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Abstract. The shapes of ice crystals play an important role in
global precipitation formation and the radiation budget. Clas-
sifying ice crystal shapes can improve our understanding of
in-cloud conditions and these processes. Existing classifica-
tion methods rely on features such as the aspect ratio of ice
crystals, environmental temperature, and so on, which bring
high instability to the classification performance, or employ
supervised machine learning algorithms that heavily rely on
human labeling. This poses significant challenges, including
human subjectivity in classification and a substantial labor
cost in manual labeling. In addition, previous deep learn-
ing algorithms for ice crystal classification are often trained
and evaluated on datasets with varying sizes and classifica-
tion schemes, each with distinct criteria and a different num-
ber of categories, making it difficult to make a fair compar-
ison of algorithm performance. To overcome these limita-
tions, a contrastive semi-supervised learning (CSSL) algo-
rithm for the classification of ice crystals is proposed. The
algorithm consists of an upstream unsupervised learning net-
work tasked with extracting meaningful representations from
a large number of unlabeled ice crystal images, and a down-
stream supervised network is fine-tuned with a small subset
of labeled images of the entire dataset to perform the classifi-
cation task. To determine the minimum number of ice crystal
images that require human labeling while maintaining the al-
gorithm performance, the algorithm is trained and evaluated
on datasets with varying sizes and numbers of categories.
The ice crystal data used in this study were collected dur-

ing the NASCENT campaign at Ny-Ålesund and CLOUD-
LAB project on the Swiss Plateau using a holographic im-
ager mounted on a tethered balloon system. In general, the
CSSL algorithm outperforms a purely supervised algorithm
in classifying 19 categories. Approximately 154 h of manual
labeling can be avoided using just 11 % (2048 images) of the
training set for fine tuning, sacrificing only 3.8 % in over-
all precision compared to a fully supervised model trained
on the entire dataset. In the four-category classification task,
the CSSL algorithm also outperforms the purely supervised
algorithm. When fine-tuned on just 2048 images (25 % of
the dataset), it achieves an overall accuracy of 89.6 %, nearly
matching the 91.0 % accuracy of the supervised algorithm
trained on 8192 images. When tested on the unseen CLOUD-
LAB dataset, CSSL shows superior generalization, improv-
ing accuracy by an average of 2.19 %. Our analysis also re-
veals that both CSSL and purely supervised algorithms ex-
hibit inherent instability when trained on small dataset sizes,
and the performance difference between them converges as
the training set size exceeds 2048 samples. These results
highlight the strength and practical effectiveness of CSSL in
comparison to purely supervised methods and the potential
of the CSSL algorithm to perform well on datasets collected
under different conditions.
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1 Introduction

The shape of the ice crystals has a strong influence on the ra-
diative properties of ice and mixed-phase clouds. It mainly
affects the scattering and absorption properties of clouds
(Wendling et al., 1979; Yang et al., 2000). Considering dif-
ferent shapes in the climate model, both longwave terrestrial
radiative forcing and shortwave radiative forcing of the Earth
can change significantly (Wendisch et al., 2007; Liou et al.,
2008; Järvinen et al., 2018). In addition, global precipitation
is influenced by the shape of the ice crystals. The intensity,
duration, and type of precipitation are governed by the shapes
of the ice crystals within the cloud and the associated micro-
physical processes and environmental conditions (Thériault
et al., 2012; van Diedenhoven et al., 2014; Santachiara et al.,
2016; Schlenczek et al., 2017; Gupta et al., 2023).

Different environmental conditions and complex micro-
physical processes in clouds result in a wide variety of ice
crystal shapes found in nature. Ice crystals grow into basic
habits such as columns, plates, and dendrites under differ-
ent temperatures and supersaturation (Lohmann et al., 2016).
Through depositional growth, basic habits accumulate mass
and eventually fall under gravity. They collide with super-
cooled droplets and other ice crystals as a result of the dif-
ference in the fall speed. This leads to two microphysical
processes: riming and aggregation. In aggregation, two ice
crystals stick together, and in riming, supercooled droplets
freeze onto the ice crystals. Both processes change the shape
of the ice crystals (Lohmann et al., 2016). The shapes of ice
crystals can reveal the ambient conditions and microphysical
processes in which they grew (Pasquier et al., 2023). There-
fore, it is essential to have a classification algorithm for ice
crystals.

With the development of airborne single-particle imaging
probes, much research has focused on classifying ice crys-
tals based on the geometric and environmental features of the
ice crystal such as the maximum diameter, aspect ratio, and
environmental temperature using machine learning methods
such as principal component analysis (Lindqvist et al., 2012)
and multivariate logistic regression (Praz et al., 2018). Deep-
learning-based methods for the classification of ice crystals
began to emerge when Xiao et al. (2019) proposed the use of
convolutional neural networks (CNNs) to classify ice crys-
tal images taken by the Cloud Particle Imager (CPI). CNN
is a popular network structure used in various fields of at-
mospheric science for different visual learning tasks such
as cloud image classification (Ye et al., 2017; Lv et al.,
2022) and semantic segmentation for ground-based cloud
images (Song et al., 2020). Recently, Schmitt et al. (2024)
applied the Visual Geometry Group (VGG) algorithm, which
is a kind of CNN, to classify scattering pattern images of
ice crystals. However, Xiao et al. (2019) and Schmitt et al.
(2024)’s algorithm was limited to single-label classification
and therefore was not capable of classifying complex ice
crystals that undergo microphysical processes. Zhang et al.

(2022) proposed a multi-label scheme that considers both
basic habits and microphysical processes, and Zhang et al.
(2024) developed a rotated object detection algorithm for ice
crystals that can classify the ice crystal down to the aggre-
gated ice monomer scale.

Although deep-learning-based methods can automatically
extract more detailed features (Li et al., 2021), current meth-
ods are all based on supervised learning that is highly de-
pendent on extensive manual labeling for training. Experts
have a time-consuming and strenuous job labeling ice crystal
images (Xiao et al., 2019; Zhang, 2021; Jaffeux et al., 2022;
Zhang et al., 2024). Furthermore, we cannot make a fair com-
parison of the models proposed (Lindqvist et al., 2012; Praz
et al., 2018; Xiao et al., 2019; Schmitt et al., 2024; Zhang
et al., 2024) so far because they were trained and tested with
datasets of different numbers of categories and sizes, but the
size and number of categories of training sets are important
factors affecting the classification accuracy of the models.

To overcome the limitations, we propose a contrastive
semi-supervised learning algorithm (CSSL). The algorithm
consists of two main stages: unsupervised pre-training in the
upstream network and supervised fine tuning in the down-
stream network. During the unsupervised pre-training phase,
the algorithm extracts features from a large collection of un-
labeled images of ice crystals and learns the specific features
of different shapes of ice crystals. These learned features are
then transferred to the downstream network by inheriting the
weights of the upstream network during the supervised fine-
tuning stage. By using the pre-learned features, the need for
labeled images in the fine-tuning process is significantly re-
duced, leading to improved efficiency and performance. The
algorithm aims to reduce the workload of manually label-
ing ice crystal images when training a deep-learning-based
model while achieving a higher classification accuracy com-
pared to traditional fully supervised learning algorithms. In
addition, we explore the influence of two factors: (1) the size
of training set and (2) the number of categories in the classifi-
cation performance. Understanding how classification accu-
racy is affected by the size of the training set will be valuable
for researchers working with limited labeled datasets. The
data used in this study are described in Sect. 2. A detailed in-
troduction to CSSL is given in Sect. 3. The implementation
is presented in Sect. 4. Section 5 presents the results and dis-
cussions of our study. Section 6 presents the conclusions and
relevant outlooks.

