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Abstract. A hexacopter unoccupied aerial vehicle (UAV)
was fitted with a three-dimensional sonic anemometer to
measure three-dimensional wind speed. To obtain accu-
rate results for three-dimensional wind speeds, we devel-
oped an algorithm to correct biases caused by the rotor-
induced airflow disturbance, UAV movement, and attitude
changes in the three-dimensional wind measurements. The
wind measurement platform was built based on a custom-
designed integration kit that couples seamlessly to the UAV,
equipped with a payload and the sonic anemometer. Based
on an accurate digital model of the integrated UAV–payload–
anemometer platform, computational fluid dynamics (CFD)
simulations were performed to quantify the wind speed dis-
turbances caused by the rotation of the UAV’s rotor on the
anemometer during the UAV’s steady flight under headwind,
tailwind, and crosswind conditions. Through analysis of the
simulated data, regression equations were developed to pre-
dict the wind speed disturbance, and a correction algorithm
for rotor disturbances, motions, and attitude changes was de-
veloped. To validate the correction algorithm, we conducted
a comparison study in which the integrated UAV flew around
a meteorological tower from which three-dimensional wind
measurements were made at multiple altitudes. Comparison
between the corrected UAV wind data and those from the
meteorological tower demonstrated excellent agreement. The

corrections result in significant reductions in wind speed bias
caused mostly by the rotors, along with notable changes in
the dominant wind direction and wind speed in the original
data. The algorithm enables reliable and accurate wind speed
measurements in the atmospheric boundary layer made from
rotorcraft UAVs.

1 Introduction

Wind measurement is crucial in various fields of research and
application, including meteorology and environmental sci-
ences. Accurate wind characteristics facilitate modeling of
atmospheric transport patterns (Gryning et al., 1987; Stockie,
2011), remote sensing data verification (Drob et al., 2015),
model input data assimilation (Gousseau et al., 2011; Var-
doulakis et al., 2003), and digital modeling result optimiza-
tion (Booij et al., 1999; van Hooff and Blocken, 2010). In
particular, wind profile measurements near the surface can
improve the understanding of atmospheric boundary layer
(ABL) dynamics and micrometeorological turbulence at the
surface (Seibert et al., 2000), allowing detailed understand-
ing and model descriptions of energy and mass exchanges
between air and surfaces and transport processes.

Published by Copernicus Publications on behalf of the European Geosciences Union.



3036 Y. Yang et al.: A correction algorithm for rotor-induced airflow and flight attitude changes

The recent development of unoccupied aerial vehicles
(UAVs) has provided an opportunity for the measurement of
wind fields in three dimensions with high spatial resolutions
(McGonigle et al., 2008; Martin et al., 2011; Kim and Kwon,
2019). Their small size, low flight altitude, high mobility, and
ability to support sensing devices make UAVs ideal platforms
from which to measure wind in the ABL (Thielicke et al.,
2021; Shaw et al., 2021; Stewart et al., 2021). Multi-rotor
UAVs allow flexible control of flight attitude and station-
ary hovering, and they can carry varying payloads depend-
ing on the number of rotors (Villa et al., 2016; Riddell, 2014;
Bonin et al., 2013; Stewart et al., 2021), offering significant
advantages in capturing high-resolution wind characteristics
in low-altitude conditions (Anderson and Gaston, 2013; Mc-
Gonigle et al., 2008).

UAVs are often employed to measure wind characteristics
both directly and indirectly. Indirect measurement methods
involve utilizing pre-installed sensors on the UAV (Elston
et al., 2015), in conjunction with specialized flight patterns
and wind retrieval algorithms (Bonin et al., 2013; Rautenberg
et al., 2018; Gonzalez-Rocha et al., 2019) to achieve wind
speed measurement. While these methods offer advantages
of operational simplicity and cost-effectiveness, their core
principle relies on inversely estimating wind speed through
dynamic parameters such as thrust, attitude angles, and flight
velocity (Crowe et al., 2020; Donnell et al., 2018; Sikkel
et al., 2016; Simma et al., 2020). However, their accuracy
is critically dependent on both the measurement precision
of the inertial measurement unit (IMU) and the computa-
tional reliability of inversion algorithms. Specifically, inher-
ent noise interference in IMU sensors (e.g., a gyroscope’s an-
gular rates can be severely affected by external disturbances
of up to 0.5° s−1) (Hoang et al., 2021; Neumann and Barthol-
mai, 2015), combined with uncertainties in parameter con-
figuration within inversion algorithms (the root mean square
error (RMSE) of wind speed estimation is 1–1.4) (Bonin et
al., 2013), can lead to significant deviations in wind speed es-
timations. Furthermore, these methods typically assume con-
stant aerodynamic parameters for UAVs, an assumption that
often fails to hold in practical complex wind field environ-
ments (Bonin et al., 2013).

In contrast, direct measurement methods entail installing
additional wind sensors on the UAV to obtain real-time
wind information in the field. Porous probes (Soddell et al.,
2004; Spiess et al., 2007), pitot tubes (Niedzielski et al.,
2017; Langelaan et al., 2011), and anemometers (Rogers and
Finn, 2013; Nolan et al., 2018) are commonly used sensors.
Sonic anemometers are a more prevalent choice for rotor-
craft UAVs, capable of measuring wind speed by detect-
ing changes in the speed of sound travel between different
sensors (Thielicke et al., 2021). Recent experiments have
demonstrated that under highly turbulent conditions, UAV
equipped with properly installed sonic anemometers in wind
tunnels can achieve wind speed measurements with RM-
SEs ranging from 4.3 % to 15.5 % compared to bistatic lidar

(Thielicke et al., 2021). Due to the increasing use of rotor-
craft UAVs for wind measurements, sonic anemometers are
recognized as one of the most promising methods in terms of
measurement accuracy and precision.

