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Abstract. We introduce a novel framework for estimating
eddy fluxes using cross-scalogram smoothing, addressing
key limitations of the standard eddy-covariance method. The
standard approach suffers from fixed averaging times (typ-
ically 30 min) and limited frequency resolution, which can
lead to biases and an inability to capture fast dynamics.
Our method, based on wavelet transforms, allows for high-
resolution analysis of fluxes in both time and frequency do-
mains. It adaptively localises turbulent scales using a metric
derived from the vertical component of the Reynolds stress
tensor, enabling more accurate flux estimation under vary-
ing turbulence conditions. The proposed metric is similar to
the u∗ and σw tests, but it is adapted to the time–frequency
setting. By decoupling the filtering of perturbative scales
from flux calculations, our approach allows for flexible av-
eraging times. This adaptability makes it particularly suit-
able for studying rapid ecosystem responses to environmen-
tal changes, such as those occurring on timescales shorter
than 1 h. We show application of the framework at the beech
forest site Hesse (code FR-Hes) and demonstrate its relation
with standard eddy-covariance calculations. The proposed
method allows for varying the averaging time without im-
pacting the filtering of the perturbative scales. It thus allows
for producing estimates of CO2, latent heat, and sensible heat
fluxes with faster dynamics (e.g. with 1, 10, and 30 min av-
eraging time). We present statistics of the 10 min averaged
fluxes and show that they align well with estimates of the
30 min standard eddy-covariance method. The improved lo-
calisation of turbulent scales results in higher estimates of
carbon uptake during summer (+2± 1 µmolm−2 s−1) and a
more accurate assessment of nighttime respiration compared
to standard eddy-covariance estimates. The methodology is

implemented in the Julia package TurbulenceFlux.jl,
making it readily accessible for practical applications.

1 Introduction

The establishment of extensive networks of flux towers
across the globe over the past 2 decades has proven to be
a valuable asset for the scientific community and policy-
makers alike. It enabled monitoring of a diverse range of
ecosystems and a more detailed characterisation of their
functioning (Baldocchi, 2019). This is particularly important
in light of the uncertain effects of climate change on these
ecosystems. In order to make the best use of the instruments
and the data, standards have been established with regard
to the instrumentation setup and the data processing meth-
ods. In particular, the eddy-covariance method has evolved
to become a standard approach (e.g. Burba, 2022). It is now
widely employed to estimate fluxes from raw measurements
and is available through different software packages (Fratini
and Mauder, 2014).

Standard eddy-covariance processing is constrained by its
fixed averaging time, typically set to 30 or 60 min. Increasing
the temporal resolution, i.e. decreasing the averaging time,
is, however, not possible with the standard eddy-covariance
method without impacting the filtering of the perturbative
scales. Studying an alternative method that safely separates
between the filtering of the perturbations (large-scale pro-
cess, noise) and the flux calculation such that the averaging
time may be varied may open up new research opportunities,
such as studying the fast responses of plants to environmental
cues (Durand et al., 2021).
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The standard eddy-covariance method is based on
Reynolds decomposition and the covariance operator. The
Reynolds decomposition implies that signals are considered
ergodic so that the rules of averaging apply (see Stull, 1988,
Sect. 2.4.2). An important consequence of this is that a single
parameter, the averaging time length, determines two key el-
ements: (1) how signals are decomposed over time into mean
and variable parts, where the latter should only capture local
turbulent processes, and (2) the duration of the covariance
operator for estimating the fluxes. However, it is clear from
the experimental studies that turbulence above canopy is an
intermittent process that cannot be considered ergodic (Lee
et al., 2004, Chap. 8). A direct consequence is that Reynolds
decomposition and the covariance operator are regarded as
filtering operations. Reynolds decomposition separates sig-
nals into low- and high-frequency components, correspond-
ing to the mean and variable parts, with the averaging time
determining where this separation occurs in frequency. The
ideal location is within the spectral gap between mesoscale
and turbulent processes (Van der Hoven, 1957; Von Randow,
2002), such that the high-frequency component (the variable
part) only captures the local turbulent transport. The covari-
ance operator estimates a flux by correlating the variable
parts over a short duration which is set to the same aver-
aging time used during the Reynolds decomposition. Two
points can be remarked. Firstly, the Reynolds decomposition
does not adapt to changing conditions, i.e. a changing spec-
tral gap, which means that the variable part of the signals
may not contain at any given time the information relative to
a local turbulent transport, resulting in potential biases. Sec-
ondly, the averaging time of the covariance operator is de-
pendent on the spectral gap, yet it should only depend on the
duration of the coherent structures involved in the turbulent
transport. This makes it impossible to modify the operator to
reach higher temporal resolutions. To overcome these limita-
tions, an alternative decomposition that tracks the evolution
of turbulence and a different estimation operator that is inde-
pendent of the decomposition can be used with the goal of
estimating fluxes at high temporal resolution.

The identification and extraction of localised patterns,
such as microfronts, which are local and coherent structures
hypothesised to contribute significantly to the flux, has been
proposed to account for the intermittent nature of turbu-
lence (Schols, 1984; Bergström and Högström, 1989). This
has led to the development of numerous conditional sam-
pling methods (e.g. Subramanian et al., 1982) for extract-
ing patterns from turbulence time series. In that context,
wavelet transforms appeared as an alternative to Reynolds
decomposition and proved to be efficient in localising pat-
terns (Mahrt and Frank, 1988; Mahrt, 1991). Collineau and
Brunet (1993) first used conditional sampling with wavelet
transform for studying the turbulent exchange of heat and
momentum between the canopy of a pine forest and the at-
mosphere. The identification of structures with wavelet trans-
forms has been exploited in many other cases: energetic ed-

dies (Howell and Mahrt, 1994), whose approach based on
energetic criteria is reminiscent of the one used by Katul
and Vidakovic (1996) for the identification of detached/at-
tached eddies (see Townsend, 1980); H2O/CO2 concentrated
eddies for flux partitioning (Scanlon and Albertson, 2001);
upwards and downwards eddies at different heights along a
shore (Attié and Durand, 2003); large-scale structures over
heterogeneous terrain (Mauder et al., 2007); and short turbu-
lent events (Schaller et al., 2017).

It has also been proposed to directly estimate fluxes from
cross-scalograms, i.e. the product of the wavelet transforms
of two signals, instead of focusing on particular patterns. To
our knowledge, Attié and Durand (2003) and Strunin and
Hiyama (2004) first exploited continuous cross-scalograms
to form instantaneous fluxes in position–wavelength rep-
resentation with airborne measurements, which is equiva-
lent to a time–frequency representation for static measure-
ments. Mauder et al. (2007) used local smoothing over cross-
scalograms (see Torrence and Compo, 1998) to form av-
eraged fluxes at different wavelengths, with their sum over
wavelengths leading to flux estimates over a region. The lo-
cal smoothing serves as a noise removal and estimates a local
correlation (i.e. a flux) in time and frequency coordinates.
This method differs from the standard eddy-covariance ap-
proach as the decomposition in different frequency bands is
done separately from the actual estimation of the flux by lo-
cal smoothing. It can be seen as a generalisation of the stan-
dard approach where more frequency bands are added to the
Reynolds decomposition and where the covariance operator
is replaced with a cross-correlation parameterised with an av-
eraging length parameter that is independent of the decom-
position. That way, the flux is estimated locally in time and
frequency coordinates but without limitations in the time res-
olution and with sufficient frequency bands to better localise
turbulent transport.

The smoothing of cross-scalograms thus seems a promis-
ing approach to overcome the limitations of the standard
eddy-covariance approach. However, its use may have been
hindered by the presence of various obstacles. The wide va-
riety of available wavelet types makes selection a challeng-
ing process. The overall estimation may depend on a partic-
ular type of wavelet (Schaller et al., 2017), which raises the
question of whether another family could have been more
optimal. Furthermore, different types of wavelet transforma-
tions are possible, such as the orthogonal wavelet transform
or the transformation of signals with redundant frames of
wavelet. The decomposition should, however, conserve en-
ergy and the global flux. There is also currently no test that
is adapted to time and frequency coordinates for determin-
ing that the turbulence is sufficiently developed and that the
estimated flux is linked to a local turbulent transport.

In the presented work, we address the previously outlined
issues. First, we establish a general framework for decom-
posing and estimating fluxes in time and frequency coordi-
nates and show how the standard eddy-covariance approach
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or the local smoothing of cross-scalograms can be viewed
as particular cases of it. We specify the conditions for en-
suring that the decomposition and estimation process con-
serves the global flux. Next, we present a particular case of
the established framework by employing a redundant frame
of generalised Morse wavelets, a parameterised superfamily
of wavelets that facilitates the exploration of various wavelet
shapes (Lilly and Olhede, 2012). Finally, we develop a statis-
tical test based on the Reynolds stress tensor to assess the de-
velopment of turbulence in time and frequency coordinates.
We present results of the proposed methodology using data
acquired at the FR-Hes flux tower (Granier et al., 2008).

