 %–100 % range.

problem; they accounted for 0.4 % of erroneous cases regard-
less of the method or the region.

It is important to note that the As and Ns that were mis-
classified were the coolest clouds of their kind. The ini-
tial database of CloudSat/CALIPSO-MODIS matchups was

screened for observations that satisfied the condition TbWV−

TbIR>−10 K. Hence, all warm clouds, including a large
share of As/Ns, were automatically excluded from further
analysis. In the initial database of 175 million lidar–radar
profiles, 50 % of observations had TbIR in the range of 250–

Atmos. Meas. Tech., 18, 2721–2738, 2025 https://doi.org/10.5194/amt-18-2721-2025



A. Z. Kotarba and I. Wojciechowska: Satellite-based detection of deep-convective clouds 2729

Table 2. Percentage of cloud types classified by the four methods
as DCC but not reported as DCC in the CloudSat-CALIPSO obser-
vations. When more than one cloud layer occurred in a lidar–radar
profile, the cloud type refers to the highest layer (i.e. the first to be
observed when looking from a satellite).

Cloud type frequency (%) Cloud type frequency (%)
(single layer) (multilayer)

Method High As Ns Other High As Ns Other

Global

IRW 16.6 44.4 38.8 0.2 64.6 35.2 0.1 0.1
BTD 8.8 37.8 40.8 12.6 59.7 36.8 0.2 3.3
TROPO 5.4 36.8 54.5 3.3 33.4 65.4 0.4 0.8
ISCCP 1.1 24.1 70.6 4.2 60.3 37.1 0.2 2.4

Europe

IRW 8.2 40.0 51.1 0.7 39.0 60.7 0.1 0.2
BTD 5.0 37.9 48.2 8.9 45.4 52.4 0.1 2.1
TROPO 5.7 35.8 56.4 2.1 29.6 69.9 0.2 0.3
ISCCP 0.7 21.7 72.9 4.7 43.4 54.9 0.2 1.5

Africa

IRW 17.6 52.1 30.4 0.0 65.9 33.8 0.1 0.2
BTD 29.1 50.7 17.5 2.7 83.5 16.2 0.0 0.3
TROPO 17.3 51.3 31.4 0.0 65.6 34.1 0.1 0.2
ISCCP 3.2 42.3 52.9 1.6 74.7 24.9 0.0 0.4

282 K. After filtering (9.5 million profiles), the range shifted
towards a noticeably colder regime spanning 225–240 K.

3.4 Sensitivity to the selection of a threshold

Once we had calculated the optimal threshold for each DCC
detection method, we then calculated the mean seasonal
DCC frequency for June–July–August 2005. The thresholds
identified in the present study were applied to an independent
dataset, namely the geostationary Meteosat Second Genera-
tion data, which is collected hourly (every full hour). We used
the High Rate Level 1.5 Image Data product based on Spin-
ning Enhanced Visible and InfraRed Imager (SEVIRI) ob-
servations in two heritage bands: 6.25 and 10.8 µm (Holm-
lund et al., 2021). Data were accessed from the EUMET-
SAT archive (https://data.eumetsat.int/, last access: 23 June
2025). The geostationary perspective enables observations of
approximately half of Earth’s surface – a hemisphere that is
centred at a sub-satellite point (0° E, 0° N in the case of Me-
teosat). Hereinafter we refer to that coverage as the Meteosat
full disc. For practical reasons, the analysis only considers
a fraction of the full disc data, i.e. the location within SE-
VIRI’s zenith angle below 70° (see Fig. 3). The definitions
of Europe and tropical Africa remained unchanged.

A sensitivity study provided two sets of statistics. In
the first set, we adopted fixed thresholds of 226.0 K for
the IRW method, −2.0 K for the BTD method, and 15.0 K
for the TROPO method (Fig. 3a–c). For the second set of
statistics we used thresholds developed for each 5° latitude
zone (Fig. 3d–f). As the results of testing different latitudes

(Sect. 3.2) only covered 1 year of observations, the transition
in threshold values between zones was not smooth (Fig. 2a–
c), impacting the spatial distribution of DCCs (Fig. 3d–f). It
is likely that artefacts could be eliminated with more data
and that the change in threshold could be continuous rather
than incremental – however, both of these refinements were
beyond the scope of this study.