Sonic anemometers have been mounted onto rotary-wing
UAVs for measuring wind speed to varying degrees of suc-
cess. Typically, an anemometer is mounted at a position
along the central axis above the UAV, with data adjusted for
the additional wind speed signals induced by UAV motion
and attitude changes. Nevertheless, the strong airflow pertur-
bations caused by the rotating propellers can distort real wind
flow patterns and significantly affect the accuracy of wind
measurements (de Divitiis, 2003). However, these distortions
were not considered in the adjustment algorithms. To address
this issue, researchers have developed several new correction
methods. The first method involves mounting the anemome-
ter along the central axis high above the UAV where the rotor
wash effects on the wind speed measurement are believed to
be limited (Shimura et al., 2018; Barbieri et al., 2019). Jo-
hansen et al. (2015) concluded that, for anemometers at about
40 to 45 mm above the multi-rotor plane of small UAVs,
the flow influences from rotors are negligible. However, this
method may not be suitable for hexacopters and octocopters
due to the high position required, which may raise safety
and flight control concerns. The second method involves new
corrections based on experiments in an indoor area to mea-
sure wind velocity signal bias caused by the rotors during
flight and then subtracting the bias (Palomaki et al., 2017).
Palomaki et al. (2017) quantified rotor-induced wind speed
errors as 0.5 m s−1 compared to tower-mounted anemome-
ters and subtracted these errors from the directly measured
wind speed values in subsequent analyses (Palomaki et al.,
2017). However, this method is limited by the size of the in-
door area, inadequate for full simulations of real UAV rotor
speed and attitude changes during flight, and insufficient for
the development of a comprehensive correction scheme. Ad-
ditionally, it does not take into account the detailed coupling
of true winds with propeller downwash. The third method is
similar to the second except the use of wind tunnels to es-
tablish a more accurate relationship between increased air-
speed and UAV motion or attitude parameters (Thielicke et
al., 2021; Neumann and Bartholmai, 2015). While effective
in determining numerical relationships, the method is lim-
ited by the high cost of wind tunnel experiments (Dao et al.,
2023) and, more importantly, by the additional errors intro-
duced by reflected airflows from the wind tunnel walls and
ground (Haleem, 2021; Pettersson and Rizzi, 2008), as well
as having the same issues as full simulations of real UAV
rotor speed and attitude changes during flight.

The flaws in these correction methods could be addressed
using computational fluid dynamics (CFD) simulations to
analyze the airflow generated by the UAV’s propellers. As
far as we know, CFD has been employed to analyze air-
flow patterns around drones but has not been utilized to cor-
rect wind measurements obtained from UAVs (Oktay and
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Eraslan, 2020; Hedworth et al., 2022). In this paper, we in-
troduce a three-dimensional wind speed correction algorithm
for sonic anemometer wind measurements taken from a ro-
tary UAV. This algorithm considers the rotor-induced airflow
of the UAV, based on CFD simulations, along with the UAV’s
motion and attitude changes during flight. The accuracy of
the algorithm is confirmed by comparing the corrected wind
speeds with those measured from a meteorological tower at
multiple altitudes. These results could contribute to ongoing
efforts aimed at enhancing the performance and reliability
of UAV-based wind speed measurement techniques. Addi-
tionally, they pave the way for potential applications, such
as quantifying pollutant emissions from industrial complexes
(Han et al., 2024).

2 Method

2.1 Digital model representation and simulation tool

2.1.1 Digital model representation

A six-rotor UAV (KWT-X6L-15, ALLTECH, China),
equipped with six 32 cm diameter propellers driven by M10
KV100 brushless DC motors, was the platform from which
wind was measured. The UAV has a symmetrical motor
wheelbase of 1765 mm with an unloaded takeoff weight of
22.5 kg and a maximum flight speed of 18 m s−1. It has a
flight endurance > 30 min while carrying its maximum pay-
load of 15 kg.

A miniature three-dimensional ultrasonic anemometer
(Trisonica-Mini Wind and Weather Sensor, Anemoment,
USA) allowed the measurement of wind speed under
15 m s−1 with an accuracy of ±0.1 m s−1 and a resolution
of 0.1 m s−1 and wind direction of 0–360° with an accuracy
of ±0.1° and a resolution of 0.1°. It was set at 70 cm above
the plane of the propellers of the UAV and mounted on a
custom-designed carbon fiber tube and frame, which was fur-
ther mounted onto a rectangular carbon fiber support base at-
tached to the underbelly of the UAV body to minimize the
effect of propellers-induced flow on the anemometer mea-
surement. The xt–yt–zt coordinate axes of the anemometer,
with its center as the origin, were set to be parallel to the
x–y–z axes of the aircraft body frame. The mounting of the
three-dimensional anemometer is shown in Fig. 1a.

A base digital model of the UAV was provided by its man-
ufacturer for the present CFD simulations. The digital model
was further augmented with the accurate digital representa-
tion of the three-dimensional anemometer and its mounting
frame. Furthermore, considering that the UAV wind mea-
surements are usually tied to other air measurement applica-
tions, additional payload simultaneously attached to the UAV
underbelly was necessary. Such a payload on the UAV needs
to also be included in the digital model for the CFD sim-
ulation. In the present case, we added the digital model of

Figure 1. The establishment of the coordinate system and numerical
simulation model for the UAV wind measurement platform. (a) The
UAV wind speed measurement platform. (b) The digital model of
the UAV wind measurement platform in the 3D CFD model simu-
lation domain.

a 6.37 kg air sampler developed in our group (Yang et al.,
2024) to the UAV base digital model (Fig. 1b).

2.1.2 Simulation tool

The CFD simulations were conducted using SolidWorks
Flow Simulation 2022, a pressure-based finite-volume solver
employing a fully coupled turbulence modeling approach.
It employs an adaptive Cartesian mesh approach for three-
dimensional solid meshing, with the governing equations be-
ing the Navier–Stokes equations for simulating the interac-
tion of fluids, and the turbulence model utilizing the standard
k–ε two-equation model (Jonuskaite, 2017).

