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Abstract. Precise continuous measurements of relative hu-
midity (RH) vertical profiles in the troposphere have emerged
as a considerable scientific issue. In recent years, a combi-
nation of diverse ground-based remote sensing devices has
effectively facilitated RH vertical profiling. This work intro-
duces a newly developed approach for obtaining continuous
RH profiles by integrating data from a Raman lidar, a mi-
crowave radiometer (MWR), and satellite sources. RH pro-
files obtained using synergistic approaches are subsequently
compared with radiosonde data throughout a 5-month obser-
vational study in China. Our suggested method for RH pro-
filing demonstrates optimal concordance with the best cor-
rection coefficients R of 0.94 in Huhehaote (HHHT), 0.92
in Yibin (YB), and 0.93 in Qingyuan (QY). The mean value
of RH decreased with height and presented seasonal char-
acteristics in QY. Finally, the RH height–time evolution was
used to distinguish hail and heavy precipitation. This study
integrates satellite data into ground-based measurements to
retrieve RH vertical profiles in China.

1 Introduction

Relative humidity (RH) is a crucial parameter in character-
izing aerosol–cloud interactions (Fan et al., 2007). It is also
necessary as input for weather forecasting models (Petters
and Kreidenweis, 2007; Wex et al., 2008; Mochida, 2014).
The combination of these RH profiles with aerosol optical
data allows us to obtain hygroscopic growth factors for dif-
ferent aerosol types (Zieger et al., 2013; Granados-Muñoz
et al., 2015). However, the temporal resolution of routine ob-
servations performed by weather services is rather low, typi-
cally with one or two radiosonde launches per day (Schmetz,
2021), and significant mesoscale weather phenomena, in-
cluding the frontal systems movement and the formation of
convective boundary hygroscopic growth or clouds, transpire
rapidly. Thus, it is more challenging to adequately moni-
tor the evolution of atmospheric profiles (Kang et al., 2019;
Long et al., 2023; Chen et al., 2024). Consequently, precise
information with great temporal resolution is essential for ex-
amining these events.

The current Raman lidar technology enables concurrent
measurements of temperature and water vapor mixing ratio
profiles to derive RH profiles (Reichardt et al., 2012; Bro-
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card et al., 2013), but it requires calibration by the use of col-
located and simultaneous observations from a radiosonde or
microwave radiometer (MWR) (Mattis et al., 2002; Madonna
et al., 2011; Foth et al., 2015). In addition, the average error
of Raman lidar is relatively small within the effective height
range but limited in the higher height detection.

MWR is another way to provide atmospheric RH observa-
tions with high temporal resolution (Hogg et al., 1983; Ware
et al., 2003; Zhang et al., 2024). MWR has a certain pene-
tration ability for harsh weather conditions, such as clouds,
but its vertical resolution and accuracy are not high, espe-
cially for RH, which varies greatly (Xu et al., 2015). Thus, it
is challenging to deliver continuous high-resolution RH in-
formation with a single instrument. The synergy of infor-
mation from both active and passive instruments can pro-
vide a more comprehensive understanding of atmospheric
processes (Stankov et al., 1995; Furumoto et al., 2003; De-
lanoë and Hogan, 2008; Blumberg et al., 2015; Turner et al.,
2021). For example, when both Raman lidar and MWR
are measuring simultaneously, continuous temperature, wa-
ter vapor profiles, and thus RH profiles can be obtained
operationally (Navas-Guzmán et al., 2014; Barrera-Verdejo
et al., 2016; Foth and Pospichal, 2017; Toporov and Löhnert,
2020). However, most of their algorithms primarily utilize
statistical methods. They perform data fusion between dif-
ferent instruments based on long-term time series data from
individual locations. These approaches are suitable for ob-
servations at single stations. Nonetheless, they lack univer-
sality when applied to scenarios requiring data integration
from multiple sites or broader geographical coverage. More-
over, replacing instruments or equipment may also introduce
additional inconsistencies.

For accurate RH profile retrieval at higher heights, satel-
lites have global detection capabilities and are highly effec-
tive for oceanic skies and remote land areas (Zhang et al.,
2022; Wang et al., 2023). For example, Wang et al. (2022)
measured the subgrid-scale variability in critical relative
humidity (RHc) to investigate the cloud parameterization
from Cloud-Aerosol Lidar and Infrared Satellite Observation
(CALIPSO) data. Some deal with the retrieval of the aver-
aged relative humidity profiles of the atmospheric layer us-
ing data from the Microwave Humidity Sounder (MHS) on
board the MetOp satellite (Gangwar et al., 2014). Geosta-
tionary Operational Environmental Satellite (GOES)-13 and
Moderate Resolution Imaging Spectroradiometer (MODIS)
data are also combined to estimate hourly relative humidity
at the surface level (Ramírez-Beltrán et al., 2019). Another
sounder, Sondeur Atmospherique du Profil d’Humidite In-
tertropical par Radiometrie (SAPHIR) on board the Megha-
Tropiques (MT) satellite, sounds the atmospheric humidity.
Brogniez et al. (2013) and Gohil et al. (2013) have shown the
potential of SAPHIR in retrieving the atmospheric humidity
profile.

However, the time resolution of polar orbit satellites is de-
termined by the repeated coverage time of the satellite orbit

(Skou, et al., 2022). A single satellite generally only achieves
repeated observations twice a day, and the time resolution is
also relatively low. Furthermore, few observations are avail-
able from China’s satellite, Fengyun (FY). This study aims
to introduce a novel technique that integrates Raman lidar,
MWR, and satellite data (FY4B) using an optimum estimat-
ing methodology. It is given with a focus on two aspects:
(i) evaluation of the proposed synergetic method and (ii) in-
vestigation of the RH characteristics at different heights and
in different geographic regions. This paper is thus structured
as follows. Descriptions of each type of equipment are pre-
sented in Sect. 2. Section 3 illustrates the process of the new
synergetic algorithm combining the ground-based and satel-
lite data. Section 4 presents the RH statistic results and their
time–height evolution in two convective cases. Finally, con-
clusions are summarized in Sect. 5.

