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Abstract. Condensation trail (contrail) cirrus clouds cause
a substantial fraction of aviation’s climate impact. One pro-
posed method for the mitigation of this impact involves mod-
ifying flight paths to avoid particular regions of the atmo-
sphere that are conducive to the formation of persistent con-
trails, which can transform into contrail cirrus. Determining
the success of such avoidance maneuvers can be achieved
by ascertaining which flight formed each nearby contrail ob-
served in satellite imagery. The same process can be used
to assess the skill of contrail forecast models. The problem
of contrail-to-flight attribution is complicated by several fac-
tors, such as the time required for a contrail to become visi-
ble in satellite imagery, high air traffic densities, and errors in
wind data. Recent work has introduced automated algorithms
for solving the attribution problem, but it lacks an evalu-
ation against ground-truth data. In this work, we present a
method for producing synthetic contrail detections with pre-
determined contrail-to-flight attributions that can be used to
evaluate – or “benchmark” – and improve such attribution
algorithms. The resulting performance metrics can be em-
ployed to understand the implications of using these observa-
tional data in downstream tasks, such as forecast model eval-
uation and the analysis of contrail avoidance trials, although
the metrics do not directly quantify real-world performance.
We also introduce a novel, highly scalable contrail-to-flight
attribution algorithm that leverages the characteristic com-
pounding of error induced by simulating contrail advection
using numerical weather models. The benchmark shows an
improvement of approximately 25 % in precision versus pre-

vious contrail-to-flight attribution algorithms, without com-
promising recall.

1 Introduction

Condensation trails (contrails) are the ice clouds that trail be-
hind an aircraft as a result of the warm, moist engine exhaust
mixing with colder, drier ambient air (Schumann, 1996).
When the ambient air is sufficiently humid (i.e., supersatu-
rated with respect to ice), these contrails can persist for sev-
eral hours (Minnis et al., 1998). They perturb the Earth’s en-
ergy budget by reflecting incoming solar radiation and reduc-
ing outgoing longwave radiation (Meerkötter et al., 1999).
The net effect of all persistent contrails is estimated to be
warming and of a magnitude comparable to the warming im-
pact of aviation CO2 emissions (Lee et al., 2021).

Several mitigation options for the climate impact of con-
trail cirrus exist, such as the use of alternative fuels (Voigt
et al., 2021; Märkl et al., 2024) and trajectory modifications
(Mannstein et al., 2005; Teoh et al., 2020; Martin Frias et al.,
2024). Although the latter approach, referred to as contrail
avoidance, may lead to additional fuel burn and concomi-
tant climate impacts, several simulation studies (Teoh et al.,
2020; Martin Frias et al., 2024; Borella et al., 2024) have as-
sessed this trade-off and conclude that this is a cost-effective
mitigation strategy. These studies do, however, make use of
forecast and reanalysis data to quantify the climate impact of
contrails. While corrections to the weather data inaccuracies
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are applied sufficiently to draw the conclusions of the stud-
ies, other studies have demonstrated that these corrections
are insufficient for the accurate prediction of formation and
persistence of individual contrails by specific flights (Gierens
et al., 2020; Geraedts et al., 2024; Meijer, 2024). Real-world
avoidance trials have established the operational feasibility
of avoiding detectable contrail formation using existing fore-
cast models (Sausen et al., 2024; Sonabend et al., 2024), but
they have also demonstrated that the forecasts are imperfect
and that larger-scale trials will be necessary in order to deter-
mine whether the cost-effectiveness concluded by the mod-
eling studies is achievable in practice.

Contrail avoidance trials are generally evaluated using
contrail observations, such as those acquired by satellite im-
agers. The automated recognition of contrails is possible in
infrared satellite images captured by both low-Earth-orbit
and geostationary satellites (Mannstein et al., 1999; Mc-
Closkey et al., 2021; Meijer et al., 2022; Ng et al., 2024).
Detections of contrails in geostationary satellite images are
particularly interesting for the monitoring of contrail avoid-
ance due to their high temporal resolution and broad spatial
coverage, which allow one to track individual contrails over
part of their lifetime (Vazquez-Navarro et al., 2010; Cheval-
lier et al., 2023). However, imaging instruments aboard geo-
stationary satellites such as GOES-16 (Goodman et al., 2020)
have coarser image resolutions of approximately 2 km at
nadir. This affects the number of contrails that are observ-
able in these images (Driver et al., 2025) at any given time.
Specifically, contrails are not observable at the moment they
form; moreover, those that do eventually become observ-
able require some time before they have become sufficiently
large and/or optically thick. Previous studies using GOES-
16 Advanced Baseline Imager (ABI) data indicate that the
time taken to become observable is highly variable, generally
ranging from 5 min to 1 h (Chevallier et al., 2023; Geraedts
et al., 2024; Gryspeerdt et al., 2024). As a consequence, the
contrail advects away from where it formed before becoming
observable, which complicates the process of attributing it to
the flight that formed it. The lack of altitude information as-
sociated with the observed contrails, owing to the satellite’s
2D view of the 3D space, further enhances the difficulty of
the problem. Once an observed contrail is attributed to an
aircraft, this information can be used to study the relation
between observed contrail properties and aircraft parameters
(Gryspeerdt et al., 2024), evaluate the performance of con-
trail prediction models (Geraedts et al., 2024), train machine
learning algorithms for better predictions of contrails (Son-
abend et al., 2024), and monitor contrail avoidance trials.

Two recent contrail avoidance trials, Sausen et al. (2024)
and Sonabend et al. (2024), each demonstrated a statisti-
cally significant reduction in the number of observed con-
trails when avoidance was performed. Neither of them, how-
ever, relied on automated attribution of contrails to flights
when evaluating the trial: Sausen et al. (2024) evaluated the
presence of detectable contrails in the satellite imagery for an

entire airspace region, whereas Sonabend et al. (2024) relied
on the time-consuming manual review of satellite imagery by
the study’s authors. Both studies emphasized the need for im-
proved evaluation methods that are more scalable than what
was used, in order to progress to the size and format of trial
that could inform the operational requirements and impact of
fleet- or airspace-wide contrail avoidance.