DCC detection frequencies for the two approaches dif-
fered substantially from each other (Table 3), demonstrat-
ing that the threshold selection significantly impacted the
resulting DCC climatology. In the most extreme cases (the
IRW method for Europe and the TROPO method for Africa),
latitude-adjusted thresholds doubled the frequency of DCC
occurrence compared to the fixed-threshold approach. For
the remaining situations, the relative differences were lower
(±30 % of DCC frequency) and in two cases did not exceed
∼ 10 % (the BTD method adopted globally and the TROPO
method applied to Europe).

Figure 3g–i show that the tropics were most sensitive to
threshold selection. Changing from a fixed global threshold
to a regionally adjusted threshold reduced DCC frequency
along the Intertropical Convergence Zone (ITCZ) when us-
ing the IRW or BTD methods (by one-third in relative terms)
but increased DCC frequency for the TROPO method (rates
at least doubled). The ITCZ was a dominant feature on
DCC frequency maps – but only when the BTD method
was used (Fig. 3b, e). ITCZ-comparable (or even higher)
DCC frequencies were noted over the Southern Ocean (IRW,
TROPO; Fig. 3g, i) and over mountainous regions of Europe
(the Alps, the Carpathians). The latter finding was particu-
larly apparent when using the TROPO method with a fixed
global threshold (Fig. 3c) and for the IRW method with a
regionally adjusted threshold (Fig. 3d). On the other hand,
higher frequencies of DCCs over the Southern Ocean may
not be due to the presence of actual DCCs but rather an ef-
fect of the misclassification of cold clouds as DCCs.

To explore the sensitivity of DCC climatology to thresh-
old selection in more detail, we calculated DCC frequency
as a function of the threshold value (Fig. 4). The slope of
the DCC frequency curve is the most important information
to consider when testing sensitivity: a steep slope indicates a
relatively large change in DCC frequency for a small change
in the threshold value.

We observed that for the IRW (Fig. 4a) and BTD (Fig. 4b)
methods, the tropics (Africa) stood out as most sensitive to
the choice of threshold. A shift of ±1–2 K in the threshold
resulted in a change in DCC frequency that was 2 times
larger than the corresponding change over Europe or at the
global (full-disc) scale. However, the same was not true for
the TROPO method. This was due to an increase in sensi-
tivity observed for Europe and the full disc (Fig. 4c): while
the slope of the sensitivity curve for both of these regions
remained low when using the IRW and BTD methods, it be-
came as steep as the one noted for the tropics when using
the TROPO method. Consequently, the TROPO method was
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Figure 3. Mean seasonal (June–July–August 2005) DCC frequency based on hourly Meteosat/SEVIRI data and the methods evaluated in this
study. Statistics were calculated using a fixed global threshold (a–c) or latitude-adjusted thresholds (d–f); panels (d)–(i) summarize zonally
averaged DCC frequencies. The frequencies are given in the range of 〈0,1〉, where 0.0 indicates a DCC-free sky and 1.0 indicates DCCs
occurring consistently across the sky.

Table 3. Mean seasonal (June–July–August 2005) DCC frequency estimated using a fixed global threshold or a latitude-adjusted threshold.
The frequencies are given in the range of 〈0,1〉, where 0.0 indicates a DCC-free sky and 1.0 indicates DCCs occurring consistently across
the sky.

Detection DCC frequency with fixed DCC frequency with
method (global) threshold latitude-adjusted thresholds

Full disc Europe Africa Full disc Europe Africa

IRW 0.021 0.009 0.076 0.033 0.021 0.051
BTD 0.009 0.007 0.046 0.009 0.010 0.030
TROPO 0.017 0.026 0.026 0.028 0.023 0.054
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Figure 4. Mean seasonal (June–July–August 2005) DCC frequency as a function of the threshold applied to the DCC detection methods
evaluated in this study. The frequencies are given in the range of 〈0,1〉, where 0.0 indicates a DCC-free sky and 1.0 indicates DCCs occurring
consistently across the sky.

identified as the most sensitive to the threshold value – re-
gardless of the region it was applied to. On the other hand,
the BTD approach was least sensitive to a change (the most
desirable result), except for in the tropics.

