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Abstract. Remote sensing measurements have been widely
used to estimate the planetary boundary layer height
(PBLHT). Each remote sensing approach offers unique
strengths and faces different limitations. In this study, we use
machine learning (ML) methods to produce a best-estimate
PBLHT (PBLHT-BE-ML) by integrating four PBLHT es-
timates derived from remote sensing measurements at the
Department of Energy (DOE) Atmospheric Radiation Mea-
surement (ARM) Southern Great Plains (SGP) observatory.
Three ML models – random forest (RF) classifier, RF re-
gressor, and light gradient-boosting machine (LightGBM) –
were trained on a dataset from 2017 to 2023 that included
radiosonde, various remote sensing PBLHT estimates, and
atmospheric meteorological conditions. Evaluations indi-
cated that PBLHT-BE-ML from all three models improved
alignment with the PBLHT derived from radiosonde data
(PBLHT-SONDE), with LightGBM demonstrating the high-
est accuracy under both stable and unstable boundary layer
conditions. Feature analysis revealed that the most influential
input features at the SGP site were the PBLHT estimates de-
rived from (a) potential temperature profiles retrieved using
Raman lidar (RL) and atmospheric emitted radiance interfer-
ometer (AERI) measurements (PBLHT-THERMO), (b) ver-
tical velocity variance profiles from Doppler lidar (PBLHT-
DL), and (c) aerosol backscatter profiles from micropulse li-
dar (PBLHT-MPL). The trained models were then used to
predict PBLHT-BE-ML at a temporal resolution of 10 min,
effectively capturing the diurnal evolution of PBLHT and
its significant seasonal variations, with the largest diurnal
variation observed over summer at the SGP site. We ap-

plied these trained models to data from the ARM Eastern
Pacific Cloud Aerosol Precipitation Experiment (EPCAPE)
field campaign (EPC), where the PBLHT-BE-ML, particu-
larly with the LightGBM model, demonstrated improved ac-
curacy against PBLHT-SONDE. Analyses of model perfor-
mance at both the SGP and EPC sites suggest that expand-
ing the training dataset to include various surface types, such
as ocean and ice-covered areas, could further enhance ML
model performance for PBLHT estimation across varied ge-
ographic regions.

1 Introduction

The planetary boundary layer (PBL) refers to the lowest
part of the Earth’s atmosphere that directly interacts with
the Earth’s surface (Stull, 1988). This layer responds to sur-
face forcing within 1 h or less and closely follows the diurnal
cycle of surface heating and cooling over land (Deardorff,
1974; Xi et al., 2022). Within the PBL, turbulent motion
drives significant exchanges of heat, mass, moisture, and mo-
mentum between the surface and the free troposphere. These
exchanges significantly influence atmospheric processes, in-
cluding aerosol mixing and transport, cloud formation and
evolution, aerosol–cloud interactions (Painemal et al., 2017;
Su et al., 2024), and precipitation formation, which strongly
affect human activities (Teixeira et al., 2025). The vertical
depth of PBL is represented by the planetary boundary layer
height (PBLHT), which corresponds to an important parame-
ter in atmospheric process studies and numerical model sim-
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ulations (Zhang et al., 2020). The PBLHT is often used to
characterize PBL structures and is a key factor for estimat-
ing flux exchanges between the surface and the atmosphere.
Although there are several well-accepted definitions of the
PBL, as described by LeMone et al. (2019), accurate esti-
mates of the PBLHT remain challenging.

Due to the convective nature of the PBL, vertical gradients
of thermodynamic parameters, including temperature (or po-
tential temperature) and water vapor (or relative humidity) as
well as trace gases and aerosols, are commonly used to es-
timate the PBLHT. For a well-mixed convective PBL, the
PBL top is characterized by a positive gradient of poten-
tial temperature and negative gradients of water vapor, trace
gases, and aerosols. Radiosonde data, offering high vertical-
resolution measurements of temperature and moisture pro-
files, are widely used for estimating PBLHT (Liu and Liang,
2010; Seidel et al., 2010). However, radiosonde data suf-
fer from poor temporal resolutions. Most radiosonde stations
launch a sounding system only twice daily, making it chal-
lenging to study and understand the temporal evolution of the
PBL based on radiosonde data. Model forecasts and reanal-
ysis data have also been used to estimate global PBLHT cli-
matology (von Engeln and Teixeira, 2013). However, the un-
certainty and coarse spatiotemporal resolution of these data
could prevent reliable estimates of PBLHT.

The use of continuous remote sensing observations pro-
vides a high temporal resolution of PBLHT estimates. These
observations include sodar (Contini et al., 2008), radar wind
profilers (Salmun et al., 2023), aerosol lidars (Dang et al.,
2019; Su et al., 2020), Doppler lidar (DL) (Tucker et al.,
2009; Krishnamurthy et al., 2021), water vapor and/or tem-
perature lidars, and radiometers (Turner et al., 2014), as
well as global navigation satellite system radio occultation
(GNSS-RO) (Nelson et al., 2021). Although obtaining the
vertical distribution of turbulence parameters remains chal-
lenging, these observations provide valuable data on the ther-
modynamic properties (e.g., water vapor and/or tempera-
ture lidars and radiometers), dynamic properties (e.g., sodar,
radar wind profilers, DL, GNSS-RO), and the distribution
of tracer substances (e.g., aerosol lidars) of the PBL, all of
which can be used to estimate PBLHT. Kotthaus et al. (2023)
present a comprehensive review of the capabilities and limi-
tations of PBLHT estimates from ground-based remote sens-
ing observations. When remote sensing instruments are de-
ployed on various platforms, such as ground stations, aircraft,
or spaceborne satellites, they can provide PBLHT estimates
for fixed locations as well as on regional and global scales
(Kalmus et al., 2022; Luo et al., 2016; Roldán-Henao et al.,
2024a, b; Salmun et al., 2023; Scarino et al., 2014; Su et al.,
2020; Xu et al., 2024).

It is important to note that different observational tech-
niques capture varying characteristics of the PBL, and as
a result, PBLHT estimates from different observations may
differ significantly. Each observation has its own advantages
and limitations. Radiosonde data offer high accuracy and

high-vertical-resolution in situ measurements of atmospheric
temperature and water vapor profiles, making PBLHT esti-
mates from radiosondes more reliable than those from remote
sensing observations. For example, the Vaisala RS92 ra-
diosonde thermodynamic sensor can measure pressure, tem-
perature, and relative humidity with accuracies of 0.5 hPa,
0.2 °C, and 2 %, respectively (Holdridge, 2020). As a re-
sult, radiosonde data are often used to evaluate PBLHT esti-
mates from remote sensing methods (Su et al., 2020) or serve
as the “ground truth” for training machine learning models
(Krishnamurthy et al., 2021). Aerosol lidars and ceilometers
(CEIL) use aerosol as a tracer for PBL observations (Zhang
et al., 2022). These instruments are affordable, portable,
and reliable even under harsh weather conditions. However,
PBLHT estimates from aerosol lidars suffer from the im-
pacts of the aerosol residual layer during nighttime and early
morning, and from transported aerosol layers. DL directly
employs the measured vertical velocity variance profile to
estimate PBLHT. Studies show that the PBLHT estimated
from DL compares well with that from radiosonde data, es-
pecially during the growing and decaying periods of the PBL
evolution (Tucker et al., 2009). However, the DL approach is
sensitive to the choice of velocity variance threshold and can
vary as a function of the site. In addition, the approach has
difficulty providing reliable PBLHT estimates under stable
PBL conditions (Krishnamurthy et al., 2021). PBLHT esti-
mates from thermodynamic profiles retrieved using water va-
por/temperature lidars or high-spectral-radiometer measure-
ments can employ the same methods as PBLHT estimates
from radiosonde data, which work under a clear sky. How-
ever, the retrieved thermodynamic profiles sometimes suffer
from significant retrieval uncertainties, which hinder the ac-
curate estimate of PBLHT. Although no single method or
measurement consistently provides the most reliable PBLHT
estimates across all PBL schemes and environmental con-
ditions, combining PBLHT estimates from multiple remote
sensing techniques can lead to more accurate estimates un-
der various conditions (Kotthaus et al., 2023).

Machine learning (ML) approaches offer powerful tools
for integrating information from various observations, iden-
tifying patterns, making predictions, and gaining deeper in-
sights from complex datasets. Even when the relationships
between variables are not fully understood, ML methods
enable the extraction of valuable knowledge from diverse
data sources. ML techniques have been applied to improve
PBLHT estimates. For example, Krishnamurthy et al. (2021)
used a random forest (RF) model to enhance PBLHT es-
timates from DL measurements by combining PBLHT es-
timates from the Tucker method with environmental fac-
tors such as surface sensible and latent heat fluxes, wind
speed and direction, surface upward longwave and short-
wave radiation, soil moisture and temperature, the Monin–
Obukhov length, and the cloud base height. Their results
demonstrated significant improvements in PBLHT estimates
compared to those derived solely from the Tucker method,
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validated against radiosonde data. Su and Zhang (2024) in-
troduced a deep-learning framework trained on extensive re-
mote sensing and radiosonde data, leveraging conventional
meteorological measurements to produce robust and reli-
able PBLHT estimates across diverse environmental condi-
tions. Several studies exploring various ML models, such
as gradient-boosting regression trees, K-means clustering,
AdaBoost, and deep neural networks, have shown enhanced
PBLHT estimates from various remote sensing measure-
ments (Rieutord et al., 2021; de Arruda Moreira et al., 2022;
Liu et al., 2022).