2 Methodology

We denote the vertical wind speed as w, the horizontal wind
speeds as u and v, the temperature as θ , and a scalar of in-
terest such as CO2 as s. We assume that signals are observed
over a period T . The Fourier transform of the signal x is de-
noted as x̂.

2.1 The standard eddy-covariance approach and its
limits

We recall here the standard eddy-covariance method, before
showing how it can be extended in the next section. We con-
sider the simple case of the conservation of a passive scalar s
in an incompressible flow with horizontal homogeneity, with
the equation of conservation being (Sect. 3.2.6, Stull, 1988)

∂s

∂t
+
∂ws

∂z
= Ss , (1)

where we neglected, for simplicity, the fluxes by diffusivity,
and where Ss represents the source/sink term. The standard
approach uses Reynolds decomposition to split the advective
term, the second term in Eq. (1), into two terms: the eddy
fluxes and fluxes due to larger-scale structures. It uses the
averaging operator defined by

x(t)=
1
Tc

t+Tc∫
t

x(τ)dτ , (2)

where Tc is the averaging time. The observation period T
composed of N averaging periods such that T =NTc. Over
a discrete time grid t = kTc, so that w and s are constant over
adjacent periods [kTc, (k+1)Tc], and the averaged advective
term is decomposed using the signal decompositionw=w′+
w, which results in

ws = w′s′+ws , (3)

with the covariance operator appearing in the first term, w′s′,
as

w′s′ = (w−w)(s− s) . (4)

The averaging and decomposition of the advective term
in Eq. (1) with the Reynolds decomposition at times t = kTc
results in

∂s

∂t
+
∂w′s′

∂z
+
∂w s

∂z
= Ss , (5)

where ∂w′s′

∂z
represents the eddy fluxes, and ∂w s

∂z
represents

the fluxes due to larger-scale structures.
To relate the eddy fluxes to the ecosystem fluxes Ss, the

storage term (first term in Eq. 5) must be taken into account
along with the influence of large-scale structures. The latter
can be neglected if no subsidence is assumed; i.e. w= 0.

The Reynolds decomposition acts as a filtering operation
(Kaimal et al., 1989; Lee et al., 2004, Chap. 2), where aver-
aged quantities (w, s) results from the application of a low-
pass filter and thus contains information about large-scale
structures, while the variable parts, w′, are the remaining
high-frequency components of w, likely characterising small
turbulent structures. This separation, i.e. the chosen averag-
ing time Tc, should be in accordance with the spectral gap
separating the turbulent scales from the larger scales. If the
separation occurs outside the spectral gap, then the fluxes are
biased. For example, if the averaging time Tc is such that it
falls inside the band of frequencies occupied by the turbu-
lent scales, then s contains information about the local tur-
bulent transport, which is lost considering only the correla-
tion between the high-frequency components w′s′. The low-
frequency components are influenced by external forcings
which influence the position and width of the spectral gap
throughout the day (Von Randow, 2002; Lee et al., 2004).
Thus, at any given time, it is unlikely that the high-frequency
part contains all of or only the information relative to tur-
bulent transport. The averaging time used for the Reynolds
decomposition should, hence, adapt dynamically to measure-
ment conditions.

The averaging time of the standard eddy-covariance ap-
proach places constraints on both the manner in which sig-
nals are decomposed and the estimation period used to cal-
culate eddy fluxes via the covariance operator. Alternatively,
the decomposition and estimation processes could be param-
eterised independently. The former would be influenced by
the location of the spectral gap, while the latter would depend
on the time support (physical size) of the coherent structures.

2.2 An extension of the standard approach with a
higher resolution in time and frequency

To overcome the aforementioned problems of the standard
eddy-covariance approach, the frequency band occupied by
the turbulent scales needs to be estimated at any given time.

The proposed approach is to decompose the data into sev-
eral frequency bands and decide at any given time which por-
tion of these frequency bands will be used to estimate the
eddy fluxes.
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Here, we split the advective term into more frequency
bands instead of the two frequency bands originally present
in the Reynolds decomposition. WithL being such frequency
bands spanning all frequencies, we denote aswl and sl the fil-
tered versions ofw and s, wherewl corresponds to the analy-
sis in the lth frequency band. An averaging operator [·]φ is in-
troduced, where [x]φ = x×φ is the convolution between the
signal x and the averaging function φ. Similarly to Eq. (3),
the advective term averaged here with φ is expanded using

[ws]φ '
L∑
l=1

[wlsl]φ . (6)

We present in Appendix A5 an analysis of the viability of this
approximation as a function of some parameters of the de-
composition that will be detailed in Sect. 2.4. Then the eddy
fluxes are localised through time and frequency using this
decomposition. A “turbulence” mask is introduced: X (t, l),
t ∈ [0,T ], l ∈ {0, . . .,L−1}, where X (t, l)= 1 indicates that
the frequency band l contains turbulent eddies at time t , and
it is 0 otherwise. The advective term is decomposed into tur-
bulent eddy fluxes and other fluxes, encompassing those gen-
erated by large-scale processes and noise:

[ws]φ(t) '
L∑
l=1

[wlsl]φ =
L∑
l=1

X (t, l)[wlsl]φ(t)︸ ︷︷ ︸
Eddy fluxes

+

L∑
l=1

(1−X (t, l)) [wlsl]φ(t)︸ ︷︷ ︸
Large-scale fluxes+noise

. (7)

The conservation of mass equation then writes as

∂[s]φ
∂t
+

L∑
l=1

X (t, l)
∂[wlsl]φ
∂z

+

L∑
l=1
(1−X (t, l))

∂[wlsl]φ
∂z

= [Ss]φ . (8)

To relate the eddy fluxes to the ecosystem fluxes, the storage
term (first term) and the influence of large-scale fluxes (third
term) need to be taken into account.

The proposed decomposition of the advective term (Eq. 6)
is similar to the decomposition made in Reynolds decompo-
sition (Eq. 3), where the filters are the averaging operator of
Eq. (2) and its high-pass filter counterpart.

The local smoothing of cross-scalograms (Mauder et al.,
2007) is also a particular decomposition of the advective
term. The filtered versions wl and sl are the wavelet decom-
positions of signals at particular scales l (see Torrence and
Compo, 1998). It leads to the formation of cross-scalograms
with the product wlsl and to local estimation of the flux
in time and frequency coordinates through averaging with
[wlsl]φ .

In the next section (Sect. 2.3), we elaborate on a general
framework that presents sufficient conditions for the filters
and the averaging operator so that the decomposition into
different frequency bands conserves the global flux, i.e. to
verify that

T∫
0

L∑
l=0

[wlsl]φ(τ )dτ =

T∫
0

w(τ)s(τ )dτ . (9)

Later, in Sect. 2.4, we show how to implement that frame-
work by relying on generalised Morse wavelets. Finally, we
introduce in Sect. 2.5 a metric based on the vertical ampli-
tude of the Reynolds stress tensor for identifying the vertical
turbulent transport and estimating the turbulence mask X .

2.3 A general framework for decomposing fluxes in
time–frequency space

The proposed framework chooses a set of filters {ψl}l in-
dexed with l ∈ {0, . . .,L−1} as well as an averaging function
φ. These filters could be, but are not limited to, the well-
known wavelets (Mallat, 2009). We start by filtering the sig-
nals with the set of filters {ψl}l , leading to a decomposition
in frequency bands. Each filter ψl occupies a particular fre-
quency band indexed with parameter l. The filtered versions
of w and s are computed using

wl(t)=

T∫
0

w(τ)ψl(t − τ)dτ = (w×ψl)(t) , (10)

with x×y denoting a convolution between the two signals x
and y.

For each frequency band l and at each time t , a local flux in
time and frequency Fs(t, l) is estimated using the averaging
function φ:

Fs(t, l)=

T∫
0

wl(τ )sl(τ )φ(t − τ)dτ = (wlsl ×φ)(t)

= [wlsl]φ(t) , (11)

which is the convolution of the product wlsl with the averag-
ing function φ at time t .

We impose the following conditions on the filters and the
averaging function:

Condition 2.1. The decomposition with filters {ψl} is
“self-dual” (see Mallat, 2009, Sect. 5.1.5); i.e. the energy
spectral density of all filters sums to one:

L∑
l=1

∣∣ψ̂l(ν)∣∣2 = 1 ∀ ν , (12)

with ψ̂l(ν) being the Fourier transform of ψl at frequency ν.
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Condition 2.2. The averaging function φ is positive
and integrates to a constant unit signal over the observation
period T :

T∫
0

φ(τ − t)dτ = 1 ∀ t ∈ [0,T ] . (13)

A Gaussian window can, for example, be chosen as the
averaging function where the variance controls the level of
smoothing of the estimated fluxes.