There has additionally been recent interest in establishing
monitoring, reporting, and verification (MRV) systems for
contrail climate impact, at the airspace, national, or conti-
nental levels. One example is the proposal for an MRV sys-
tem for non-CO2 effects of aviation in the European Union
(Council of European Union, 2024). Among the goals of
these systems are to monitor the contrail impact of each air-
line and encourage its reduction. For any such implemen-
tation, there will be a need for both an assessment of the
quality of contrail forecasts and accurate and scalable meth-
ods that can retrospectively determine contrail formation on
a per-flight basis.

Several approaches have been developed to address the
problem of automatically attributing contrails observed in
satellite imagery to flights. All of them to some degree follow
the approach visualized in Fig. 1: contrails visible in geosta-
tionary imagery (Fig. 1a) are detected and often then individ-
ually transformed into representative line segments (Fig. 1b);
joined with flight tracks advected with weather model data
(Fig. 1c); and, finally, attributed to flights using some form
of optimization algorithm (Fig. 1d). Duda et al. (2004) ap-
ply this approach using the minimum average perpendicu-
lar distance between the advected flight track and the ob-
served contrail in a single satellite frame for determining at-
tribution. Geraedts et al. (2024) build on this approach by
adding rotational and age-based components to the optimiza-
tion. Gryspeerdt et al. (2024) first track contrail detections
across frames using wind data at a fixed altitude, and they
then use the resulting chains of detections to identify flights
that passed through before the earliest detection and whose
advected tracks are within distance and angle thresholds of
the set of detections. Chevallier et al. (2023) replace the lin-
earizations with contrail instance masks and then perform a
discrete optimization that simultaneously tracks the contrail
masks over successive satellite images and attributes them to
the flight that formed them. We observe that, in all of these
approaches, the advected flight that is closest to a given con-
trail detection, in some cases subject to additional temporal
constraints, is presumed to have formed the contrail. In this
study, we will show that the error in the simulated advection
of the flight increases as the contrail ages, implying that the
advected flight nearest to the contrail detection is often not
the correct attribution.

We further observe that these previous studies carried out
limited to no evaluation of the performance of these algo-
rithms. Of the four studies mentioned, only Geraedts et al.
(2024) provide any quantitative evaluation, using 1000 man-
ual labels that indicated whether a flight segment formed
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Figure 1. A high-level visualization of a generic contrail-to-flight attribution process. All panes show a portion of a GOES-16 ABI image
from 16:40 UTC (coordinated universal time) on 6 May 2019 over Ontario, Canada, rendered using the Ash color scheme to map infrared
brightness temperatures to the visible spectrum. In panel (a), we see just the image, with some contrails visible in dark blue and some other
clouds in yellow and brown partially obscuring some of the contrails. In panel (b), we show the result of running an automated contrail
detector on the image, with the detected contrail pixels outlined in white and the results of linearizing the detector outputs as black line
segments. Notably, some contrails appear segmented due to occlusion from other clouds. In panel (c), we take all flight paths that passed
nearby in the preceding 2 h and simulate their advection to the capture time of the GOES image. This estimates the expected location of
a hypothetical contrail that each flight formed. Each advected flight is shown using a unique color, while the contrails are still in black
with white outlines (we render the satellite image in grayscale to improve visibility). Note that there is not a perfect alignment between
observed contrails and flights; in some cases, there appear to be many candidate matches, whereas there appear to be none in other cases. In
panel (d), we show the results of a contrail-to-flight attribution. Contrails that have been attributed are now color-coded to match the flight to
which they were attributed, and only those flights are shown. Contrails in black were not attributed to a flight. The attributed flights are not
always what appeared to be the best match in panel (c), as the attribution algorithm can take additional signals, like temporal dynamics, into
account.

a contrail or not. Ideally, such labels should also provide
information on which flight segment formed which partic-
ular observed contrail. Benchmarking these attribution al-
gorithms is complicated by the lack of ground-truth data.
As discussed, the moment of formation of a particular con-
trail is not observed in geostationary satellite imagery. A
ground-truth dataset for these attribution algorithms there-
fore requires observing the moment of formation using some
higher-resolution instrument, possibly a ground-based cam-
era, and following the contrail until it becomes observable
in the satellite imagery of interest. While ground-based con-
trail observation datasets exist (Gourgue et al., 2025; Low
et al., 2025; Schumann et al., 2013), including a small one
that matches its observations to those of a geostationary satel-
lite (Mannstein et al., 2010), no dataset of sufficient size and
diversity to suit our needs is available at the time of writ-
ing. Even with such a dataset in hand, the metrics used to
evaluate the performance of a contrail-to-flight attribution al-
gorithm and their implications for downstream usage of the
algorithm output data are relatively underexplored. For ex-
ample, an attribution algorithm that is conservative with re-
spect to the number of contrail-to-flight attributions that it
assigns by prioritizing quality over quantity may be suitable
for comparing the per-flight predictions of a contrail forecast
model to satellite observations. However, such an algorithm
would perhaps be less suitable for the evaluation of a large-
scale contrail avoidance experiment using satellite imagery.
Additionally, one attribution algorithm may outperform oth-
ers only under certain circumstances (such as high air traffic

density), which could further motivate choosing a particular
approach over others.

We thus conclude that there are several relevant applica-
tions for attributing satellite-observed contrails to the flights
that formed them, but this potential has not yet been fully
realized, in part due to the combination of the inability to
assess the performance of automated approaches and the
limited scalability of the manual counterparts. This study,
therefore, introduces a large-scale benchmark dataset of syn-
thetic contrail detections with predetermined flight attribu-
tions, named “SynthOpenContrails”, and a new, scalable at-
tribution algorithm, named “CoAtSaC” (short for “Contrail
Attribution Sample Consensus”). In Sect. 2, we introduce
SynthOpenContrails, how it is generated, and how to apply it
to benchmarking attribution performance. In Sect. 3, we de-
scribe CoAtSaC and show how to use SynthOpenContrails
to tune its performance. Section 4 shows that CoAtSaC pro-
vides substantial improvement when compared to existing
approaches when evaluated on the new benchmark. It fur-
ther shows how the size and diversity of SynthOpenContrails
enables one to verify the scalability of a particular attribution
algorithm and to study its performance under differing con-
ditions, such as different contrail densities, contrail altitudes,
seasons, and times of the day.