2 Instrumentation

2.1 Raman lidar

The Raman lidar method can assess the water vapor mixing
ratio profiles through inelastic backscattering signals from
nitrogen at 387 nm and from water vapor at 407 nm (White-
man et al., 1992; Mattis et al., 2002; Adam et al., 2010). At
the lowest height, the intersection of the laser beam with the
receiver’s field of view in the bistatic system is incomplete.
Nevertheless, the overlap of both Raman channels is pre-
sumed to be equivalent; thus, the overlap effect could be min-
imal concerning water vapor measurements. The collected
water vapor measurements, along with concurrent tempera-
ture profiles from a collocated MWR, allow us to obtain RH
profiles. The vertical and temporal resolution of Raman lidar
and other instruments are listed in Table 1.

2.2 Microwave radiometer (MWR)

The microwave radiometer (MWR) serves as a passive in-
strument designed to measure atmospheric emissions across
two frequency bands within the microwave spectrum (Ci-
mini et al., 2006; Crewell and Löhnert, 2007). There are
seven channels set along the 22.235 GHz H2O absorption
line. Humidity information can be extracted from these ob-
servations. The seven channels from 51–58 GHz within the
O2 absorption complex encompass the vertical temperature
profile data. Consequently, the fully automatic MWR enables
the derivation of temperature and humidity profiles with a
temporal resolution of up to 5 min. The method for invert-
ing temperature and humidity profiles is the neural network
method in this study. It uses statistical methods to optimize
the long-term average radiosonde data and relies on previous
radiosonde data (Yang et al., 2023).
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Table 1. Instruments and monitoring parameters.

Instrument Parameters/units Temporal–spatial resolution

Raman lidar Relative humidity (RH) 7.5 m, 3 min
Microwave radiometer (MWR) Temperature (°C), relative humidity (RH) 50 m, 3 min
FY4B Relative humidity (RH) 1 h

2.3 Radiosonde data

We use radiosonde data from the China Meteorological Ad-
ministration (CMA) station for reference analysis. The ra-
diosonde is located in the same place as the Raman lidar and
provides on-site measurements of atmospheric pressure, tem-
perature, and RH. During the observing campaign, radioson-
des were launched twice a day (08:00 and 20:00 Local Stan-
dard Time, LST). The height can be determined by the ascent
time of the radiosonde balloon. The vertical resolution of the
raw data is 3 mlayer−1. To match other data, the vertical res-
olution of the raw data is interpolated to 30 m (0–3000 m)
and 250 m (3000–10 000 m).

2.4 Satellite

In 2016 and 2021, China successfully deployed two second-
generation geostationary meteorological satellites, Fengyun-
4A (FY4A) and Fengyun-4B (FY4B). They are both
equipped with the Geostationary Interferometric Infrared
Sounder (GIIRS). The GIIRS therefore became the first
geostationary orbiting meteorological satellite (Yang et al.,
2023). This approach could achieve the detection of weather
systems across China and its neighboring regions with high
temporal and spatial resolution. Therefore, it enables a more
comprehensive understanding of the atmospheric vertical
structure, including the retrieval of atmospheric temperature
profiles for 1000 m layers and moisture profiles for 2000 m
layers (Yang et al., 2017). In comparison to FY4A, the GI-
IRS on FY4B exhibits a broader spectral range, improved
spectral resolution in the long-wave IR band, and superior
detection sensitivity. Specifically, the temporal resolution of
GIIRS is enhanced from 2.5 h for FY4A to 2 h for FY4B.
In the meantime, the spatial resolution has progressed from
16 000–12 000 m at nadir. The atmospheric humidity pro-
files utilized in this study, derived from GIIRS, are generated
through the neural network algorithm created by the National
Satellite Meteorological Centre (NSMC) (Bai et al., 2023).
The data are available online: http://www.nsmc.org.cn/nsmc/
cn/theme/FY4B.html (last access: 11 July 2025).

Figure 1. Sketch of the retrieval scheme. Details are given in the
text.

3 Methods and evaluation

3.1 Lidar, MWR, and satellite synergetic algorithm

This study aims to obtain a continuous time series of RH
profiles by integrating ground-based remote sensing tech-
niques, including Raman lidar, MWR, and satellite data, in
a straightforward manner to facilitate a wide range of appli-
cations. The retrieval process involves a systematic four-step
algorithm that integrates the Raman lidar water mixing ratio
profile and MWR brightness temperatures along with satel-
lite data. The retrieval framework is shown in Fig. 1, and the
retrieval process is detailed in the following paragraphs.

Step 1: data quality control. Data with quality control
codes of 0 and 1 for FY4B and 0 for ground-based remote
sensing data are selected. The lidar only retains data with
a signal-to-noise ratio (SNR) greater than 3. The threshold
value of the SNR is set as 3 based on our extensive com-
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parisons with radiosonde data from CMA’s long-term obser-
vations. The results indicate that selecting lidar signals with
SNR > 3 can significantly improve the consistency between
retrieved RH profiles and radiosonde measurements. There-
fore, in the data selection period, the Raman signal starts with
the first SNR greater than 3 and ends with five consecutive
SNRs less than 3. The real-time observing data are desig-
nated as Rradio, Rlidar, RMWR, and Rsatellite in Fig. 2.

Step 2: data spatial–temporal matching. This process aims
to match the above quality-controlled data with the ra-
diosonde data at a height of 0–10 000 m in time and space.
For the time matching, temperature from MWR and water va-
por data from Raman lidar are selected corresponding to the
radiosonde data time (08:00 LST and 20:00 LST). In terms of
spatial matching, the FY4B data are selected from the nearest
grid point to the ground observing station for the horizontal
scale. The data at vertical heights are interpolated to the res-
olution of 30 m (0–3000 m) and 250 m (3000–10 000 m).