Conditions 2.1 and 2.2 are sufficient conditions (see Ap-
pendix A1) so that the global flux,

F Ts =
1
T

T∫
0

w(τ)s(τ )dτ , (14)

can be recovered by summing over all filters and integrating
through time Fs(t, l):

1
T

T∫
0

L∑
l=1

Fs(τ, l)dτ = F Ts . (15)

2.4 Time and frequency decomposition of fluxes with
generalised Morse wavelets

Choosing a particular set of filters depends on the applica-
tion and generally requires precise insights on the property
of the signals under study. The turbulent process is scale in-
variant, and with Taylor’s hypothesis of frozen turbulence it
follows that fast-varying oscillations are associated with ed-
dies of small size and inversely that a slow-varying signal is
related to eddies of larger size (Stull, 1988; Powell and El-
derkin, 1974). Wavelets share the same property, i.e. if ψ(t)
is a wavelet andψa(t)=ψ(t/a)/

√
a is a scaled version, then

the frequency peak of ψ(t) is scaled by a factor a. In other
words, a wavelet at small scale captures fast-varying oscilla-
tions over short periods of time, and a wavelet at large scale
captures fast variations. Thus, the scale of a wavelet, which is
proportional to the length of its time support, can be related
to the physical size of eddies.

Instead of making an arbitrary choice of a particular family
of wavelets such as Mexican hat or Morlet wavelets, we base
our approach on generalised Morse wavelets (Lilly and Ol-
hede, 2009, 2012), which is a parameterised superfamily that
encompasses a wide variety of wavelets. It is a two-parameter
family of analytic wavelets defined in frequency by

ψ̂β,γ (ν)= Cν
βe−ν

γ

, ν, β, γ > 0, (16)

withC being a normalisation constant. β and γ are two shape
parameters that control notably the frequency peak, the kur-
tosis, and skewness of the wavelet spectrum (for more details
see Lilly and Olhede, 2009).

The practical advantage of using generalised Morse
wavelets is that it avoids having to choose between many
different wavelet families, each with its own implementa-
tion details. Here, the shape parameters β and γ can be
changed to adapt the decomposition. Perrier et al. (1995)
showed that β should not be smaller than (α− 1)/2, where
α is the exponent of the energy spectral density of the anal-
ysed signal. This gives the lower limit of 1/3 for β if we
assume the Kolmogorov–Obukhov spectrum where α= 5/3.
We chose the parameters β = 2 and γ = 3 as they produce
wavelets with a good energy concentration in time and fre-
quency space (Lilly and Olhede, 2012) and consequently lo-
calises different turbulent events well.

Equation (16) is used to define a mother wavelet, us-
ing the chosen shape parameters, which is upscaled itera-
tively to form a set of filters. Starting at the lowest scale a0
of the mother wavelet, J ·Q upscaled versions with scales
ai = a02i/Q and 0≤ i ≤ JQ− 1 are iteratively constructed
with J being the number of octaves and with Q being the
number of inter-octaves. This leads to a set of filters whose
frequency peaks are logarithmically spaced by a factor 2−i/Q

from the highest to the lowest frequency. Q controls how
resolved the analysis between two octaves is, while J con-
trols how far the analysis goes towards the lowest frequency
(which is ultimately limited by the length of the observation
period). The wavelet frequency peaks are at νi = 1

ai
(β/γ )1/γ .

Each wavelet is normalised in frequency by the value at its
frequency peak. In practice, wavelets at the highest scales
may be discarded if their frequency spectrum is not sampled
well enough, leading to a lower number,K <JQ, of wavelet
filters. Since generalised Morse wavelets are first instantiated
in the frequency domain, poorly sampled wavelets appear at
the lower end of the spectrum; thus, a limiting frequency can
be chosen, e.g. νmin= 2Fs/N , where Fs is the sampling fre-
quency and where N is the sample size so that wavelets with
frequency peaks below that limiting frequency are discarded.
Finally, a low-pass filter, noted h in the following, is added to
our current set of wavelet filters so that the lowest frequency
region not yet spanned by the wavelets is captured. We use
a simple Gaussian filter for the low-pass filter with a −3 dB
cutoff frequency set at the lowest frequency peak of the set of
wavelet filters. This leads to a set of L=K + 1 filters com-
posed of K wavelets {ψai |ai = a02i/Q,0≤ i ≤K − 1} and
a low-pass filter that we note as h. To satisfy condition 2.1,
each wavelet and the low-pass filter has its frequency spec-
trum divided by

G(ν)=

√∣∣̂h(ν)∣∣2+ ∑
0≤i≤K−1

∣∣ψ̂ai (ν)∣∣2 . (17)

After normalisation, we obtain a set of filters that respects
condition 2.1 and has the same characteristics as wavelets.
The procedure keeps an important property for the analysis
of turbulence: the effective scale of the filters (time support
length) still varies in inverse proportion to their frequency
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peaks. Thus, the theoretical frequency peaks of the initial set
of wavelets can still be used as proxies for the scales of the
filters. We give in Appendix A2 more details on the impact
of this normalisation step.

Note that the normalisation of Eq. (17), which ensures
global flux conservation, is motivated by the wavelet frame
theory (see Mallat, 2009, Sect. 5.1.5) that can generally be
applied to any set of filters. It is different from the Cψ re-
construction constant found in Torrence and Compo (1998).
The latter comes from the discretisation of the admissibility
condition for continuous wavelet transforms. However, for
practical applications where signals are always decomposed
on a discrete set of scales, wavelet frame theory applies rather
than the theory of continuous wavelet transforms.

With Taylor’s frozen turbulence assumption and the prop-
erty that the frequency peaks of wavelets are linked to their
scale, the filtering of any signal with a wavelet ψ with fre-
quency peak ν is equivalent to an analysis at a hypothetical
eddy scale λ∝ |u|/ν with |u| being the mean amplitude of
the wind. Using in our case the aerodynamic height z− d,
where z is the measurement height and where d is the dis-
placement height, the normalised frequency is given by

η =
(z− d)

|u|/ν
=
(z− d)ν

|u|
. (18)

This normalised frequency can be interpreted as the ratio be-
tween a height above “ground” of the observations and the
size of a hypothetical eddy at time t and oscillating frequency
ν. High normalised frequencies indicate eddies of small sizes
with fast oscillations, and inversely low normalised frequen-
cies indicate large eddies with slow oscillations.

For the rest of the paper, we will drop time vs. frequency
band index coordinates such as in Eq. (11), and we use time
vs. normalised frequency coordinates where η will be the fre-
quency peak of the wavelet covering the lth frequency band.
For visualisations in Sect. 3, we allowed the normalised fre-
quency η to be time dependent as the mean amplitude of
the wind |u| varies through time; thus, time and frequency
decompositions will be presented in Lagrangian coordinates
(t,η(t)).

2.5 Identification of vertical turbulent transport in
time and frequency

With the standard eddy-covariance method, different statis-
tics has been proposed to assess the quality of the estimated
flux (see Foken, 2017, Sect. 4.3.2). Flux variance similarity
(or integral turbulence characteristics), friction velocity u∗,
and wind speed variance σw have been proposed to test tur-
bulence development (see Foken and Wichura, 1996).

Here, an alternative approach adapted to time and fre-
quency coordinates is proposed. The vertical amplitude of
the Reynolds stress tensor is used to identify in time and
frequency coordinates the vertical turbulent processes. It as-
sesses across time and frequency the contributions by eddies

in the vertical deformations and vertical momentum of an el-
ementary volume under observation. To do so, we propose
the following metric:

τw(t,η)=

√
Fu(t,η)2+Fv(t,η)2+Fw(t,η)2 . (19)

where Fu, Fv , and Fw are the vertical kinematic fluxes com-
puted using Eq. (11) at time t and normalised frequency η.

This quantity is related to friction velocity u∗ and the
variance of vertical wind speed σw. With Reynolds decom-

position, it could be written as
√
u′w′

2
+ u′v′

2
+w′w′

2
=√

u∗4+ σw4, and Eq. (19) is an extension to a time and fre-
quency representation with higher resolution.

Our methodology to identify time and frequency regions
is based on the analysis of τw. τw is large in time and in
frequency regions with vertical turbulent structures due to
buoyancy or mechanical shear. In order to identify such re-
gions, a threshold δτ is set to find all points (t∗,η∗) such that
τw(t

∗,η∗) > δτ . In the presented results (see Sect. 3.2), the
threshold δτ was set manually by examining how the dis-
tribution of sensible heat deviates as the amplitude of τw
increases. Above this threshold, the probability of heat ex-
change occurring (either positive or negative, depending on
the stratification) should stay high. We found its value to be
approximately 10−3 m2 s−2. This first step identifies all time
and frequency coordinates where vertical processes affect the
measured volume of air, thereby removing noise. However,
slow-varying trends may still be present, potentially origi-
nating from inhomogeneities in the advected scalar field or
from subsidence. An additional step is necessary to remove
these unwanted regions in time–frequency space. In the spec-
tral analysis of turbulence, this step is equivalent to finding
a spectral gap between the turbulent scales and the contribu-
tions of larger scales (Powell and Elderkin, 1974). The main
difference here is that we estimate a time-dependent spectral
gap that is adapted to non-stationary settings.