2 Synthetic contrail benchmark dataset

We start by addressing the question of how to determine the
skill level of a given attribution algorithm. Ideally, we would
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use a dataset of ground-truth contrail attributions in geosta-
tionary imagery to tune and evaluate our attribution algo-
rithm. Currently, no such dataset exists, as it is an extremely
challenging task even for a skilled human to perform without
additional evidence. In the absence of such a dataset, we pro-
pose a synthetic contrail dataset. Specifically, we aim to pro-
vide a set of synthetic contrail detections that can be directly
input to an attribution algorithm. The synthetic contrail de-
tections should be as statistically similar as possible to real
detections, while specifying which flight created each con-
trail. While not a strict requirement, we choose to produce a
dataset corresponding to the capture times and pixel grid of
real satellite scans, as that allows for both quantitative and
qualitative comparison with the real contrail detections from
the corresponding scan.

Importantly, these synthetic contrail detections are sim-
ulating a particular detection algorithm run over imagery
from a particular geostationary satellite, including the flaws
of both. They are not attempting to model a physical reality
or what an expert human labeler might produce for a given
satellite image. It is not a goal of this dataset to have exactly
the same flights that formed detectable contrails in reality
also form contrails in this dataset, nor do the synthetic con-
trails need to end up being in exactly the same locations as
the contrails that the detection algorithm finds in the same
scene. Ultimately the critical element is that the dataset has
statistics as similar as possible to the real detections, in terms
of contrail density, dynamics, detectable lifetime, and advec-
tion error relative to the weather model data, so that we can
measure the attribution algorithm’s performance across all
scenarios that it is likely to encounter with real contrail de-
tections. An added benefit that the dataset provides is access
to the physical properties of the synthetic contrails that al-
low one to study the attribution algorithm’s performance as a
function of these properties.

While the resulting dataset takes the form of contrail labels
corresponding to satellite imagery, due to the aforementioned
caveats, it is not suitable for training contrail detection mod-
els and is, thus, intended only for use in contrail attribution
algorithms, where the labels need not align with actual satel-
lite radiances.

The dataset described here, which we name “SynthOpen-
Contrails”, is tuned towards the performance of the contrail
detection algorithm introduced along with the OpenContrails
dataset in Ng et al. (2024), specifically when applied to the
GOES-16 ABI Full Disk imagery (Goodman et al., 2020).
The Full Disk imagery covers much of the Western Hemi-
sphere, with approximately 2 km nadir spatial resolution and
scans every 10 min. The Ng et al. (2024) algorithm uses a
convolutional neural network to produce a prediction that
each satellite pixel contains a contrail and thresholds the re-
sults to produce a binary mask. It then fits line segments to
the individual contrails in the mask.

The approach presented here for generating the synthetic
contrail detections should be adaptable to other detection al-

gorithms and other satellites, but some details and parameter
values may need to change. We also expect that attribution
algorithms built around other detection methods should still
be able to use SynthOpenContrails in its present form, and
we demonstrate this in Sect. 4 by evaluating the Chevallier
et al. (2023) algorithm with only minor modifications.

2.1 Data

The data used to produce the synthetic contrails con-
sist of flight paths and historical weather data. We gen-
erate the dataset for the spatial region used in Ger-
aedts et al. (2024), which covers roughly the contigu-
ous United States, bounded by great-circle arcs join-
ing 50.0783° N, 134.0295° W; 14.8865° N, 121.2314° W;
10.4495° N, 63.1501° W; and 44.0734° N, 46.0663° W. The
dataset is designed to enable attribution algorithms to run
over time spans that are sampled throughout the year between
4 April 2019 and 4 April 2020, divided into 84 time spans of
between 4 and 22 h long, aiming to capture seasonal, day-of-
week, and diurnal effects on contrail formation, requiring a
minimum of 36 h of separation between time spans to ensure
no overlap of flights or contrails between time spans. These
time spans, specified in Appendix F, are almost identical to
those used in Geraedts et al. (2024), but a few have been
changed slightly to avoid GOES-16 ABI outages. To accom-
modate attribution algorithms that rely on temporal context,
we also generate synthetic contrails for 2 h before the start
and 3 h after the end of each time span, but we exclude these
buffer periods from the benchmark metrics.

2.1.1 Flight trajectories

We use flight trajectories provided by FlightAware (https:
//flightaware.com, last access: 17 July 2025). This includes
a mixture of Automatic Dependent Surveillance–Broadcast
(ADS-B) data received by ground-based stations and Aireon
satellites (Garcia et al., 2015). For the purposes of bench-
marking contrail attribution, it is critical to recognize that
these data are incomplete, as they may lack information on
particular flights because operators may request their data
to be obfuscated or excluded. The implication is that there
may be detectable contrails formed by flights that are missing
from the data, and the benchmark needs to assess whether the
attribution algorithm can handle these contrails appropriately
and avoid incorrectly attributing them to the best-matching
flight that is in the data. We assume that it is unknown what
fraction of flights are missing or whether they are in some
way biased with respect to likelihood of persistent contrail
formation. Our tuning and benchmarking protocols described
in Sects. 2.3 and 3.5 take this into account.

In order to provide spatiotemporal context that an attribu-
tion algorithm might need in order to resolve the attributions
for contrails at the borders of the space–time regions pro-
vided by the dataset, we consider all flight waypoints that
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were flown at any point between 6 h before the start of each
time span and 3 h after it ends. We also dilate the spatial re-
gion by 720 km in each direction, to allow contrails formed
by flights outside the region to advect in from all directions
without presuming anything about the wind direction. We
resample each flight to CTflight = 5 s in between waypoints,
such that there will end up being roughly two waypoints per
GOES-16 ABI pixel at typical aircraft speeds.