DCCs are very infrequent phenomena. Their frequency of
occurrence is < 0.1, on a scale where 0.0 means no DCC
at all and 1.0 indicates their permanent presence. A small
change in that frequency (in terms of percentage points)
translates into a high relative change. Here, we define rela-
tive change as the difference between the new value and the
reference value divided by the reference value. For the data
presented in Table 4, the reference was the full-disc DCC fre-
quency with a fixed threshold, while the new DCC value was
calculated using a threshold increased (or decreased) by 1 K.

Table 4 reveals that a change in the threshold of as little
as 1 K can substantially affect the final climatological esti-
mate of DCC frequency. In the case of the BTD method, a
±1 K shift led to a∼ 40 % relative change in DCC frequency,
meaning that the frequency increased or decreased by nearly
half of its absolute value (∼ 0.01 for Europe and globally).
An equally significant relative change was found for the full
disc and Europe, while Africa was close behind (∼ 20 % rel-
ative change, 0.01 absolute value). Comparisons of the other
methods revealed relative differences in DCC frequency of
4 %–19 %; typically values were close to ∼ 10 %.

4 Discussion

4.1 Misclassification of DCC

In this study, we evaluated three IR methods that are widely
used to detect DCCs. We found that even when the opti-
mal configuration is adopted, either globally or regionally,
the final accuracy of the algorithm is only moderate (up
to 73 %). One factor that may have impacted our results
is the reliability of reference data, namely the accuracy of

Table 4. Mean seasonal (June–July–August 2005) DCC frequency
calculated using a fixed global threshold (the reference DCC fre-
quency) and with thresholds increased and decreased by 1 K. Val-
ues given in parentheses denote relative change, in other words, the
difference between the reference DCC frequency and the frequency
after the threshold change, normalized with reference to the DCC
frequency. The frequencies are given in the range of 〈0,1〉, where
0.0 indicates a DCC-free sky and 1.0 indicates DCCs occurring con-
sistently across the sky.

Detection Reference Simulated DCC frequency with
method DCC threshold changed by

frequency −1 K +1 K

Full disc

IRW 0.021 0.019 (−11 %) 0.023 (+8 %)
BTD 0.009 0.012 (+42 %) 0.005 (−37 %)
TROPO 0.017 0.015 (−11 %) 0.020 (+13 %)
ISCCP 0.027 – – – –

Europe

IRW 0.009 0.007 (−19 %) 0.010 (+14 %)
BTD 0.007 0.010 (+43 %) 0.004 (−38 %)
TROPO 0.026 0.024 (−10 %) 0.029 (+10 %)
ISCCP 0.034 – – – –

Africa

IRW 0.076 0.072 (−5 %) 0.079 (+4 %)
BTD 0.046 0.056 (+22 %) 0.034 (−26 %)
TROPO 0.026 0.023 (−10 %) 0.028 (+10 %)
ISCCP 0.075 – – – –

the CloudSat-CALIPSO cloud classification product (2B-
CLDCLASS-LIDAR).

Assessments of the CloudSat-CALIPSO cloud typing al-
gorithm revealed partial disagreement in DCC frequencies
between lidar–radar and other datasets, namely satellite-
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Table 5. DCC detection accuracy in the tropics (±25° N). DCCs are defined as the merged CloudSat-CALIPSO DCCs and the nimbostratus
classes (as in Yang et al., 2023) and as DCC alone (as in this study). The IRW method uses a threshold of 215 K, while the BTD method
adopts a threshold of 0 K.