We analyse the Laplacian (second derivatives) of logτw to
find the separating spectral gap. High values of the Laplacian
suggest the presence of minima in regions that are primar-
ily affected by noise and spurious correlations. We expect
that such regions exist in-between the turbulent scales and
the larger scales. We identify all time and frequency points
U =

{
(t,η) |1 logτw(t,η) > δ1τw

}
with a Laplacian larger

than a given threshold δ1τw . We fit a curve to the selected
points U with a locally weighted regression method (Cleve-
land and Devlin, 1988), which is the time-varying spectral
gap η∗(t) separating the time and frequency regions with
local turbulent transport from the influence of larger-scale
structures. We found that the method is not very sensitive
to the value of the threshold δ1τw , and we set it to 1 here.
It has to be sufficiently small to select a sufficient number
of points such that the locally weighted regression method
passes preferably in regions with a high number of detected
minima.
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The above steps lead to the creation of the turbulence
mask introduced in Eq. (8), identifying time–frequency re-
gions with sufficiently developed turbulence:

X (t,η)=
{

1 if η > η∗(t) and τw(t,η) > δτ ,

0 otherwise. (20)

This turbulence mask covers the time and frequency re-
gions with normalised frequencies above the estimated time-
dependent spectral gap η∗ and with sufficiently strong ver-
tical kinematic fluxes. Note that the turbulence mask is in-
dexed with time and normalised frequency (t,η) here, while
it is indexed with time and the index of the band of frequency
(t, l) in Eq. (8). We relate η to the frequency peak of the
wavelet covering the lth frequency band.

2.6 Summary of proposed methodology

We depict in Fig. 1 a summary of the proposed methodology.
First, a frame of wavelets with conservative property is used
to decompose wind speeds and other scalars in time and fre-
quency. Cross-scalograms are formed as the product of the
signal decompositions and time averaged to form fluxes re-
solved in time and frequency. Vertical kinematic fluxes in
time and frequency coordinates are used to localise the time–
frequency regions with local turbulent transport. This leads to
the creation of a turbulence mask that is applied over time-
and frequency-decomposed scalar fluxes to integrate time-
resolved scalar fluxes.

The eddy flux Fs in Eq. (7) is calculated by combining
Eqs. (11) and (20) as follows:

Fs(t)=
∑
η

X (t,η)Fs(t,η) ,

where Fs(t,η) is the time- and frequency-decomposed flux,
and X (t,η) is the turbulent mask at time t and normalised
frequency η. Each scale of the decomposed flux in Eq. (11)
is obtained by filtering the signals using Eq. (10). Their prod-
ucts are then smoothed with a Gaussian window parame-
terised by an averaging length σ . Wavelets are generated via
Eq. (16), with their Fourier transform normalised according
to Eq. (17).

The approach requires several parameters. (1) β and γ de-
termine the shape of the generalised Morse wavelet. (2) J
and Q control the overall resolution in frequency of the de-
composition. (3) σ is the width of the averaging function.
(4) The two thresholds δτw and δ1τw condition the identifica-
tion of the local turbulent process in time–frequency coordi-
nates.

The wavelet parameters need to be shared across all time
and frequency decompositions to keep the same coordinate
system. In practice, 20 Hz signals are used to form the cross-
scalograms with consistent resolution over time and a fre-
quency resolution defined by the parameters J and Q. After
smoothing the cross-scalograms, they may be sub-sampled at

a resolution of, for example, 1 min. To reconstruct the orig-
inal 20 Hz versions of the cross-scalograms, the averaging
time should be at least twice the sampling step.

The averaging parameter σ may differ when computing τw
for identifying the turbulence mask and when computing the
smoothed cross-scalograms of scalar fluxes. With the current
method for establishing the turbulence mask, it is preferable
to use a higher or equal averaging time for the turbulence
mask compared to that used for resolving the scalar fluxes.
This approach slightly overestimates the size of the turbu-
lent time–frequency regions, ensuring that all eddy fluxes are
contained within it. For example, the turbulence mask may be
inferred from slowly varying vertical kinematic fluxes, using
σ = 30 min, while the fluxes themselves can be calculated
using a shorter averaging time, such as, for example, using
σ = 10 min.

3 Results

The methodology is applied on data acquired at the FR-Hes
flux tower (Granier et al., 2008), a class 1 ecosystem sta-
tion of the Integrated Carbon Observation System (ICOS).
The analysis was performed over the whole year 2022. Here,
we present selected days and statistics over 8 h periods for
day and night during summer (10–19 June 2022) and winter
(3–11 March 2022). The tower is situated in a beech forest
with a roughly flat terrain (< 3 % slope). The ICOS standard
instrumentation (see Rebmann et al., 2018) is installed at
FR-Hes with a LI-7200rs gas analyser (LI-COR Biosciences,
Lincoln, USA) and an HS-50 anemometer (Gill Instruments
Ltd, Lymington, UK). All signals are acquired at 20 Hz at a
height of 30.8 m above ground with a canopy height of about
21.5 m in 2022. The displacement height was estimated to be
14.7 m using 2/3 of canopy height (Raupach, 1994). These
heights are used to compute normalised frequencies (Eq. 18).
All fluxes were calculated in batches of 24 h raw data, ei-
ther centred around noon or around midnight. The filtering
with wavelets and averaging creates errors at the borders of
the observation period (see Torrence and Compo, 1998). The
standard deviations in time of the wavelets and the averaging
filter are summed for each frequency band to estimate the er-
roneous time frame at the edges of the 20 h periods. We take
the maximum across frequency bands of the standard devia-
tions to get the size of the time window to remove from the
results. The time period is estimated to be 2 h on each side,
which results in flux estimates of 20 h for each 24 h observa-
tional period.

All time and frequency decompositions are computed us-
ing the wavelets of Sect. 2.4. The shape parameters for the
generalised Morse wavelets are taken as β = 2 and γ = 3,
as explained before. The wavelets are positioned according
to their frequency peaks. Since data are acquired at 20 Hz,
the frequency peak of the first wavelet is initiated at 10 Hz,
and subsequent wavelets are scaled up by a factor of 21/Q
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Figure 1. Summary diagram of the proposed methodology for estimating fluxes from turbulent transport. (a) Signals are decomposed in
time–frequency space using a set of filters composed of wavelets and a low-pass filter. They are initialised and normalised according to
Eq. (17) to have a conservative property. (b) Cross-scalograms are formed and averaged through time using an averaging function of size σ
respecting condition 2.2. (c) Given vertical kinematic fluxes the metric τw of Eq. (19) is computed and a turbulence mask X identifying the
vertical turbulent transport is inferred. (d) The flux of scalar s is estimated by integrating through frequencies the vertical flux Fs(t, l) in time
and frequency coordinates according to the turbulence mask X .

with Q= 4 until the minimum frequency peak of Fs2/N is
reached, where N is the number of samples and where Fs
is the sampling frequency of 20 Hz. With 24 h long observa-
tion periods and a sampling frequency of 20 Hz, the limit-
ing frequency corresponds to a time period of 12 h. The low-
pass filter then spans the remaining frequency band below
that limiting frequency, thus capturing processes with oscil-
lation periods larger than 12 h. Since we are mostly inter-
ested in the study of eddy fluxes here, this frequency band
is always discarded. Different sizes of the averaging function
are used to compute the metric τw and to estimate the fluxes
in time (see Eq. 11 and Sect. 2.5). We choose a Gaussian
window with deviation σ = 30 min for τw and σ = 10 min
for the estimation of the scalar fluxes. After averaging, i.e.
after step (c) in Fig. 1, fluxes in time and frequency coor-
dinates have a temporal resolution of 20 Hz and around 70
frequency bands (depending on the original size of the sig-
nals). The decompositions are sub-sampled at a 1 min time
interval to save memory. In the following, the fluxes will be
presented in time versus normalised frequency coordinates
(t,η), instead of time versus the index of a frequency band
(t, l) as in Eq. (8), where the normalised frequency is the fre-
quency peak of the wavelet covering the lth frequency band.