In this study, we apply ML methods to enhance PBLHT
estimates by integrating multiple remote-sensing-derived
PBLHTs. Specifically, we utilize data from the micropulse li-
dar (PBLHT-MPL), ceilometer (PBLHT-CEIL), and Doppler
lidar (PBLHT-DL) and thermodynamic profiles retrieved us-
ing Raman lidar (RL) and atmospheric emitted radiance
interferometer (AERI) measurements (PBLHT-THERMO).
We hypothesize that PBLHTs derived from observations
of various PBL characteristics, e.g., thermodynamic effects
(PBLHT-THERMO), dynamic effects (PBLHT-DL), and
tracer particles (PBLHT-MPL and PBLHT-CEIL), comple-
ment each other. Together, they can provide valuable infor-
mation on improving PBLHT estimates under various PBL
schemes and environmental conditions. We use radiosonde-
derived PBLHT (PBLHT-SONDE, more details in Sect. 2.2)
to train ML models, aiming to predict the best estimate
of PBLHT (PBLHT-BE) by combining the four approaches
with ancillary environmental data. We use multiple years of
advanced remote sensing and radiosonde data collected at the
Department of Energy (DOE) Atmospheric Radiation Mea-
surement (ARM) Southern Great Plains (SGP) atmospheric
observatory to train ML models and test their predictions. In
addition, we use remote sensing and radiosonde data from a
recent ARM field campaign to test whether the ML method
works at different locations.

The paper is organized as follows: Sect. 2 presents an
overview of the ARM SGP site, its instruments and observa-
tions, PBLHT estimation approaches from radiosonde data,
and various remote sensing observations. The ML method,
training and testing, and feature importance analysis are pre-
sented in Sect. 3; finally, Sect. 4 presents the summary and
conclusions.

2 ARM observation and PBLHT estimates

2.1 The ARM SGP site observations

The DOE ARM user facility deploys advanced remote sens-
ing and in situ instruments at climatically critical locations.
The SGP atmospheric observatory central facility, located
in north–central Oklahoma (36°36′′26′′ N, 97°29′15′′W), is
the world’s most extensive ground-based climate research
facility. Surrounded by cattle pasture and wheat fields, the

SGP central facility is equipped with a wide range of
advanced instrument clusters, providing critical observa-
tions for research on atmospheric-process-level studies of
aerosol, clouds, precipitation, land–atmospheric interactions,
etc. The advanced instruments include various radars, lidars,
radiometers, aerosol/gas sampling instruments, and cloud
sample instruments. A detailed description of these instru-
ments can be found on ARM’s SGP instrument web page
(https://www.arm.gov/capabilities/observatories/sgp, last ac-
cess: 21 September 2024) and in Mather and Voyles (2013).
Key ground-based instruments, data streams, and the mea-
surements used for PBLHT estimates are listed in Table 1.
The SGP has been collecting data since 1992 and has accu-
mulated extensive long-term datasets. This study utilizes the
data collected between 2017 and 2023 for PBLHT analysis,
as well as training and testing ML models.

2.2 PBLHT-SONDE value added product

The balloon-borne sounding system (SONDE) is typically
launched four times a day at approximately 05:30 (00:30),
11:30 (06:30), 17:30 (12:30), and 23:30 UTC (18:30 LT),
where the times indicate Universal Time Coordinate and the
times in parentheses are in local time, at the SGP site. During
intensive-observing periods (IOPs), SONDE launches occur
more frequently, often up to eight times per day. SONDE
measures vertical profiles of the atmospheric thermodynamic
state, including atmospheric pressure, temperature, moisture,
and wind speed and direction, with a temporal resolution
of 1 s. This corresponds to vertical resolutions ranging from
several meters to over 10 m. The measured temperature can
reach an accuracy of 0.2 °C.

To estimate PBLHT, the ARM PBLHT-SONDE value-
added product (VAP) applies three commonly used methods:
the Heffter (1980), Liu and Liang (2010), and bulk Richard-
son number approaches (Seibert et al., 2000). Details of the
three methods are described in the corresponding references
and in Sivaraman et al. (2013). In brief, the Heffter method
(PBLHT-Heffter) determines PBLHT as the lowest height
where the potential temperature difference between a given
height and the bottom of an inversion layer first reaches 2 K.

The Liu–Liang method (PBLHT-Liuliang) first classifies
the PBL into three regimes: the convective boundary layer
(CBL), stable boundary layer (SBL), and neutral residual
layer (NRL). This classification is based on the potential tem-
perature (θ ) difference between the fifth and second levels
of sounding data (θ5− θ2) compared to a stability threshold.
CBL is identified when θ5− θ2 <−δs , SBL when θ5− θ2 >

+δs , and NRL when −δs ≤ θ5− θ2 ≤+δs , where δs is the
minimum strength of the inversion layer. The PBL scheme is
a critical factor, as PBLHT estimates exhibit significantly dif-
ferent characteristics across different PBL regimes. As noted
by Zhang et al. (2022), the CBL and NRL regimes can be
combined and referred to as the unstable PBL condition, in
contrast to the SBL regime, which is the stable PBL condi-
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Table 1. Key ground-based instruments and measurements at the SGP site used for PBLHT estimates.

Instrument ARM data stream Measured or derived quantities References

Balloon-borne sounding system
(SONDE)

pblhtsonde1mcfarl.c1 PBLHTs from radiosonde
(PBLHT-SONDE), PBL regimes
(PBL regime, details in Sect. 2.2)

Sivaraman et al. (2013),
Liu and Liang (2010)

Micropulse lidar (MPL) pblhtmpl1sawyerli.c1 PBLHT from MPL (PBLHT-MPL) Sawyer and Li (2013)

Ceilometer (CEIL) ceilpblht.a0 PBLHT from CEIL (PBLHT-CEIL) Münkel et al. (2007)

ceil.b1 Cloud base height (CBH) Münkel and Roininen
(2010)

Doppler lidar (DL) pblhtdl.c1 PBLHT from DL (PBLHT-DL) Tucker et al. (2009)

dlprofwstats4news.c1 Vertical velocity variance profiles Newsom et al. (2019)

Raman lidar (RL) pblhtrl1zhang PBLHT from thermodynamic
profile (PBLHT-THERMO)

Heffter (1980)

rlproftemp2news10m.c0 Temperature profiles Newsom et al. (2013)

Atmospheric emitted radiance
interferometer (AERI)

tropoe.c1 Temperature profiles Turner and Löhnert
(2021)

Eddy correlation flux measurement
(ECOR) and carbon dioxide flux
measurement systems (CO2FLUX)

30co2flx25m.b1 Sensible heat flux, latent heat flux,
total kinetic energy (TKE), friction
velocity (u∗), Monin–Obukhov
length (MO-Len), and surface wind
speed (SWS) and direction (SWD)

Tang et al. (2019)

Solar and infrared radiation station
(SIRS)

qcrad1long.c2 Upward longwave (LRAD) and
shortwave radiation (SRAD)

Long and Shi (2006)

Surface meteorology systems (MET) met.b1 Air temperature (T ) and relative
humidity (RH)

Kyrouac and Tuftedal
(2024)

tion. In this study, we follow the same approach to separate
our analysis into unstable and stable PBL conditions. The
Liu–Liang method then applies specific algorithms tailored
to each regime to estimate PBLHT. For the unstable PBL, it
identifies PBLHT as the level k at which θk−θ2 > δu, where
δu is another stability threshold. The thresholds for differ-
ent surface types are provided in Liu and Liang (2010). For
stable PBL, PBLHT is determined as the top of the stable
layer above the surface or the height of the low-level jet (LLJ)
nose, whichever is lower.

The bulk Richardson method (PBLHT-Richardson) deter-
mines PBLHT as the altitude where the bulk Richardson
number (Ri) first exceeds a critical value Ric. The PBLHT-
SONDE VAP provides PBLHT estimates using two Ric
thresholds, 0.25 and 0.5, based on previous studies (Holtslag
et al., 1990; Seibert et al., 2000). An example of PBLHT
estimates from the PBLHT-SONDE VAP during the four
SONDE launches on 8 May 2017 is shown in Fig. 1. PBL-
HTs are low during nighttime and early morning (00:30 and
06:30 LT), grow to ∼ 1.5 km at noon (12:30 LT), and decay
slightly in the late afternoon (18:30 LT). Note that PBLHT-

Heffter and PBLHT-Liuliang had the same PBLHT estimate
at 12:30 LT, as shown in Fig. 1c.