Method Ns and DCCs as reference Only DCCs as reference

Accuracy PoD FAR κ Accuracy PoD FAR κ

IRW 61.2 % 58.2 % 38.0 % 0.225 64.3 % 66.4 % 36.3 % 0.286
BTD 59.2 % 44.9 % 37.1 % 0.114 63.3 % 53.8 % 33.8 % 0.264

based ISCCP climatology and surface-based visual (manual)
classification (Wang and Sassen, 2001; Sassen and Wang,
2008; Sarkar et al., 2022). Specifically, As and Ns clouds
tended to be reported more frequently in CloudSat data than
in the datasets mentioned. Such overrepresentation could ex-
plain why these two cloud types were also the ones most fre-
quently considered to be DCCs by the IR method but consid-
ered non-DCC by the lidar–radar reference. Possibly some
As and Ns were actually DCCs and hence should be con-
sidered DCCs in the CloudSat-CALIPSO reference used in
this study. Such a procedure was implemented by Yang et
al. (2023), who validated IR-based DCC detection methods
in the tropics (25° S–25° N). The authors decided to merge
Ns and DCCs into one category and use it as a reference
for DCCs. To test how such a strategy impacts detection ac-
curacy, we repeated the Yang et al. (2023) study with two
variants: with and without Ns in the reference. The results
showed (Table 5) that the final accuracies were 4 %–5 %
higher when Ns clouds were omitted but did not differ sig-
nificantly. We conclude that not combining Ns with DCCs in
our study had little impact on the final results.

In the multilayer scenario, cloud misclassification was fre-
quently the result of a method classifying high clouds (cir-
rus) as DCCs. This can be explained by the simple fact
that IR-based methods rely on cloud top temperature. Cir-
rus clouds tend to be as cold as DCCs, and they can only
be distinguished by examining their vertical extent or op-
tical thickness. These parameters, however, are unavailable
when IR and WV channels are considered. On the other
hand, high clouds were also mislabelled as DCCs in many
ISCCP observations. ISCCP data include COT; therefore it is
reasonable to expect fewer misclassifications. Unfortunately,
ISCCP COT data are column-integrated, and cirrus optical
thickness is included in the optical thickness of underlying
cloud layers (including Ns and As).

Misclassification errors were dominated by false-positive
detections (errors of commission). Regardless of the IR-
based method, this situation was found for 12 %–14 % of
all observations under the single-layer scenario and for 4 %–
8 % of observations under the multilayer scenario (Table 6).
On the other hand, false-negative detections (errors of omis-
sion) only accounted for 2 %–5 % of observations and only
occurred under the single-layer scenario. This means that the
IR-based DCC detection algorithms investigated in this study

are unlikely to miss a DCC. It is much more likely that they
will identify a cloud as a DCC when it is not one. Conse-
quently, they may lead to an overestimation of DCC extent
or frequency.

Based on our results, we conclude that the main reason
for DCC misclassification with the IR-based methods inves-
tigated is the scarcity of multispectral information. Bright-
ness temperature is only known for one or two IR bands, and
this is insufficient to correctly distinguish between the cold
tops of DCCs and all other clouds that have similar thermal
characteristics (e.g. cirrus or some elevated Ns). Expanding
the range of spectral information, even indirectly (via prod-
ucts like COT or cloud top pressure/height), may improve
detection performance, as demonstrated by the ISCCP cli-
matology.

It is also important to realize that the limitations inherent
in all types of cloud data make it impossible to develop a
reference dataset that is 100 % correct. Although CloudSat-
CALIPSO is widely considered to be the most reliable cur-
rent option, it is not free from its own misclassification is-
sues. Importantly, all of the IR-based methods we assessed
in this study were validated against exactly the same (com-
mon) reference. Therefore, if even the reference dataset has
limitations and actual (absolute) DCC detection accuracies
may differ from those reported, relative differences between
methods were captured correctly, and we were able to indi-
cate which of them performed more or less efficiently.

4.2 Impact of matching geometry

A second factor that may have influenced the results of our
study is the spatial and temporal collocation of lidar, radar,
and MODIS observations. Each instrument was installed on
a different satellite, meaning that a vertical atmospheric col-
umn was not observed simultaneously by all three sensors.
In 2007, CloudSat (the Cloud Profiling Radar instrument)
preceded CALIPSO (the Cloud–Aerosol Lidar with Orthog-
onal Polarization instrument) by ∼ 15 s and followed Aqua
(MODIS) by approximately 1 min.

The horizontal speed of a storm cloud is∼ 30–100 km h−1,
and a cloud could have shifted by ∼ 0.5–1.5 km during the
minute that separated the MODIS and CloudSat-CALIPSO
passes. This distance is generally within CloudSat’s foot-
print (1.4× 1.1 km), meaning that misclassification would
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Table 6. Percentage of observations (%; n= 9 507 319) when an error of either omission (false-negative DCC) or commission (false-positive
DCC) was detected. Results are given for three cloud co-occurrence scenarios: no clouds (0 layers; 4 % of cases), clouds only in one layer
(32 % of cases), and multilayer clouds (2+ layers; 63 % of cases). The number of layers is according to CloudSat-CALIPSO observations.