The selection of SolidWorks Flow Simulation was driven
by its seamless integration with CAD geometries, which
eliminated potential errors associated with STL file conver-
sions for our complex multi-rotor UAV design. Additionally,
its wall functions for boundary layers effectively resolve gra-
dient variations in boundary layers around rotating blades, re-
ducing trial and error related to near-wall settings. The built-
in solver convergence adopts a phased approach to multiple
variant scenarios, decreasing the need for re-runs caused by
insufficient convergence and thereby conserving computa-
tional costs. Its unique turbulence model automatically de-
termines flow regimes (laminar, transitional, and turbulent),
ensuring shorter turbulence model setup times while main-
taining enhanced model accuracy (Azmi et al., 2017; Ramya
et al., 2015).

While ANSYS Fluent offers advanced transient turbulence
models (e.g., DES/LES), its computational cost for equiva-
lent spatial resolution was typically higher than that of Solid-
Works (Afaq and Ahmad, 2023). Given our need to simulate
over 100 operational scenarios, SolidWorks’ balance of engi-
neering accuracy and computational tractability was deemed
optimal for deriving the empirical correction algorithm.

For CFD simulations, the complete digital model for the
UAV and its payloads was set in the xs–ys–zs simulation co-
ordinate system in SolidWorks, on a 1 : 1 scale (Fig. 1b).
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Figure 2. Schematic diagram of forces acting on a UAV.

2.2 Simulation scenarios

For the UAV flight simulation, we considered over 100 flight
envelope scenarios, including parameters such as UAV flight
altitude, wind direction, and wind speed. Since the UAV’s
predominant flights are within the atmospheric boundary
layer, characterized by significant variability in the wind
speed and direction, a flight envelope for the UAV in the
simulated environments was set up for the complete UAV
digital model for flight altitudes of 30 and 1000 m. The
lower height (30 m) represents the typical operational alti-
tude for industrial UAV applications within the boundary
layer, while the upper height (1000 m) corresponds to the
altitude where atmospheric flow transitions to more stable,
low-density, freestream conditions. These flight envelopes
were designed for the UAV to be subject to headwind, tail-
wind, and crosswind relative to its flight direction. Under the
constraint that the UAV can only operate under true wind
speeds ≤ 18 m s−1 and assuming the applicability of the cor-
rection algorithm to most flight scenarios, CFD simulations
were conducted for the UAV under these three wind direc-
tions. The simulations encompassed the following flight en-
velopes as listed in Table 1: the UAV flew at ground speeds
of 18, 14, 10, and 8 m s−1, respectively, and adapted to wind
speeds of 1.5, 3.3, 5.4, 7.9, 10.7, and 14 m s−1. It should be
noted that the numerical simulations were conducted by con-
verting wind speed and ground speed into airspeed through
vector synthesis.

2.3 Flight parameters

The movements of the UAV through air, including take-
off, ascent–descent, attitude changes, turning, and horizontal
flights, are driven by the rotary propellers, whose power re-
quirement is closely tied to the weights of the UAV and its
payload as well as to the relative motions of the UAV in air.
During a normal flight, the UAV adjusts its inclination angle
and propeller speeds in order to achieve a set ground speed
for flight. By analyzing the gravity G, pull T , and wind re-
sistance D experienced by the UAV under flight conditions
(Fig. 2), its inclination angle θ and propeller rotation speed
M can be calculated according to Eqs. (1)–(5) (Quan, 2017).

tanθ × mg = D, (1)
p× (sinθ × Sxoy + cosθ × Sxoz)=D, (2)

0.5ρ(Vwind+VUAV)
2
= p, (3)

cosθ × mg = T , (4)

T = CT × ρ ×

(
M

60

)2

× D4
p, (5)

where θ is the inclination angle of the UAV; m is the com-
bined weight of the UAV and the payloads (i.e., the air sam-
pler and the anemometer along with its installation frame
in the present case), calculated to be 28.869 kg; g is the
gravitational constant at 9.8 m s−2; D is the wind resistance
in newtons; Vwind is the wind speed in m s−1; VUAV is the
ground speed of the UAV in m s−1; p is the wind pressure
on the UAV in N m−2; Sxoy and Sxoz are the projected sur-
faces of the UAV in the horizontal direction and vertical di-
rections, determined to be 0.296 and 0.229 m2, respectively;
CT is the rotor pull coefficient with an experimentally deter-
mined value of 0.048542; Dp is the UAV propeller diameter
at 0.8128 m; ρ is the air density in kg m−3; T is each rotor
pull in newtons; and M is the rotation speed of the rotors in
revolutions per minute (rpm).

The complete flight envelope was defined by combina-
tions of critical parameters, including wind directions, wind
speeds, airspeeds, ground speed, inclination, wind resistance,
pull, and M . A series of CFD simulations were conducted to
systematically evaluate the simulated wind field characteris-
tics for each unique parameter set within this envelope.

2.4 Simulation parameters

The simulation parameters primarily include the computa-
tional domain and mesh, and fluid and environmental prop-
erties, as well as the rotating region. During the CFD flow
simulations of the UAV using SolidWorks, the computational
domain dimensions (3.3×3.3×3.3 m3) were determined by
prioritizing the analysis of flow field distribution around the
anemometer while balancing computational costs. The com-
putational domain was divided into two parts with different
spatial resolutions based on the grid sizes, considering the
computational time and accuracy required for resolving the
details of the digital UAV model. The first part was the global
domain with a grid size of 0.23× 0.23× 0.23 m3, providing
a lower spatial resolution. The second part was a nested sub-
domain within the global domain, specifically defined for the
position and dimensions of the anemometer to simulate the
measured velocities. The grid size for this nested subdomain
was set at 0.0125× 0.0125× 0.0125 m3, providing a higher
spatial resolution. The total number of grids in the computa-
tional domain was 1.11× 108, and the specific grid config-
urations are shown in Fig. 3. The wall is set as an adiabatic
wall, and its roughness is set to 0. The fluid was modeled
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Table 1. The simulation flight envelope scenarios for the UAV-based wind measurement platform.