Although PBLHT estimates from SONDE data are gener-
ally considered more reliable, there is no definitive ground
truth to determine the method that performs better. Differ-
ent methods and algorithms, even when using the same mea-
surements, can yield significantly different PBLHT estimates
(Seidel et al., 2010; Roldán-Henao et al., 2024a). This is ev-
ident in Fig. 1a and b, which show substantial discrepancies
in PBLHT estimates from the PBLHT-SONDE VAP during
nighttime (00:30 LT) and early morning (06:30 LT). Statis-
tical comparisons of PBLHT estimates from the three ap-
proaches also reveal large discrepancies, particularly under
stable PBL conditions (Figs. S1 and S2 in the Supplement).
As a general rule, the median of PBLHT estimates from the
three approaches is recommended (Smith and Carlin, 2024).
Since the two PBLHT estimates from the bulk Richardson
method use the same approach but with different Ric val-
ues, only the estimate with an Ric value of 0.25 is used when
calculating the median PBLHT across the three approaches
(Seibert et al., 2000).
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Figure 1. PBLHT estimates from the PBLHT-SONDE VAP during
the four SONDE launches on 8 May 2017. Since PBLHTs from the
Heffter and Liu–Liang methods primarily rely on potential temper-
ature profiles, their PBLHT estimates are plotted alongside these
profiles. PBLHTs from the bulk Richardson method are plotted on
the corresponding Ri profiles. Richardson_25 refers to PBLHT es-
timate using an Ric threshold of 0.25, while Richardson_5 refers to
an Ric threshold of 0.5. a.g.l. stands for above ground level, and all
altitudes in this study are in terms of a.g.l.

This study uses three parameters to evaluate how well two
datasets are compared: the linear correlation coefficient (R),
the root-mean-square error (RMSE), and the mean absolute
error (MAE). Figure 2 shows this evaluation and compares
the three PBLHT estimates from the PBLHT-SONDE VAP
with their median (PBLHT-median) using kernel density es-
timation (KDE). KDE is a nonparametric technique used to
estimate the probability density function of a continuous ran-
dom variable. It provides a smooth approximation of the data
distribution, making it useful for identifying patterns and
trends (Zhang et al., 2022). Peaks in the KDE plot indicate
regions with higher data density. Under unstable PBL con-
ditions, the PBLHT-Liuliang estimate tends to align closely
with the PBLHT-median, which shows the highest R and
the lowest RMSE and MAE values. When PBLHT exceeds
2 km, PBLHT-Heffter is generally larger than the PBLHT-
median, whereas PBLHT-Richardson is typically smaller
than the median when PBLHT is below 1 km. On the other
hand, under stable PBL conditions, the PBLHT-median is
more likely to resemble either the PBLHT-Heffter or the
PBLHT-Richardson estimates. These patterns are consistent
with those of previous studies. For example, research using
aerosol lidars and Doppler lidar (DL) suggests that PBLHT

estimates from lidar are more in line with the Liu–Liang
method during daytime at the SGP site (Sawyer and Li, 2013;
Su et al., 2020; Krishnamurthy et al., 2021). Additionally,
Lewis (2016) found that the Heffter method produces reason-
able PBLHT values based on careful inspection of tempera-
ture and humidity profiles during the Marine ARM GPCI1

Investigation of Clouds (MAGIC) field campaign. Seibert et
al. (2000) noted that the bulk Richardson number method of-
fers better PBLHT estimates under SBL conditions. In this
study, we use the PBLHT-median as the “ground truth” to
train and test ML models. For simplicity, in the following
sections, we refer to the PBLHT-median as PBLHT-SONDE.

2.3 PBLHTs from remote sensing measurements

In this section, we describe four PBLHT estimates derived
from remote sensing observations: PBLHT-MPL, PBLHT-
CEIL, PBLHT-DL, and PBLHT-THERMO.

2.3.1 PBLHT-MPL

PBLHT-MPL is estimated using range- and overlap-
corrected MPL backscatter profiles with the wavelet covari-
ance method, as described by Sawyer and Li (2013). The
ARM MPL system provides aerosol backscatter intensity and
depolarization ratio profile measurements at a wavelength of
532, with a vertical resolution of 15 m and a temporal res-
olution of 10 s. The raw data are post-processed to subtract
background noise and apply dead time, after-pulse, and over-
lap corrections (Campbell et al., 2002). Figure 3a presents
an example of MPL backscatter profiles from 8 May 2017 at
the SGP site. Residual aerosol layers are clearly visible up to
approximately 2 km during the nighttime and early-morning
hours until 06:00 LT, with elevated aerosol layers above 2 km
at the start of the day, which can lead to significant errors in
lidar-based PBL retrievals (Su et al., 2020). After 11:00 LT,
strong aerosol backscatter gradients at the top of the PBL are
evident.

The Sawyer and Li approach uses the Haar wavelet co-
variance transform on the lidar backscatter intensity pro-
file to identify the strongest negative gradient with height,
which is then taken as the PBL top (Brooks, 2003). This
wavelet covariance transform is an advanced edge detec-
tion technique well-suited for vertically resolved active re-
mote sensing data. The method relies only on lidar backscat-
ter intensity profiles and is independent of absolute lidar
calibration, making it adaptable for different MPL systems
across various locations. A key parameter in this approach
is the dilation factor, a, of the Haar wavelet, which usu-
ally ranges between 100 m and 1 km. A small value of a

1GPCI is the GCSS Pacific Cross-section Intercomparison, a
working group of GCSS. GCSS is the GEWEX Cloud Systems
Study, where GEWEX stands for Global Energy and Water Cy-
cle Experiment, a core project of the World Climate Research Pro-
gramme.
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Figure 2. Comparisons of the three PBLHT estimates from the PBLHT-SONDE VAP with their median (PBLHT-median) using kernel
distribution estimation (KDE) under unstable (a–c) and stable (d–f) PBL conditions. R is the correlation coefficient. RMSE is the root-mean-
square error. MAE is the mean absolute error. n is the number of samples.

may result in noisy PBLHT estimates due to spurious gra-
dients, while large values increase the minimal detectable
PBLHT. The minimal detectable PBLHT is half of a. Fol-
lowing Sawyer and Li (2013), we set the dilation factor, a,
to 1 km, corresponding to a minimal detectable PBLHT of
0.5 km a.g.l. (above the ground level). Figure 3e shows that
before 11:00 LT, PBLHT-MPL captures the top of the resid-
ual layer as the PBLHT, while after 11:00 LT, it accurately
tracks the PBLHT of the convective PBL.

2.3.2 PBLHT-CEIL

In this study, we use ceilometer PBLHT estimates directly
provided by vendor built-in software, “BL-View”, which
provides real-time monitoring of boundary layer structures
and identifies up to three potential boundary layer heights
(Münkel and Räsänen, 2004). ARM ceilometers utilize the
Vaisala CL31 model, which has a maximum vertical range of
7.7 km (Münkel and Räsänen, 2004). The CL31 provides to-
tal attenuated backscatter coefficient profiles at a wavelength
of 910 nm, with a vertical resolution of 10 m and a tempo-
ral resolution of 2 s. Figure 3b shows the time–height plot
of CEIL backscatter profiles. Due to longer wavelengths, a
larger field of view, and stronger water vapor absorption,
CEIL backscatter profiles tend to be noisier compared to

those from MPL. Despite this, aerosol layer structures are
still discernible within the PBL (Wiegner et al., 2019).

The CL31 ceilometer estimates PBLHT using the gradi-
ent method, which identifies local gradient minima, i.e., the
strongest decrease in ceilometer backscatter with respect to
altitude, in the range- and overlap-corrected backscatter coef-
ficient profiles. First, the data are averaged to a 16 s temporal
resolution to improve the aerosol signal reliability. Then, lo-
cal gradient minima are detected using a 30 min temporal-
and 360 m vertical-sliding-window average. Furthermore,
the enhanced gradient method applies a cloud and precip-
itation filter during the averaging process to suppress false
layer identification. This allows for robust PBLHT estimates
under various weather conditions (Münkel and Roininen,
2010). For the three potential boundary layer heights, the BL-
View algorithm assigns a quality index (ranging from 1 to
3) to each boundary layer height candidate. A higher qual-
ity index is assigned to stronger gradients, greater distances
between minima, and scenes where no clouds are detected
near the boundary layer. We select the boundary layer height
candidate with the highest quality index as the ceilometer-
estimated PBLHT, consistent with previous studies (Zhang
et al., 2022). If there is more than one PBLHT candidate that
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Figure 3. Remote sensing observations and retrievals on 8 May 2017 at the ARM SGP site. Panels from top to bottom are (a) time–height
plot of MPL backscatter profiles, (b) ceilometer total attenuated backscatter coefficient profiles, (c) DL-derived vertical velocity variance
(W ) profiles, (d) potential temperature (θ ) profiles from RL and TROPospheric Optimal Estimation (TROPoe) retrievals, and (e) PBLHT
estimates from remote sensing observations and the PBLHT-SONDE VAP.

has the highest quality index, the lower-altitude PBLHT can-
didate is selected as the ceilometer-estimated PBLHT.