We compare results obtained using our method (high-
resolution turbulence mask, HRTM) to the estimations with-
out turbulence mask (HR), corresponding to a wavelet-based
estimated flux that integrates over all scales, as well as to
the estimations with the standard eddy-covariance approach
with 30 min time averaging (EC30). For information and to
better understand the presented results, the flux estimation

with the 30 min standard eddy covariance is roughly equiva-
lent to integrating all the flux from the normalised frequency
η= 5×10−3 if a time length of order (z−d)/ |u| ' 10 s (see
Eq. 18) is assumed.

All fluxes are presented without frequency corrections
in amplitude (see Burba, 2022), with H2O and CO2 con-
centration signals being corrected for time lags with wind
anemometer data. H2O and CO2 concentration signals were
shifted to maximise total correlation with vertical wind ve-
locity for each 24 h period by using only data in the 0.1
to 1 Hz frequency band. This range was chosen to reduce
the potential influence of low-frequency trends in the esti-
mation of the time lag transporting at the same time suf-
ficient information about the turbulent transport. It corre-
sponds roughly to the normalised frequency range η= 1 to
η= 10. The estimated time lags were 260± 125 ms for CO2
and 400± 130 ms for H2O on average. Sensible heat fluxes
use the so-called sonic temperature from the anemometer.
It is thus not corrected for humidity (see p. 42 in Dijk et
al., 2004). Frequency correction and humidity correction are
foreseen to be included in the method in the near future. Fi-
nally, the WPL (Webb, Pearman, and Leuning) correction
(Webb et al., 1980) is not required in our case as the LI-
7200rs gas analyser outputs dry mole fractions (see Burba,
2022, Sect. 4.7).

The methodology has been implemented in the Julia pack-
age TurbulenceFlux.jl.
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3.1 Detailed example of the estimation of CO2 flux

We present in Fig. 2 a detailed example of the estimation
of CO2 flux on 15 June 2022, a day characterised by sunny
conditions with no precipitation. All time–frequency decom-
positions and the estimated fluxes are presented with a time
step of 1 min. Panel (a) displays the τw metric, calculated us-
ing an averaging time of σ = 30 min, while panel (b) shows
its Laplacian. Panel (c) presents the cross-scalogram of the
CO2 flux, calculated with an averaging time of σ = 10 min.
Finally, panel (d) shows the estimated CO2 flux (solid line)
after applying the turbulent mask, along with fluxes calcu-
lated using other averaging times (σ = 1 min and σ = 30 min,
represented by dashed and dotted lines, respectively).

The τw metric (Sect. 2.5) in Fig. 2a identifies the verti-
cal turbulent structures in time and frequency here obtained
with an averaging length of 30 min. Time and frequency re-
gions of high intensity (> 10−2 m2 s−2) are approximately
located from η= 10−2 to η= 10, with a noticeable differ-
ence between day and night as well as the times of sunrise
and sunset. This difference can be explained by the type of
turbulence at play: from 6 to 18 h the turbulence is mostly
created by buoyancy within the range η= 10−2 to η= 1,
while from 20 to 4 h the turbulence originates from mechan-
ical shear and is located in the range η= 10−1 to η= 10.
Large regions of high intensity from η= 10−2 to η= 10 in-
dicate some stability in the physical process at play. Below
η= 10−1 at night and η= 10−2 during the day, τw has gen-
erally low amplitude (10−4 m2 s−2) with isolated and small
time–frequency regions of medium intensity (10−3 m2 s−2).
Below these ranges in η, large-scale structures (η' 10−3) in-
termittently apply vertical stress over short periods of time
(< 2 h).

Similar patterns were observed on different days through-
out the year at FR-Hes, which motivated the following as-
sumptions: (1) vertical turbulent transport shows large and
coherent regions of high intensity in the metric τw at frequen-
cies corresponding to eddies with sizes around the distance
of the sensor to the roughness elements, i.e. from the mea-
surement height to the displacement height and hence around
normalised frequencies of η= 1; (2) a region of low ampli-
tude exists in τw at small normalised frequencies and hence
large eddies, i.e. a spectral gap between the turbulent region
of (1) and a region influenced by large-scale processes; and
(3) small and isolated time–frequency regions of medium in-
tensity at large scales (η< 10−2) are considered too unstable,
and the scale is too large such that they could be part of local
vertical turbulent transport.

Hence, the high-intensity regions of (1) are identified us-
ing a threshold τw> 10−3 m2 s−2, as shown by the dashed
line in Fig. 2b. The spectral gap in time–frequency space
is identified by the maxima of the Laplacian of logτw (see
Sect. 2.5), as can be seen by the dashed line in Fig. 2b. It
rejects most of the small size and medium-intensity regions
situated below the spectral gap in τw (Fig. 2a). Together, they

define the mask identifying local turbulent transport relevant
for estimation of ecosystem fluxes, which is the bright region
in Fig. 2c. The mask is shown on top of the CO2 flux de-
composed in time and frequency space, highlighting the time
and frequency regions with sufficiently developed local tur-
bulence. Note that the smoothed CO2 flux cross-scalogram
used an averaging kernel of 10 min compared to 30 min for
the determination of the turbulence mask. One can see that
the mask covers time–frequency regions of high amplitude
of positive and negative CO2 fluxes. The turbulence mask
highlights the CO2 respiration process at night and CO2 as-
similation during daytime. It rejects regions of large CO2
fluxes at low frequencies around η= 10−3 mostly from dusk
into the night. The CO2 flux in time and frequency coordi-
nates is integrated along the frequency scale, leading to high-
resolution CO2 fluxes shown in Fig. 2d. We obtain a high-
resolution estimation (HRTM) that follows well the standard
eddy-covariance estimation (EC30). In practice, the standard
eddy covariance with 30 min resolution (EC30) is approx-
imately equivalent to integrating all the CO2 fluxes from
η= 10−2 to η= 102. This is why in this particular case one
does not see the influence of the CO2 fluxes at larger scales
(η= 10−3) at night in the EC30 estimates. It also looks like
EC30 misses some carbon uptake in the middle of the day
due to the fixed integration time of 30 min. Both methods es-
timate a negative CO2 flux at 3 h at night. This comes from
the small time and frequency region of negative CO2 flux
at η= 10−2 to η= 10−1. The effect is more pronounced in
EC30, but also our method is not inert against this intermit-
tency. If the turbulence mask does not cover any frequency
bands at a given time, meaning no turbulence is detected, we
consider the calculated flux to be undefined, as integration
occurs over an empty frequency domain. This can be seen
around 19 h in Fig. 2d, where HRTM is undefined due to the
lack of frequency bands covered by the turbulence mask in
Fig. 2c. In the context of eddy-flux estimation, the flux could
be treated as zero, since no turbulent coherent structures are
identified to mix the air layers. When estimating ecosystem
fluxes, this is a typical scenario where it is important to ac-
count for the storage term.

3.2 Statistics of τw and time- and
frequency-decomposed sensible heat flux

We show in Fig. 3 the probability densities of τw against
η (top row) and against the sensible heat flux FH (bottom
row) during day and night periods in summer (left and right
columns, respectively). The probability densities are esti-
mated with a kernel density estimation method. The evolu-
tion of τw against η presents a shortening of the frequency
bandwidth occupied by the turbulent scales as it transitions
from an unstable stratification to a stable stratification. The
spectrum of the vertical velocity and the co-spectrum of u ·w
also share that characteristic (Kaimal and Finnigan, 1994,
Sect. 2.5 and 2.9). During daytime and unstable stratification
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Figure 2. Turbulent transport identification and estimation of CO2 flux on 15 June 2022. All time and frequency analyses are visualised
in normalised frequencies η vs. time over 24 h. (a) Time and frequency decomposition of the amplitude of the vertical component of the
Reynolds stress tensor τw. (b) Laplacian of logτw in time and frequency space with an estimated time-varying spectral gap (dashed line)
separating the turbulent transport at small scales from structures at larger scales. (c) CO2 flux in time and frequency space with a turbulence
mask derived from analyses of panels (a) and (b). A time varying 30 min spectral gap associated with the frequency separation of the standard
eddy-covariance method (EC30) is also shown (solid line). (d) HRTM CO2 estimations with different averaging times against the standard
30 min eddy-covariance method (EC30).

(Fig. 3a), τw has a concave shape from η= 10−3 to η= 102

with a maximum around η= 10−1. During nighttime and sta-
ble stratification (Fig. 3c), the distribution of τw against η has
its concave shape moved to higher frequencies with a max-
imum around η= 1 and located from η= 10−1 to η= 102.
In comparison with daytime conditions, the nighttime den-
sity of τw against η presents a greater variability: it has a
stronger spread along τw and a less clearly defined shape.
In particular, the range η= 10−4 to η= 10−1 is suspected
to be influenced by large-scale structures with a random be-
haviour. Note that our visualisations of τw against η are not

normalised against a quantity such as the friction velocity,
nor is it weighted by the frequency as is usually done in stud-
ies of spectra and co-spectra of turbulence.