Wind Ground Wind Wind Ground Wind Wind Ground Wind
type speed speed type speed speed type speed speed

(m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1)

Tailwind

8

1.5 Headwind

8

1.5 Crosswind

8

1.5
3.3 3.3 3.3
5.4 5.4 5.4
7.9 7.9

10.7 10.7
14

10

1.5

10

1.5

10

1.5
3.3 3.3 3.3
5.4 5.4 5.4
7.9 7.9 7.9

10.7 10.7
14

14

1.5

14

1.5

14

1.5
3.3 3.3 3.3
5.4 5.4 5.4
7.9 7.9 7.9

10.7 10.7 10.7
14

18

1.5

18

1.5

18

1.5
3.3 3.3 3.3

5.4 5.4
7.9 7.9

10.7 10.7
14 14

as air with characteristics of turbulent and laminar flow. To
isolate the rotor-induced flow dynamics from background at-
mospheric turbulence, a turbulence intensity of 0.1 % and a
turbulence length scale of 0.012 m were set. This low tur-
bulence intensity minimizes confounding effects from am-
bient atmospheric fluctuations, while the length scale corre-
sponds to the anemometer frame width (∼ 0.01 m) to resolve
rotor-generated eddies. These assumptions prioritize the sys-
tematic bias correction for rotor-induced airflow. The atmo-
spheric pressure was adjusted to 1.01×105 and 9.00×104 Pa
at altitudes of 30 and 1000 m, respectively, and the atmo-
spheric temperature was assumed to be 25 °C at both alti-
tudes. The relative humidity at different altitudes was deter-
mined based on the prescribed pressure and temperature cor-
responding to each altitude. The detailed configurations of
these parameters are listed in Table 2.

The UAV’s airspeed and aerodynamic angles were config-
ured according to the different flight parameters described in
Sect. 2.2 and 2.3. To represent the rotor digitally, six virtual
cylinders of the same volume were used to encapsulate the
six rotors, with their circumferences matching the rotating
trajectory of the propeller tip. These virtual cylinders were
treated as the rotational regions in the CFD simulation, with

Table 2. Simulation parameter configuration.

Parameters Content

Computational domain size 3.3× 3.3× 3.3 m3

Global-domain grid size 0.23× 0.23× 0.23 m3

Subdomain grid size 0.0125× 0.0125× 0.0125 m3

Total number of computational 1.11× 108

domain grids
Turbulence intensity 0.1 %
Turbulence length scale 0.012 m
Roughness 0
30 m atmospheric pressure 1.01× 105 Pa
1000 m atmospheric pressure 9.00× 104 Pa
30 m atmospheric temperature 25 °C
1000 m atmospheric temperature 25 °C

their rotation directions aligned with the actual rotation di-
rection of the UAV’s propellers. The rotation direction from
rotor nos. 1 to 6 was alternately clockwise and counterclock-
wise, and the rotation speed for each flight condition was ob-
tained from Eqs. (1)–(5).

To ensure relatively accurate simulations, two categories
of flow field properties were specified as computational ob-
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Figure 3. Grid configuration of the computational domain.

jectives prior to the start of the simulations, and the simu-
lations were terminated upon convergence of the simulation
results for all objectives. The first category comprised global-
domain computational objectives, including average total
pressure (PG), average velocity (VG), average vertical ve-
locity (VGy), and average forward velocity (VGz), where the
subscript G denotes the global domain. The second category
consisted of subdomain computational objectives, which in-
cluded the average velocity (Vs) and three-dimensional aver-
age speed components Vsx , Vsy , and Vsz at the anemometer
position in the simulation coordinate system. It is noteworthy
that the aforementioned average values refer to the spatial av-
erages over the global domain or subdomain.

Upon simulation completion, these velocity components
(Vsx , Vsy , Vsz) were further converted to velocity compo-
nents at the anemometer sensor position (ux_sensor, uy_sensor,
uz_sensor) according to the coordinate system shown in Fig. 1a
and b and Eqs. (6)–(8) below. The converted velocities,
ux_sensor, uy_sensor, uz_sensor, were subtracted from the air-
speed (denoted as ux_air, uy_air, and uz_air) setting for each
CFD simulation to estimate the false wind signals arising
from the induced flow by the UAV rotors, expressed with
1ux , 1uy , and 1uz, respectively, using Eqs. (9)–(11).

ux_sensor =−Vsz (6)
uy_sensor = Vsx (7)
uz_sensor =−Vsy (8)
1ux = ux_sensor− ux_air (9)
1uy = uy_sensor− uy_air (10)
1uz = uz_sensor− uz_air (11)

In other words, the false wind signals 1ux , 1uy , and 1uz
are the terms that must be determined and corrected for in
the wind measurements from the UAV.

3 Results and discussion

3.1 Example analysis of simulation results

According to Sect. 2.2, this study develops a series of sim-
ulation scenarios for the UAV digital model under various
combinations of altitude (30 and 1000 m), wind direction
(tailwind, headwind, and crosswind), ground speed (8 to
18 m s−1), and wind speed (1.5 to 14 m s−1). To demonstrate
the flow field characteristics around the UAV under various
scenarios, one UAV hovering scenario and six representative
simulation scenarios were specifically selected for analysis
as examples.

Figure 4 presents the cross-sectional view of the velocity
flow field around the UAV in a hovering state under wind-free
conditions. In this scenario, the surrounding velocity field is
solely generated by the rotationally induced flow from the
UAV’s own rotors. The simulated 2–4 m s−1 airflow around
the anemometer originates exclusively from rotor rotation,
demonstrating that the rotor-induced flow during hovering
inherently interferes with wind speed measurements by the
anemometer.