Method Commission error Omission error Errors

0 layers 1 layer 2+ layers 0 layers 1 layer 2+ layers (total)

IRW 0.03 12.12 8.38 0.00 2.04 0.00 22.57
BTD 0.77 14.13 8.29 0.00 1.62 0.00 24.81
TROPO 0.15 11.41 3.71 0.00 4.46 0.00 19.73
ISCCP 0.00 7.24 4.43 0.00 4.27 0.00 15.94

only occur if CloudSat’s ground track was collocated with
the cloud’s edge and if the cloud moved outward relative to
the ground track.

It should also be noted that a cloud is a three-dimensional
structure that evolves vertically, especially when it is a DCC
with a strong updraught. Updraught intensity varies from a
few metres per second for fair weather cumuli (Kollias et al.,
2001) to 10–30 m s−1 for tropical cyclones (Stern and Bryan,
2018) and 30–50 m s−1 for the most rapidly evolving DCCs
(Apke et al., 2018; Musil et al., 1991). Therefore, cloud top
height can increase by between 500 m (updraught∼ 8 m s−1)
and 2 km (updraught ∼ 30 m s−1) over 1 min, corresponding
to a decrease in cloud top temperature of 3–12 K (assuming
a rate of 6 K km−1). This creates a situation where CloudSat-
CALIPSO could have detected a DCC that was not yet de-
tected as a DCC by MODIS: the imager observed a cloud a
few kelvins before it became a DCC.

The aforementioned scenario would result in more false
negatives, reducing the overall accuracy of IR-based meth-
ods compared to a scenario in which all sensors operated
in collocated mode. The latter could be achieved if lidar,
radar, and imager instruments were installed on the same
platform, which is the case for the Earth Clouds, Aerosol,
and Radiation Explorer (EarthCARE) satellite. The satellite
was launched in 2024 and is in the commissioning phase at
the time of writing.

EarthCARE hosts not only lidar and radar instruments but
also a seven-channel multispectral imager that covers three
IR bands: 8.8, 10.8, and 12.0 µm (Illingworth et al., 2015).
The setup eliminates all uncertainties related to spatial and
temporal mismatches in a DCC observation. Unfortunately,
the imager does not operate in the WV absorption bands, rul-
ing out the use of the two-channel DCC detection method.
This situation is similar to CALIPSO’s imager, the Imag-
ing Infrared Radiometer (IIR), which operated in three bands
(8.7, 10.5, 12.0 µm). However, none of these channels con-
sider WV absorption, as the sensor was optimized for joint
CALIOP–IIR retrievals of cirrus microphysical parameters.

Importantly, EarthCARE’s radar – unlike CloudSat’s – is
a Doppler instrument. It provides data on the vertical veloc-
ity of hydrometeors (cloud particles, rain) with an accuracy
better than 1.3 m s−1 (Wehr et al., 2023). This may improve

discrimination between cloud types and provide more accu-
rate labelling of DCCs for not only validation but also train-
ing various machine learning models (Afzali Gorooh et al.,
2020; Kaps et al., 2024). Nonetheless, the use of imagers
that include WV absorption bands makes MODIS-CloudSat-
CALIPSO joint observations unique and the most suitable
for the evaluation of DCC detection methods.

4.3 Implications for cloud climatology

Given the limitations of the MODIS-CloudSat-CALIPSO
cloud observing system and based on our results, we con-
clude that the TbWV− TbIR brightness difference (BTD)
method is slightly more robust among the algorithms eval-
uated. Accuracy was highest, as was the κ coefficient, indi-
cating the best agreement with the CloudSat-CALIPSO ref-
erence data. On the other hand, the BTD method resulted in
the lowest DCC frequency among all of the algorithms con-
sidered, which, in turn, impacted the method’s sensitivity to
the threshold selection. Importantly, we found that the opti-
mal global threshold was−2 K (−1 K in the tropics,−3 K in
the midlatitudes). These values differ from a typical thresh-
old of 0 K. Since higher thresholds lower the DCC frequency,
the adoption of a 0 K threshold may underestimate DCC fre-
quency compared to the CloudSat-CALIPSO dataset.