In the bottom row, we show with red crosses the empirical
probability distribution of the sensible heat being positive or
negative as a function of the amplitude of τw. We observe that
an increase in the amplitude of τw corresponds to a higher
empirical probability of heat exchange occurring (either pos-
itive or negative, depending on the stratification). The dis-
tribution of sensible heat is mainly positive during day, and
the density covers mainly positive sensible heat when above
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Figure 3. Probability densities of the amplitude of the vertical component of the Reynolds stress tensor τw(t,η) against normalised frequency
η (a, c) and against the sensible heat flux FH (t,η) (b, d), estimated from 10 to 19 June 2022 via kernel densities from 8 h data during
daytime (a, b) and during night (c, d). Red crosses show the empirical probability function where sensible heat is positive (P(FH > 0) > 0.5)
or negative (P(FH > 0) < 0.5) (upper x axis) vs. τw.

τw' 10−3 m2 s−2 (Fig. 3b). The distribution is mainly nega-
tive during night, and the density covers mainly negative sen-
sible heat when above roughly τw' 10−3 m2 s−2 (Fig. 3d).
Choosing hence the noise threshold δτ = 10−3 m2 s−2 allows
for clear extraction of the time–frequency regions character-
ising turbulent transport of heat during day and night.

We present additional figures on the effect of applying the
turbulence mask on time- and frequency-decomposed fluxes
in Appendix A4, during daytime (Fig. A3) and nighttime
(Fig. A4), with the additional densities of latent heat versus
carbon fluxes. By looking at the differences in the probability
densities of the data before and after applying the turbulence
mask, we remark that the application of the turbulence mask
(1) leads to the exclusion of large-scale structures with rela-
tively high τw amplitude around η= 10−4, especially at night
(Fig. A4g); (2) correctly preserves the turbulent exchange of
heat during day and night (Fig. A4h, A3h); and (3) shows
that carbon respiration, photosynthesis, and evapotranspira-
tion processes are clearly visible in the estimates (Fig. A4i,

A3i). At night in particular, the application of the turbulence
mask removes negative latent heat fluxes and carbon uptake
(Fig. A4i), which are considered noise and likely caused by
large-scale structures (see Scanlon and Sahu, 2008, Fig. 3).

3.3 Results in different conditions

Figure 4 illustrates results of the methodology across 4 d,
characterised by different conditions: 2 spring days in sunny
(15 June 2022, Fig. 4a) and cloudy (1 May 2022, Fig. 4c)
conditions and 2 winter days in sunny (12 February 2022,
Fig. 4b) and cloudy conditions (26 January 2022, Fig. 4d).
For each day, we compare the estimations of latent heat
with our methodology (HRTM) against estimations in time
and frequency space without a turbulence mask (HR), i.e.
including large-scale contributions down to η' 2× 10−4,
and against the standard at 30 min eddy-covariance estima-
tions (EC30), which corresponds roughly to integrate the
flux above η' 5×10−3. The estimation without a turbulence
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mask (HR) is equivalent to cross-scalogram smoothing with-
out an identification of turbulence in time–frequency space.
The HR flux results are thus from integration over all fre-
quencies without the first frequency band spanned by the
low-pass filter (see Sect.2.4).

The EC30 and HRTM estimations of the latent heat flux
are roughly equivalent over the 4 selected days. However,
the HR method can produce highly biased estimates such as
on 12 February 2022 (Fig. 4b), with negative peaks in latent
heat of about−150 W m−2 during the day, or on 1 May 2022
(Fig. 4c), with negative fluxes around −15 W m−2. Estima-
tions from simple cross-scalogram smoothing HR hence can-
not be used without proper filtering in time–frequency space.
The proposed method of using a turbulence mask on top of
cross-scalogram smoothing is one way to ensure that eddy
fluxes are properly estimated and that the influence of exter-
nal processes and noise are removed.

The friction velocity u∗ is calculated using(
u′w′

2
+ v′w′

2
)1/4

with the standard eddy covariance

for estimating the kinematic fluxes (u′w′ and v′w′). The
friction velocity and the turbulence mask are overall in
agreement; i.e. u∗ is high when the turbulence mask covers
large time–frequency regions with strong flux amplitude,
and u∗ is low when no time–frequency regions are covered
or when it covers regions of very low flux amplitude. We re-
mark some exceptions such as on day 15 June 2022 (Fig. 4a)
during the afternoon when two half-hour estimates of EC30
would be flagged while the turbulence mask assesses that
there is enough turbulence for a good flux estimation.

The dynamic of the incoming shortwave radiation signal
is clearly reflected in HRTM. The effect of the passing of
clouds at noon on 1 May 2022 (Fig. 4c) reduces the latent
heat flux, followed by a slow increase in sunlight and la-
tent heat from 12 to 16 h. Due to the high resolution of the
proposed approach, fast dynamic processes in the turbulent
fluxes can be observed. The relation between these turbulent
fluxes and the sources and sinks of the ecosystem must be
analysed separately.

3.4 Statistics over 8 h periods

We show in Fig. 5 statistics on the estimations of CO2 fluxes
over 8 h periods during day and night for 9 to 10 d periods
in spring (10–19 June 2022) and winter (3–11 March 2022).
We show the inter-decile range and the mean of the estimated
fluxes from our method (HRTM) against the standard eddy-
covariance approach (EC30).

HRTM estimates are approximately in agreement with
EC30 on average. Their spreads are of the same order of
magnitude in summer but are larger for EC30 in winter dur-
ing daytime (Fig. 5b). HRTM estimates show larger carbon
uptake by +2± 1 µmolm−2 s−1 during daytime in summer
(Fig. 5a). This is explained by EC30 likely missing some
carbon uptake below and around the scale η= 10−2. Dur-

ing daytime in winter (Fig. 5b), both methods give weak and
positive fluxes on average but sometimes also contain nega-
tive fluxes. Estimations of CO2 fluxes at night are close be-
tween HRTM and EC30 in summer and winter (Fig. 5c–d).
Fluxes should be positive at night. HRTM rarely shows neg-
ative fluxes at night, which is much more common in EC30
(Fig. 5c–d). The fixed averaging length of EC30, typically
set to 30 min, is not well suited for capturing the turbulent
exchange driven by mechanical shear at night. This interval
is typically set for turbulent exchange under unstable stratifi-
cation, whereas the turbulence spectra at night shift towards
higher frequencies. As a result, nighttime EC30 estimates are
corrupted in the normalised frequency range η= 5×10−3 to
η= 10−1, due to external processes that increase variability
in the estimates, often leading to non-physical negative car-
bon fluxes during the night.

In Appendix A3, additional figures are presented for sensi-
ble and latent heat fluxes. For sensible heat fluxes (Fig. A2a),
both the mean and the spread of EC30 and HRTM estimates
are close. For latent heat fluxes (Fig. A2b), EC30 and HRTM
estimates are approximately in agreement on average. HRTM
estimates show smaller latent heat fluxes by −37± 7 W m−2

during daytime summer (Fig. A2bA). Also, while latent heat
fluxes should be positive, we remark that at night EC30 is
more likely to produce negative estimates (Fig. A2bC–D).

3.5 Discussion

The proposed methodology introduces a novel framework
for estimating eddy fluxes by leveraging time–frequency
analysis, specifically through the use of cross-scalogram
smoothing with generalised Morse wavelets. This approach
addresses key limitations of the standard eddy-covariance
method, particularly its fixed averaging time and the chal-
lenges associated with filtering perturbative scales under
varying turbulence conditions. By decoupling the filtering of
perturbative scales from flux calculations, our method en-
ables a more adaptive and precise estimation of turbulent
transport, resulting in a better assessment of fluxes across dif-
ferent environmental conditions.

The presented framework is a generalisation of the stan-
dard eddy-covariance approach, which employs more fre-
quency bands to calculate fluxes and provides estimations
continuously through time. One of the primary strengths is
its ability to identify turbulent structures adaptively. Unlike
the standard eddy-covariance approach, which relies on a
fixed averaging time, the proposed framework dynamically
adjusts to changing turbulence conditions. This adaptability
is achieved through the use of a turbulence mask, which is de-
rived from the vertical component of the Reynolds stress ten-
sor. The mask effectively localises turbulent coherent struc-
tures in the time–frequency domain, allowing for a more ac-
curate isolation of turbulent transport from noise and larger-
scale processes. This adaptive identification ensures that the
estimated fluxes are more representative of the actual turbu-
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Figure 4. Estimation of latent heat flux on 4 selected days in different conditions: sunny conditions (a, b), cloudy conditions (c, d), during
spring (a, c), and in winter (b, d). For each day, we show incoming shortwave radiation (top), time- and frequency-decomposed latent heat
flux (middle), and flux estimates through time (bottom). Ten minute high-time-resolution fluxes are shown using the turbulence mask (solid
line, HRTM) or integrating over all frequencies without mask (dotted line, HR). The standard eddy-covariance estimations over 30 min
(EC30) are shown as circles. They are open symbols if they would be filtered out by a u∗ threshold of 0.2 m s−1. u∗ (red triangles) is shown
on the left axis of the bottom panels. Note that all y axes have different ranges to clearly show the differences between the fluxes on the
different days.

https://doi.org/10.5194/amt-18-3193-2025 Atmos. Meas. Tech., 18, 3193–3215, 2025



3206 G. Destouet et al.: Turbulent transport extraction in time and frequency

Figure 5. Daytime (a, b) and nighttime (c, d) CO2 fluxes of consecutive days with high irradiance and no precipitations. (a, c) 10–19 June
2022; (b, d) 3–11 March 2022. The error bars on EC30 and the shaded areas of HR represent the 10th to 90th percentile range. Note that the
y axes have different ranges to show differences between the flux estimates on the different days.

lent exchange, even under varying stratification conditions,
such as those observed during daytime buoyancy-driven tur-
bulence and nighttime mechanical shear.