Step 3: correction coefficient determination. The deviation
between the temperature and humidity data of satellites and
ground-based remote sensing data at each height is quanti-
tatively calculated and analyzed to prepare for the optimal
stitching process in the next step. Here, the deviations of li-
dar, MWR, and FY4B are designated as Dlidar, DMWR, and
Dsatellite, respectively.

Dlidar = Rlidar−Rradio (1)
DMWR = RMWR−Rradio (2)
Dsatellite = Rsatellite−Rradio (3)

The correction coefficients Clidar, CMWR, and Csatellite are
calculated as follows.

Clidar =
|Dsatellite| + |DMWR|

2 · |Dsatellite| + |DMWR| + |Dlidar|
(4)

CMWR =
|Dsatellite| + |Dlidar|

2 · |Dsatellite| + |DMWR| + |Dlidar|
(5)

Csatellite =
|DMWR| + |Dlidar|

2 · |Dsatellite| + |DMWR| + |Dlidar|
(6)

Step 4: synergetic algorithm iteration and evaluation. Based
on the above spatial–temporal data matching and correction
coefficient calculation at different heights, a dynamic opti-
mal stitching algorithm (Fig. 2) is conducted. To ensure the
independence between the tested sample and the true value,
the temperature and humidity profiles of the current time are
fused using the correction coefficient of the previous time
and then compared with the radiosonde data at the same
time for evaluation. The correlation coefficient (R), the root-
mean-square error (RMSE), and the mean bias (MB) are used
as inspection indexes. Finally, the retrieved RH information
SRH could be obtained through the following equation.

SRH =Rsatellite ·Csatellite+RMWR ·CMWR

+Rlidar ·Clidar
(7)

From this process, we can see that, compared to these exist-
ing techniques, our new method not only incorporates satel-
lite data but also dynamically determines optimal fusion co-
efficients. Because the fusion coefficients are dynamically
determined by comparing the deviations from other mea-
surements with the reference of radiosonde, they highlight
that this new algorithm is real-time calibrated and that it
can guarantee the device model independence and geograph-
ical adaptability. Thus, it eliminates constraints imposed by
equipment specifications or observation locations, ensuring
broad applicability across diverse scenarios.

3.2 Error analysis

To evaluate the performance of the synergetic algorithm for
RH profiles, a comparative analysis was conducted between
retrieved values and actual radiosonde measurements. Let N

represent the total number of samples. The measured value is
designated as Oi , with i representing the sample label. The
value obtained through the new synergetic algorithm is des-
ignated as Gi . The evaluation indicators consist of MB, mean
absolute bias (MAB), and RMSE, defined by the following
equations.

MB=
∑N

i=1(Gi −Oi)

N
(8)

MAB=
∑N

i=1|Gi −Oi |

N
(9)

RMSE=

√∑N
i=1(Gi −Oi)

2

N
(10)

4 Results

4.1 General statistic information

A 5-month data set has been chosen for a statistical anal-
ysis of RH profiles. The observation period spans 1 July–
30 November 2024. The observation elements are RH data
from 47 stations in China (yellow circles in Fig. 3) at the
height of 0–10 000 m. To investigate RH retrieval accuracy,
we provide the comparison results of four methods (lidar,
MWR, satellite, and synergetic algorithm) utilizing the ra-
diosonde data as the reference at 47 sites in Table 2. Then,
Huhehaote (HHHT; northern China), Yibin (YB; middle
China), and Qingyuan (QY; southern China) are selected as
3 representative sites (red stars in Fig. 3) for more detailed
analysis, as shown in Fig. 4 and Table 3. The data samples for
HHHT, YB, and QY are 3773, 7452, and 8110, respectively,
after quality control and elimination of the precipitation data.

Generally, the synergetic algorithm at 47 sites presents the
maximum correlation coefficient R value of 0.98 with the
minimum RMSE of 5.27 % in Table 2. For three representa-
tive sites, the regression line from the synergetic algorithm at
all heights similarly provides the best-fitting results, with the
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Figure 2. The dynamic optimal stitching process.

Figure 3. The observation sites (yellow circles) and three selected sites (red stars) for statistics and case studies are marked in Fig 3.

largest correlation coefficients R of 0.94, 0.92, and 0.93 in
HHHT, YB, and QY, respectively (Table 3). The correlation
coefficient R for lidar measurement follows with marginally
higher values of 0.83 in HHHT, 0.86 in YB, and 0.86 in QY.
It indicates its greater applicability compared to other single
instruments. MWR presents the lowest R of 0.74 and 0.80
in HHHT and YB, performing better (R = 0.75) than satel-

lite (R = 0.66) in QY. In terms of RMSE, the lidar-, MWR-,
and satellite-derived RH all show values larger than 18 % at
three sites. The synergistic use of a multi-source algorithm
decreases the RMSE to the lowest value of 10 % in HHHT.

The regression line for lidar and MWR in HHHT, as illus-
trated in Fig. 4, exhibits a slope that is less than the one-
to-one line. This implies that greater variations arise with
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Table 2. Assessment of the accuracy of four RH retrieval results (lidar, MWR, satellite, and synergetic algorithm) compared with radiosonde
at 47 sites in China.

Comparison with radiosonde Number of samples R MB MAB RMSE
(%) (%) (%)

Lidar 192 111 0.91 0.56 6.7 10.67
MWR 192 111 0.82 −1.49 10.79 14.31
Satellite 192 111 0.74 1.08 13.19 17.02
Syngenetic algorithm 192 111 0.98 0.42 3.24 5.27

Table 3. The same as Table 2 but at three representative sites in China.