2.1.2 Weather data

In selecting weather data that will be used to determine syn-
thetic contrail formation, dynamics, and evolution from the
candidate flights, it is important that we do not use the same
weather data as are used for flight advection in the attribu-
tion algorithm itself, as that would result in having an un-
realistically low advection error. As the majority of recent
approaches use the nominal ERA5 reanalysis product (Hers-
bach et al., 2020) from the European Centre for Medium-
Range Weather Forecasts (ECMWF) for attribution, we use
the control run of the ERA5 Ensemble of Data Assimila-
tions (EDA), which has a coarser resolution than the nominal
ERA5 reanalysis product. The ensemble data are at 3 h inter-
vals and a 0.5° spatial resolution, and they are vertically dis-
cretized to 37 pressure levels that are separated by roughly
25–50 hPa. We unintentionally excluded the levels between
450 and 975 hPa, which led to some minor weather interpola-
tion artifacts at the low end of the contrail formation altitudes
(see Sect. 4.2).

The EDA control run does share an underlying model with
the nominal ERA5 reanalysis; as such, shared systematic bi-
ases may exist that would not exist when relating the nom-
inal ERA5 reanalysis to real contrail observations. See Ap-
pendix B1 for a further discussion of the appropriateness of
selecting this source of weather data. Future research is nec-
essary to identify or generate a source of weather data that
achieves all of the necessary error characteristics in a fully
unbiased fashion.

2.2 Dataset generation

The process for generating the synthetic contrail detections
is visualized in Fig. 2. We summarize each subroutine in the
following, with further details found in Appendix A:

– RunCoCiP. We simulate contrail formation and evo-
lution using CoCiP (Schumann, 2012), which is a
Lagrangian model simulating contrail formation and
evolution, as implemented in the pycontrails library
(Shapiro et al., 2024). We configure pycontrails as spec-
ified in Appendix A1. We need CoCiP to provide out-
puts for each flight at the times when the GOES-16 ABI
Full Disk scan would have captured it. We note that the
GOES-16 ABI does not capture the Full Disk scan in-
stantaneously at the nominal scan time; rather, it cap-
tures it as 22 west-to-east swaths, starting in the north

and moving south over the course of 10 min (see Ap-
pendix B2). This approach can be generalized to other
geostationary satellites, as they have similar scan pat-
terns (Okuyama et al., 2015). Each pixel then has a
“scan-time offset”, based on when its location would be
captured by the GOES-16 ABI relative to the nominal
scan start time (Meijer et al., 2024). We do not know
which pixels will capture a contrail formed by a given
flight before running CoCiP. Furthermore, pycontrails
can produce outputs only at fixed time intervals. Thus,
in order to capture the outputs we need at the times
corresponding to GOES-16 scans with the correct scan-
time offsets, we configure pycontrails to produce out-
puts at 30 s intervals for the duration of the longest-lived
contrail formed by the provided flight. If a flight does
not form a contrail according to CoCiP, pycontrails will
have no outputs, so we do not consider this flight any
further. For flights that do form contrails, pycontrails
outputs contrail properties for each contrail-forming in-
put flight waypoint at each 30 s time step. We are, how-
ever, only interested in the properties that would mani-
fest at the times that the GOES-16 ABI would capture
the contrail. Therefore, we compute the scan-time off-
set corresponding to the location of each output and then
select just the time step that is closest to each satellite
scan plus scan-time offset for each waypoint. This re-
sults in a maximum of 15 s of error, which is negligi-
ble for our purposes (see Appendix B3). At this stage,
we split up each flight’s outputs according to the corre-
sponding satellite scan and subsequent subroutines op-
erate on them each independently.

– ReprojectGeostationary. The goal of this subroutine is
to reproject CoCiP’s outputs from its native frame of
reference to the perspective of the geostationary imager.
CoCiP computes the parameters of the contrail plume
cross-section at each flight waypoint such that attributes
like width and optical thickness are measured along a
viewing ray that passes directly through the center of
the contrail to the center of the Earth. In order to render
off-nadir contrails in the perspective of a geostationary
satellite, we need to recompute these values using the
viewing ray of the instrument. The details of how this is
accomplished are given in Appendix A2.

– FilterUndetectable. This subroutine’s purpose is filter-
ing CoCiP’s outputs to just those that the Ng et al.
(2024) detector would be likely to find if a contrail with
these physical parameters were captured by the GOES-
16 ABI. This amounts to codifying whether the training
data for the detector would have included a label for this
contrail. It computes a per-waypoint detectability mask,
considering a few criteria, as detailed in Appendix A3.

– AdaptToDetector. Before actually rasterizing the Co-
CiP data, we apply some adaptations directly to Co-
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Figure 2. A flow diagram of the process for generating synthetic contrails. The initial stages operate independently over each flight and
determine the contributions of each flight to each relevant satellite scan. The later stages combine information from all flights that contribute
to a given satellite scan and produce a contrail mask and a set of linear contrails for that scan.

CiP’s outputs, in order to better reflect the behavior of
the detector being emulated. These are specified in Ap-
pendix A4.

– Rasterize. In this subroutine, we map the filtered and
adapted CoCiP outputs to pixel values in the geosta-
tionary imager’s native projection and resolution. The
most important component is determining what quantity
should be rasterized in order to best imitate the detector.
As the Ng et al. (2024) detector exclusively operates on
longwave infrared bands, when estimating detectabil-
ity, we need not account for factors affecting shortwave
bands such as solar insolation; the quantity that we can
extract from CoCiP that will best reflect detectability is,
therefore, opacity. According to the Beer–Lambert law
(Beer, 1852), opacity can be expressed as κ = 1− e−τ ,
where τ is the contrail optical depth produced by CoCiP.
Appendix B5 discusses the appropriateness of apply-
ing the Beer–Lambert law here. The actual rasterization
process adapts the process described in Appendix A12
of Schumann (2012) to geostationary satellite imagery.
This is detailed in Appendix A5. The output of this sub-
routine is an opacity value κras for each pixel in the geo-
stationary image that a flight contributed to in a single
frame, along with the relevant CoCiP metadata for each
waypoint that contributed to the pixel.

– CombineRasters. We can then combine the rasters for
all flights at the same time step, keeping track of the
per-flight contrail parameters contributing to each pixel
for later analysis. For simplicity, we resolve different
flights contributing to the same pixel in the final raster
by taking the maximum. The more correct approach
would be to sum the optical thicknesses before con-

verting to opacity, but CoCiP does not model these
inter-flight effects and, in practice, it does not matter
much for our use case. In order to simulate some of
the smoothing effect that the detector has over the rela-
tively noisy satellite imagery, we apply a spatial Gaus-
sian blur, with a standard deviation of 1 pixel, with-
out allowing any zero-valued pixels to become nonzero.
We produce a binary contrail mask by thresholding the
raster by κras > 1− e−Tτ .