Another key advantage is the flexibility in adjusting the av-
eraging time without compromising the filtering of perturba-
tive scales. In the standard eddy-covariance method, reduc-
ing the averaging time to capture faster dynamics can lead
to biases, as the filtering of perturbative scales becomes less
effective. Our approach, however, allows for the averaging
time to be adjusted independently of the filtering process.
This flexibility is particularly valuable for studying ecosys-
tem responses to rapid environmental changes.

At the FR-Hes site, the results demonstrate that the
proposed method is consistent with the standard eddy-
covariance approach, particularly during daytime with strong
turbulence where the standard approach is known to perform
well with good calibration of the averaging time. Moreover,
the method shows better estimations of fluxes under weak
turbulence in stable stratification, particularly during night-
time conditions where the fixed averaging time of the stan-
dard approach should be made shorter than during the day.

Despite these advantages, it is important to acknowledge
the computational cost associated with our method. The cur-
rent implementation requires approximately 10 min to pro-
cess 24 h of fluxes (kinematic, CO2, sensible heat, and latent

heat fluxes) on a high-performance CPU, with a memory us-
age of around 16 GB of RAM. While this cost is reasonable,
it highlights the need for further optimisation. Potential im-
provements include limiting the number of scales analysed
and parallelising computations, which could significantly re-
duce the computational burden. These optimisations would
make the method more practical for routine flux calculations
while still preserving its adaptive and accurate estimation ca-
pabilities.

Estimations of eddy fluxes have been made above a forest
ecosystem, and to relate these to ecosystem fluxes, an addi-
tional analysis of the coupling of turbulence below and above
the canopy should be made. The present methodology does
not assess this coupling, and another step is required for fil-
tering the flux only when a strong coupling is present. By
integrating τw along the frequencies with the turbulent mask
found, it is possible to derive an alternative metric in time
equivalent to u∗ or σw. This would provide a summary met-
ric of τw through time along with the fluxes, which could
subsequently be used to study coupling or the representative-
ness of the turbulent fluxes. This development is out of the
scope of this paper but is the subject of ongoing research.

The sensitivity of our methodology for flux estimation
against wavelet parameters is not presented in this work.
However, we have identified three important factors for the
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decomposition of fluxes into time and frequency coordinates:
(1) the conservation of the global flux, which is guaranteed
by the normalisation step (see Eqs. 12 and 17); (2) the fre-
quency resolution of the decomposition (J and Q parame-
ters of Sect. 2.3); and (3) time–frequency localisation of the
wavelet used for the decomposition (β, γ ). The normalisa-
tion (factor 1) guarantees that the fluxes obtained after inte-
grating the time–frequency decomposition have meaningful
physical interpretation. In particular, we do not have to es-
timate any wavelet-reconstruction factor empirically as en-
countered with continuous wavelet transforms (e.g. Schaller
et al., 2017). This means that we can safely apply the pro-
posed methodology for decomposing signals and estimate
flux quantities. It is important to have a sufficient number
of frequency bands to separate the turbulent scales from the
larger scales; thus, a high-frequency resolution (factor 2)
is needed, and J and Q are set to adequately high values.
The time–frequency localisation of the wavelets also has an
impact on how the information about the turbulent trans-
port is scattered across the time–frequency plane (factor 3).
The shape of the wavelet conditions the ability to localise
events in time and frequency coordinates. Thus, we follow
the recommendations of Lilly and Olhede (2012) for setting
γ around 3 and β > 1. Values away from these parameters
tend to create wavelets with poor localisation and hence risk
producing poor time and frequency decompositions. These
factors also have their importance in the decomposition of
the advective term in the conservation equation (Eq. 8). In
Appendix A5, an analysis of the influence of the decomposi-
tion parameters on the approximations of the advective term
in Eq. (6) is presented.

The current framework enables adjusting the averaging
time for estimating the flux of any scalar in HRTM without
affecting the filtering of perturbative scales. A precise setting
of a lower bound for the averaging time could be informed by
analysing the correlation functions of velocities and scalars.
For instance, Lenschow et al. (1994) suggested setting an
averaging size larger than the integral timescale, estimated
by assuming an exponential model for the auto-correlation
function of velocity. More recent studies, based on the ran-
dom sweeping hypothesis of Kraichnan (1964), have shown
through theoretical development (Wilczek and Narita, 2012),
controlled experiments (Poulain et al., 2006; He and Tong,
2011), and simulations (Wilczek et al., 2014) that the velocity
auto-correlation function exhibits more complex behaviour
in both space and time. Specifically, for small time delays,
τ , the auto-correlation function behaves as a Gaussian in the
term τkv0, where k is the wavenumber, and v0 represents the
large-scale velocity fluctuations (sweeping velocity). This
suggests a potential lower bound for the averaging window,
σmin= (kminv0)

−1, where kmin is the lowest wavenumber be-
low which no turbulence is assumed. However, determining
the appropriate averaging window to connect eddy fluxes to
ecosystem-scale fluxes is beyond the scope of this study and
requires further investigation. This specific issue may be ad-

dressed through large-eddy simulations or direct numerical
simulations.

The measurement acquisition systems (anemometer, gas
analyser) have transfer functions that induce errors in the
measurements. A theoretical inverse transfer function Ts
can be applied to reduce flux errors (Aubinet et al., 2012,
Sect. 4.1.3). This transfer function can be directly taken into
account during the normalisation step of the filters. With Ts
being the total transfer function of the acquisition system
for the scalar s, the new normalisation function of Eq. (17)
would become

G(ν)=
√
Ts(ν)

√∣∣̂h(ν)∣∣2+ ∑
0≤i≤L

∣∣ψ̂ai (ν)∣∣2 . (21)

Flux corrections can also be applied afterwards by di-
rectly weighting in time–frequency coordinates the time- and
frequency-decomposed fluxes.

4 Conclusions

In this paper, we presented a general framework for iden-
tifying turbulence and decomposing fluxes in the time–
frequency domain, utilising generalised Morse wavelets. The
effectiveness of this approach was demonstrated through its
application at the FR-Hes site, where it was compared with
the standard 30 min eddy-covariance method. Our frame-
work addresses some of the difficulties mentioned regarding
the use of wavelets by ensuring flux conservation and offer-
ing flexibility in parameterisation.

A key innovation of our method is the decoupling of per-
turbative scale filtering from flux calculations. This allows
the averaging time to be adjusted without compromising the
decomposition. The turbulence coherent structures are iden-
tified through a novel method based on the time–frequency
analysis of the Reynolds tensor.

The flexibility to change the averaging time opens up new
research perspectives, particularly the analysis of ecosystem
responses to rapid environmental changes (less than 1 h).
To support broader adoption and further development, we
have made our method available as a Julia software package,
TurbulenceFlux.jl, offering the community a tool for
time–frequency flux estimation.

Appendix A

A1 Sufficient conditions on filters and averaging
function for global flux conservation

We demonstrate here that the self-dual property of the filters
(Condition 2.1) and the normalisation property of the averag-
ing function (Condition 2.2) are sufficient conditions to pre-
serve the global flux (Eq. 14). Assuming L filters are used
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Figure A1. Effect of the self-dual normalisation (Eq. 17) on wavelet frequency peaks and time deviations. (a) Frequency peaks {νi}i in log
scale before (νi , x axis) and after (ν̃i , y axis) normalisation. (c) Relative error of the frequency peaks after normalisation. (b, d) The same
analysis but with time deviations.

for the decomposition, we get

1
T

T∫
0

L∑
l=1
(wlsl ×φ)(u)du= 1

T

L∑
l=1

T∫
0
wl(t)sl(t)dt ,

with Condition 2.2
(A1)

= T

L∑
l=1

∑
p

ŵl(p)ŝl(p)
∗ , (A2)

with ·∗ representing the complex conjugate operator and us-
ing Parseval’s formula (see Mallat, 2009, Thm. 2.3):

= T
L∑
l=1

∑
p

ŵ(p)̂s(p)∗
∣∣ψ̂l(p)∣∣2 = T∑

p

ŵ(p)̂s(p)∗ ,

with Condition 2.1
(A3)

=
1
T

T∫
0

w(t)s(t)dt = F Ts . (A4)

A2 Impact of normalisation on the frame of wavelets

We analyse the impact of self-dual normalisation presented
in Eq. (17) on an initially constructed frame of wavelets {ψl}l
from which some properties are theoretically known such as
the frequency peak.