HHHT Comparison with radiosonde Number of samples R RMSE
(northern China) (%)

Lidar 3771 0.83 20
MWR 3771 0.74 25
Satellite 3771 0.76 24
Syngenetic algorithm 3771 0.94 10

YB Lidar 7452 0.86 19
(middle China) MWR 7452 0.80 26

Satellite 7452 0.83 29
Synergetic algorithm 7452 0.92 12

QY Lidar 8110 0.86 18
(southern China) MWR 8110 0.75 19

Satellite 8110 0.66 21
Synergetic algorithm 8110 0.93 11

increased RH in HHHT. Though the synergetic algorithm
also presents similar trends, its RMSE decreased to 10 % in
HHHT. The regression lines of lidar and MWR in YB and
QY are larger than the one-to-one line, indicating the larger
bias for less humidity.

As RH vertical profiles are height-dependent, Fig. 5
presents the MB profiles observed at different heights in
terms of four methods. Generally, the MB in the RH of li-
dar in the lower troposphere (below 3000 m) outperforms
the other two single methods (MWR and satellite) at three
sites. No significant biases between radiosonde and lidar are
noticeable. Specifically, the lowest MB values (4.93 % in
HHHT, 2.63 % in YB, and 2.40 % in QY) in the compre-
hensive region of the tropospheric region are achieved when
lidar data are incorporated into the synergetic algorithm. This
is because lidar is an active remote sensing technology with
more accuracy compared to MWR and satellite. The lidar
data’s efficacy is enhanced at heights below 3000 m when in-
tegrated with data from other sources within the boundary
layer.

However, the MB from lidar increased drastically above
this height, up to the highest value of 28.67 % in HHHT,
29.91 % in YB, and 20.09 % in QY. It is reasonable that the
atmosphere changes so fast that radiosondes do not assess
exactly the same air mass as lidar. In the meantime, lidar is

increasingly constrained at elevated heights because of a de-
creased SNR; hence lidar is more trustworthy in the lower
layer, i.e., below 3000 m.

In contrast, the MB from satellite (FY4B) over 3000 m
varied steadily within the range of approximately 15 % at
three sites. Therefore, the satellite data in the far height range
would be more reliable and could be employed in the syn-
ergetic algorithm at higher layers. Compared to lidar and
satellite, the MB from MWR gives the largest uncertainty
in HHHT at all heights. This may result from the discrep-
ancy between the temperature recorded by the radiosonde
and that obtained from the MWR in HHHT. However, it
yields relatively less variation than lidar and satellite in YB
and QY. In any case, the synergetic method gives the best
result over three observing sites at almost all heights, and ac-
curate measurements of RH vertical profiles provided here
are highly beneficial for analyzing the hygroscopic growth
of local aerosols.

The sources of the discrepancy can stem from several as-
pects. Firstly, although all instruments are collocated in the
ground, radiosondes deviate at higher heights. Signals can
be disrupted if clouds are present. Secondly, satellites pro-
vide gridded data, requiring the selection of ground observa-
tion points closest to the grid’s latitude and longitude, which
introduces uncertainty. Finally, both MWR and satellite are

Atmos. Meas. Tech., 18, 3179–3191, 2025 https://doi.org/10.5194/amt-18-3179-2025



C. Ji et al.: A new method to retrieve relative humidity profiles 3185

Figure 4.

passive remote sensing technologies, which are inherently
less precise than active remote sensing technologies. Besides
the inherent hardware difference, the errors during the re-

trieval process (e.g., neural networks for MWR) are also un-
avoidable.
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Figure 4. RH results retrieved with four methods (lidar, MWR, satellite, and synergetic algorithm) compared with radiosonde at three
sites in China from 1 July–31 November 2024. (a) Comparison between lidar and radiosonde in HHHT, (b) comparison between MWR
and radiosonde in HHHT, (c) comparison between satellite and radiosonde in HHHT, (d) comparison between synergetic algorithm and
radiosonde in HHHT. (e–h) The same as panels (a–d) but in YB. (i–l) The same as panels (a–d) but in QY. The red line shows the regression
line. The black line is the one-to-one line.
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Figure 5. RH vertical mean bias (MB) profiles retrieved from lidar, MWR, satellite, and synergetic algorithm compared to the radiosonde
data in (a) HHHT, (b) YB, and (c) QY.

4.2 Mean monthly analysis

RH mean monthly vertical profiles have been derived from
the synergistic method illustrated in Fig. 6 because RH pro-
files are retrieved from water ratio profiles and temperature
profiles. For this property, the RH seasonal behavior may be
more complicated. For example, no obvious seasonal behav-
ior of RH profiles is found in HHHT or YB. However, QY
still presents the most likely seasonal characteristic at most of
the heights, with the highest mean values in summer at 1000–
2000 m (80.65 % in July) and the lowest values at 7000–
10 000 m in late autumn (20.50 % in November) in Fig. 6e
and f. The elevated RH observed in QY’s summer may be
related to the sufficient water vapor and large transport vol-
ume, as QY is located in coastal areas. So the characteristic
of QY would be more dependent on water vapor.

For comparison, HHHT and YB are relatively random. At
over 3000 m in HHHT (Fig. 6a and b), RH in August shows
predominantly high values, with the highest value of 65.37 %
at 5000–7000 m. Unlike in HHHT and QY, the RH profiles
of YB in November interestingly show the highest values
(83.95 %) in the lower atmosphere (0–1000 m) in Fig. 6c and
d. This suggests that the reduced temperatures observed in
autumn of YB promote proximity to saturation conditions,
resulting in elevated RH values in November. It is also worth
noting that RH above 3000 m in November of YB decreases
dramatically as height increases, with the minimum RH of
13.91 % at 7000–10 000 m. This could be explained by more
rapid fluctuations in the water vapor density and temperature
in YB in the higher layer under the control of the subtropi-
cal monsoon climate zone. In any case, this plot illustrates a
clear decrease in the RH values with heights at three sites.