– HandleOutbreaks. This subroutine addresses the mis-
match between how CoCiP and the Ng et al. (2024)
detector operate in regions of very high contrail den-
sity, which we refer to as “contrail outbreaks”. Gener-
ally CoCiP will cover the entire region in contrails, to
the point where individual contrails cannot be identi-
fied, while the detector will only identify the few most
optically thick contrails. Appendix A6 details how we
adapt these regions to behave more like the detector.

– Linearize. In this subroutine, we map the rasterized
opacities, which include per-pixel attribution metadata,
to linear contrail segments that can be used in a contrail-
to-flight attribution algorithm. This process is a close
analog to the processing that Ng et al. (2024) applied
to real satellite imagery and the resulting detector out-
puts, although with some additional bookkeeping. The
full process is described in Appendix A7.

The final dataset consists of a set of synthetic linear contrail
detections, each labeled with the flight that formed it, as well
as other potentially useful physical properties derived from
CoCiP. The full rasterized contrail mask is also available for
each satellite frame, although we only use the linearized out-
puts in this study.
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Figure 3. An Ash-color-scheme false-color GOES-16 ABI image taken at 12:40 UTC on 11 July 2019 over the southeastern United States,
showing the contrail mask produced by the Ng et al. (2024) detector (yellow) and the SynthOpenContrails mask (white). While the Syn-
thOpenContrails contrails generally appear in the same regions as the detected contrails, there is far from perfect alignment, but that is
unnecessary for the purposes of this dataset.

2.3 Tuning the synthetic dataset parameters

The pipeline that we have described for generating synthetic
contrails includes a number of parameters whose values need
to be determined. The intention here is to allow the same
fundamental approach to be used to produce synthetic con-
trails that emulate different detection algorithms or different
satellite imagers, just by setting different values for the pa-
rameters. As mentioned previously, for SynthOpenContrails,
we produce synthetic contrails using the actual flights and
weather model outputs corresponding to the capture times of
real GOES-16 ABI Full Disk images. This allows us to tune
towards matching the behavior of the Ng et al. (2024) detec-
tor on the real data.

Importantly, we divide the 84 time spans for which the
dataset is generated into train, validation, and test splits, with
28 time spans each, as specified in Appendix F. This allows
us to tune the dataset itself on one split, while using another
split to verify that we have not “overfit” to the scenes in the
split used for tuning. When the dataset is later used for tuning
and benchmarking attribution algorithms, the same splits will
again be useful to avoid overfitting.

We manually tune to quantitatively match the statistics
for number of contrail pixels and number of linear contrails
per frame. We can further qualitatively compare by overlay-
ing the real and synthetic contrail masks on sequences of
GOES-16 ABI imagery. We use the Ash color scheme, as
used previously in Kulik (2019), Meijer et al. (2022), and
Ng et al. (2024), to map infrared radiances to RGB imagery
that makes optically thin ice clouds, like contrails, appear
in dark blue. An example frame of this imagery with both

real and synthetic detections overlaid is shown in Fig. 3. For
tuning purposes, we compute the real and synthetic contrail
detections for the full validation set of time spans and ap-
ply our comparisons over those. We note that there are likely
multiple sets of parameters that match our real data equally
well, and the parameters used for SynthOpenContrails are
just a single instantiation of this. For example, there is likely
a set of parameters that allow contrails to be detectable at an
older age by increasing the width or age thresholds inside Fil-
terUndetectable and AdaptToDetector but that compensate
for the resulting increase in contrail density by having higher
thresholds for rasterized contrail opacity. Therefore, we cau-
tion against attempting to extract physical insights from Syn-
thOpenContrails, as it has been designed only for evaluating
contrail-to-flight attribution and is, in essence, a filtering of
CoCiP simulations. The tuned parameter values that we use
for generating SynthOpenContrails are in Table 1.

2.4 Properties of the SynthOpenContrails dataset

We show some top-level statistics comparing SynthOpen-
Contrails to real detections for the same space–time regions,
per dataset split in Table 2. We can also look at the per-frame
contrail pixel and linear contrail counts, which are shown for
the validation set in Fig. 4. The pixel counts in aggregate are
very similar: there are only a few time spans during which
SynthOpenContrails has meaningfully more contrail pixels
and one notable span during which the real detection masks
have many more pixels. On the whole, the peaks and val-
leys align very well. The linear contrail counts also match
the overall trends, but the total counts are somewhat farther
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Table 1. The parameter values used for generating SynthOpenContrails. Note that many of the parameters are introduced in Appendix A.

Parameter Description Value Units

CTflight Flight paths are resampled to this frequency before being input
to CoCiP

5 s

Tτ A threshold on CoCiP’s contrail optical depth used both for
determining early-stage contrail detectability and for
thresholding the final raster to produce a contrail mask

0.04 unitless

Trflw A minimum threshold on the CoCiP-predicted longwave
radiative forcing used to determine if a contrail segment will be
detectable

7 W m−2

TBmax The maximum width of a contrail that is likely to be linear
enough to be detectable

12 500 m

Cl/B A ratio of contrail-forming flight seconds to meters of contrail
width, used to specify how many neighboring waypoints need
to have formed a contrail for a contrail segment of a given
width to be detectable

0.01 s m−1

Cndil A factor by which the search window for neighboring
contrail-forming waypoints is dilated in order to tolerate small
gaps

1.43 unitless

Cdecay The rasterized optical depth is decayed linearly to zero
between TBmax−Cdecay and TBmax

5000 m

Tage The contrail age above which the rasterized optical depth is
decayed exponentially

1.5 h

Tpadmin The minimum contrail width for which a padding is applied to
the width before rasterization

500 m

Tpadmax The maximum contrail width for which a padding is applied to
the width before rasterization

2500 m

Cpad The amount by which the contrail width is padded before
rasterization when the width is between Tpadmin and Tpadmax

1000 m

Cσk The size of the kernel used for computing contrail pixel density
for outbreak handling

49 px

Cσγ Controls the rate of scaling applied in Eq. (A6) in Appendix A6 6 unitless

Cσβ Controls the domain of scaling applied in Eq. (A6) in
Appendix A6

−0.1 unitless

Table 2. Statistics of the SynthOpenContrails splits. Values for the corresponding detector outputs on real satellite imagery are in parentheses,
where applicable.