The other six scenarios include UAV flight simulations at
altitudes of 30 and 1000 m, with a ground speed of 8 m s−1

and a wind speed of 5.4 m s−1, under tailwind, headwind, and
crosswind conditions. Figures 5 to 7 present cross-sectional
views of the surrounding flow fields during UAV flight un-
der these conditions. In the figures, color gradients represent
the magnitude of the velocity, while arrows indicate both the
direction and the magnitude of the velocity. Overall, under
varying wind conditions, the direction and speed of airflow
around the UAV show significant differences. While the air-
flow direction around the UAV remains relatively consistent
at the both simulation altitudes, the airflow speed at 1000 m
is slightly higher than at 30 m, particularly under tailwind
conditions. Specifically, based on the ground speed, wind di-
rection, and wind speed settings, the UAV’s airspeed relative
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Figure 4. The velocity flow field distribution of the UAV’s hovering
state.

to the wind is 2.6, 13.4, and 5.4 m s−1 in tailwind, headwind,
and crosswind scenarios, respectively.

As shown in Fig. 5a and b, in the tailwind scenario, the
maximum downwash velocity occurs directly beneath the
UAV rotors, with the airflow directed vertically downward.
The next highest velocities are observed around the sides
and above the rotors, where the airflow follows an inward
and downward trend. The wind speed at the anemometer lo-
cation is minimally influenced by the UAV rotors, meaning
the measured wind speed represents the true airspeed. In the
headwind scenario (Fig. 6a and b), the highest airflow veloc-
ity is detected near the area directly above the rotors, with the
airflow also following an inward and downward pattern. The
lowest velocity is found directly below the rotors, where the
airflow moves upward and outward. At the anemometer’s lo-
cation, some interference from the UAV rotors is present, so
the wind speed at this point is a combination of the true air-
speed and the rotor-induced velocity. As exhibited in Fig. 7a
and b, in the crosswind scenario with wind blowing from left
to right, the airflow around the UAV resembles that in the
headwind scenario, but the overall flow field is deflected to
the right due to the crosswind, with relatively low airflow ve-
locity. In the scenario with wind blowing from right to left,
the flow field shifts to the left.

These simulation results show that the flow field around
the UAV varies significantly depending on both the pres-
ence/absence of wind and its directional characteristics, and
the anemometer experiences different levels of interference
accordingly. Thus, accurately quantifying the interference
of the UAV rotors on the anemometer is essential. How-
ever, in practical application scenarios, it is also necessary
to comprehensively consider additional airflow disturbances
induced by the UAV’s own motion and attitude fluctuations

and to develop corresponding dynamic compensation algo-
rithms.

3.2 The effect of flight altitude on rotor interference
with anemometer measurements

Through simulating the flight of the UAV in all simulation
scenarios, the false signals produced by the UAV rotors on
the anemometer at different altitudes and wind characteris-
tics were captured. Initially, the influence of flight altitude
on the false signals was examined.

The simulated flight data under tailwind and headwind
conditions were integrated into a unified dataset since the
UAV flight velocity vector is parallel to the tailwind and
headwind velocity vectors during normal flight. The simu-
lated false wind signals on the anemometer in the airframe x,
y, and z directions, caused by the propeller-induced airflow
under tailwind and headwind conditions, were represented
by 1uT/HW

x , 1uT/HW
y , and 1uT/HW

z , respectively. For the
tailwind and headwind datasets, according to the Wilcoxon
nonparametric test for paired samples, as shown in Table 3,
the differences in 1uT/HW

x , 1uT/HW
y , and 1uT/HW

z were not
significant (p < 0.05) at either the 30 m or the 1000 m alti-
tudes. Therefore, in the presence of a tailwind or headwind,
the interference from the UAV propeller-induced flow on the
anemometer measurement can be considered independent of
the flight altitude in this altitude range.

Similarly, the simulated false wind signals for the cross-
wind conditions on the anemometer in the x, y, and z direc-
tions were represented by 1uCW

x , 1uCW
y , and 1uCW

z . The
Wilcoxon nonparametric test of paired samples was also ap-
plied (shown in Table 1) between the two altitudes. No signif-
icant differences were found for 1uCW

x and 1uCW
z between

the two altitudes, but there was an obvious discrepancy for
1uCW

y (p = 0.00) at the two altitudes. This indicates that, un-
der crosswind conditions, the disturbances of the UAV pro-
peller in the x and z directions of the anemometer are not
altitude dependent but that, in the y direction, it is necessary
to distinguish the altitude. This behavior can be attributed to
differences in the interaction between the y-direction com-
ponent and rotor rotational momentum caused by variations
in atmospheric density at different altitudes under crosswind
conditions.

3.3 Rotor interference with anemometer measurements

This study employs a regression fitting to explore the re-
lationship between the false wind signals generated by the
UAV rotors’ airflow and the UAV’s airspeed. Under tailwind
and headwind conditions, the false wind signals (1uT/HW

x ,
1u

T/HW
y , and 1uT/HW

z ) on the anemometer resulting from
the UAV rotor-induced flows at both flight altitudes were
aggregated and fitted as dependent variables in a regres-
sion using ux_sensor as the independent variable. As shown
in Fig. 8a, b, and c, good linear relationships were found be-
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Figure 5. Simulation flow field example results of the UAV wind measurement platform in the tailwind scenario. Panels (a) and (b) represent
the longitudinal cross-sections of the simulation flow fields for the UAV at altitudes of 30 and 1000 m, with a ground speed of 8 m s−1 and a
wind speed of 5.4 m s−1.

Figure 6. Simulation flow field example results of the UAV wind measurement platform in the headwind scenario. Panels (a) and (b) represent
the longitudinal cross-sections of the simulation flow fields for the UAV at altitudes of 30 and 1000 m, with a ground speed of 8 m s−1 and a
wind speed of 5.4 m s−1.

tween1uT/HW
x ,1uT/HW

y , and1uT/HW
z and the simulated ve-

locity components in the x direction (ux_sensor), respectively.
The specific relationship is described by Eqs. (12) to (14).
Thus, using the UAV velocity components in the x direction,
the false wind signals caused by the UAV propellers can be
determined and removed from the raw measured wind veloc-
ity from the anemometer.