Though there is no obvious RH uncertainty caused by re-
gional differences, we found that QY exhibits the predom-
inant seasonal feature throughout most heights. In contrast,
no discernible seasonal characteristics in RH profiles are ob-
served in HHHT or YB. Thus, we believe diverse atmo-

spheric circulation patterns and geographical environments
could result in regional variations in RH values.

4.3 Case analysis

We selected two different severe convective events in YB
(one hailfall from 20:00–23:30 LST on 15 April and one
heavy precipitation from 14:00 LST on 25 May to 08:00 LST
on 26 May) for comparison in Fig. 7. At 23:00 LST on
15 April, a thunderstorm with strong winds and hail oc-
curred. The RH profile retrieved by the synergetic algorithm
showed that, before 22:00 LST, the RH was high (around
90 %) at 3000 m height, low (20 %–50 %) between 3500 m
and 8000 m, and above 80 % between 8000 m and 9000 m
(Fig. 7a). This indicates that, before the severe convection,
the upper and lower layers were relatively moist, while the
middle layer (3500–8000 m) was dry (red arrow in Fig. 7a).
Such conditions favor the evaporation and cooling of ice par-
ticles descending from the upper atmosphere, leading to re-
freezing and hail formation.

In contrast, the RH profile from 25–26 May showed that
the entire troposphere (0–10 000 m) presented high RH val-
ues (> 70%) starting at 19:00 LST, which was conducive
to heavy precipitation (Fig. 7b). According to ground sta-
tion observations, YB recorded an hourly rainfall of 52 mm
at 21:00 LST, along with gale-force winds of 23 ms−1 (9th
grade). Most areas in YB experienced precipitation, with lo-
calized heavy thunderstorms. From the above two cases, we
can see that the RH in the middle troposphere can be used
to distinguish between hail and heavy precipitation during
severe convective events.

5 Conclusions

This study presents relative humidity (RH) measurements
with a developed synergetic algorithm with the combination
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Figure 6. RH monthly vertical profiles (left) and monthly mean values for different heights (right) in (a, b) HHHT, (c, d) YB, and (e, f) QY.
The error bars indicate the standard deviation.
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Figure 7. Height–time display of RH from the synergetic retrieval during two convective cases (a) from 20:00 LST to 23:30 LST on 15 April
and (b) from 14:00 LST on 25 May to 08:00 LST on 26 May 2024 in YB. The red arrow indicates the lower humidity in the layer when the
hailfall occurred in the first convective case.

of Raman lidar, MWR, and satellite at three sites (northern
China, middle of China, and southern China) from 1 July–31
November 2024. The methodology for obtaining RH from
the synergetic algorithm was introduced. The 5-month field
campaign was performed, and linear regression between the
lidar, MWR, satellite, synergetic algorithm, and radiosonde
data at the range of 0–10 000 m was presented to testify the
accuracy.

Strong correlations of RH values over 0.9 were observed
between radiosonde measurements and profiles derived from
the synergetic approach at three representative sites in China.
The lowest MB values (4.93 % in HHHT, 2.63 % in YB, and
2.40 % in QY) are observed when lidar data are integrated
into the synergetic algorithm, which highlights the accuracy
of the lidar data below 3000 m. However, the MB from li-
dar increased drastically above this height, which suggests
the greater applicability of satellite or MWR in the mid-
dle and higher layers. In terms of the seasonal characteris-
tic, QY exhibits the predominant seasonal feature through-
out most heights, with peak mean values of 80.65 % in July at
1000–2000 m and minimal values of 20.50 % in November at
7000–10 000 m. Finally, the RH evolution in two convective
events in YB suggests that the RH in the middle troposphere
can be taken as a good indicator to distinguish hail and heavy
precipitation.

These results validate the capabilities of the newly devel-
oped method to deliver accurate measurements of RH infor-
mation throughout the troposphere. They also explore the po-
tential of satellite data integration for RH profile retrieval for
the first time. However, there are still problems with individ-
ual data at certain times during the fusing process. For ex-
ample, there are few effective data filtered by quality-control
methods for FY4B data. Therefore, the matching accuracy

and more high quality FY4B data will be improved in future
development.
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other auxiliary data used to generate the results of this pa-
per are available from the authors upon request (email: zy-
chen@btbu.edu.cn).

Author contributions. CJ and ZC conceived the study. JM, ZW, and
XR conducted the field measurements. ZC, CJ, QJ, FL, YL, and WJ
carried out the data analysis. PZ and YX offered academic help for
this research. ZC and CJ wrote the paper with inputs from all co-
authors.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This work was supported by the Innovation
and Development Special Project of the China Meteorological Ad-
ministration (grant nos. CXFZ2024J011 and CXFZ2024J057), the
Innovation Team of the China Meteorological Administration (grant
no. CMA2023QN11), the National Key Research and Develop-
ment Program of China (grant no. 2024YFC3711700), and a project

https://doi.org/10.5194/amt-18-3179-2025 Atmos. Meas. Tech., 18, 3179–3191, 2025



3190 C. Ji et al.: A new method to retrieve relative humidity profiles

(Simulation of cloud lidar echo signal and study on cloud micro-
physics characteristics) of the Aerospace Information Innovation
Research Institute at the Chinese Academy of Sciences. The authors
thank the colleagues who participated in the operation of the lidar
system at our site. We also acknowledge the CMA for the satellite
(FY4B) data and radiosonde data (https://ladsweb.modaps.eosdis.
nasa.gov, last access: 11 July 2025) and the European Centre for
Medium-range Weather Forecasts (ECMWF) for the ERA5 reanal-
ysis data (https://climate.copernicus.eu/climate-reanalysis, last ac-
cess: 11 July 2025).