Train Validation Test

Satellite frames 4536 1512 1505
Contrail pixels 76 698 642 (74 948 579) 24 244 788 (24 225 800) 26 206 579 (23 868 781)
Linear contrails 1 041 126 (1 502 508) 326 048 (482 967) 489 770 (353 760)
Unique flights contributing to contrail 2 205 919 678 224 719 265
Pixels (per frame)
Unique flights contributing to linear 606 127 189 514 205 359
Contrails (per frame)
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Figure 4. Comparisons of contrail statistics between the outputs of the Ng et al. (2024) detector run on GOES-16 ABI imagery (in orange)
and SynthOpenContrails (in blue), shown for satellite frames in the validation split. Panel (a) presents the number of contrail pixels per
frame. Panel (b) shows the number of linear contrails per frame.

Figure 5. Histograms of linear contrail lengths in the validation
split. The orange distribution is from the Ng et al. (2024) detec-
tor run on GOES-16 ABI imagery, whereas the blue distribution is
from SynthOpenContrails.

apart. The vast majority of the discrepancy comes from a
single time span with a large outbreak, during which our
adjustments to reduce the number of synthetic contrails in
outbreaks seems to have overcompensated. We hope that fu-
ture work can find a better approach to handling these cases.
We can also compare the lengths of the linear contrails be-
tween real data and SynthOpenContrails, as shown in Fig. 5.
The distributions match quite well, but SynthOpenContrails
skews slightly shorter.

We also qualitatively evaluated the dataset with respect to
how well it matches the Ng et al. (2024) detector outputs for
the corresponding GOES-16 ABI scans, using visualizations
like Fig. 3. We compared the geographic distribution of con-
trails, temporal dynamics, and the appearance of individual
contrails in the mask. Of these characteristics, all appeared
qualitatively similar, in the authors’ opinion, with the ex-

ception of certain aspects of individual contrail appearance,
as expanded upon below. We observe that the SynthOpen-
Contrails contrail detections generally appear in the same
regions as the real detections, but there is far-from-perfect
alignment. While there are a few instances in which the Syn-
thOpenContrails mask actually exposes contrails visible in
the Ash-color-scheme imagery that the detector missed, the
vast majority of the time the real detector better reflects what
a skilled human would see in the satellite imagery. This is
consistent with previous work (Gierens et al., 2020; Agarwal
et al., 2022; Geraedts et al., 2024) which found that weather
model data have difficulty predicting contrail formation at
the per-flight level. The temporal dynamics from frame to
frame do appear qualitatively similar to those of real detec-
tions. We reiterate that, for the purposes of our contrail-to-
flight attribution system benchmark, it is not necessary that
SynthOpenContrails be correct with respect to which flights
actually formed contrails; it is only necessary that the dis-
tribution of properties of the synthetic data are similar to
the real data. The individual synthetic contrails look quali-
tatively fairly similar to their detector-produced counterparts
in overall form. The most noticeable difference is that the
synthetic contrails have a slightly higher rate of appearing
discontinuous. This likely arises from CoCiP evaluating each
waypoint pair independently, in contrast with the smoothing
tendencies of the detector. This could perhaps be rectified
by a slight blurring of the CoCiP outputs across neighboring
waypoints prior to rasterization. The fact that more discon-
tinuous contrails are present in SynthOpenContrails masks
does not affect CoAtSaC, as it only utilizes the linearizations
of the contrail mask, which are for the most part unaffected
by the discontinuities. Any attribution algorithm that directly
uses the pixels within the contrail mask, however, may be af-
fected, and this discrepancy should therefore be explored in
greater detail for such approaches.
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2.5 Benchmark metrics

Here, we define a set of metrics employed as the top-line
results when SynthOpenContrails is used to benchmark attri-
bution algorithm performance. The metrics are divided into
per-contrail metrics and per-flight metrics. Generally the per-
flight metrics will better assess the binary determination of
whether a flight formed a contrail, while the per-contrail met-
rics will be more suitable for accounting for the number of
contrails formed and how long they persisted.

Each metric is composed of cell values from Table 3. The
values in each per contrail cell, A, B, and C, are computed
by joining each linear contrail in the benchmark dataset with
any flight attributions that an algorithm made for that linear
contrail. Each linear contrail will have zero or more attribu-
tions associated with it. If there are zero attributions, C is
incremented. For each attribution, if the flight is the same
as the true flight that formed the linear contrail, A is incre-
mented. Otherwise B is incremented. The per-flight-cell val-
ues, D, E, and F, are similarly computed by grouping together
all linear contrails in the benchmark dataset by the flight that
formed them and similarly grouping all attributions by at-
tributed flight. Each flight will then have zero or more linear
contrails that it formed and zero or more linear contrails at-
tributed to it. If both are zero, we ignore this flight. If the
flight formed linear contrails and there are attributions to it,
we increment D. If it formed linear contrails but there were
no attributions, we increment F. If there were attributions but
it did not form any linear contrails, we increment E.

Once the table is populated, we compute the following
metrics. For each, we provide the formula and a prose def-
inition:

– Contrail precision, A/(A + B). The percentage of the at-
tribution algorithm’s attributions to linear contrails that
are correct (note that the algorithm can choose not to
attribute any flight to a linear contrail).

– Contrail recall, A/(A + C). The percentage of linear
contrails to which the algorithm has attributed the cor-
rect flight.

– Flight precision, D/(D + E). The percentage of flights
to which the attribution algorithm has attributed at least
one linear contrail that also formed at least one linear
contrail in SynthOpenContrails.

– Flight recall, D/(D + F). The percentage of flights that
formed at least one linear contrail in SynthOpenCon-
trails to which the attribution algorithm has attributed
at least one linear contrail (regardless of whether that
specific attribution is correct).