As illustrated in Fig. 3e on the example day, the PBLHT-
MPL consistently identifies the top of the residual layer
as the PBLHT before 11:00 LT. In contrast, the PBLHT-
CEIL sometimes detects lower PBLHTs that are closer to
those of PBLHT-SONDE. After 11:00 LT, when the convec-
tive PBL develops, PBLHT-CEIL typically captures PBLHT

accurately, although occasional underestimations still oc-
cur. Since ceilometers are cost-effective, portable, and re-
liable, they are widely deployed at various ground-based
atmospheric observatories. As a result, numerous studies
have developed methods to improve PBLHT estimates from
ceilometers (Caicedo et al., 2020; de Arruda Moreira et al.,
2022). In this study, we directly use PBLHT-CEIL from the
Vaisala BL-View software, as it is readily available at ARM
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observatories, is quality-controlled, and has been widely
adopted by the research community.

2.3.3 PBLHT-DL

ARM DL provides range-resolved measurements of atten-
uated backscatter intensity at approximately 1.5 µm and
radial velocity profiles. Most ARM DLs have full upper-
hemispheric scanning capabilities and typically operate in
a vertical staring mode, offering vertical velocity measure-
ments with a resolution of 30 m and a temporal resolution
of 1 s or less. Additionally, they perform plan–position-
indicator (PPI) scans to capture three-dimensional turbulent
flows (Newsom and Krishnamurthy, 2022). The Doppler
Lidar Vertical Velocity Statistics (DLPROF-WSTATS;
https://arm.gov/capabilities/science-data-products/vaps/
dlprof-wstats, last access: 21 September 2024) VAP uses
vertical velocity data to calculate 30 min statistics of vertical
velocity variance (σ 2

w), skewness, and kurtosis. The vertical
velocity profiles are oversampled by a factor of 3 to produce
these statistical quantities at a 10 min temporal resolu-
tion. Figure 3c shows the time–height plot of σ 2

w. During
nighttime, the stable atmospheric stratification created by
radiative cooling leads to negative buoyancy production,
effectively suppressing turbulence. σ 2

w remains low at night
and in the early morning, while during daytime, enhanced
convection increases surface-based mixing and increases
atmospheric turbulence. As a result, σ 2

w starts to increase
after 08:00 LT.

According to Tucker et al. (2009), the depth of the con-
vective boundary layer can be estimated by identifying the
height where σ 2

w falls below a specified threshold, such
as 0.04 m2 s−2, which is the approach used in this study
to derive PBLHT-DL from DLPROF-WSTATS. Figure 3e
shows that PBLHT-DL reports lower PBLHT values be-
fore 08:00 LT, which aligns closely with the results from
PBLHT-SONDE. However, during this period, PBLHT-DL
consistently reports the lowest levels, indicating its limita-
tions in providing valid PBLHT estimates under stable PBL
conditions. Between 08:00 and 12:00 LT, PBLHT-DL effec-
tively captures PBL growth, offering valuable PBLHT esti-
mates during this critical period. After 12:00 LT, PBLHT-DL
continues to provide reasonable PBLHT estimates, closely
matching those of PBLHT-SONDE.

2.3.4 PBLHT-THERMO

At night, the presence of residual layers can create strong
water vapor and aerosol gradients, making it difficult to de-
rive PBLHT from water vapor or aerosol lidar backscat-
ter profiles. Under such conditions, PBLHT estimates based
on thermodynamic profiles, such as potential temperature,
are more reliable (Seidel et al., 2010; Ferrare et al., 2012).
Both ARM RL and AERI provide height- and time-resolved
temperature profiles that can be used for this purpose. The

ARM RL is an advanced lidar system that measures elas-
tically backscattered light from aerosols at a wavelength of
355 nm, as well as inelastically scattered light from atmo-
spheric molecules at specifically tuned channels. These mea-
surements enable retrievals of the aerosol backscatter coef-
ficient, water vapor mixing ratio, and temperature profiles
(Newsom et al., 2013; Thorsen and Fu, 2015; Lv et al.,
2017, 2018). Studies have previously demonstrated that RL-
derived aerosol backscatter coefficient and water vapor pro-
files can be used to estimate PBLHT (Ferrare et al., 2012;
Chu et al., 2022). However, due to known limitations of
RL retrievals – such as artifacts in aerosol backscatter co-
efficients resulting from weak Raman scattering and peri-
odic gaps in water vapor profiles – the authors chose not to
incorporate the RL aerosol backscatter coefficient and wa-
ter vapor mixing ratio profiles when estimating PBLHTs in
this study. These issues could pose substantial challenges
for automated PBLHT detection algorithms. The ARM Ra-
man Lidar Temperature (RLPROF-TEMP; https://www.arm.
gov/capabilities/science-data-products/vaps/rlproftemp, last
access: 21 September 2024) VAP uses measurements from
RL’s rotational Raman channels to retrieve temperature pro-
files (Newsom et al., 2013). These temperature profiles have
a vertical resolution of 60 m and a temporal resolution of
10 min (Newsom and Sivaraman, 2018). The uncertainty in
the RL’s temperature retrievals is calculated using standard
error analysis, and by default, temperature retrievals with rel-
ative uncertainties greater than 0.05 are excluded. It is im-
portant to note that lidar signals and temperature retrievals
can be affected by incomplete overlap between the outgoing
laser beam and the receiver’s field of view. As a result, over-
lap corrections are typically applied at low altitudes, where
retrievals have higher uncertainties.

The ARM AERI retrieves boundary layer temperature pro-
files, which can also be retrieved from the measured infrared
(IR) radiance spectrum. The ARM AERI instrument mea-
sures absolute IR spectral radiance from wavenumbers 3000
to 520 (cm−1) with a spectral resolution of 1 cm−1, with data
collected every 20 s. The ARM TROPospheric Optimal Es-
timation (TROPoe) VAP (https://www.arm.gov/capabilities/
science-data-products/vaps/tropoe, last access: 21 Septem-
ber 2024) provides retrievals of lower-tropospheric temper-
ature and water vapor mixing ratio profiles from AERI IR
spectral radiance measurements using a physical–iterative re-
trieval approach, as described by Turner and Löhnert (2014,
2021). TROPoe retrievals are produced at a 5 min temporal
resolution, with vertical resolutions starting at approximately
25 m near the surface and decreasing to 800 m by 3 km in
altitude. The output file also includes the 1σ uncertainty for
each retrieved variable derived from the error covariance ma-
trix within the optimal estimation framework. The mean bias
errors relative to radiosonde profiles are less than 0.2 K for
temperatures at heights below 2 km under clear-sky condi-
tions (Turner and Löhnert, 2014).
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To address the impact of overlap correction on RL tem-
perature retrievals and to leverage the higher vertical resolu-
tion of TROPoe near the surface, we combine the RLPROF-
TEMP and TROPoe temperature profiles. Specifically,
TROPoe temperatures are used for altitudes below 700 m.
At altitudes between 700 and 1100 m, RLPROF-TEMP tem-
peratures are linearly scaled using the ratio of the mean
TROPoe temperature to the mean RLPROF-TEMP temper-
ature within this layer. RLPROF-TEMP temperatures are ap-
plied to altitudes above 1100 m. Potential temperature (θ )
profiles are then calculated using the combined temperature
profiles, along with pressure profiles from the interpolated
SONDE (INTERPSONDE) VAP (https://www.arm.gov/
capabilities/science-data-products/vaps/interpsonde, last ac-
cess: 21 September 2024). Figure 3d displays the time–
height plots of the θ profiles. PBLHT-THERMO is derived
from these θ profiles using the Heffter method. The Liu–
Liang and bulk Richardson number methods were not in-
cluded because they require high-quality temperature and
low-level wind data, which are limited by the capabili-
ties of ARM Doppler lidar measurements. As shown in
Fig. 3e, PBLHT-THERMO reports lower PBLHT values be-
fore 08:00 LT. Notably, PBLHT-THERMO indicates that the
PBL begins to grow around 07:30 LT, while PBLHT-DL
shows noticeable PBL growth after approximately 08:30 LT.
This discrepancy may arise because thermodynamic mea-
surements are more effective for estimating PBLHT than dy-
namic measurements in shallow, stable PBL conditions. Af-
ter 12:00 LT during convective PBL, PBLHT-THERMO ex-
hibits more scattered estimates, likely due to greater uncer-
tainties in temperature retrievals and smaller potential tem-
perature gradients at higher altitudes.

2.4 Statistical evaluations of PBLHT estimates from
remote sensing measurements against
PBLHT-sonde

With multiple years of concurrent MPL, CEIL, DL, RL,
TROPoe, and radiosonde data at the SGP site, we can sta-
tistically evaluate the performance of each PBLHT estimate
from remote sensing measurements with PBLHT-SONDE.
Figure 4 shows comparisons of the four PBLHT estimates
from remote sensing measurements and PBLHT-SONDE un-
der unstable and stable PBL conditions using 7 years of data
between 2017 and 2023 at the SGP site.