For crosswind conditions, regressions were fitted with
false wind signals (1uCW

x and1uCW
z ) as dependent variables

and ux_sensor as the independent variable in the same way (see
Fig. 9). A linear relationship was observed between the false
wind signals in both x and z directions (1uCW

x and 1uCW
z )

and ux_sensor, with the specific expressions in Eqs. (15)
and (16), respectively. As described in Sect. 3.2, 1uCW

y was
sensitive to flight altitude under crosswind conditions; hence
1uCW

y at 30 and 1000 m altitude (1uCW
y(30) and 1uCW

y(1000))
were regressed against uy_sensor for the two flight altitudes
separately. The 1uCW

y(30) exhibited a linear relationship with
uy_sensor, as shown in Eq. (7). However, the correlation co-
efficient between 1uCW

y(1000) and uy_sensor was found to be

lower than 0.5, indicating that 1uCW
y(1000) may be consid-

ered independent of uy_sensor. Therefore, the average value
of 1uCW

y(1000) (0.006 m s−1) was regarded as the 1uCW
y(1000) at

this flight altitude.
Despite the dependence of 1uCW

y on flight altitudes,
1uCW

y(30) and 1uCW
y(1000) are confined to a similar numeric

range. Therefore, they may be roughly considered to repre-
sent 1uy for lower altitudes (e.g., 0 to 500 m) and higher
altitudes (e.g., 500 to 1000 m), respectively.

Hence, for crosswind situations, the wind velocities in the
x, y, and z directions measured by the anemometer are cor-
rected by subtracting 1uCW

x , 1uCW
z , and 1uCW

y(0–500), which
are estimated from ux_sensor/uy_sensor, or at relatively high
flight altitudes using a constant value of 0.006 m s−1 for
1uCW

y(501–1000).
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Figure 7. Simulation flow field example results of the UAV wind measurement platform in the crosswind scenario. Panels (a) and (b) repre-
sent the longitudinal cross-sections of the simulation flow fields for the UAV at altitudes of 30 and 1000 m, with a ground speed of 8 m s−1

and a wind speed of 5.4 m s−1.

Table 3. Wilcoxon nonparametric tests for paired samples of false wind velocity signals between 30 and 1000 m flight altitudes.

Wind types False wind signal Significance α Test results

Tailwind/headwind 1u
T/HW
x 0.93 0.05 No difference

1u
T/HW
y 0.72 0.05 No difference

1u
T/HW
z 0.21 0.05 No difference

Crosswind 1uCW
x 0.36 0.05 No difference

1uCW
y 0.00 0.05 Significant difference

1uCW
z 0.81 0.05 No difference

1u
T/HW
x = 0.51+ 0.061× ux (12)

1u
T/HW
y =−0.01+ 0.70× uy (13)

1u
T/HW
z = 1.22+ 0.17× ux (14)

1uCW
x = 0.71+ 0.071× ux (15)

1uCW
z = 0.84+ 0.13× ux (16)

1uCW
y(0–500) =−0.0043+ 0.19× uy

(h= 0–500m) (17)

1uCW
y(501–1000) = 0.006 (h= 501–1000m) (18)

In Eqs. (17) and (18), the variable h represents the flight alti-
tude of the UAV.

3.4 The overall correction algorithm

3.4.1 Motion and attitude compensation correction of
the UAV

In addition to the false wind signals caused by propeller
rotations, additional false wind velocity signals from the
anemometer can be attributed to UAV movement and attitude
(pitch, roll, and yaw) changes during flight, and as such they

also need correction. When the UAV moves horizontally and
vertically relative to the ground, the velocity vector measured
by the anemometer is a vector combination of the true wind
velocity and the UAV’s ground velocity. Consequently, the
ground velocity of the UAV (vx and vz, with vy always being
0 due to no motion in the y direction) contributes false wind
velocity components to measurements by the anemometer.
Moreover, the UAV’s flight attitude undergoes adjustments
in the pitch, roll, and yaw Euler angles (θ , ϕ, and ψ , respec-
tively) in order to compensate for aerodynamic resistance or
adapt to flight plans. These adjustments lead to the anemome-
ter measuring additional velocities resulting from the rota-
tional rates of the attitude angles (µ(θ) and µ(ϕ), with µ(ψ)
remaining zero due to the alignment of the rotational axis of
ψ with the line connecting the UAV’s center of gravity and
the anemometer). Furthermore, the effect is further amplified
by the distance (r) between the anemometer and the UAV’s
center of gravity. It is noteworthy that there is currently no re-
ported correction algorithm for the influence of attitude an-
gle variations on anemometer wind velocity measurements
from UAVs. To obtain accurate wind information, after elim-
inating the aforementioned interferences, the wind velocities
(ux,uy , and uz) observed by the anemometer in the airframe
coordinate (x, y, and z directions) were transformed into the
north–east–down (NED) ground coordinate using the direc-
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Figure 8. Regression fit of artificial velocity
(
1u

T/HW
x ,1uT/HW

y , and 1uT/HW
z

)
with ux_sensor for tailwind and headwind flight conditions

at two altitudes. In the figure, simulation data are marked with black dots, fitted curves are indicated with black lines, the 95 % confidence
bands are identified as green shading, and the 95 % prediction bands are represented with dashed gray lines.

Figure 9. Regression fit of false wind velocity signals 1uCW
x , 1uCW

z , and 1uCW
y(0–500) with ux_sensor/uy_sensor for crosswind flight condi-

tions at two altitudes. The symbols in the figure are the same as in Fig. 6.

tion cosine matrix (DCM) as given in Eq. (19). uN
uE
uD

= DCM(θ ϕ, ψ)

 ux
uy
uz

+
 vx

0
−vz

+
− µ(θ)

µ(ϕ)

0

 , (19)

DCM(θ, ϕ, ψ)=

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)


 1 0 0

0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)

 , (20)

where DCM is defined by Eq. (20); uN, uE, and uD refer to
corrected north, east, and down components of wind veloc-
ity in the ground coordinate; vx and vz are the motion ve-
locities of the UAV in the x and z directions, respectively,
which are directly provided by the GPS receiver output of

the UAV or can be directly computed from the UAV longi-
tude/latitude coordinate output; and µ(θ) and µ(ϕ) represent
the product of the pitch rate ω(θ) and roll rate ω(ϕ), respec-
tively, with the rotation radius r , which is the distance be-
tween the anemometer and the center of gravity of the UAV,
as defined in Eqs. (21) and (22). Due to the alignment of the
anemometer’s z axis with that of the UAV, the variation in
yaw ψ does not introduce false wind speed into signals from
the anemometer in the airframe coordinate, resulting in µ(ψ)
being equal to zero.