Financial support. This research has been supported by the Innova-
tion and Development Special Project of the China Meteorological
Administration (grant nos. CXFZ2024J011 and CXFZ2024J057),
the Innovation Team of the China Meteorological Administration
(grant no. CMA2023QN11), the National Key Research and De-
velopment Program of China (grant no. 2024YFC3711700), and a
project (Simulation of cloud lidar echo signal and study on cloud
microphysics characteristics) of the Aerospace Information Innova-
tion Research Institute at the Chinese Academy of Sciences.

Review statement. This paper was edited by Yuanjian Yang and re-
viewed by two anonymous referees.

References

Adam, M., Demoz, B. B., Whiteman, D. N., Venable, D. D.,
Joseph, E., Gambacorta, A., Wei, J., Shephard, M. W.,
Milosevich, L. M., Barnet, C. D., Herman, R. L., Fitzgib-
bon, J., and Connell, R.: Water Vapor Measurements by
Howard University Raman LiDAR during the WAVES
2006 Campaign, J. Atmos. Ocean. Tech., 27, 42–60,
https://doi.org/10.1175/2009JTECHA1331.1, 2010.

Bai, W., Zhang, P., Liu, H., Zhang, W., Qi, C., Ma, G., and Li, G.: A
fast piecewise-defined neural network method to retrieve temper-
ature and humidity profile for the vertical atmospheric sounding
system of FengYun-3E satellite, IEEE T. Geosci. Remote, 61,
4100910, https://doi.org/10.1109/tgrs.2023.3247776, 2023.

Barrera-Verdejo, M., Crewell, S., Löhnert, U., Orlandi, E., and
Di Girolamo, P.: Ground-based lidar and microwave radiometry
synergy for high vertical resolution absolute humidity profiling,
Atmos. Meas. Tech., 9, 4013–4028, https://doi.org/10.5194/amt-
9-4013-2016, 2016.

Blumberg, W. G., Turner, D. D., Löhnert, U., and Castleberry, S.:
Ground based temperature and humidity profiling using spec-
tral infrared and microwave observations, Part II: Actual retrieval
performance in clear-sky and cloudy conditions, J. Appl. Meteo-
rol., 54, 2305–2319, 2015.

Brocard, E., Jeannet, P., Begert, M., Levrat, G. Philipona, R., Roma-
nens, G., and Scherrer, S. C.: Upper air temperature trends above
Switzerland 1959–2011, J. Geophys. Res.-Atmos., 118, 4303–
4317, https://doi.org/10.1002/jgrd.50438, 2013.

Brogniez, H., Kirstetter, P. E., and Eymard, L., Expected improve-
ments in the atmospheric humidity profile retrieval using the
Megha-Tropiques microwave payload, Q. J. Roy. Meteor. Soc.,
139, 842–851, https://doi.org//10.1002/qj.1869, 2013.

Chen, Z. Y., Ji, C. L., Mao, J. J., Wang, Z. C., Jiao, Z. M., Gao, L. N.,
Xiang, Y., and Zhang, T. S.: Downdraft influences on the differ-
ences of PM2.5 concentration: insights from a mega haze evo-
lution in the winter of northern China, Environ. Res. Lett., 19,
014042, https://doi.org/10.1088/1748-9326/ad1229, 2024.

Cimini, D., Hewison, T., Martin, L., Güldner, J., Gaffard, C., and
Marzano, F.: Temperature and humidity profile retrievals from
ground-based microwave radiometers during TUC, Meteorol. Z.,
15, 45–56, https://doi.org/10.1127/0941-2948/2006/0099, 2006.

Crewell, S. and Löhnert, U. : Accuracy of boundary layer tem-
perature profiles retrieved with multifrequency multiangle mi-
crowave radiometry, IEEE T. Geosci. Remote, 45, 2195–2201,
https://doi.org/10.1109/TGRS.2006.888434, 2007.

Delanoë, J., and Hogan, R. J.: A variational scheme for re-
trieving ice cloud properties from combined radar, LiDAR,
and infrared radiometer, J. Geophys. Res., 113, D07204,
https://doi.org/10.1029/2007JD009000, 2008.

Fan, J., Zhang, R., Li, G., Tao, W. K., and Li, X.: Effects of aerosols
and relative humidity on cumulus clouds, J. Geophys. Res., 112,
D14204, https://doi.org/10.1029/2006JD008136, 2007.

Foth, A., Baars, H., Di Girolamo, P., and Pospichal, B.: Water
vapour profiles from Raman lidar automatically calibrated by mi-
crowave radiometer data during HOPE, Atmos. Chem. Phys., 15,
7753–7763, https://doi.org/10.5194/acp-15-7753-2015, 2015.

Foth, A. and Pospichal, B.: Optimal estimation of water
vapour profiles using a combination of Raman lidar and
microwave radiometer, Atmos. Meas. Tech., 10, 3325–3344,
https://doi.org/10.5194/amt-10-3325-2017, 2017.

Furumoto, J., Kurimoto, K., and Tsuda, T.: Continuous observations
of humidity profiles with the Mu Radar-RASS combined with
GPS and radiosonde measurements, J. Atmos. Ocean. Tech., 20,
23–41, 2003.

Gangwar, R. K., Gohil, B. S., and Mathur, A. K.: Retrieval of
Layer Averaged Relative Humidity Profiles from MHS Obser-
vations over Tropical Region, J. Atmos. Sci., 2014, 645970,
https://doi.org/10.1155/2014/645970, 2014.

Gohil, B. S., Gairola, R. M., Mathur, A. K., Varma, A. K.,
Mahesh, C., Gangwar, R. K., and Pal, P. K., Algorithms
for retrieving geophysical parameters from the MADRAS
and SAPHIR sensors of the Megha-Tropiques satellite: In-
dian scenario, Q. J. Roy. Meteor. Soc., 139, 954–963,
https://doi.org/10.1002/qj.2041, 2013.