2 Data

This study used three ice crystal image datasets to train and
test. These images were collected during the NASCENT
campaign, which was conducted in Ny-Ålesund, Svalbard,
Norway (Pasquier et al., 2022a), and during the CLOUD-
LAB project, which was conducted on the Swiss Plateau
in central Switzerland (Henneberger et al., 2023). The ice
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images were collected by the HOLographic Imager for Mi-
croscopic Objects 3B (HOLIMO3B), which is a holographic
imager carried by a tethered balloon system (Ramelli et al.,
2020). A summary of datasets used in this study is shown in
Table 1.

The original dataset includes ice crystals, cloud droplets,
and artifacts. Ice crystals were distinguished from the rest of
the particles in the dataset using CNN, and details can be
found in Touloupas et al. (2020). The images of ice crys-
tals were then manually labeled according to the multi-label
classification scheme described in Zhang et al. (2024). The
dataset includes 19 categories in NASCENT19, 14 categories
in NASCENT20, and 4 categories in CLOUDLAB, with the
categories in NASCENT20 and CLOUDLAB being the sub-
set of those in NASCENT19 (Table 1).

The classification scheme in this study follows the one pro-
posed in Zhang et al. (2024), taking into account both basic
habits and microphysical processes. There are 19 categories
in the scheme (Table 2). The scheme contains seven basic
habits identified by Pasquier et al. (2022b) from the ice crys-
tal images collected and identified in mixed-phase clouds
of Ny-Ålesund during the NASCENT campaign (Pasquier
et al., 2022a). When combined with the two microphysi-
cal processes aging and aggregation, these basic habits de-
velop into 12 complex shape categories, after excluding com-
binations that were not feasible. Among the seven basic
habits, the “plate” and “column” formed due to deposition
growth under different temperature and supersaturation con-
ditions. The “lollipop” (Keppas et al., 2017) forms by a
droplet freezing on a columnar ice crystal, or the columnar
part is the result of depositional growth on a frozen droplet.
“CPC (columns on capped columns)” originated from cy-
cling through the columnar and plate temperature growth
regimes during their vertical transport by in-cloud circula-
tion (Pasquier et al., 2023). Ice crystals that are too small
for shape determination are categorized as “small”, while
large crystals with indistinguishable shapes are categorized
as “irregular”. As for the two microphysical processes, “ag-
gregate” describes the ice crystals with different basic habits
sticking together. If there were more than two individual ba-
sic habits identified in one image, it was tagged as aggre-
gate. In images we can observe sharp edges and clear indi-
vidual components of basic habits that undergo depositional
growth. “Aged” indicates that the ice crystals undergo pro-
cesses such as riming, melting, or sublimation. For example,
in the case of riming, the images of aged crystals usually
show softly textured edges, which represent the supercooled
droplets freezing on them.

The three datasets were collected under different envi-
ronmental conditions in the cloud, which are caused by
different weather conditions (Pasquier et al., 2022b; Hen-
neberger et al., 2023), and therefore the distributions of
ice crystal categories in these datasets are very different.
Figure 1 shows the distribution of categories in the three
datasets and the example images for each category. The

ice crystals in NASCENT19 were dominated by column,
CPC, and column_aged, which accounted for 66.5 % in to-
tal, while the dominating categories in NASCENT20 were
mainly irregular, small, and irregular_aggregate, accounting
for 54.4 %. In addition, lollipop, CPC, lollipop_aggregate,
droplet_aggregate, and CPC_aggregate were not detected in
NASCENT20. The CLOUDLAB dataset has 2143 labeled
images used in this study. These images have four categories
and are all column-related shapes including column, col-
umn_aged, column_aggregate, and column_aged_aggregate.
The categories present in NASCENT20 and CLOUDLAB
are indicated in Table 2. The large discrepancy between
the distribution of categories in the three datasets demon-
strates the natural variability of ice crystal shapes in differ-
ent observations (Zhang et al., 2024). According to Pasquier
et al. (2022a, b), NASCENT19 was collected when the
temperature in the cloud ranged from −8 to −1 °C, while
NASCENT20 was collected when the temperature in the
cloud was between −22 and −15 °C. These temperatures
indicate that the ice crystals in NASCENT19 formed in
the column temperature regime, while the ice crystals in
NASCENT20 formed in the plate temperature regime (Lamb
and Verlinde, 2011). Those large particles such as the ir-
regular and irregular_aggregate likely collided with each
other during the sediment from the cloud aloft (Pasquier
et al., 2022b). The images in CLOUDLAB were collected
during the seeding experiments inside the supercooled stra-
tus clouds. Experiments and approaches were described in
Henneberger et al. (2023). The in-cloud temperature ranges
from −8 to 0 °C, which is the temperature regime for col-
umn growth. Therefore, the data used from CLOUDLAB are
dominated by column-related shapes. A comprehensive col-
lection of ice crystal examples can be found in the Appendix
of Zhang et al. (2024), where images of each distinct cate-
gory are presented with scale bars indicating their actual di-
mensions.

3 Method

This study applied a contrastive semi-supervised learning
(CSSL) algorithm to classify ice crystal images. It consists
of two parts of neural networks (Fig. 2). The upstream net-
work is an unsupervised contrastive pre-training that aims
to learn useful features of images without human supervi-
sion (i.e., image labels) using a pretext task (Zhang et al.,
2017). Such useful features can be easily adapted to the
downstream network for specific tasks such as image classi-
fication. A common pretext task in contrastive learning is in-
stance discrimination (Wu et al., 2018; He et al., 2020; Chen
et al., 2020). Instance discrimination is based on the concept
that the features of images in a latent space, known as em-
beddings, should reflect their visual similarity. Specifically,
embeddings of visually similar images should be positioned
closer together in the latent space, while those of visually
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Table 1. All datasets were collected by the same instrument. The number in the fifth column indicates the number of labeled images.
NASCENT19 and NASCENT20 were labeled by Zhang et al. (2024). The CLOUDLAB was labeled by the authors (see the “Author contri-
butions” section). The difference in collection date and location leads to a different number of categories shown in the last column.

Dataset Instrument Location Time Number Categories

NASCENT19 HOLIMO3B Ny-Ålesund, Norway November 2019 18 864 19
NASCENT20 HOLIMO3B Ny-Ålesund, Norway April 2020 14 490 14
CLOUDLAB HOLIMO3B Eriswil, Switzerland January 2023 2143 4

Figure 1. The distribution of ice crystal categories in each dataset used in this study is shown in the leftmost column. The x axis is the
number of images in the categories, and the y axis is the name of the category. NASCENT19, NASCENT20, and CLOUDLAB are indicated
by yellow, pink and, blue, respectively. For showing the difference in distribution, the order of the category y axis is sorted in descending
order of NASCENT19. The category “column_plate” is the same as CPC. The example images of each categories are shown to the right of
the distribution map.

dissimilar images should be further apart. This principle en-
sures that the model can effectively differentiate between in-
stances by clustering similar images and separating dissimi-
lar ones based on their visual characteristics. In the context

of ice crystal classification, the general aim of unsupervised
contrastive learning is to move ice crystal images of different
categories away from each other in latent space while bring-
ing images of the same categories as close together as pos-
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Table 2. Description of 19 categories of ice crystals according to the classification scheme proposed in Zhang et al. (2022). It includes 7 basic
habit categories and 12 more complex categories. The last two columns of the table record whether the category is included by NASCENT20
and CLOUDLAB. Modified from Zhang et al. (2024).