As (1) there is substantial variation in the properties of the
different time spans that might affect attribution performance
(see Fig. 4) and (2) we want to avoid the statistics being dom-
inated by the contrail- and flight-dense scenes, we do not rec-
ommend computing these metrics uniformly over all of the

flights and synthetic contrail detections in the dataset. For
the purposes of the benchmark, we compute a central esti-
mate and confidence intervals of the metric value using block
bootstrapping (Cameron et al., 2008). Specifically, in each of
1000 iterations, we sample, with replacement, 28 time spans
(i.e., the number of time spans in each dataset split) and com-
pute each metric from the union of those time spans. We can
then compute the mean, 5th percentile, and 95th percentile
from these 1000 measurements.

As the goal is to assess the performance of the attribution
algorithms in isolation, these metrics are all computed rela-
tive to the filtered and adapted view of CoCiP provided by
SynthOpenContrails, and they do not attempt to account for
performance relative to the raw CoCiP outputs. This affects
the case in which a given flight formed one or more contrails
according to CoCiP, but, due to the dataset’s post-processing
steps, SynthOpenContrails contains no detections of its con-
trails. If an attribution algorithm were to attribute a synthetic
detection to such a flight, it would hurt the per-flight preci-
sion and not increase its per-flight recall.

Critically, the flights used to generate SynthOpenContrails
are from the same database as those that will be used for the
attribution algorithm, but that database is known to be incom-
plete: at a minimum, military aircraft are unlikely to be fully
present, which Lee et al. (2021) estimate to be 5 % of air traf-
fic globally (although this may be higher over our region of
study). In order to ensure that the attribution algorithms can
handle contrails formed by flights that are missing from the
database, we conservatively exclude a fixed random sample
of 20 % of flights when tuning and benchmarking. The se-
lection of this value imposes an upper bound on the metrics,
which may not be realistic for an MRV system that is run by a
government with access to its own military aircraft locations.
Because of this, the metrics should not be interpreted directly
as the performance of an attribution algorithm in the real
world in an absolute sense. They should, however, provide
a relative measure of performance between different attribu-
tion algorithms. We ran a sensitivity analysis on the impact of
excluding different percentages of flights over the attribution
algorithm from Geraedts et al. (2024), as well as the CoAt-
SaC algorithm introduced in Sect. 3. This showed that the
recall metrics for both algorithms appear to improve linearly
with the fraction of flights available. For the Geraedts et al.
(2024) algorithm, the precision metrics were both unaffected
by the fraction of flights excluded, whereas for CoAtSaC, the
precision metrics improve linearly with the fraction of flights
available. While it may be tempting to use the metrics with
100 % of flights available as an absolute measure of perfor-
mance, this would only hold if the flights missing from the
database are a representative sample with respect to contrail
formation and attribution performance, which is unlikely to
be the case. Therefore, we do not provide the metric values
here.

In this study, we benchmark all attribution algorithms us-
ing the nominal ERA5 reanalysis weather data, and we rec-
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Table 3. A contingency table used for metric computation.

Flight x formed Flight x formed
linear contrail y any linear contrail

Yes No Yes No

Flight x attributed to Yes A B Flight x attributed to Yes D E

linear contrail y No C any linear contrail No F

ommend that future algorithms evaluating on this bench-
mark do the same. Using other weather data could result
in the improvements over the results presented in Sect. 4
being primarily due to the weather data, rather than the al-
gorithms themselves. As SynthOpenContrails is constructed
using data from a weather model, such improvements would
not necessarily even indicate the superiority of the weather
data when applied to attributing real contrail detections. It is,
therefore, also critical that a future attribution algorithm that
uses SynthOpenContrails for tuning or benchmarking does
not use the same weather data as were used to create the
dataset, as specified in Sect. 2.1, because that would provide
unrealistically low advection errors.

3 Contrail-to-flight attribution algorithm

In this section, we present a novel algorithm for attributing
contrails to the flights that created them and demonstrate how
it can be tuned and benchmarked using SynthOpenContrails.
We call this algorithm “CoAtSaC”, short for “Contrail Attri-
bution Sample Consensus”.

3.1 Data

The inputs to our attribution algorithm consist of linear con-
trail detections, flight trajectories, and weather data, and they
are the same as those used in Geraedts et al. (2024). The
spatial regions and time spans used are the same as those
for which we generated SynthOpenContrails, as specified in
Sect. 2.1.

3.1.1 Contrail detections

When running on real data, we obtain our contrail detections
by running the contrail detection algorithm used in Ng et al.
(2024) on infrared imagery from the GOES-16 ABI Full Disk
product (Goodman et al., 2020). We can alternatively con-
sume the synthetic contrails from SynthOpenContrails as a
drop-in replacement that has known ground-truth attribution.

3.1.2 Flight trajectories

We use the same database of flight trajectories pro-
vided by FlightAware (https://flightaware.com, last access:
17 July 2025) as was used for generating the synthetic

dataset. As we discussed in Sect. 2.5, this dataset is incom-
plete; therefore, we elide a random sample of the flight data
when tuning and benchmarking the dataset on synthetic con-
trails. We apply the same filtering and preprocessing of flight
data as in Geraedts et al. (2024), to filter out erroneous way-
points and those that could not have formed contrails and to
achieve a uniform frequency of waypoints across all flights.
For each time span of contrail detections, we load flight data
starting 2 h before the start of the span and ending at the end
of the span, in order to account for the aforementioned delay
between contrail formation and detection.

3.1.3 Weather data

The weather data that we use come from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). For
our attribution algorithm, we use the ARCO-ERA5 dataset
(Carver and Merose, 2023), which is derived from the ERA5
nominal reanalysis product (Hersbach et al., 2020). This
product comprises hourly data at a 0.25° resolution at 37
pressure levels.