The BTD method requires data from the IR-window and
water vapour (WV) absorption channels, and it can be eas-
ily applied to all generations of meteorological geostation-
ary satellites. It supports the development of long-term (more
than 40 years) DCC climatologies and composite DCC maps
generated with data from various geostationary platforms
such as the NCEP/CPC Level 3 Merged Infrared Brightness
Temperatures product, the NASA SatCORPS Global Cloud
Composite product, or the GEO-ring composites envisioned
for the ISCCP-Next Generation project.

The WV absorption band is typically not included on
imagers that are hosted on polar-orbiting platforms. Exam-
ples include the Advanced Very High Resolution Radiome-
ter (NOAA-6/19, MetOp), the Visible/Infrared Imager Ra-
diometer Suite (SNPP, NOAA-20/21, JPSS-3/4), the Multi-
channel Visible Infrared Scanning Radiometer (Feng-Yun-
1 series), the Visible and Infrared Radiometer (Feng-Yun-
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3A/C), and the VIS/IR Imaging Radiometer (Meteor-M se-
ries). Although these instruments have been used since the
late 1970s or early 1980s, none feature a spectral band in the
6.5 µm WV absorption region.

Detecting DCCs without the WV band requires using the
single-channel IRW method or IR-window data with auxil-
iary information on the tropopause temperature (the TROPO
method). In this case and when locally adjusted thresholds
are used, the IRW and TROPO methods produce compara-
ble results in terms of both overall agreement with CloudSat-
CALIPSO and the spatial distribution of DCCs. We found
that the TROPO method performed slightly better than the
IRW approach but only for Europe and only by 3 %–4 %.
This finding indicates that the inclusion of tropopause data
does not necessarily lead to a significant improvement in
DCC detection, at least when the analysis explores the dif-
ference between the tropopause temperature and cloud Tb.

Importantly, both the TROPO and IRW methods recorded
unexpectedly high DCC frequency, mostly over the Southern
Hemisphere (in winter). According to these methods, DCCs
in these regions were as frequent as in the ITCZ, which is not
confirmed by other datasets (e.g. Norris, 1998; Sarkar et al.,
2022). We conclude that the TROPO and IRW approaches
performed poorly at higher latitudes, overestimating the fre-
quency of DCCs. This may have been due to a misclassifi-
cation of cold-top Ns or As as DCCs, as these cloud types
occur most frequently at higher latitudes (Chen et al., 2000).
As a consequence, the IRW and TROPO methods may be of
limited use during colder seasons at higher latitudes – how-
ever, this is the region that is sampled best by polar-orbiting
spacecraft, and it is where climate change may impact DCC
frequency the most.

Our Meteosat-based sensitivity study demonstrated that
the selection of an appropriate threshold is crucial for de-
riving accurate DCC frequencies. This finding is important
in order to be able to construct DCC climatologies from ra-
diance time series originating from various sensors (different
families of sensors or different generations within a single
family). A 1 K difference in Tb may be a consequence of a
difference in the spectral response function of different sen-
sors, or it could be the consequence of the sensor’s calibra-
tion (Gunshor et al., 2004). The same DCC observed simul-
taneously by two instruments may appear in the final dataset
as an object with different Tb. Hence, using a single threshold
for both datasets will produce incoherent DCC climatologies.

If we take the CloudSat-CALIPSO classification as a ref-
erence, our study reveals the limits of the most common
IR-based DCC detection methods. Specifically, we identi-
fied thresholds that result in the highest achievable accuracy.
However, better results can possibly be achieved with other
methods. We also evaluated DCC statistics resulting from the
ISCCP cloud typology. DCC detections based on COT and
CTP were shown to be more reliable than any of the IR-based
methods. This finding demonstrates that daytime DCC detec-
tion benefits from the availability of shortwave radiances.