Class Description NASCENT20 CLOUD
-LAB

Basic Column Columnar ice crystals Yes Yes

habits Plate Plate-like ice crystals Yes No

Lollipop A lollipop forms when a single drizzle-sized water droplet
collides with a single columnar ice crystal and freezes on it.

No No

Frozen droplet A supercooled water droplet freezes due to the presence of
ice-nucleating particles (INPs) in it or contacting with an INP.
It usually has a non-spherical shape.

Yes No

Irregular Irregular-shaped ice crystals that cannot be clearly defined as
any ice basic habit

Yes No

Small Ice crystals that are too limited in pixel number to accurately
determine their basic habit (usually smaller than 75 µm)

Yes No

CPC Ice crystals with columns on capped columns (CPC) formed
when growing under both column and plate temperature
conditions (Pasquier et al., 2023).

No No

Complex Column_aged Columnar ice crystals that have supercooled cloud droplets
frozen on different faces

Yes Yes

shapes Column_aggregate Columnar ice crystals that aggregate with basic habits
(including columns)

Yes Yes

Column_aged_aggregate Columnar ice crystals that undergo both aggregation and aging Yes Yes

Plate_aged Plate-like ice crystals that have supercooled cloud droplets
frozen on different faces

Yes No

Plate_aggregate Plate-like ice crystals that aggregate with basic habits
(including plates)

Yes No

Plate_aged_aggregate Plate-like ice crystals that undergo both aggregation and aging Yes No

Lollipop_aggregate Lollipop ice crystals aggregate with basic habits (including
lollipops).

No No

Droplet_aged Frozen droplets that undergo aging and have supercooled cloud
droplets riming around them

Yes No

Droplet_aggregate Frozen droplets that aggregate with basic habits (including
frozen droplets)

No No

Droplet_aged_aggregate Frozen droplets that undergo both aggregation and aging Yes No

Irregular_aggregate Irregular-shaped ice crystals aggregate with basic habits
(including irregulars)

Yes No

CPC_aggregate CPCs aggregate with other habits (including CPCs) No No

sible, without knowing the labels of images. The upstream
network has three stages: Stage 1 is data augmentation, Stage
2 is the encoder and projector, and Stage 3 is the calculation
of the similarity (Fig. 2). The unsupervised training pipeline
is as follows: in each training iteration, every batch of unla-
beled images will first go through data augmentation. It can

transform the same images into visually different versions.
The transformed images will then be fed into two different
encoders to get feature arrays. The following multilayer per-
ceptron (MLP) will project the feature arrays to embeddings
on which the similarity will be calculated. The downstream
network adopts a traditional supervised image classification
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architecture, with a key distinction: the encoder is transferred
from the upstream network. This transfer makes the whole
network a semi-supervised learning approach, where the net-
work uses both unsupervised knowledge from the upstream
network and labeled image data from humans. The encoder
will firstly extract features from labeled images according
to the features it learned from the upstream network. The
MLP structure will then transform the features into high-
dimensional embeddings on which the classification loss will
be computed. In this section, we will introduce the stages in
both networks in the following sections: data augmentation
(Sect. 3.1), encoder and projector (Sect. 3.2), loss function
(Sect. 3.3), and downstream network (Sect. 3.4).

3.1 Data augmentation

Data augmentation can add extra samples to the dataset by
converting images to different versions. It is important for
unsupervised algorithms (He et al., 2020; Grill et al., 2020;
Chen et al., 2020; Chen and He, 2021). It converts original
images into visually different images by combining differ-
ent transformations including random cropping, color jitting,
Gaussian blurring, solarizing, random flipping, and random
rotation. These transformations are essential to contrastive
unsupervised pre-training since they can increase the diver-
sity and quantity original dataset and enhance learning ca-
pacity of the algorithm (Mumuni and Mumuni, 2022). The
examples of applying different transformations are shown in
Fig. 3.

The input images are uniformly resized to 256× 256 to
ensure the consistency during training. Then the images are
cropped from edges with a random area ranging from 60 %
to 100 % of the input image size and resized to 224× 224.
The lower limit of the cropping area is set to 60 % because
a smaller value will remove the components of an aggregate
crystal. For example, the column_aggregate becomes a col-
umn with crop area being lower than 60 %, which changes
the category of the original image and leads to a false aug-
mentation. After cropping, the image is transformed by a
color jitter which randomly changes the brightness, contrast,
and saturation of the image. The subsequent augmentation
blurs the image with a Gaussian kernel to reduce the level
of detail in the image. The following augmentation is solar-
ization, which inverts the pixel values. Then we randomly
flip the image horizontally or vertically, followed by random
rotation of the image ranging from 0 to 180°. These manip-
ulations provide different perspectives of the same image. In
one batch of training, each image will go though the data
augmentation twice; the transformations from the same im-
age are defined as positive samples, while the transforma-
tions from different images are defined as negative samples,
as circled in Fig. 2. By implementing data augmentation, we
can generate more different images for the algorithm to com-
pare, which is an effective way for the algorithm to learn use-
ful features for downstream tasks (Geiss et al., 2024). In the

downstream network’s supervised fine tuning, we also em-
ploy data augmentation, though its purpose differs from that
in contrastive learning. During fine tuning, data augmenta-
tion aims at expanding the size of our training dataset, which
prevents overfitting (Shorten and Khoshgoftaar, 2019). The
data augmentations during supervised fine tuning include
random cropping and random flipping. The input images in
the downstream network are firstly resized to 256×256, and
then they are cropped with area ranging from 60 % to 100 %
randomly. Finally, they are randomly flipped before being
imputed into the CNN.

3.2 Encoder and projector

The transformed images are then fed into Stage 2 where the
CNNs first extract their features and then the MLP structure
will project the features to embeddings in the latent space.
The ability to extract features is facilitated by different lay-
ers. Stage 2 in Fig. 2 shows an example of a convolutional
neural network. It consists of convolution and pooling lay-
ers. After multiple rounds of convolution and pooling, the
feature is converted to neurons (1× 1 size) through an aver-
aging pooling layer. These neurons are then fully connected
to the projector, which is a three-layer MLP (only the input
and output layers are shown in Fig. 2). The hidden layer in
the middle has 4096 neurons, and the output layer has the
dimension of 256, which is also the size of the final embed-
dings in the latent space.

One of the most representative structures of CNN, the deep
residual learning network (ResNet; He et al., 2016), is ap-
plied. It solves the problem of gradient vanishing in ultra-
deep CNNs (Bengio et al., 1994). The idea of a skip connec-
tion between the input and the convolution output ensures the
accuracy of the network classification while guaranteeing the
depth of the CNN. According to different versions of ResNet,
the layers within the convolution block and the number of
convolution blocks (i.e., the depth of the whole network) will
change. There are several versions of ResNet with different
numbers of convolution layers. ResNet50 contains 49 convo-
lution layers and 1 fully connected layer, which proved more
efficient and effective than other variations of ResNet (He
et al., 2016), and was used in this study. A deep network can
extract a hierarchy of features, from basic edges and textures
in the shallow layers to complex shape patterns in deeper lay-
ers (Zeiler and Fergus, 2014). In our task of learning the fea-
tures of ice crystals, it is necessary to have a sufficiently deep
network to extract detailed information such as the compli-
cated structures of aged particles or aggregates. There is only
one difference from the default ResNet50: we changed the
output dimension of the output layer to 256 (as mentioned
before) rather than 2048 used in the original ResNet50.