Granados-Muñoz, M. J., Navas-Guzmán, F., Bravo-Aranda, J. A.,
Guerrero-Rascado, J. L., Lyamani, H., Valenzuela, A., Titos, G.,
Fernández-Gálvez, J., and Alados-Arboledas, L.: Hygroscopic
growth of atmospheric aerosol particles based on active re-
mote sensing and radiosounding measurements: selected cases
in southeastern Spain, Atmos. Meas. Tech., 8, 705–718,
https://doi.org/10.5194/amt-8-705-2015, 2015.

Hogg, D., Decker, M., Guiraud, F., Earnshaw, K., Merritt, D.,
Moran, K., Sweezy, W., Strauch, R., Westwater, E., and Lit-
tle, G.: An automatic profiler of the temperature, wind and hu-
midity in the troposphere, J. Appl. Meteorol., 22, 807–831, 1983.

Long, L., He, L., Li, J. B., Zhang, W. L., and Zhang, Y. X.: Cli-
matic characteristics of mesoscale convective systems in the
warm season in North China, Meteorol. Atmos. Phys., 135, 21,
https://doi.org/10.1007/s00703-023-00958-1, 2023.

Kang, Y. Z., Peng, X. D., Wang, S. G., Hu, Y. L., Shang, K. Z.,
and Lu, S.: Observational analyses of topographic effects on con-

Atmos. Meas. Tech., 18, 3179–3191, 2025 https://doi.org/10.5194/amt-18-3179-2025

https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://climate.copernicus.eu/climate-reanalysis
https://doi.org/10.1175/2009JTECHA1331.1
https://doi.org/10.1109/tgrs.2023.3247776
https://doi.org/10.5194/amt-9-4013-2016
https://doi.org/10.5194/amt-9-4013-2016
https://doi.org/10.1002/jgrd.50438
https://doi.org//10.1002/qj.1869
https://doi.org/10.1088/1748-9326/ad1229
https://doi.org/10.1127/0941-2948/2006/0099
https://doi.org/10.1109/TGRS.2006.888434
https://doi.org/10.1029/2007JD009000
https://doi.org/10.1029/2006JD008136
https://doi.org/10.5194/acp-15-7753-2015
https://doi.org/10.5194/amt-10-3325-2017
https://doi.org/10.1155/2014/645970
https://doi.org/10.1002/qj.2041
https://doi.org/10.5194/amt-8-705-2015
https://doi.org/10.1007/s00703-023-00958-1


C. Ji et al.: A new method to retrieve relative humidity profiles 3191

vective systems in an extreme rainfall event in Northern China,
Atmos. Res., 229, 127–144, 2019.

Madonna, F., Amodeo, A., Boselli, A., Cornacchia, C., Cuomo, V.,
D’Amico, G., Giunta, A., Mona, L., and Pappalardo, G.: CIAO:
the CNR-IMAA advanced observatory for atmospheric research,
Atmos. Meas. Tech., 4, 1191–1208, https://doi.org/10.5194/amt-
4-1191-2011, 2011.

Mattis, I., Ansmann, A., Althausen, D., Jaenisch, V., Wandinger, U.,
Müller, D., Arshinov, Y. F., Bobrovnikov, S. M., and
Serikov, I. B.: Relative-humidity profiling in the tropo-
sphere with a Raman LiDAR, Appl. Optics, 41, 6451–6462,
https://doi.org/10.1364/AO.41.006451, 2002.

Mochida, M.: Simultaneous measurements of hygroscopic prop-
erty and cloud condensation nucleus activity of aerosol
particles of marine biogenic origin, Western Pacific Air–
Sea Interaction Study, American Geophysical Union, 71–81,
https://doi.org/10.5047/w-pass.a01.008, 2014.

Navas-Guzmán, F., Fernández-Gálvez, J., Granados-Muñoz, M. J.,
Guerrero-Rascado, J. L., Bravo-Aranda, J. A., and Alados-
Arboledas, L.: Tropospheric water vapour and relative humid-
ity profiles from lidar and microwave radiometry, Atmos. Meas.
Tech., 7, 1201–1211, https://doi.org/10.5194/amt-7-1201-2014,
2014.

Petters, M. D. and Kreidenweis, S. M.: A single parameter
representation of hygroscopic growth and cloud condensa-
tion nucleus activity, Atmos. Chem. Phys., 7, 1961–1971,
https://doi.org/10.5194/acp-7-1961-2007, 2007.

Ramírez-Beltrán, N. D., Salazar, C. M., Castro Sánchez,
J. M., and González, J. E.: A satellite algorithm for es-
timating relative humidity, based on GOES and MODIS
satellite data, Int. J. Remote Sens., 40, 9237–9259,
https://doi.org/10.1080/01431161.2019.1629715, 2019.

Reichardt, J., Wandinger, U., Klein, V., Mattis, I., Hilber, B.,
and Begbie, R.: RAMSES: German meteorological service
autonomous Raman LiDAR for water vapor, temperature,
aerosol, and cloud measurements, Appl. Optics, 51, 8111–8131,
https://doi.org/10.1364/AO.51.008111, 2012.

Schmetz, J.: Good things need time: Progress with the first hyper-
spectral sounder in geostationary orbit, Geophys. Res. Lett., 48,
e2021GL096207, https://doi.org/10.1029/2021GL096207, 2021.

Stankov, B. B., Martner, B. E., and Politovich, M. K.: Moisture pro-
filing of the cloudy winter atmosphere using combined remote
sensors, J. Atmos. Ocean. Tech., 12 , 488–510, 1995.

Skou, N., Søbjærg, S. S., and Kristensen, S. S.: Fu-
ture high-performance spaceborne microwave ra-
diometer systems, IEEE Geosci. Remote S., 19, 1–5,
https://doi.org/10.1109/LGRS.2021.3118082, 2022.

Wang, S. F., Lu, F., and Feng. Y. T.: An Investigation of the
Fengyun-4A/B GIIRS performance on temperature and humid-
ity retrievals, Atmos., 13, 1830, 2022.