We drop temporarily the ·̂ notation indicating that we
are working with Fourier transforms, and we note ψ(ν) the

Fourier transform of the wavelet ψ at frequency ν. With
ψ̃l(ν)= ψl(ν)/G(ν), our set of wavelet filters with self-dual

normalisation isG=
√∑

l |ψl |
2. We do not take into account

the low-pass filter here. The total derivative is given by

dψ̃l =
dψl

G

(
1−

∣∣∣∣ψlG
∣∣∣∣2
)
−

∑
j 6=l

∣∣∣∣ψjG
∣∣∣∣2 dψjG . (A5)

Impact on frequency peaks. In order to study the impact of
the normalisation, we analyse the derivative of ψ̃l against β.
Let ψl =ψal be a wavelet (here its Fourier transform) with
frequency peak normalisation. We can show that

∂ψal (ν)

∂β
= ψal (ν) log

alν

(β/γ )1/γ
. (A6)

At the frequency peak νl = 1
al
(β/γ )1/γ , we have

∂ψal (νl)

∂β
=

0.
We check if the new set of filters keep the same frequency

peaks by looking at the derivative of ψ̃l against β around the
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Figure A2. Same as Fig. 5 but for sensible and latent heat fluxes.

frequency peaks. With the notation ∂β · = ∂·
∂β

, we get

∂βψ̃l(ν)=
∂βψl

G

(
1−

∣∣∣∣ψlG
∣∣∣∣2
)
−

∑
j 6=l

∣∣∣∣ψjG
∣∣∣∣2 ∂βψjG

(A7)

=
ψal (ν)

G
log(ν/νl)−

∑
j

∣∣∣∣ψajG
∣∣∣∣3 log(ν/νj ) . (A8)

At ν= νl = 1
al
(β/γ )1/γ = 2−l/Q

a0
(β/γ )1/γ , with al = a02l/Q,

∂βψ̃al (νl)=−
∑
j 6=i

∣∣∣∣ψajG (νl)

∣∣∣∣3 log(νl/νj ) (A9)

=−
log2
Q

∑
j 6=l

∣∣∣∣ψajG (νl)

∣∣∣∣3(l− j) . (A10)

Around the lth wavelet, the effect of wavelet neighbours
on the frequency localisation of the frequency peak compen-

sate each other, and increasing the resolution Q decreases
directly (through factor 1

Q
) and indirectly (by increasing G

in 1/G3) the impact of the normalisation. We expect, how-
ever, important modifications of the frequency peaks at the
borders at high and low frequencies where fewer wavelets
are present.

Impact on wavelet time deviation. The time deviation of a
wavelet characterises how much it is concentrated in the time
domain; thus, it is an effective measure of its scale. The time
deviation of a wavelet ψξ (t) (here in the time domain) can
be computed using

σl =
1
T

√√√√∫ T/2
−T/2|ψl(t)|

2t2dt∫ T//2
−T/2|ψl(t)|

2dt
, (A11)

which is normalised by the maximum time support of
wavelet T .
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Figure A3. Effect of the application of the turbulence mask on the distributions of time- and frequency-decomposed fluxes during 8 h
daytime periods from 10 to 19 June 2022. Probability densities of the fluxes without turbulence mask filtering (P, a, b, c), with turbulence
mask filtering (PX , d, e, f), and their differences (PX −P, g, h, i), where negative values show where data have been removed by the
turbulence mask filtering.

In Fig. A1, we show the impact of the normalisation on
the frequency peaks or on the time deviations while increas-
ing the resolution Q. Except at the borders, i.e. at low or
high frequencies, the normalisation has limited effect on the
frequency peaks location and on the time deviations if the
resolution is high enough. It is then acceptable to use the
theoretical frequency peaks of the original wavelets without
normalisation to establish a proxy for measuring their scale
(up to an unknown constant).

A3 Statistics of sensible and latent heat fluxes (see
Fig. A2)

A4 Effect of the turbulence mask on fluxes
distributions

In Figs. A3 and A4, we show the effect of the turbulence
mask on the probability densities of fluxes in day and night
conditions, respectively. We look in particular at the dif-
ference between the densities with and without the turbu-

Atmos. Meas. Tech., 18, 3193–3215, 2025 https://doi.org/10.5194/amt-18-3193-2025



G. Destouet et al.: Turbulent transport extraction in time and frequency 3211

Figure A4. Same as Fig. A3 but during 8 h periods at night from 10 to 19 June 2022.

lence mask. We remark the following. (1) The application
of the turbulence mask not just removes regions with low
τw, i.e. below the threshold δτ = 10−3 m2 s−2, but the esti-
mated time-varying spectral gap used to form the turbulence
mask also helps in excluding high-amplitude τw regions at
low frequencies around η= 10−4. This is particularly visible
in Fig. A4 at nighttime conditions. This demonstrates that the
proposed method reduces the influence of large-scale pro-
cesses for estimating eddy fluxes which are located approx-
imately in the frequency bands η= 10−2 to η= 102 during
day and in the bands η= 1 to η= 102 during night. These
frequency bands are here mostly preserved by the applica-

tion of the mask, except for the high end of the spectrum
around η= 102 in daytime conditions where we transition
from the inertial subrange occupied by the turbulent eddies
to the dissipation range. (2) In day and night conditions, a
weak and centred sensible heat flux is rejected while a strong
positive (day) or negative (night) sensible heat flux is kept,
which suggests that the turbulent exchange of heat by eddies
is preserved. (3) During the day, weak and centred latent heat
and carbon fluxes are removed through filtering while strong
latent heat fluxes and strong carbon uptake, likely linked to
evapotranspiration and photosynthesis, respectively, are pre-
served. During the night, strong negative latent heat and car-
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Figure A5. Relative squared error in the approximation of the averaged advective term for the multiple band decompositions as a function
of the averaging length (a, d), the number of inter-octave bands (b, e), and the wavelet shape parameter β (c, f). The error is averaged across
10 d from 10 to 19 June 2022.

bon fluxes are excluded by the turbulence mask while posi-
tive latent heat and carbon fluxes are preserved. This suggests
that the turbulence identification correctly preserves the pro-
cesses at play (respiration, photosynthesis, and evapotranspi-
ration) in the turbulent exchange of water vapour and carbon
between the forest and the atmosphere.

A5 Approximations in the decomposition of the
advective term

We analyse here the viability of the approximations made in
Eq. (6) for decomposing the advective term. We look at the
relative squared error (RSE):

RSE(t)=

(
[̃ws]φ − [ws]φ

)2
(t)

σ 2
[ws]φ

, (A12)

where [̃ws]φ is an estimator of [ws]φ , and σ[ws]φ is the stan-
dard deviation of the averaged advective term over 24 h. We
look at the viability of the “multiple band decomposition”
estimator composed of wavelet filters:

[̃ws]φ =
L∑
l=1

[wlsl]φ , (A13)

with L filters as explained in Sect. 2.4.
Here, φ is a Gaussian window whose averaging length is

controlled by its variance, and the target value is the averaged
advective term [ws]φ .

In Fig. A5, we show the influence of the averaging length,
the number of inter-octave bands Q, and one of the wavelet
shape parameters, β, in the approximation error. We study
the advective term for vertical kinematic and sensible heat
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fluxes. We observe that the error is high with small averag-
ing length and rapidly decreases with increasing averaging
length, reaching 10−3σ[ws]φ for vertical kinematic flux and
10−2σ[ws]φ for sensible heat with 2 h averaging. The aver-
aged advective term converges to the global flux with large
averaging length, which is a quantity conserved by the multi-
ple band decomposition. We note that decreasing the number
of inter-octave bands, i.e. lowQ, decreases slightly the error,
because the number of inter-correlations between frequency
bands being ignored is reduced. The shape parameter β also
has an influence on the approximation. We note that decreas-
ing its value reduces the error. This may be due to the shape
of the overall turbulence co-spectrum which might be better
captured with reasonably low β values.

Code and data availability. The Ju-
lia package TurbulenceFlux.jl
https://doi.org/10.5281/zenodo.15310756 (Destouet, 2025) imple-
ments the proposed methodology. Example data and notebooks are
also available there.
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