The upstream network has two parallel encoders: an online
encoderQ and target encoderK . When the network forward-
propagates the input, one of the positive samples will be en-
coded byQ; the other positive sample and the rest of the neg-
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Figure 2. The schematic of CSSL algorithm. The dashed squares with the text indicate different stages of both networks. The black arrows
show the direction of data propagation in the network. The red squares and lines are the convolution operations in the encoders. The black
circles and connected lines in the MLP block indicate the neurons and full connection among them in different layers. The blue and red oval
in the upstream network indicates how to identify positive and negative samples, respectively. It corresponds to the small blue and red arrows
in the task block, which is explained as decreasing the similarity between negative samples and increasing the similarity between positive
samples.

Figure 3. Examples of data augmentations applied in the upstream network. The title under each picture indicates the transformation super-
imposed on the previous picture.

ative samples will be encoded by K . The design of parallel
encoders aims to teach the network to distinguish between
positive and negative samples, which is the most common
design in contrastive learning.

3.3 Similarity functions

The similarity function in the upstream network serves as
the loss function between the inputs. We evaluated two

typical unsupervised contrastive learning structures in this
study: MoCo (He et al., 2020) and BYOL (Grill et al.,
2020). The main differences between the two models are
that (1) MoCo has a “memory bank” to store embeddings
of previous batches obtained from target projector so that
the embeddings from online encoders have sufficient sam-
ples to compare with, while BYOL does not have the mem-
ory bank, and (2) the way to calculate the similarity is dif-
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ferent. MoCo computes the similarity using an information
noise-contrastive estimation (InfoNCE) loss function (Oord
et al., 2018):

Lq,k =−

B+1∑
j=0

log
exp(q · k0/τ)∑B+1
i=1 exp(q · ki/τ)

· yj , (1)

where q and k0 represent the embeddings of positive sam-
ples that go through the online encoderQ and target encoder
K , respectively, and ki represents the embeddings of nega-
tive samples. yj is the one-hot vector containing one positive
indicator (number 1) and B negative indicators (number 0)
because in each batch there is only one positive sample and
the rest are negative samples, and τ is known as the “temper-
ature” parameter, which scales the value of q · ki , making it
easier to optimize the network. BYOL uses cosine similarity:

Lq,k = 2− 2 ·
〈q,k〉

‖q‖2 · ‖k‖2
· (2)

The q and k variables are the embeddings of positive samples
and negative samples in each batch.

After the similarity is calculated, the similarity gradient
will propagate backward and will be used to update the
weights of the encoders and projectors. Noticeably, the gra-
dient will propagate only through the online encoder and pro-
jector. The target encoderK does a momentum update of the
weight from the online encoder Q:

θK ← τθK + (1− τ)θQ, (3)

where θ is the weight matrix, the suffixes Q and K indicate
the encoders, and the parameter τ defines the momentum,
namely the degree of change from the weight of the online
encoder. The introduction of a momentum update is to solve
the training failure caused by the rapidly changing encoder
that reduces the consistency of embeddings in the target en-
coder K (He et al., 2020).

3.4 Downstream network

The downstream network is where we train the algorithm
for the classification task. We transfer the trained encoder
Q from the upstream network, which theoretically has the
preliminary ability to classify different images after training
in the upstream network. The transferred encoder Q is con-
nected to a classifier which is a three-layer MLP. It is differ-
ent from the MLP in the upstream network in that the size
of the output layer is equal to the number of categories. The
outputs will be activated by a Softmax function that maps
the outputs to probabilities ranging from 0 to 1. The category
with maximum probability will be the prediction of the net-
work. And then the cross-entropy loss is calculated between
predictions and true labels:

Lx =−

N∑
n=1

C∑
c=1

yn,c logxn,c, (4)

where N is the size of a batch, C is the number of cate-
gories, xn,c is the probability that input n is of category c,
and yn,c is the binary indicator 0 (1) if category c is incor-
rect (correct) for input n. The weights of the network are
updated by the back propagation of the loss function. One
major difference from the upstream network is that the input
images in the downstream network are labeled. The labeled
images not only act as the ground truth when we fine-tune the
classification network but are also the physical knowledge of
the ice crystals that we input to the encoder Q to generate
more accurate predictions. The involvement of some human
knowledge (i.e., image labels) in the downstream network
is the reason why we recognize that the algorithm is semi-
supervised.

3.5 Evaluation

The evaluation of our algorithm will primarily focus on the
performance of the downstream network, with a quantitative
emphasis on the classification accuracy across different mod-
els. Additionally, we will qualitatively analyze the upstream
network by visualizing high-dimensional embeddings in a
2D space using the t-distributed stochastic neighbor embed-
ding (t-SNE) technique. It is a dimension reduction method
that aims to retain as much of the important structure of
the high-dimensional data as possible in the low-dimensional
representation.

3.5.1 Cross-validation

A 5-fold cross-validation was used when training the down-
stream network for classification. Cross-validation reduces
uncertainty in model performance while retaining as much
data as possible for training. In a 5-fold cross-validation, the
dataset used for training is randomly resampled into five sub-
sets (folds). In each round of training, four of the five folds
will be used for training, and the remaining folds will be used
for validation. This process will be repeated five times, and
each time a different fold will be used for validation.

3.5.2 Generalization ability

One important aspect of a model that should be evaluated is
its ability to generalize the knowledge learned in the previous
dataset to a new dataset. This ability to reuse knowledge is
known as generalization ability in deep learning (Jiang et al.,
2022). In this study, the generalization ability will be tested
on new dataset that has not been used for training. For ex-
ample, the case in our study would involve the downstream
network trained on NASCENT19 being tested on CLOUD-
LAB.

3.5.3 Metrics

There are several metrics to evaluate the classification per-
formance. One of them is overall accuracy (OA), which is
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the percentage of correctly classified images over the total
number of images.

OA= 100% ·
1
N

N∑
i=1

l{ŷi = yi} (5)

N is the total number of images in a dataset. ŷi is the predic-
tion of downstream network, while yi is the true label of the
input image. l is an indicator function. It equals 1 if ŷi = yi
and 0 otherwise. OA is 100 % if all images are correctly clas-
sified.

Precision and recall measure the accuracy of the model in
each category. The equations of per-category precision and
recall are the following.

precisioni =
TPi

TPi +FPi
(6)

recalli =
TPi

TPi +FNi
(7)

The subscript i represents one specific category. The number
of images that are correctly predicted as i is the true posi-
tive (TPi) for category i. The number of images that are pre-
dicted as i have different labels and are false positives (FPi)
for category i. The number of images in category i that are
not correctly predicted as i are false negatives (FNi). The
per-category precision precisioni represents the ratio of cor-
rectly predicted images to all images that are predicted as
i. The per-category recall recalli represents the ratio of cor-
rectly predicted images to images with true label i.

A high per-category precision indicates that the model
is good at predicting a specific category, while a high per-
category recall indicates the model is good at identifying im-
ages from a specific category. The F1 score is the harmonic
mean of precision and recall, which reflect the combine ef-
fect of precision and recall:

F1i = 2 ·
precisioni · recalli

precisioni + recalli
. (8)

The OA can be also defined as

OA= 100% ·
1
N

N∑
i=1

TPi . (9)

The metrics mentioned above can be unified and visual-
ized in one diagram: a confusion matrix. As shown in Ta-
ble 3, each row represents a label and each column represents
a prediction. The diagonals are the TPs of each category. Ex-
cept for the diagonal, the sum of each row is the number of
FNs.