µ(θ)= ω(θ)× r =
d(θ)
dt
× r, (21)

µ(ϕ)= ω(ϕ)× r =
d(ϕ)
dt
× r, (22)

where ω(θ) and ω(ϕ) are defined as the differentiation of θ
and ϕ, respectively, with respect to time t .

3.4.2 Compensation correction for induced-flow
disturbance by UAV rotors

Based on the statistical analyses of the fluid simulation re-
sults in Sect. 3.3, the regression relationships between the
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false wind velocity signals generated by the propeller ro-
tation and the simulated wind components sensed by the
anemometer are integrated into the motion and attitude cor-
rection algorithm of UAV given in Eq. (19). The updated
wind velocity correction algorithm is given as Eq. (23),
whose second and third vectors on the right side of Eq. (3)
represent the contributions of the propeller-induced wind
signals under tailwind/headwind and crosswind conditions,
respectively, to ux , uy , and uz, with A and B defined in
Eqs. (24) and (25) to quantify their magnitudes. Since the
measured wind velocities ux and uy from the anemometer
correspond to the simulated ux_sensor and uy_sensor, respec-
tively, the regression relationships are modified by replac-
ing ux and uy with ux_sensor and uy_sensor, respectively. This
yields the estimations of the false wind velocity signals,1ux ,
1uy , and 1uz, under different wind directions, in relation to
ux and uy , as specified by Eqs. (12)–(18). Using Eq. (16), the
actual wind velocity components, including north wind (uN),
east wind (uE), and vertical wind (uD), are computed after
correcting for the effects of the UAV’s rotor propeller distur-
bance, motion, and attitude on the wind signal measurements
from the anemometer. uN
uE
uD

= DCM(θ, ϕ, ψ)

  ux
uy
uz


−

 A×1u
T/HW
x

A×1u
T/HW
y

A×1u
T/HW
z

−
 B ×1uCW

x

B ×1uCW
y

B ×1uCW
z


+

 vx
0
vz

+
 −µ(θ)µ(ϕ)

0

  (23)

A=

∣∣∣∣∣∣ ux√
u2
x + u

2
y

∣∣∣∣∣∣B =
∣∣∣∣∣∣ uy√
u2
x + u

2
y

∣∣∣∣∣∣ (24)

3.5 Validation of the correction algorithm

A comparative experiment was designed to verify the effec-
tiveness of the correction algorithm described in Eq. (23).
The experiment primarily compares three different kinds of
wind data: the first is the three-dimensional wind vector
corrected only for UAV motion and attitude compensation
(Eq. 19 and denoted as V O); the second includes additional
corrections for UAV rotor interference, along with motion
and attitude compensation (Eq. 23 and denoted as V R); and
the third is the three-dimensional wind directly measured
by the meteorological tower (denoted as V T). The compar-
ison experiment was conducted with the UAV flying wind
boxes around the 80 m meteorological tower within the Ex-
perimental Base of the Beijing Key Laboratory of Cloud,
Precipitation and Atmospheric Water Resources. The mete-
orological tower was equipped with three-dimensional ultra-
sonic anemometers positioned at heights of 30, 50, and 70 m,

Figure 10. Comparative experiment on wind measurements be-
tween the UAV and the meteorological tower.

with one anemometer in the north and one in the south (see
Fig. 10). Experiments were conducted during the daytime on
19 July 2022, with neutral atmospheric stability to minimize
thermal boundary layer effects on vertical wind variability.

The UAV flew around the tower in a box flight path at a
horizontal distance of about 10 m away from the tower, at
all three heights. During these flights, the UAV maintained
a commanded horizontal speed of approximately 5 m s−1, a
value selected as a compromise between achieving sufficient
spatial sampling resolution and maintaining stable flight at-
titude control. A total of 30 independent wind-box flights
were conducted, with each altitude (30, 50, and 70 m) sam-
pled 10 times. Each flight lasted approximately 13 min, gen-
erating over 800 valid data points per altitude. Given the
potential interference from near-surface vegetation with the
30 m anemometer on the tower, wind velocities acquired by
the UAV at 50 and 70 m heights during steady flight inter-
vals were analyzed herein. Using a 3σ threshold of the mean
value of the entire dataset to exclude data outliers caused by
sudden gusts or UAV maneuvers (such as turning), data dur-
ing steady UAV flight periods were retained.

Figure 11 presents the V O, V R, and V T time-series data
acquired during the dual-altitude flight tests of the UAV at
70 and 50 m, with the 70 m altitude test data collected prior
to 15:05 UTC+8 and the 50 m altitude test data obtained af-
ter 15:10 UTC+8. The results in Fig. 11a demonstrate that at
elevated wind speeds (> 3 m s−1), the wind velocities of V R
were substantially lower than those of V O. The root mean
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square relative errors between V R and V T and between V O
and V T are 0.28 and 0.37, respectively, with the former be-
ing approximately 24 % smaller than the latter. This indicates
that the correction effect of Eq. (23) is especially pronounced
in strong wind conditions. In contrast, under gentle wind
speeds (≤ 3 m s−1), V R exhibited greater consistency with
V O, but there was still a significant downward revision in the
average speed in V R. The average wind speeds of V O, V R,
and V T were 2.4, 1.91, and 1.81 m s−1, respectively, with
V R exhibiting a 22 % decrease compared to V O. The statisti-
cal analysis using the Wilcoxon signed-rank test confirmed a
significant difference (p < 0.01) in wind speed between V O
and V T, whereas no significant differences (p > 0.01) were
found between V R and V T. This suggests that after com-
pensating for UAV motion, attitude, and rotor interference,
the wind speed measured by the UAV anemometer is more
closely aligned with that measured directly by the meteoro-
logical tower. Moreover, under stronger winds, the wind di-
rection values of V R, V O, and V T were relatively similar, yet
at weaker winds, V R showed a small low bias of about 3.3 %
(Fig. 11b). The mediocre performance of V R under low wind
speeds may originate from the disruption of stable maneuver-
ability in drone rotors caused by low wind speeds, which in
turn leads to the failure of the correction algorithm based on
CFD steady-state simulations.