Under unstable PBL conditions, both PBLHT-MPL and
PBLHT-DL show better performance, with relatively higher
R and lower RMSE and MAE values. PBLHT-MPL exhibits
a smaller spread around PBLHT-SONDE but is unable to de-
tect PBLHT values below 0.5 km. In contrast, during unsta-
ble conditions, PBLHT-CEIL performs poorly, with the low-
est R and relatively higher RMSE and MAE values due to
a larger spread around PBLHT-SONDE. PBLHT-DL, while
showing a good correlation with PBLHT-SONDE across all
PBLHT ranges, has a larger spread compared to PBLHT-

MPL for PBLHTs larger than 0.5 km. PBLHT-THERMO
performs well for PBLHT values below 1 km but signifi-
cantly overestimates PBLHT for values above 1 km, lead-
ing to the highest RMSE and MAE values among the four
PBLHT estimates. The overestimation of PBLHT is likely
due to the use of the Heffter method in PBLHT-THERMO,
which tends to yield higher values compared to PBLHT-
median, as shown in Fig. 2a. Additionally, greater uncertain-
ties in temperature retrievals and weaker potential tempera-
ture gradients at higher altitudes may further contribute to the
overestimation.

The performance of the four PBLHT estimates from re-
mote sensing measurements deteriorates significantly under
stable PBL conditions (Krishnamurthy et al., 2021; Su et al.,
2020; Zhang et al., 2022), with much lower R values, as
shown in Fig. 4e–h. The uncertainty in estimating PBLHTs
from observations during stable atmospheric conditions has
been documented in several studies (Su et al., 2020; Zhang
et al., 2022). Reduced accuracy during nighttime is primar-
ily attributed to the formation of the SBL, which generates
smaller thermal gradients and weaker turbulence near the
surface. These features are difficult to detect with remote
sensing instruments due to weak or noisy returns (in terms
of backscatter or scattering). In addition, PBLHTs can be
shallow during nighttime conditions, wherein the PBLHT
is below the lowest range gate for some of these remote
sensing devices, making it hard to detect. Among the four
methods, during stable conditions, PBLHT-DL and PBLHT-
THERMO perform better than PBLHT-MPL and PBLHT-
CEIL. PBLHT-MPL shows poor performance, with the low-
est R and highest RMSE and MAE values, primarily due
to its inability to detect PBLHT values below 0.5 km, while
most PBLHT values under stable PBL conditions at SGP are
below 0.5 km (Krishnamurthy et al., 2021). PBLHT-CEIL
continues to exhibit a large spread around PBLHT-SONDE.
PBLHT-DL has the lowest RMSE and MAE values, while
PBLHT-THERMO achieves the highest R value.

The PBLHT-SONDE VAP does not explicitly account for
the influence of clouds (Sivaraman et al., 2013). Similarly,
PBLHT estimates derived from remote sensing also do not
specifically consider the presence of clouds. To minimize
the impact of mid- and high-level clouds, PBLHT detec-
tion algorithms are limited to within 4 km of the surface.
Since low-level cloud bases generally occur at or near the
PBLHT, detection algorithms often identify the cloud base
as the PBLHT. This does not introduce significant errors
when compared with PBLHT-SONDE (Sawyer and Li, 2013;
Zhang et al., 2022). The above analysis reveals that no single
remote sensing approach for estimating PBLHT consistently
outperforms the others. Each method has unique strengths
and limitations under different PBL conditions, primarily
due to instrument constraints or retrieval uncertainties, as
discussed in Sect. 1. However, these approaches are com-
plementary, and integrating them can provide improved and
more continuous PBLHT estimates.
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Figure 4. Comparisons of the four PBLHT estimates from remote sensing measurements with PBLHT-SONDE under unstable (a–d) and
stable (e–h) PBL conditions. Note that different axis ranges are used for the unstable and stable PBL conditions.

3 Best-estimate PBLHT (PBLHT-BE)

3.1 PBLHT-BE from remote sensing measurements
(PBLHT-BE-lidar)

To evaluate the hypothesis that combining PBLHT esti-
mates from different remote sensing approaches can enhance
PBLHT accuracy, we designed an idealized experiment.
Among the four PBLHT estimates from remote sensing
measurements, the closest to the “ground truth” – PBLHT-
SONDE in this study – can be selected as the PBLHT-
BE. Since all remote sensing methods include lidar mea-
surements, the PBLHT-BE is referred to as PBLHT-BE-
lidar. We manually searched for PBLHT-BE-lidar from the
four remote-sensing-estimated PBLHTs by comparing them
against PBLHT-SONDE at each radiosonde launch time.
Figure 5 compares PBLHT-BE-lidar with PBLHT-SONDE,
showing that, under both unstable and stable conditions, the
R is significantly improved, to 0.97 and 0.85; the RMSE is
greatly reduced, to 0.15 and 0.08 km; and the MAE is re-
duced, to 0.10 and 0.04 km, respectively. The data distribu-
tions of PBLHT-BE-lidar and PBLHT-SONDE largely fall
within a narrower range relative to the 1 : 1 line. This sug-
gests that carefully selecting the best estimate from multi-
ple remote sensing measurements can significantly improve
PBLHT accuracy compared to relying on a single remote
sensing method. Please note that this experiment provides
PBLHT-BE-lidar estimates only when PBLHT-SONDE data
is available and cannot be applied to other time periods.
Understanding when or under what conditions a specific
PBLHT estimate from remote sensing measurements best

aligns with PBLHT-SONDE and is selected as the PBLHT-
BE-lidar is valuable. Figure 6 presents histograms of the
probability distributions of PBLHT estimates from the re-
mote sensing measurements selected as the PBLHT-BE-lidar
at different local times (Fig. 6a) and under different PBL
regimes (Fig. 6b). The results show that during nighttime and
early morning, before 10:00 LT, or under stable PBL condi-
tions, PBLHT-THERMO is more frequently chosen as the
PBLHT-BE-lidar, followed by PBLHT-DL. After 12:00 LT
or under unstable PBL conditions, PBLHT-DL and PBLHT-
MPL are more likely to be selected as PBLHT-BE-lidar.
These findings indicate that PBLHT-THERMO is more ac-
curate during nighttime or early morning or under stable PBL
conditions, whereas PBLHT-MPL and PBLHT-DL perform
better in the afternoon or under unstable conditions, consis-
tent with the patterns shown in Fig. 4.

3.2 PBLHT-BE using ML (PBLHT-BE-ML)

The discussion above highlights the need for an auto-
mated approach to derive more accurate PBLHT estimates
from multiple remote sensing measurements when PBLHT-
SONDE data are unavailable. This would allow for im-
proved continuous PBLHT estimates, facilitating the study
of PBL evolution and the evaluation of model simulations.
To achieve this, we tested three machine learning models –
RF classifier, RF regressor, and the light gradient-boosting
machine (LightGBM – for predicting PBLHT. These models
utilized four PBLHT estimates derived from remote sensing
measurements along with the environmental variables listed
in Table 1.
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Figure 5. Similar to Fig. 4 but for comparisons between PBLHT-BE-lidar and PBLHT-SONDE.

Figure 6. Histogram plots of probability distribution functions (PDFs) of PBLHT estimates from remote sensing measurements that are
selected as the PBLHT-BE-lidar at different LTs (a) and under different PBL regimes (b).
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3.2.1 Data preparation and ML models

Remote sensing, radiosonde, and surface measurements, as
summarized in Table 1 and collected between 2017 and 2023,
are used to train and test ML models. Because radioson-
des are routinely launched every 6 h, we find the closest
remote sensing and surface data to the radiosonde launch
time to create the concurrent observation dataset. For the
ARM data products listed in Table 1 and the PBLHT es-
timates from remote sensing measurements, quality control
(QC) flags are added for each variable. These QC flags
are used to filter erroneous data or bad retrievals. Given
that PBLHT estimates from the four lidar measurements are
key input data, we also remove cases when a whole day
of PBLHT estimates is missing from any lidar measure-
ments. In total, 4785 PBLHT-SONDE estimates from ra-
diosonde measurements were used for the training process.
Following Krishnamurthy et al. (2021), we refer to the vari-
ables listed in Table 1 as input features. Missing data, of-
ten caused by instrument malfunctions or failures, are not
uncommon in datasets that integrate a wide range of obser-
vational data streams. To address this, we apply the Pandas
Python library forward- and backward-fill methods to han-
dle missing values. The forward-fill method replaces miss-
ing data with the last known value, while the backward-fill
method uses the next valid value moving backwards. To min-
imize mismatches caused by large data gaps, forward-fill and
backward-fill methods were applied only within 1 h of miss-
ing data. Finally, we substitute the missing value with the av-
erage of the forward- and backward-filled values. Data stan-
dardization is commonly applied to enhance machine learn-
ing model performance (Sujon et al., 2024). However, ran-
dom forest (RF) models and LightGBM are not sensitive to
standardization or scaling (Breiman, 2001). As a result, we
use the input features directly, without standardizing, for the
training process.

The Scikit-Learn library for Python (Pedregosa et al.,
2011) was used in this study for model hyperparameter tun-
ing, training, and evaluation of machine learning algorithms.
Hyperparameters are settings that govern the learning pro-
cess of machine learning algorithms, influencing aspects
such as the model complexity, learning rate, number of lay-
ers, and regularization. Optimal hyperparameter selection is
essential to maximize model performance. This process is
automated using Scikit-Learn’s GridSearchCV, which con-
ducts cross-validated hyperparameter tuning to determine the
optimal model configuration. Hyperparameters optimized in
this study were the number trees in the forest (n_estimators),
the maximum number of features to consider when look-
ing for the best split (max_features), the maximum number
of splits each tree can take (max_depth), and the maximum
number of leaf nodes a single decision tree within the forest
can have (max_leaf_nodes). Model training and testing data
are split randomly using Scikit-Learn’s train_test_split func-

tion. 75 % of the data are used for training and the rest for
testing the model.