4 Implementation

4.1 Training configurations

Since we have two different parts of the network in our al-
gorithm, they follow different training configurations. Since

the upstream network of the CSSL algorithm usually requires
large batch sizes (≥ 256), we ran our algorithm on a high-
performance cluster with four RTX3090 GPUs, with a batch
size of 64 on each GPU (in total 256), which reaches the
maximum memory usage of one GPU. Beyond the GPU re-
quirements, the algorithm requires a minimum computing
environment consisting of a four-core CPU and 16GB of
system memory to operate. To cope with the large dataset
inputted into encoders, we applied the LARS (Layer-wise
Adaptive Rate Scaling) optimizer to ensure stable and ef-
ficient training (You et al., 2017). When we fine-tuned the
downstream network, we applied the standard stochastic gra-
dient descent optimizer on the same GPUs with 64 batch
sizes for each of them.

In terms of learning rates, instead of using one constant
learning rate throughout the training process, we design a
scheduler that changes the learning rate during training. The
specific strategy is that the learning rate will increase linearly
from a very small value (1× 10−5) to a target value (e.g.,
0.01) in the first several iterations, and then the learning rate
decreases gradually to 0 according the cosine annealing:

lrt =
1
2
· lrt−1 ·

(
1+

t cosπ
T

)
, (10)

where t is the current iteration, and T is the number of to-
tal iterations. Both networks follow the same learning rate
scheduler.

4.2 Experiments

4.2.1 The effect of the training set size

In the upstream network, we performed unsupervised pre-
training using unlabeled NASCENT19 and NASCENT20 (in
total 33 354 images) to obtain models for transferring to the
downstream network. In the upstream network, we use two
structures: the MoCo and the BYOL, as described in Sect. 3.
These two models are named Unsup-MoCo and Unsup-
BYOL, respectively. In the rest of paper, we will refer to a
model by its type: unsupervised (unsup), supervised (sup),
and semi-supervised (semisup). Its specific structure will be
referred to as MoCo and BYOL. “Unsupervised” here repre-
sents the upstream network of the CSSL algorithm. “Semi-
supervised” specifically refers to the downstream network
of CSSL. “Supervised” refers to purely supervised models.
Before further pre-training on the NASCENT datasets, the
weights of both models are initialized with the weights of the
respective structures pre-trained on the imagenet-1k dataset:
IM1K-Unsup-MoCo and IM1K-Unsup-BYOL. In this paper,
the weight initialization will be referred to as a “dataset-type
structure”. In the downstream network (supervised classifi-
cation) stage, we conducted several experiments using the
NASCENT19 dataset with training sets of different sizes (Ta-
ble 4). The weights of the downstream networks of the two
models were initialized by the weights of the online encoders
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Table 3. An example of a confusion matrix.

Prediction 1 Prediction 2 Prediction 3 Prediction 4 Prediction 5

Label 1 TP1 – – – –
Label 2 FN2/FP1 TP2 – – –
Label 3 FN3/FP1 FN3/FP2 TP3 – –
Label 4 FN4/FP1 FN4/FP2 FN4/FP3 TP4 –
Label 5 FN5/FP1 FN5/FP2 FN5/FP3 FN5/FP4 TP5

pre-trained on the NASCENT dataset in their respective up-
stream networks: NASCENT-Unsup-MoCo and NASCENT-
Unsup-BYOL, which represent the transfer of the online en-
coder to the downstream network. We also included the per-
formance of purely supervised models and IceDetectNet for
comparison. The former acts as the baseline model for this
study, and the latter one is the latest supervised algorithm for
ice crystal classification. For fair comparison, the baseline
models used the same weight initialization as Unsup-MoCo:
IM1K-Unsup-MoCo. To make it easier to refer to the models,
we have given each model a short name based on its struc-
ture, the size of training set (n), and the number of categories
(c) in the training set: [structure]nsup/unsup/semisup,c. For exam-
ple, the Unsup-MoCo has a short name: [MoCo]33 354

unsup,19. The
Semisup-MoCo trained on 128 images and 19 categories is
[MoCo]128

semisup,19. The evaluation of different models will fol-
low the metrics mentioned in Sect. 3.5.3. Firstly, under each
size of training set, the accuracy of each individual model in
the 5-fold cross-validation will be calculated. Secondly, the
per-category accuracy will be computed and demonstrated as
a confusion matrix.

4.2.2 The effect of the number of categories

To explore the effect of the number of categories on the
classification performance of models, we extract four cat-
egories from NASCENT19: column, column_aged, col-
umn_aggregate, and column_aged_aggregate, which are the
same as the categories in the CLOUDLAB dataset. The
new dataset, NASCENT19-4CAT, contains 9182 images. In
addition to the models listed in Table 4, we trained addi-
tional models on NASCENT19 with four categories. The
extra models trained are shown in Table 5. The weight ini-
tialization for Semisup-MoCo-4CAT is identical to that of
Semisup-MoCo. Similarly, Semisup-BYOL shares the same
weight initialization as Semisup-BYOL. The weight initial-
ization for Baseline-4CAT is also consistent with previous
baseline models.

We began by comparing the cross-validation results of
the same models on both the 19-category and 4-category
datasets, which will provide us with the general impact
of varying the number of categories. Then we will com-
pare across the performance of different models in the four-
category classification task in order to discover whether the

difference between models would be affected by the number
of categories.

4.2.3 Evaluate the generalization ability

The generalization ability of the CSSL algorithm will be
evaluated by testing the models trained with the four-
category dataset, NASCENT19-4CAT, on a new dataset:
CLOUDLAB. Since the CSSL and baseline models were
trained with different sizes of the four-category dataset and
each case has five models due to cross-validation, each single
model will be tested with the entire CLOUDLAB dataset to
obtain the accuracy. Therefore, the results will be displayed
in the same format as cross-validation results.

5 Results

5.1 Performance of classification models on different
training set sizes

The performance of classification is first evaluated by the
overall accuracy using the 5-fold cross-validation mentioned
in Sect. 3.5.1. The effect of the size of the training set on
overall accuracy is shown in Fig. 4. Among all models, the
OA increases with the size of the training set as expected.
In general, the Semisup-MoCo models exhibit higher OA
compared to the baseline models, while the Semisup-BYOL
models have lower OA than the baseline models. It shows
that the MoCo structure performs better on the task of clas-
sifying 19 categories of ice crystal images, and the follow-
ing analysis will focus on the MoCo models and baseline
models. As shown in Fig. 4, the OA difference between
the Semisup-MoCo models and the baseline model is larger
when the training set is small (n≤ 2048). When the size
of the training set exceeds this threshold (n > 2048), the
differences of OA between the Semisup-MoCo models and
the baseline models narrow. This suggests that the CSSL
algorithm performs better when the number of labeled ice
crystal images available for training is limited. The accu-
racy range of both the baseline and CSSL models trained on
small datasets (n < 2048) is higher than that trained on large
datasets (n > 2048), which shows that the models are unsta-
ble when they are trained with a small dataset size. One pos-
sible reason we concluded from checking the loss tendency
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Table 4. The models trained and used for studying the effect of training set size. “Semisup” represents the classification stage of CSSL which
used both knowledge from unsupervised pre-training and image labels. “Sup” means that the models are purely supervised. “MoCo” and
“BYOL” represent the encoders transferred from “Unsup-MoCo” or “Unsup-BYOL”. IceDetectNet is the latest supervised algorithm from
Zhang et al. (2024).