Figure 12 presents the wind rose diagrams, offering a de-
tailed overview of the wind speed and direction characteris-
tics for V R, V O, and V T. Compared to the prevailing wind
direction frequency (north wind, 39 %) of V T, the dominant
wind direction frequency errors for V O and V R are 40 % and
5 %, respectively, demonstrating the superiority of V R in cor-
recting the prevailing wind direction frequency. Meanwhile,
deviations in the secondary components introduced by V R
(e.g., northwester wind) indicate directions for subsequent
model optimization. These analyses indicated that Eq. (23)
can effectively correct wind measurement biases induced by
UAV disturbances, motion, and attitude changes, particularly
at higher wind speeds.

In addition, it should be emphasized that while this study
primarily relied on meteorological tower data for algorithm
validation, cross-validation through industrial emission sce-
narios has further confirmed the algorithm’s robustness in
complex flow fields (Han et al., 2024).

3.6 Discussion on the limitations of the algorithm

The current development of algorithms based on idealized
steady-state CFD simulations relies on two key assumptions:
low environmental turbulence intensity (0.1 %) and turbu-
lence length scales dominated by anemometer geometric pa-
rameters (0.012 m). While this idealized setup effectively
isolates rotor-induced flow distortion, its turbulence charac-
teristics fundamentally differ from natural atmospheric con-
ditions. However, it is crucial to emphasize that the al-
gorithm’s applicability under turbulent conditions remains

valid. This is because rotor-induced wind speed deviations
exhibit systemic long-timescale characteristics, whereas at-
mospheric turbulence primarily affects measurement accu-
racy through random fluctuations in wind speed and direc-
tion with instantaneous nature. This temporal-scale distinc-
tion enables our correction algorithm to effectively elimi-
nate systemic biases while minimizing the impact of transient
turbulence effects. Nevertheless, it should be noted that un-
der stable atmospheric conditions (low wind speeds) as dis-
cussed in Sect. 3.5 or extreme weather scenarios, such air-
flow environments may disrupt the stable maneuverability of
UAV rotors or obscure the systemic drainage effects of ro-
tors, potentially leading to a nonlinear degradation in algo-
rithm accuracy.

In addition, another limitation of our study is the assump-
tion of a smooth surface in CFD simulations, which does not
fully capture the impact of surface roughness on wind speed
variations near the ground. In reality, surface roughness el-
ements (e.g., vegetation, buildings, or terrain irregularities)
alter the wind profile, increasing turbulence and wind shear
in the atmospheric surface layer. This effect is particularly
relevant to UAV-based wind measurements at low altitudes.

To further enhance the correction algorithm’s applicability
under diverse environmental conditions, future research will
focus on the following aspects: conducting sensitivity studies
under different turbulence intensity conditions, implement-
ing supplementary correction modules specifically target-
ing atmospheric turbulence, and incorporating surface rough-
ness length parameters in future CFD simulations. Although
atmospheric turbulence presents significant challenges for
UAV-based wind measurements, the correction framework
established in this study has demonstrated its effectiveness
in improving measurement accuracy across diverse meteo-
rological conditions, thereby laying a critical foundation for
developing reliable UAV-based wind measurement systems.

4 Conclusions

The scenarios involving direct measurements of wind fields
within the atmospheric boundary layer using multi-rotor
UAVs have become progressively commonplace, heighten-
ing the significance of accurate wind assessment. How-
ever, the rotor propellers during UAV flight introduce addi-
tional induced flows at the anemometer location, leading to
false wind speed signals. For the present UAV–anemometer–
payload configuration, a CFD-based method was used to
simulate the process of the UAV wind measurement platform
during stable flights under headwind, tailwind, and cross-
wind conditions. The analyses of induced airflows surround-
ing the anemometer led to a predictive tool for disturbance
airflows. Building upon the UAV motion and attitude correc-
tion algorithm, a correction algorithm was proposed for the
combined false wind signals from UAV rotor propeller dis-
turbance, motion, and attitude changes during UAV flights.
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Figure 11. Comparison of wind speed and wind direction time series for V R, V O, and V T. (a) Comparison of wind speed time series for
V R, V O, and V T. (b) Comparison of wind direction time series for V R, V O, and V T. (Note that the meteorological tower measurements
recorded wind data at 5 s intervals, while the UAV-based measured and corrected wind data were processed with a 10 s sliding average
to suppress rotor-induced high-frequency noise, followed by 5 s non-overlapping averaging to align temporally with the tower’s 5 s output
interval.)

Figure 12. Comparison of wind roses for V O, V R, and V T.

Through comparison of the corrected wind speeds derived
from measurements taken from the UAV platform and con-
current three-dimensional wind measurements from a nearby
meteorological tower, the validity of the correction algorithm
has been demonstrated. Although the algorithm still has cer-
tain limitations, it provides a feasible approach for the direct
measurement of wind speed from multi-rotor UAV flights.

In conclusion, this study represents a significant advance-
ment in three-dimensional wind speed measurement using
UAV platforms, presenting a practical and effective method

for direct and accurate wind measurement. This technologi-
cal breakthrough not only creates a strong foundation for pre-
cise wind field measurements with UAVs but also provides
potential avenues for the accurate quantification of gaseous
pollutant emissions based on UAV. The outcomes of this
work carry considerable scientific importance and offer valu-
able practical applications.
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