We first train an RF classifier model to find the PBLHT-
BE (PBLHT-BE-ML), defined as the PBLHT estimate that
is the closest to PBLHT-SONDE from the four lidar-based
PBLHTs. The RF classifier is an ensemble machine learn-
ing model that builds multiple decision trees during training
and merges their results to improve classification accuracy
and reduce overfitting (Breiman, 2001). This ensemble ML
approach helps improve the robustness and accuracy of pre-
dictions by reducing variance and leveraging the collective
output of individual trees. Vertically resolved profiles of at-
mospheric state variables (e.g., temperature, water vapor, and
vertical velocity) and tracers (e.g., aerosol particles) from re-
mote sensing measurements can be used to reliably detect
atmospheric features such as temperature and water vapor
inversion layers, as well as aerosol layers. However, identify-
ing the feature that is most closely related to PBLHT remains
a challenge. The RF classifier model offers an effective so-
lution to address this challenge. It has been widely used in
many fields due to its high accuracy, flexibility, and ability
to handle complex datasets. Figure 7a and d present evalua-
tions of the predicted PBLHT-BE-ML from the RF classifier
model compared with PBLHT-SONDE under both unstable
and stable PBL conditions using the testing dataset. When
compared to the PBLHT estimates derived from the individ-
ual remote sensing measurements shown in Fig. 4, the pre-
dicted PBLHT-BE-ML, which uses multi-remote sensing es-
timates, demonstrates a significantly higher correlation (R)
and lower root-mean-square error (RMSE) against PBLHT-
SONDE under both regimes. This indicates that the ML ap-
proach provides more accurate PBLHT estimates from in-
tegrated remote sensing data than estimates based on single
remote sensing measurements do.

However, the R (RMSE) value between the predicted
PBLHT-BE-ML from the trained RF classifier model and
PBLHT-SONDE is lower (larger) than that of the idealized
PBLHT-BE-lidar shown in Fig. 5. To address this, we tested
other ML models, including the RF regressor and the light
gradient-boosting machine (LightGBM) regressor models.
Similar to the RF classifier model, the RF regressor is an
ensemble learning model that uses averaging to enhance pre-
dictive accuracy and to control overfitting. The RF regressor
extends the principles of the RF classifier to regression tasks
by fitting multiple decision tree regressors to various subsam-
ples of the dataset in order to predict continuous outcomes
(Breiman, 2001). LightGBM is a widely used decision-tree-
based ML model known for its speed, efficiency, and high
performance (Ke et al., 2017). Unlike other boosting algo-
rithms, LightGBM constructs decision trees leaf-wise instead
of level-wise, enabling it to achieve lower losses and higher
accuracy. Figure 7b, c, e, and f show the evaluations of the
predicted PBLHT-BE-ML from the RF regressor and Light-
GBM models compared with PBLHT-SONDE under both
unstable and stable PBL conditions. Overall, the RF regres-
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Figure 7. Similar to Fig. 4 but for comparisons between PBLHT-BE-ML predicted from ML methods and PBLHT-SONDE.

sor model performs similarly to the RF classifier, with the
predicted PBLHT-BE-ML from the RF regressor showing a
narrower data distribution relative to the 1 : 1 line and a lower
RMSE compared to the RF classifier under unstable PBL
conditions (Fig. 7b), indicating a slight performance advan-
tage. The LightGBM regressor model outperforms both RF
models, demonstrating the highest R and lowest RMSE val-
ues in evaluations against PBLHT-SONDE for both unstable
and stable PBL conditions (Fig. 7c and f). The LightGBM
model’s predicted PBLHT-BE-ML shows substantially bet-
ter correlations with PBLHT-SONDE than the RF models do
and approaches the ideal PBLHT-BE depicted in Fig. 5.

Understanding whether the significant improvement in
predicted PBLHT-BE-ML is due to the use of ML methods
or the combination of various PBLHT estimates is important.
Figures S3 and S4 show evaluations of predicted PBLHT us-
ing RF and LightGBM regressors based on individual remote
sensing PBLHT estimates. The results indicate that ML mod-
els applied to individual remote sensing PBLHT estimates
can also lead to substantial improvements in PBLHT predic-
tion. However, there are several advantages to using multi-
ple remote sensing data sources with ML models: (1) it can
further enhance predicted PBLHT accuracy, as evidenced by
comparing Fig. 7 with Figs. S3 and S4; (2) it allows for more
reliable PBLHT predictions during periods outside of routine
radiosonde launch times, as will be discussed in Sect. 3.2.3;

and (3) it enables consistent and reliable PBLHT predic-
tions across different geographic regions, as will be shown
in Sect. 3.2.4.

3.2.2 Feature importance analysis

Input features for the ML models, along with their abbrevia-
tions and source ARM data streams, are detailed in Table 1.
We did not include a local time parameter in the input fea-
tures because the parameter changes with the season and may
have different relations with PBLHT at different locations,
which could cause issues when using the ML prediction at
other geographic locations. The quality and quantity of input
features can significantly affect the model’s accuracy and ef-
ficiency. Therefore, understanding the importance of input
features is crucial for optimizing ML model performance.
Scikit-Learn’s random forest models have built-in feature im-
portance metrics that help identify the input features that con-
tribute most to the model’s predictive power. This feature im-
portance is calculated based on the average reduction in im-
purity each time a feature is used to split a node across all
trees in the forest. Features causing substantial decreases in
impurity are assigned higher importance scores and deemed
more significant. These scores are normalized so that they
sum to 1. The LightGBM model offers two main types of
feature importance: “Split” and “Gain”. In this study, we use
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the Gain importance, which measures the improvement in the
model’s accuracy when a specific feature is used for splitting.

Figure 8 shows the feature importance for the three ML
models under all conditions. PBLHT-THERMO emerges as
the most significant feature across all three models, likely be-
cause it uses potential temperature profiles to derive PBLHT
and compares best with PBLHT-SONDE under stable PBL
conditions and during nighttime or early morning, as demon-
strated in Figs. 5 and 6. In the RF classifier, each input fea-
ture contributes to the model’s decision-making, as the pre-
diction involves selecting the most appropriate PBLHT esti-
mate from the four remote-sensing-based estimates. Each in-
put feature can influence this selection to varying degrees un-
der different environmental conditions. In contrast, PBLHT-
THERMO, PBLHT-DL, and PBLHT-MPL are the three most
important features for the RF and LightGBM regressor mod-
els, followed by SRAD and the PBL regime. This is be-
cause these models aim to predict PBLHT by interpolat-
ing or extrapolating from the input features to produce an
estimate that aligns closely with PBLHT-SONDE. Conse-
quently, other atmospheric or surface parameters play less
of a role in these models. PBLHT-CEIL, which uses aerosols
as tracers similarly to PBLHT-MPL, has a smaller impact
because CEIL is less sensitive to aerosols and typically has
a lower signal-to-noise ratio compared to MPL. As a result,
PBLHT-CEIL estimates are generally less accurate and play
a minor role in the RF and LightGBM regressor models. Ad-
ditionally, comparisons of feature importance between day-
time and nighttime reveal that PBLHT-DL and PBLHT-MPL
are the most influential features during daytime, whereas
PBLHT-THERMO dominates the feature importance during
nighttime for RF regressor and LightGBM model predictions
(Fig. S5).

3.2.3 Applying PBLHT-BE ML to continuous remote
sensing measurements

Once the ML models were trained and tested using PBLHT-
SONDE data, they were applied to predict high-temporal-
resolution PBLHT-BE-ML using PBLHT estimates from the
various remote sensing measurements and environmental
variables listed in Table 1. Since PBLHT-THERMO has the
coarsest temporal resolution (10 min) among the four remote
sensing PBLHT estimates, its time dimension was used as the
reference for the predicted PBLHT-BE-ML. All other input
features were aligned to this time dimension using the “near-
est” data mapping principle. Figure 9 presents an example
of PBLHT estimates from individual remote sensing mea-
surements and ML model predictions for 12 July 2019 at the
ARM SGP site, with PBLHT-SONDE estimates included for
comparison. On this day, radiosondes were launched eight
times due to an intensive-observation period (IOP) for test-
ing a tethered balloon system at SGP. The PBLHT estimates
from individual remote sensing measurements exhibit issues
similar to those seen in the 8 May 2017 case shown in Fig. 3.

The predicted PBLHT-BE-ML from the three ML models
aligns well with all eight PBLHT-SONDE estimates and dis-
plays a smooth, complete diurnal evolution of the PBLHT, as
shown in Fig. 9b. The RF classifier model, however, shows
abrupt jumps during the PBL growth period around 20:00
and 09:00 LT, which is probably caused by the transition of
PBL regimes and/or quick changes in SRAD. In contrast, the
RF regressor and LightGBM regressor models demonstrate
smooth PBL growth during these periods.