Name Dataset Weight initialization Size of training set (n) Categories
(c)

Semisup-MoCo NASCENT19 NASCENT-Unsup-MoCo [128, 256, 512, 1024, 2048, 4096, 8192, 16 384, 18 864] 19
Semisup-BYOL NASCENT19 NASCENT-Unsup-BYOL [128, 256, 512, 1024, 2048, 4096, 8192, 16 384, 18 864] 19
Sup (baseline) NASCENT19 IM1K-Unsup-MoCo [128, 256, 512, 1024, 2048, 4096, 8192, 163 84, 18 864] 19
IceDetectNet NASCENT19 IM1K-Sup 18 864 19

Table 5. The same as Table 4, except that the downstream network and baseline model were trained using the NASCENT19 dataset with
four categories.

Name Dataset Weight initialization Size of training set (n) Categories
(c)

Semisup-MoCo-4CAT NASCENT19-4CAT NASCENT-Unsup-MoCo [128, 256, 512, 1024, 2048, 4096, 8192] 4
Semisup-BYOL-4CAT NASCENT19-4CAT NASCENT-Unsup-MoCo [128, 256, 512, 1024, 2048, 4096, 8192] 4
Sup-4CAT (Baseline-4CAT) NASCENT19-4CAT IM1K-Unsup-MoCo [128, 256, 512, 1024, 2048, 4096, 8192] 4

during supervised fine tuning on different sizes of datasets
(Fig. A2) is that the models fine-tuned on small sizes of
datasets (n < 2048) are suboptimal compared to models fine-
tuned on larger sizes, which would lead to unstable classifi-
cation performance. Another possible reason we concluded
from the loss value of unsupervised pre-training (Fig. A1) is
that the 33 354 images may not be sufficient for optimizing
the upstream network, which means the classification per-
formance of the CSSL algorithm could be further improved
even when fine-tuning a small-sized dataset if we pre-trained
with more ice crystal images. We include the loss values in
Appendix A. The [MoCo]18 864

semisup,19 reaches a comparable OA
(77.9%±0.58%) as the IceDetectNet (78.2%±0.9%). This
indicates that the performance of the CSSL algorithm is com-
parable to IceDetectNet, which is currently the top model on
the NASCENT19 dataset.

It is time-consuming to manually label ice crystal images
for training models, especially when deciding on labels from
many categories. According to authors’ experiences of label-
ing ice crystal images, it took 6 s on average to manually la-
bel images of basic habits, while it took 60 s on average for
the images of complex shapes. We assumed an average value
of 33 s for manually labeling one image. If we take the OA
of [Baseline]18 864

sup,19 as a reference OA (ROA), we define a de-
creased overall accuracy (DOA) as the difference between
the OA of each Semisup-MoCo model ([MoCoOA]) and the
reference OA:

DOAn = ROA− [MoCoOA]n, (11)

where n is the size of the training set. We also defined the
time spent labeling 18 864 images as a reference time (RT)
and calculated the difference between the time spent labeling

other sizes of training sets and the reference time as the time
saved (TS) for each training set:

TSn = RT− Tn. (12)

The results are shown in Fig. 5. The more samples in the
training set, the smaller the DOA and the less time saved on
manual labeling. We find an inflection point, which repre-
sents [MoCo]2048

semisup,19, that saves 154 h of manual labeling
time at the expense of just 3.8 % accuracy.

We further analyzed the performance in terms of preci-
sion and recall of basic habits and complex shapes sepa-
rately in a confusion matrix. The confusion matrix was cal-
culated on the validation set for each fold and then averaged
over all five folds so that there will be one confusion matrix
per experiment. We used the results of [MoCo]18 864

semisup,19 and
[Baseline]18 864

sup,19 as examples. Figure 6 shows the confusion
matrix of MoCo models (left) and baseline models (right)
on basic habits. The overall accuracy of [MoCo]18 864

semisup,19 on
basic habits (94.11 %) is close to [Baseline]18 864

sup,19 (94.04 %).
Both models have the highest precision and recall rates (>
90%) on basic habits such as column, small, column_plate
(CPC), and droplet, which means they are the main contrib-
utors of overall accuracy. Meanwhile, these categories have
the largest share in NASCENT19 except for droplet.

Figure 7 shows the confusion matrix of both models
in complex shapes. In general, the precision and recall
rates for complex shapes in [Baseline]18 864

sup,19 are lower than
those in [MoCo]18 864

sup,19, and the overall accuracy follows the
same trend. However, the performance of [MoCo]18 864

sup,19 and
[Baseline]18 864

sup,19 in complex shapes is not as good as it is
in basic habits. The precision and recall rates on aged cat-
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Figure 4. Dependency of the overall accuracy of various models on the training set sizes. The central black lines inside the boxes are the
median values of the accuracy of each 5-fold cross-validation experiment on the training set size. The lower limit and upper limit of boxes
are the first quartile and the third quartile, respectively. The range of boxes shows the distribution of the central 50 % accuracy values, which
represents the average performance of each model. The error bars show the maximum and minimum accuracy values from each 5-fold cross-
validation experiment. The inset figure zooms in on the results of 16 384 and 18 864 samples. The IceDetectNet from (Zhang et al., 2024)
(green box) is shown only for the training set size of 18 864 samples.

Figure 5. The figure illustrates the relationship between DOA (y axis) and time saved for manual labeling (x axis). Each dot represents a
cross-validation of a Semisup-MoCo model with a different training set size (marked on the left of each data point). A higher time saved
indicates a smaller training set and a correspondingly higher DOA, whereas a lower time saved suggests a larger training set and a lower
DOA.

egories (∼ 90%) are much higher than the aggregate and
aged_aggregate (65 % to 60 %). This indicates that mod-
els are more capable of predicting aged ice crystals. If we
calculated the percentage of these three types of ice crys-
tals in NASECENT19, we can find that aged ice crystals
account for 22.1 %, which follows after the percentage of
column: 28.8 %. However, aggregate and aged_aggregate
only account for 6.34 % and 5.91 %, respectively. The cat-
egories with high precision and recall rates have one thing
in common: they all have a higher share of the number in
NASCENT19 than the other categories.

We also analyzed the confusion matrices of models trained
on datasets of different sizes (not shown). The main conclu-

sions are similar. First, in general, the two models have sim-
ilar overall accuracy of basic habits. Second, the Semisup-
MoCo models perform better than the baseline models for
complex shapes. Third, all models have higher precision and
recall rate on the categories that dominate the dataset. The
advantages of the CSSL algorithm in predicting complex
shapes originate from the fact that the encoder learns useful
representations from the unsupervised pre-training.

Figure 8 presents two-dimensional visualizations of the
embeddings generated by the encoder of the upstream net-
work with a MoCo structure. These visualizations are shown
at three stages: before unsupervised pre-training (a–d), af-
ter unsupervised pre-training (e–h), and after supervised fine
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Figure 6. The confusion matrix of [MoCo]18 864
semisup,19 (a) and [Baseline]18 864

sup,19 (b). The two confusion matrixes are calculated based on the
six basic habits. The text on the left side of each confusion matrix shows the actual labels of categories, and the text on the bottom is for
the predicted categories. As shown in Fig. 3, the diagonals are the true positives of each category. The numbers and percentages in the last
row are the sum of predicted categories (in white) and precision of each category (in blue), while the numbers and percentages in the last
column are the sum of actual categories (in white) and recall of each category (in blue). The percentage (in blue) in the right bottom corner
represents the overall accuracy. The percentages in the rest of grids are the ratio of predicted samples to the sum of the predict labels of each
corresponding column.