Toporov, M., and Löhnert, U.: Synergy of satellite- and ground-
based observations for continuous monitoring of atmospheric
stability, liquid water path, and integrated water vapor: theoret-
ical evaluations using reanalysis and neural networks, J. Appl.
Meteorol. Clim., 59, 1153–1170, https://doi.org/10.1175/JAMC-
D-19-0169.1, 2020.

Turner, D. D. and Löhnert, U.: Ground-based temperature
and humidity profiling: combining active and passive
remote sensors, Atmos. Meas. Tech., 14, 3033–3048,
https://doi.org/10.5194/amt-14-3033-2021, 2021.

Wex, H., Stratmann, F., Hennig, T., Hartmann, S., Niedermeier, D.,
Nilsson, E., Ocskay, R., Rose, D., Salma, I., and Ziese, M.: Con-
necting hygroscopic growth at high humidities to cloud activa-
tion for different particle types, Environ. Res. Lett., 3, 035004,
https://doi.org/10.1088/1748-9326/3/3/035004, 1–10, 2008.

Ware, R., Carpenter, R., Guldner, J., Liljegren, J., Nehrkorn, T., Sol-
heim, F., and Vandenberghe, F. A.: Multi-channel radiometric
profiles of temperature, humidity and cloud liquid, Radio Sci.,
38, 8079–8032, 2003.

Wang, X., Miao, H., Liu, Y., Bao, Q., He, B., Li, J., and
Zhao, Y.: The use of satellite data-based “critical relative hu-
midity” in cloud parameterization and its role in modulating
cloud feedback, J. Adv. Model. Earth Sy., 14, e2022MS003213,
https://doi.org/10.1029/2022MS003213, 2022.

Wang, Z. Z., Wang, W. Y., Tong, X. L., Zhang, Z., Liu,
J. Y., Lu, H. H., Ding, J., Wu, Y. T.: Progress in space-
borne passive microwave remote sensing technology and its
application (in Chinese), Chin. J. Space Sci., 43, 986–1015,
https://doi.org/10.11728/cjss2023.06.yg15, 2023.

Whiteman, D. N., Melfi, S. H., and Ferrare, R. A.: Raman
LiDAR system for the measurement of water vapor and
aerosols in the earth’s atmosphere, Appl. Optics, 31, 3068–3082,
https://doi.org/10.1364/AO.31.003068, 1992.

Xu, G. R., B. K., Zhang, W. G., Cui, C. G., Dong, X. Q.,
Liu, Y. Y., and Yan, G. P.: Comparison of atmospheric
profiles between microwave radiometer retrievals and ra-
diosonde soundings, J. Geophys. Res.-Atmos., 120, 313–323,
https://doi.org/10.1002/2015JD023438, 2015.

Yang, J., Zhang, Z., Wei, C., Lu, F., and Guo, Q.: Introducing
the new generation of Chinese geostationary weather satellites,
Fengyun-4, B. Am. Meteorol. Soc., 98, 1637–1658, 2017.

Yang, W., Chen, Y., Bai, W., Sun, X., Zheng, H., and
Qin, L.: Evaluation of temperature and humidity pro-
files retrieved from Fengyun-4B and implications for ty-
phoon assimilation and forecasting, Remote Sens., 15, 5339,
https://doi.org/10.3390/rs15225339, 2023.

Zhang, L., Liu, M., He, W., Xia, X. G.,Yu, H. N., Li, S., X.,
and Li, J.: Ground passive microwave remote sensing of
atmospheric profiles using WRF simulations and machine
learning techniques, J. Meteorol. Res.-PRC, 38, 680–692,
https://doi.org/10.1007/s13351-024-4004-2, 2024.

Zhang, Z., Dong, X., and Zhu, D.: Optimal channel selection
of spaceborne microwave radiometer for surface pressure re-
trieval over Oceans, J. Atmos. Ocean. Tech., 39, 1857–1868,
https://doi.org/10.1175/JTECH-D-21-0121.1, 2022.

Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Bal-
tensperger, U.: Effects of relative humidity on aerosol light
scattering: results from different European sites, Atmos. Chem.
Phys., 13, 10609–10631, https://doi.org/10.5194/acp-13-10609-
2013, 2013.

https://doi.org/10.5194/amt-18-3179-2025 Atmos. Meas. Tech., 18, 3179–3191, 2025

https://doi.org/10.5194/amt-4-1191-2011
https://doi.org/10.5194/amt-4-1191-2011
https://doi.org/10.1364/AO.41.006451
https://doi.org/10.5047/w-pass.a01.008
https://doi.org/10.5194/amt-7-1201-2014
https://doi.org/10.5194/acp-7-1961-2007
https://doi.org/10.1080/01431161.2019.1629715
https://doi.org/10.1364/AO.51.008111
https://doi.org/10.1029/2021GL096207
https://doi.org/10.1109/LGRS.2021.3118082
https://doi.org/10.1175/JAMC-D-19-0169.1
https://doi.org/10.1175/JAMC-D-19-0169.1
https://doi.org/10.5194/amt-14-3033-2021
https://doi.org/10.1088/1748-9326/3/3/035004
https://doi.org/10.1029/2022MS003213
https://doi.org/10.11728/cjss2023.06.yg15
https://doi.org/10.1364/AO.31.003068
https://doi.org/10.1002/2015JD023438
https://doi.org/10.3390/rs15225339
https://doi.org/10.1007/s13351-024-4004-2
https://doi.org/10.1175/JTECH-D-21-0121.1
https://doi.org/10.5194/acp-13-10609-2013
https://doi.org/10.5194/acp-13-10609-2013

	Abstract
	Introduction
	Instrumentation
	Raman lidar
	Microwave radiometer (MWR)
	Radiosonde data
	Satellite

	Methods and evaluation 
	Lidar, MWR, and satellite synergetic algorithm
	Error analysis

	Results
	General statistic information
	Mean monthly analysis
	Case analysis

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