High-temporal-resolution PBLHT estimates are crucial for
studying the daily diurnal evolution of PBLHT as well as its
seasonal variations. Figure 10 shows box and whisker plots
of PBLHT diurnal cycles and their seasonal variations from
the three ML model predictions and from PBLHT-SONDE
at the ARM SGP observatory using data between 2017 and
2023. As expected, the comparison between PBLHT-BE-ML
and PBLHT-SONDE is very good because 75 % of the data
were used to train the ML models, and the validation using
the remaining 25 % of the data shows good testing results,
as presented in Sect. 3.2.1. Noticeable differences between
PBLHT-BE-ML and PBLHT-SONDE occur at about 14:00
and 15:00 LT in fall, as shown in Fig. 10c, which is proba-
bly caused by small samples from a couple of IOPs. Clear
PBLHT diurnal evolutions during all seasons are observed
from all PBLHT estimation methods at the ARM SGP ob-
servatory, revealing a typical PBLHT diurnal evolution over
the midlatitude land surface. The PBLHT remains shallow
throughout the nighttime. It begins to grow around 09:00 LT,
reaches its peak in the late afternoon, and starts to decay.
Summer exhibits the highest convective PBLHT during the
day and the lowest nighttime PBLHT compared to other
seasons, likely due to the strongest daytime shortwave sur-
face heating and the most intense nighttime longwave ra-
diative cooling in this season. As a comparison, PBLHT
diurnal cycles and their seasonal variations from PBLHT-
MPL, PBLHT-CEIL, PBLHT-DL, and PBLHT-THERMO
are shown in Fig. S6.

The predicted PBLHT-BE-ML from the three ML mod-
els generally align well; however, they show notable differ-
ences under afternoon convective PBL conditions between
14:00 and 18:00 LT during summer and fall. The RF classi-
fier predicts the highest PBLHT, while the RF regressor pre-
dicts the lowest. Unfortunately, we could not directly eval-
uate which model performs better due to the lack of rou-
tine radiosonde launches during this period. This highlights a
general challenge for ML-based methods: how well do they
perform when the target conditions differ from the train-
ing conditions? This period is characterized by strong tur-
bulence within the PBL. Under such conditions, PBLHT es-
timates from aerosol lidars and Doppler lidars (DL) are con-
sidered reliable (Kotthaus et al., 2023) and show smaller rel-
ative standard deviations among different methods, as seen
in Fig. S2b. Therefore, we can use lidar-derived PBLHT es-
timates to evaluate the ML model predictions. Similar to
the method we used for different PBLHT estimates from ra-
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Figure 8. Feature importance for the three ML models at the training stage: (a) the RF classifier, (b) the RF regressor, and (c) LightGBM.
Feature importance scores are normalized so that they sum up to 1.

Figure 9. PBLHT estimates on 12 July 2019 at the ARM SGP site: (a) PBLHT estimates from individual remote sensing measurements and
PBLHT-SONDE and (b) PBLHT-BE-ML prediction from the three ML models and PBLHT-SONDE.

diosonde data, we calculate the median of PBLHT estimates
from PBLHT-MPL, PBLHT-CEIL, and PBLHT-DL, refer-
ring to it as PBLHT-lidar. PBLHT-THERMO is excluded be-
cause it clearly overestimates PBLHT under strong convec-
tive conditions due to large uncertainties in temperature re-
trievals from RL measurements, as shown in Fig. 4d. We as-
sume that PBLHT-lidar can be regarded as the “true” PBLHT

under strong convective conditions and use it to evaluate the
predicted PBLHT-BE-ML.

Figure 11 compares the predicted PBLHT-BE-ML from
the three ML models with PBLHT-lidar. As expected, the
agreement between predicted PBLHT-BE-ML and PBLHT-
lidar is not as strong as during the radiosonde launch pe-
riods illustrated in Fig. 7. Among the three ML models,
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Figure 10. PBLHT diurnal cycles and their seasonal variations from the three ML model predictions and from PBLHT-SONDE at the
ARM SGP observatory. MAM (March–April–May) represents the spring season, JJA (June–July–August) for summer, SON (September–
October–November) for fall, and DJF (December–January–February) for winter. Horizontal bars, boxes, and whiskers represent the median,
interquartile range, and range of the data.

Figure 11. Similar to Fig. 4, except for comparisons between the predicted PBLHT-BE-ML and PBLHT-lidar from (a) the RF classifier,
(b) the RF regressor, and (c) LightGBM under afternoon convective PBL conditions between 14:00 and 18:00 LT during summer and fall at
the ARM SGP site.

the RF classifier’s predicted PBLHT-BE-ML shows the best
agreement with PBLHT-lidar, with the highest R and low-
est RMSE. The RF classifier’s predictions closely align with
the PBLHT-lidar along the 1:1 line, whereas the RF regres-
sor and LightGBM predictions tend to be lower than both
PBLHT-lidar and the RF classifier predictions, consistent
with Fig. 10b and c. Additionally, the RF classifier’s pre-
dicted PBLHT-BE-ML outperforms the best comparison be-
tween individual lidar PBLHT estimates and PBLHT-lidar,
as shown in Fig. S7. To conclude, the performance of pre-

dicted PBLHT-BE-ML, particularly from regression-based
ML models, may decrease when applied to periods that dif-
fer from the training data periods. More training data un-
der afternoon convective PBL conditions are needed to im-
prove ML model predictions. However, the classifier-based
model remains effective at identifying the candidate PBLHT
as the PBLHT-BE, providing enhanced predictions during af-
ternoon convective PBL conditions.
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3.2.4 Evaluation of predicted PBLHT-BE-ML at a
different ARM site

To further evaluate the performance of the ML models in
predicting PBLHT-BE, we compared the predicted PBLHT-
BE-ML from the three ML models with PBLHT-SONDE
data at a different ARM Mobile Facility (AMF) observa-
tory. The ARM Eastern Pacific Cloud Aerosol Precipitation
Experiment (EPCAPE) field campaign deployed an AMF at
the Scripps Memorial Pier in La Jolla, California (the EPC
site), from 15 February 2023 to 14 February 2024 (https://
www.arm.gov/research/campaigns/amf2023epcape, last ac-
cess: 21 September 2024). This field campaign focuses on
characterizing the extent, radiative properties, aerosol in-
teractions, and precipitation characteristics of stratocumu-
lus clouds in the eastern Pacific at a coastal location, mak-
ing PBLHT a critical parameter for understanding these pro-
cesses. The EPC site is dominated by low-level marine stra-
tocumulus clouds year-round, representing markedly differ-
ent meteorological conditions compared to the SGP site. The
deployment includes most instruments listed in Table 1, ex-
cept for the RL. Consequently, PBLHT-MPL, PBLHT-CEIL,
and PBLHT-DL for EPCAPE are derived in the same manner
as at the SGP site. However, PBLHT-THERMO is derived
solely using TROPoe data.

Turbulence over a warm ocean surface is generally weaker
and exhibits less diurnal variability than over land, mak-
ing it more challenging to obtain reliable PBLHT estimates
in marine environments. Figure 12 presents comparisons of
PBLHT estimates from various remote sensing measure-
ments against PBLHT-SONDE at the EPC site. These com-
parisons are noticeably weaker than those observed at the
SGP site (Fig. 4), as indicated by significantly lower correla-
tion coefficients (R) at the EPC site. Additionally, PBLHT
values under unstable PBL conditions at the EPC site are
markedly lower than those at the SGP site, likely due to
the limited thermal energy available for convection over
the ocean. Among the different remote sensing PBLHT es-
timates, PBLHT-DL shows the strongest agreement with
PBLHT-SONDE data under both unstable and stable PBL
conditions, suggesting that PBLHT-DL may represent a re-
liable estimate for marine environments like the EPC site.
PBLHT-THERMO performs best under stable PBL condi-
tions at the SGP site; however, it consistently overestimates
PBLHT compared to PBLHT-SONDE at the EPC site, which
is likely due to large temperature retrieval uncertainties from
TROPoe under opaque stratocumulus clouds. This discrep-
ancy is likely due to higher uncertainties in potential tem-
perature profile retrievals from TROPoe and the less dis-
tinct gradient in the potential temperature profile under stable
(cloudy) PBL conditions at the EPC site.

We applied the three trained ML models directly to EPC
data to evaluate their performance against PBLHT-SONDE.
Figure 13 presents evaluations of the predicted PBLHT-BE-
ML from the three ML models compared to PBLHT-SONDE

under both unstable and stable PBL conditions. Compared to
the PBLHT estimates from individual remote sensing mea-
surements shown in Fig. 12, the predicted PBLHT-BE-ML
from all three ML models shows improvement under both
unstable and stable PBL conditions. Although the RF clas-
sifier and regressor models do not show an increase in R
compared to PBLHT-DL under unstable conditions, they do
demonstrate a notable reduction in RMSE and MAE. Addi-
tionally, both models show improvements in R, RMSE, and
MAE under stable conditions. Among the three ML models,
LightGBM exhibits the best performance against PBLHT-
SONDE, with significantly higher R and lower RMSE and
MAE than both the RF classifier and regressor, as well as
compared to the individual PBLHT estimates from remote
sensing measurements under both unstable and stable PBL
conditions. However, it should be noted that the performance
of the ML models at the EPC site is not as strong as at the
SGP site. Expanding the training dataset to include data from
different surface types, such as warm ocean surfaces and
ice- and snow-covered areas, could further enhance the ML
model’s performance across diverse locations.