Figure 7. The same as Fig. 6 but the confusion matrix is calculated on the complex shapes of ice crystals. The other 13 complex shapes are
merged down to three types here: aged, aggregate, and aged_aggregate, which represents the microphysical processes that happened to the
ice crystals.

tuning (i–l), using the t-SNE technique. Each column of vi-
sualizations represents the results for different training sizes,
arranged from left to right as follows: 18 864, 8192, 4096,
and 2048 samples. It can be found before any training (a
to d) that there are no clusters formed for any category as
expected, as the dots with different colors are mixed up

together. Some clusters formed after the unsupervised pre-
training, which shows the ability of the upstream network to
distinguish between some categories. However, the bound-
aries between the different categories are not clear; in other
words, the inter-category distance is small, which reveals the
fact that some images are difficult to classify into one par-

https://doi.org/10.5194/amt-18-2781-2025 Atmos. Meas. Tech., 18, 2781–2801, 2025



2794 Y. Chu et al.: Exploring the effect of training set size

Figure 8. The t-SNE plots visualize the embeddings from the encoder of the upstream network. Panels (a) to (l) display the embeddings
of the validation set from the first fold of each experiment, corresponding to different sizes of training sets of different models. The first
row (a–d) shows the t-SNE plots of the data embeddings before any training, and the training set sizes are 18 864, 8192, 4096, and 2048,
respectively. The second row (e–h) presents the t-SNE plots of embeddings of Unsup-MoCo, and the training set sizes from (e) to (h) are the
same as (a) to (d). The third row (i–l) is the t-SNE plots of embeddings of Semisup-MoCo models.

ticular category because they have visually similar features.
The figures in the third row present the 2D visualizations
generated by the Semisup-MoCo models. After fine-tuning
these models with labeled data, they demonstrate a signif-
icantly improved ability to distinguish between categories
that were previously mixed in the 2D visualization maps pro-
duced by the Unsup-MoCo models. For instance, categories
such as column, column_aged, and column_aged_aggregate,
which were difficult to separate earlier, now form three dis-
tinct clusters. However, some complex shapes remain inter-
mixed. In addition to the primary clusters in red (column),
green (column_aged), pink (column_aged_aggregate), and
yellow (small), we identified an additional cluster that con-
tains a mix of different complex shapes.

5.2 Performance of classification model on different
number of categories

Figure 9 shows the performance of models on NASCENT19-
4CAT. The results closely resemble those for NASCENT19,
with the key difference being higher overall accuracy com-
pared to the results of the 19-category classification. In gen-
eral, both Semisup-MoCo-4CAT and Semisup-BYOL-4CAT
have higher OA than the baseline models, indicating that
the CSSL algorithm is better than the baseline models in a

four-category classification task. The overall accuracy gap
between CSSL models and the baseline models narrows
when the size of the training set exceeds 512. The over-
all accuracy of [MoCo]2048

semisup,4 (89.6 %) is comparable to
[Baseline]8192

sup,4 (90.1 %) considering the standard deviation.
We demonstrated that using only 25 % of the NASCENT19-
4CAT images (2048) in the CSSL algorithm achieves per-
formance comparable to that of a fully supervised model
trained on the entire NASCENT19-4CAT dataset. The accu-
racy range of both the baseline and CSSL models trained on
small datasets (n < 2048) is large. The reason is the same
as the models fine-tuned on the 19-category dataset. The re-
lationship between time saved and decreased overall accu-
racy is also evaluated for Semisup-MoCo-4CAT, as shown in
Fig. 10. The inflection in the case of four-category classifica-
tion represents the [MoCo]2048

semisup,4. The model saves 56 h at
the expense of 2.5 % of overall accuracy.

In terms of per-category performance, we also analyze the
confusion matrix for [MoCo]8192

semisup,4 and [Baseline]8192
sup,4 in

Fig. 11. The overall accuracies of the two models are sim-
ilar. However, [MoCo]8192

semisup,4 has a better performance on
complex shapes in the four-category classification task. Both
models tends to have a higher precision and recall rate on
column, column_aged, and column_aged_aggregate, which
are the major categories in NASCENT19-4CAT. It indicates
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Figure 9. The same as Fig. 4 except the results are evaluated on NASCENT19-4CAT. The result from IceDetectNet is not shown here because
it was not trained on NASCENT19-4CAT. The maximum size of the training set here is set to 8192 instead of 16 384 because the size of
NAsCENT19-4CAT is smaller than 16 384.

Figure 10. The same as Fig. 5 but for Semisup-MoCo-4CAT.

that after we reduce the number of categories, both models
perform better on the categories that account for a large per-
centage in the dataset.

In order to test the models on a dataset that is not used
in both unsupervised pre-training and supervised fine tuning,
we used them to test on the CLOUDLAB dataset and evalu-
ate the performance without any further fine tuning. The re-
sults are shown in Fig. 12. The Semisup-MoCo-4CAT mod-
els have better performance than both baseline and Semisup-
BYOL-4CAT models, and the Semisup-BYOL-4CAT mod-
els are worse than baseline models, which indicates that the
models based on BYOL structure are not good at general-
izing on an unseen dataset in training. The gap of overall
accuracy between Semisup-MoCo-4CAT and baseline mod-
els is considerably large when the size of the training set is
smaller than 1024. It shows a better generalization ability of
the CSSL algorithm based on MoCo structure than baseline
models when the size of the training set is small. When the
size is larger than 1024, except for the case of 4096, the dif-
ference between Semisup-MoCo-4CAT and baseline models
is within 1 %, which indicates that the generalization abil-
ity differences between these two models are basically elim-

inated if they are trained on a larger size of dataset. We also
found that the [MoCo]4096

semisup,4 reached the same test overall
accuracy on [Baseline]8192

sup,4, which again proved the strong
generalization ability of the CSSL algorithm trained on half
of the entire NASCENT19-4CAT dataset.

6 Conclusions

We propose a contrastive semi-supervised algorithm for
ice crystal classification, employing a two-stage training
paradigm. First, the model undergoes unsupervised pre-
training to learn general features from unlabeled ice crystals.
Then, it is fine-tuned by hand-labeled ice crystals to conduct
classification. The algorithm is pre-trained on two datasets,
both collected during the NASCENT campaign, and fine-
tuned and evaluated on one of them using different dataset
sizes. Additionally, it is further assessed on the four-category
NASCENT19 dataset, also with varying sizes. The resulting
models are then tested on a new dataset collected during the
CLOUDLAB project to evaluate their performance on un-
seen data.

The evaluation on NASCENT19 datasets shows that the
overall classification performance of the CSSL algorithm is
better than the baseline model, which is a purely supervised
algorithm. In terms of small sizes of datasets (≤ 2048 im-
ages), the overall accuracy of the CSSL algorithm exceeds
baseline models by 3 % on average. In terms of the 19-
category dataset, the performance of the CSSL algorithm
trained on 2048 images shows that the algorithm can save
90 % of time on manual labeling while maintaining the drop
in overall accuracy within 5 %. In addition, the CSSL algo-
rithm trained on the entire dataset achieved 77.9% ± 0.58%
overall accuracy; this is comparable to the IceDetectNet
(78.2% ± 0.9%), which was the best supervised algorithm
on the same dataset. In terms of per-category accuracy, the
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Figure 11. The same as Figs. 6 and 7 but for NASCENT-4CAT. The confusion matrix is not divided into basic habits as complex shapes
because there are only four categories in the dataset.