More complex algorithms, such as machine learning, can
be used to process IR-only data. For instance, Yang et
al. (2023) trained their algorithm on Tb but also used a
number of derivative measures that addressed local variation
(minima, maxima, gradients). They achieved 72 % accuracy
in DCC detection. Even higher accuracy (98 %) was reported
by Chen et al. (2023), who considered texture information
along with a sequence of images in three IR bands (6.25,
10.7, and 12.0 µm).

Since DCC detection requires both daytime and night-
time data, IR observations from cloud imagers will remain
a primary source of information. This is especially true for
long-term climate studies, as the WV absorption channel and
the IR-window channel are the only two heritage bands that
have been available on geostationary satellites since the early
1980s. Machine learning techniques that are trained on more
sophisticated datasets (e.g. EarthCARE) offer the potential
for more reliable and homogenous DCC climatologies that
go beyond the limits of classical IR-based algorithms.

5 Summary and conclusions

Our study explored the consistency of DCC climatologies de-
rived from three widely used IR-based DCC detection algo-
rithms, namely: (1) the IR-window method (11 µm spectral
channel), (2) the brightness temperature difference (BTD)
between 6.7 and 11 µm, and (3) the temperature difference
between the tropopause and the 11 µm channel (TROPO).
These algorithms were applied to MODIS/Aqua radiances,
and compared with the unique, state-of-the-art CloudSat-
CALIPSO lidar–radar cloud classification dataset. We as-
sumed CloudSat-CALIPSO as a reference (ground truth).
However, it must be acknowledged that in cloud research,
there is no universally reliable dataset, and in a strict sense,
our study is a comparison with lidar–radar, which we con-
sider the most reliable of the currently available data.

In total, 9 507 319 observations for 2007 were analysed,
marking the first global-scale evaluation of these DCC detec-
tion methods. The two key conclusions from our study are as
follows.

– IR-based methods demonstrate moderate accuracy in
DCC detection (< 75 %; κ < 0.45) but only when re-
gionally or zonally adjusted thresholds are used. Fixed
globally applied thresholds should be avoided. De-
tection ambiguity arises from the misclassification of
DCCs as Ns and As (in single-layer cloud scenarios)
or as cirrus and As (in multilayer cloud scenarios). We
conclude that these disagreements are partially due to
the method’s simplicity but also identified uncertainties
in the CloudSat-CALIPSO cloud classification and im-
perfections in the observation system (notably, the tem-
poral misalignment between lidar, radar, and imager ob-
servations).
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– The high sensitivity of IR-based methods to thresh-
old selection undermines the homogeneity of the re-
sulting DCC climatologies. Our analysis demonstrates
that shifting the threshold by as little as ±1 K leads to
a change in mean seasonal DCC estimates of 0.002–
0.010, which translates into a relative change of 4 %–
40 %. This finding is of particular importance when
combining IR data from different sensors, whether to
construct global mosaics or to produce time series of
DCCs from various generations of an instrument.

Assuming CloudSat-CALIPSO data to be ground truth, we
conclude that if the WV absorption and IR-window chan-
nels are available, the BTD method should be prioritized over
the IRW and TROPO methods (e.g. for geostationary satel-
lites). If these channels are not available (as with most polar-
orbiting platforms), the TROPO method may provide com-
parable results but at the cost of including auxiliary data on
tropopause temperature. The IRW method should be consid-
ered a last resort for the detection of DCCs.

As technology progresses, the launch of new cloud im-
agers with more spectral channels (e.g. Flexible Combined
Imager, GeoXO Imager, METimage) will enhance the accu-
racy of DCC detection. This improvement will be especially
notable when new data sources are paired with new data pro-
cessing technologies, such as machine learning. Neverthe-
less, the WV absorption channel and the IR-window channel
remain the most important spectral bands for long-term DCC
climate studies, along with the IR-based methods that utilize
them.

Data availability. MODIS data are available from the NASA
archives: the MYD06 product (https://doi.org/10.5067/MODIS/
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MODIS/MYD021KM.061, MCST, 2017b). CloudSat-CALIPSO
data are available from the University of Colorado (https:
//www.cloudsat.cira.colostate.edu/data-products/2b-cldclass-lidar,
CIRA, 2025). SEVIRI data are available from the EUMETSAT
archive (https://navigator.eumetsat.int/product/EO:EUM:DAT:
MSG:HRSEVIRI, EUMETSAT, 2025).
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