4 Summary and discussions

The planetary boundary layer height (PBLHT) is commonly
determined using radiosonde data and remote sensing mea-
surements. PBLHT estimates from radiosondes are generally
considered more reliable and are commonly used to vali-
date estimates from remote sensing. The Department of En-
ergy (DOE) Atmospheric Radiation Measurement (ARM)
program provides PBLHT estimates from radiosonde data
through its PBLHT-SONDE value-added product (VAP),
which includes three methods: (1) the Heffter method, (2) the
Liu–Liang method, and (3) the bulk Richardson method with
critical thresholds of 0.25 and 0.5. However, radiosonde data
suffer from low temporal resolution and are subject to sam-
pling error. In contrast, lidar and radiometer remote sensing
instruments offer a high temporal resolution and continuous
PBLHT estimates. ARM provides various PBLHT estimates
from remote sensing measurements, including (1) PBLHT-
MPL, derived from the wavelet covariance of the micropulse
lidar (MPL) backscatter profile (Sawyer and Li, 2013);
(2) PBLHT-CEIL based on the VAISALA CL31’s enhanced
gradient method; (3) PBLHT-DL based on the vertical ve-
locity variance measured by Doppler lidar, using a thresh-
old of 0.04 m2 s−2 (Tucker et al., 2009); and (4) PBLHT-
THERMO, derived from Raman lidar (RL) and atmospheric
emitted radiance interferometer (AERI) temperature profiles
using the Heffter method. Each remote sensing approach has
its own strengths and limitations. To achieve reliable PBLHT
estimates throughout the day and under varying boundary
layer conditions, we trained machine learning (ML) models
on the PBLHT-SONDE VAP to produce the best-estimate
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Figure 12. Similar to Fig. 4, except for the EPC site.

Figure 13. Similar to Fig. 7, except for the EPC site.

PBLHT (PBLHT-BE) from multiple remote sensing mea-
surements at the ARM SGP site.

Comparisons of the three PBLHT estimates from the
PBLHT-SONDE VAP reveal substantial differences across
various PBL conditions. To address this variability, we use

their median as the “ground truth” for training and testing the
ML models, referring to it as PBLHT-SONDE. Evaluations
of PBLHT estimates from individual remote sensing meth-
ods at the ARM Southern Great Plains (SGP) site indicate
that both PBLHT-MPL and PBLHT-DL perform well un-
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der unstable conditions, with higher correlation coefficients
(R) and a lower root-mean -quare error (RMSE). PBLHT-
THERMO performs accurately for PBLHT values below
1.5 km but significantly overestimates values above 1.5 km.
Under stable PBL conditions, the accuracy of PBLHT esti-
mates from remote sensing measurements made by all meth-
ods decreases substantially but varies among different meth-
ods of mixed performance at different times of the day, with
PBLHT-DL and PBLHT-THERMO showing slightly bet-
ter performance than PBLHT-MPL and PBLHT-CEIL, espe-
cially at nighttime and in the early morning.

We integrate the four PBLHT estimates from remote
sensing measurements to identify the PBLHT estimate (re-
ferred to as PBLHT-BE-lidar) that best aligns with PBLHT-
SONDE. In an ideal scenario where the PBLHT estimate
closest to PBLHT-SONDE is accurately selected as PBLHT-
BE-lidar, the comparison with PBLHT-SONDE improves
significantly. During the nighttime, early morning, or un-
der stable PBL conditions, PBLHT-THERMO is more fre-
quently selected as the PBLHT-BE-lidar. In the afternoon
or under unstable PBL conditions, PBLHT-DL and PBLHT-
MPL are more commonly chosen as the PBLHT-BE-lidar at
the SGP site.

Automated approaches using ML methods were tested to
derive PBLHT-BE (PBLHT-BE-ML). Remote sensing, ra-
diosonde, and surface measurements spanning 2017 to 2023
were utilized for training and testing the ML models. A to-
tal of 4785 PBLHT-SONDE estimates from radiosonde mea-
surements were included in the training (75 %) and testing
(25 %) processes. We tested three ML models: a random
forest (RF) classifier, an RF regressor, and LightGBM. All
three models demonstrated improved alignment of PBLHT-
BE-ML with PBLHT-SONDE, yielding higher R and lower
RMSE and MAE values compared to PBLHT estimates from
individual remote sensing measurements. LightGBM, in par-
ticular, demonstrated the best performance against PBLHT-
SONDE for both unstable and stable PBL conditions. Feature
analysis for these models revealed that PBLHT-THERMO is
the most significant feature across all three, with PBLHT-DL
and PBLHT-MPL also ranking as important features for the
RF and LightGBM regressor models.

The trained ML models were then applied to various li-
dar remote sensing measurements to predict high-temporal-
resolution PBLHT-BE-ML. An example from an intensive-
observation-period (IOP) day shows that the predicted
PBLHT-BE-ML from all three models aligns well with the
eight PBLHT-SONDE estimates, capturing a smooth, com-
plete diurnal evolution of PBLHT. Seasonal analysis of the
diurnal evolution reveals that summer has the largest di-
urnal PBLHT variation, while winter shows the smallest.
The predicted PBLHT-BE-ML from the three ML models
is generally consistent, except for noticeable differences un-
der afternoon convective PBL conditions between 14:00 and
18:00 LT in summer and fall. Due to a lack of routine ra-
diosonde launches during this period, we used the median of

PBLHT-MPL, PBLHT-CEIL, and PBLHT-DL as the “true”
PBLHT, referred to as “PBLHT-lidar”, for evaluating ML
model predictions. The results indicate that the RF classifier
predictions align closely with PBLHT-lidar along the 1 : 1
line, while the RF regressor and LightGBM predictions tend
to be slightly lower than both PBLHT-lidar and RF classifier
predictions, suggesting that additional training data under af-
ternoon convective PBL conditions could enhance ML model
accuracy.

To further assess model performance, we applied the
trained ML models to remote sensing measurements from
the ARM Eastern Pacific Cloud Aerosol Precipitation Ex-
periment (EPCAPE) field campaign at the EPC site. Due
to weaker turbulence over the warm ocean surface, obtain-
ing reliable PBLHT estimates at the EPC site is more chal-
lenging. PBLHT estimates from individual remote sensing
measurements show significantly lower correlation (R) at
the EPC site than at the SGP site. However, the predicted
PBLHT-BE-ML from all three ML models demonstrates im-
provement under both unstable and stable PBL conditions,
with LightGBM showing the best agreement with PBLHT-
SONDE. Nonetheless, model performance at the EPC site is
not as robust as at the SGP site, highlighting the need to ex-
pand the training dataset to include data from diverse surface
types, such as ocean-, ice-, and snow-covered surfaces. The
PBLHT-BE-ML method is being developed as a VAP to im-
prove PBLHT estimates at ARM sites, with plans to expand
model training beyond the SGP site.

Data availability. Remote sensing, surface, and radiosonde
measurements; the PBLHT-SONDE VAP; and PBLHT-
CEIL data from the ARM SGP central facility and from
the EPCAPE field campaign used in this study can be di-
rectly downloaded from the ARM data discovery website:
https://www.archive.arm.gov/discovery/ (last access: 23 July
2025). PBLHT-MPL, PBLHT-DL, and PBLHT-THERMO at the
SGP central facility are also available at from the ARM data
discovery website. pblhtsonde1mcfarl.c1 can be downloaded at
https://doi.org/10.5439/1991783 (Riihimaki et al., 2001), pbl-
htmpl1sawyerli.c1 at https://doi.org/10.5439/1637942 (Sivaraman
and Zhang, 2009), ceilpblht.a0 at https://doi.org/10.5439/1095593
(Morris et al., 2011), ceil.b1 at https://doi.org/10.5439/1181954
(Zhang et al., 1997), pblhtdl.c1 at https://doi.org/10.5439/1726254
(Sivaraman and Zhang, 2010), dlprofwstats4news.c1 at
https://doi.org/10.5439/1178583 (Shippert et al., 2010),
pblhtrl1zhang.c1 at https://doi.org/10.5439/2282350
(Zhang and Sivaraman, 2016), rlproftemp2news10m.c0 at
https://doi.org/10.5439/1415138 (Newsom et al., 2016),
tropoe.c1 at https://doi.org/10.5439/1996977 (Turner, 2010),
30co2flx25m.b1 at https://doi.org/10.5439/1989776 (Biraud et al.,
2002), qcrad1long.c2 at https://doi.org/10.5439/1227214 (Riihi-
maki et al., 1997), and met.b1 at https://doi.org/10.5439/1786358
(Kyrouac et al., 1993). These PBLHT estimates at the EPC site and
model-predicted PBLHT data are available upon request and will
be available from the ARM data discovery in 2026.
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Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/amt-18-3453-2025-supplement.
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