Figure 12. The overall accuracy of the Semisup-MoCo-4CAT, Semisup-BYOL-4CAT, and baseline models tested on the CLOUDLAB
dataset without any further fine tuning. The CSSL and baseline models of each fold are tested on the CLOUDLAB dataset, respectively, so
that we obtain the results averaged on five folds. The colors and signs have the same meanings as in Figs. 4 and 9.

CSSL algorithm performs slightly better than baseline mod-
els when predicting complex shapes of ice crystals that expe-
rienced microphysical processes in the cloud.

The evaluation on a four-category NASCENT19 dataset
shows that the CSSL algorithm performs better than the base-
line algorithm in general. The per-category analysis reveals
that the CSSL algorithm demonstrates a better performance
in predicting complex ice crystal shapes, achieving an aver-
age improvement of around 2.5 % in precision and an aver-
age improvement of around 3.5 % recall compared to a fully
supervised algorithm. The generalization ability of the CSSL
algorithm is tested on a new four-category dataset, CLOUD-
LAB. The results reveal significant performance gaps be-
tween the CSSL algorithm based on the MoCo structure and
the baseline models. On average, the CSSL algorithm out-

performs the purely supervised model by 2.19 % across all
training set sizes. It indicates a better generalization abil-
ity of the CSSL algorithm. It shows promising potential of
CSSL in adapting to new datasets that are not used in train-
ing. The architecture of the CSSL algorithm separates the
feature learning process and the specific downstream task,
which makes the model flexible in classifying new datasets
through only fine tuning on relatively few labeled examples.
As the model has learned the features of ice crystals in the up-
stream network, it can also adapt to data collected using dif-
ferent imaging devices such as VISSS (Maahn et al., 2024)
and PIP&2DS (Jaffeux et al., 2022), being fine-tuned on a
small subset of new data, but the performance on such de-
vices requires further evaluation in future studies.
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However, this study uncovered several new challenges re-
lated to ice crystal classification, which we hope will be ad-
dressed in future research. The first issue is that the perfor-
mance of classification models, whether supervised or semi-
supervised, is highly related to the distribution of the ice crys-
tal categories. The overall accuracy is usually higher on the
categories that share a large percentage in the training set.
The unbalanced distribution of ice crystal categories is likely
a common case in cloud environments. Future research could
focus on addressing the unbalanced distribution issue. There
are two potential approaches to address this issue. The first is
to balance the dataset by downsampling the overrepresented
categories. The second is to adjust the algorithm’s predic-
tion probabilities by artificially lowering the confidence for
categories with larger shares and increasing it for the under-
represented categories.

The second issue is that the classification performance of
models fine-tuned on a small dataset (n < 2048) is unstable.
A possible reason is that the unsupervised model is not well
pre-trained due to a relatively small size of the unlabeled
dataset (33 354 samples). It could be solved by collecting
more ice crystal images and feeding them to the algorithm
during unsupervised pre-training. Moreover, the training set
for unsupervised pre-training can be expanded as more ice
crystal images are collected, which can improve the quality
of the features learned by incorporating the additional data.
Expanding the scale of unsupervised pre-training enables
the integration of datasets collected from different imaging
probes (VISSS, Maahn et al., 2024; PIP&2DS, Jaffeux et al.,
2022). This approach makes it feasible to develop a foun-
dational model for ice crystals that can be effectively trans-
ferred to downstream tasks, such as shape classification and
the detection of component-scale ice crystals (Zhang et al.,
2024).

Another direction for future research is to investigate the
trade-off between backbone depth and performance. While
our current backbone ResNet50 with 49 convolutional lay-
ers achieves good classification results, exploring the per-
formance of shallower depths could potentially lead to more
efficient architectures while maintaining classification accu-
racy. This direction would be valuable for applications where
computational resources are limited. Alternatively, testing
with deeper backbones could help us understand the upper
limits of feature learning capacity for the CSSL algorithm.

The CSSL (Contrastive Semi-Supervised Learning) al-
gorithm introduces a novel approach for classifying large
ice crystal datasets with minimal labeled data. By signifi-
cantly reducing the need for manual labeling, it enables the
training of classification models with only a small subset
of the entire dataset. Through an analysis of the relation-
ship between training set size, the number of categories, and
the algorithm’s performance, we determined that labeling
2048 samples achieves an optimal balance between model
accuracy and manual labeling effort for both 19-category and
4-category classification tasks. Additionally, an evaluation of

the CSSL algorithm’s generalization ability demonstrates its
potential to perform well on datasets collected under vary-
ing conditions, highlighting its adaptability and robustness
across different scenarios.

Appendix A: The loss values of unsupervised
pre-training and supervised fine tuning

The loss value shows how well a deep learning model is
trained. When the loss value stops decreasing significantly,
the model can be considered converged. The loss value of
last step can indicate the model performance. In general, the
smaller the value, the better the model can perform. To inves-
tigate why models trained on small datasets exhibit unstable
performance, we analyzed the training loss for both Unsup-
MoCo (Fig. A1) and Semisup-MoCo (Fig. A2).

We conducted unsupervised pre-training experiments us-
ing NASCENT19 containing 18 864 samples and the com-
plete NASCENT dataset containing 33 354 samples. It can be
found that the model pre-trained on NASCENT converged at
a lower loss value compared to the model pre-trained on the
smaller NASCENT19 dataset. It indicates that increasing the
size of unlabeled data in unsupervised pre-training leads to
more effective feature learning, which in turn would improve
downstream classification performance.

When examining the loss trending of Semisup-MoCo
models during the supervised fine tuning, we observed that
models trained on small datasets (128 and 256 samples) con-
verged at higher loss values compared to those trained on
larger datasets. It indicates that the downstream network fine-
tuned with small sizes of datasets is not optimal, which could
lead to unstable performance.
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Figure A1. The loss values of unsupervised pre-training on the NASCENT19 dataset (blue line) and the whole NASCENT dataset (red line).
The x axis shows the training steps.

Figure A2. The loss values of supervised fine tuning on the different size of the training set (NASCENT19). The x axis shows the training
steps.

Appendix B: Training times of unsupervised
pre-training and supervised fine tuning

The training times of models studied in this paper are listed
in Table B1. The unsupervised pre-training phase required
66 min for the MoCo structure and 78 min for BYOL. For
both the 19-category and 4-category classification tasks, the
supervised fine-tuning phase of our models (Semisup-MoCo
and Semisup-BYOL) consumed identical training time as
their respective baseline models when trained on equivalent
dataset sizes; hence, they are not displayed separately.
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Table B1. The training times of models are listed, including the
unsupervised pre-trained models, the supervised fine-tuned models
with different training set sizes, and the baseline models. Note that
for the supervised fine-tuned and baseline models, the listed training
time represents a single fold of the cross-validation process.

Network Size of training Time
set (n) (min)

Unsupervised MoCo 33 354 66
pre-training BYOL 33 354 78

Supervised ResNet50 128 5
fine tuning/ 256 8
baseline 512 13

1024 29
2048 38
4096 44
8192 66

16 384 85
18 864 96

Code and data availability. The dataset
(https://doi.org/10.5281/zenodo.14696359, Chu et al., 2025a),
models (https://doi.org/10.5281/zenodo.14793334, Chu et al.,
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