3.2 Advection of flight tracks

For the purposes of our contrail attribution approach, we
need to answer the following question for each flight way-
point: “Where would we expect a hypothetical contrail
formed by the given flight waypoint to appear in a particular
satellite scan?”. To answer this, we simulate the advection of
each waypoint to each of the subsequent 11 GOES-16 ABI
Full Disk images (roughly 2 h at 10 min intervals; see Ap-
pendix C1 for the implications of only advecting for 2 h). We
again need to account for the GOES-16 ABI capture pattern
(see Appendix B2) and compute the expected “scan-time off-
set” for each waypoint (Meijer et al., 2024). The set of target
times for our advection is then the nominal scan times of the
11 scans, with the scan-time offset added. A small amount
of error is introduced by the fact that the scan-time offset is
not updated as the waypoint advects; if it advects across a
capture swath boundary, the scan-time offset would jump by
roughly 30 s. The advection itself is performed in exactly the
same way as in Geraedts et al. (2024), which we detail in
Appendix C2.

This approach to simulating flight advection is subject to a
number of sources of error, including (but not limited to) in-
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accuracies in the interpolated weather data, approximations
in sedimentation rate, and not accounting for all physical
processes that can affect the vertical location of the contrail
(e.g., radiative heating). We expect that these errors will com-
pound over time. As a result, our estimation of where a hypo-
thetical contrail would appear in a particular satellite image
will be increasingly wrong as the hypothetical contrail ages,
and the errors in successive satellite images will be highly
correlated.

Once all flights are advected, we will have advected flights
and detected contrails at each satellite frame starting 2 h be-
fore the start of a time span and ending 2 h after. This is to
ensure that the attribution algorithm can consider flights and
contrail detections that are near the beginning and end of the
time span in the context of their temporal dynamics.

3.3 Single-frame attribution algorithm from Geraedts
et al. (2024)

CoAtSaC is an extension of the single-frame attribution algo-
rithm from Geraedts et al. (2024). Here, we summarize just
the portions of the Geraedts et al. (2024) algorithm that are
critical for understanding CoAtSaC.

The algorithm defines a new 2D spatial coordinate system,
which is an orthographic projection centered on a linearized
detected contrail, with the v axis along the contrail and the w
axis orthogonal to it (we adopt the axis names from Geraedts
et al., 2024, but caution the reader not to confuse them with
the conventional usage of these variables as directional wind
speeds). Distances along each axis are specified in kilome-
ters. Parallax-corrected advected waypoints of a single flight
are projected onto this plane to coordinates (wi,vi). Way-
points are excluded if their vi values are outside the span of
the contrail, with a small additional tolerance. An example is
shown in Fig. 6b.

In this projection, the algorithm measures the advection
error that would be implied if this flight formed this contrail,
in terms of relative orientation and distance, which are com-
bined into the following coordinate transformation:

ŵi→ (wi +W)cos(θ)+ (vi +V )sin(θ)

v̂i→ (vi +V )cos(θ)− (wi +W)sin(θ). (1)

The parameters W and V are translation distances along the
respective axes and θ is a rotation angle. These parameters
are optimized by minimizing the objective function:

Sattr= Cfit
1
N

N∑
i=1

ŵ2
i︸ ︷︷ ︸

fit term

+Cshift(V
2
+W 2)+Cangle(1− cos(θ))︸ ︷︷ ︸

regularization terms

+ Cage︸︷︷︸
constant term

, (2)

which essentially tries to move the flight waypoints as close
as possible to the contrail (i.e., v axis), subject to regulariza-
tion terms. The coefficients Cfit, Cshift, Cangle, and Cage vary

with age to allow for a higher tolerance for advection error
for flights that have advected longer. The result of the opti-
mization in Eq. (2) is visualized in Fig. 6c, showing both the
transformed waypoints and the optimized parameter values.
The flight is deemed to have formed the associated contrail if
Sattr < 3 after the optimization. Section 2.2 of Geraedts et al.
(2024) includes some additional logic used to help resolve
cases in which multiple flights are attributed to the same con-
trail detection.

This approach has a few shortcomings that we aim to im-
prove upon. Firstly, an advected flight at a substantially dif-
ferent altitude than the contrail, subject to different wind
speeds, could happen to align perfectly in the 2D projection
in a single frame as one passes directly above the other at
the moment that the satellite captured it. This flight would be
erroneously attributed instead of the true flight, which likely
incurred some advection error along the way. Secondly, the
advection error for each flight segment is treated as inde-
pendent between satellite frames, when in reality it is highly
dependent. We aim to rectify these issues by leveraging the
expected behavior of the advection error for the same flight
segment as it advects over time.

3.4 CoAtSaC attribution algorithm

CoAtSaC improves upon the single-frame algorithm by con-
sidering the temporal evolution of the transformation param-
eters V , W and θ from Eq. (1), with a particular focus on
W . The algorithm is visualized in Fig. 7. The algorithm is
composed of two stages that run alternately. The first stage,
called “Fitting”, looks at all single-frame attributions to a
single group of consecutive flight waypoints and leverages
the expected temporal evolution of W in order to group to-
gether detections of the same physical contrail in different
frames. The second stage, called “Rejecting”, combines the
evidence from the first stage across multiple candidate flights
for each contrail detection and uses that to determine a sub-
set of the single-frame attributions which can be confidently
rejected. “Fitting” is then run again but without the potential
confounders that were eliminated in the second stage. The
stages can then continue to be run for more iterations, if de-
sired.

3.4.1 Case study

Before discussing the details of the algorithm, we first
present a case study to provide some intuition. We consider
the situation in Fig. 8a, which shows two contrails formed by
two different flights over a period of 70 min. In Fig. 8a, Flight
1 passes through the domain approximately 20 min before
Flight 2 and forms a contrail that is detected in seven con-
secutive GOES-16 ABI images (line segments A, B, C, D, F,
G, and K). The contrail formed by Flight 2 (line segments E,
H, I, and J) is first detected approximately 40 min after line
segment A is detected. The Flight 1 and Flight 2 flight tracks,
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Figure 6. A visualization of the single-frame matching process. This is the same scene as in Fig. 1 but focusing in on a single flight and a
single contrail detection, rendered in green over a false-color GOES-16 ABI image in panel (a). In panel (b), we show the same data on the
v–w plane, with the linear contrail defining the v axis and the flight waypoints projected accordingly to points (wi ,vi ). Panel (c) shows the
results of applying the transformation in Eq. (1) after optimizing the parameters W , V , and θ in Eq. (2), producing points (ŵi , v̂i ).

Figure 7. A flow diagram of the CoAtSaC algorithm.

advected to the time of each relevant GOES-16 ABI image,
are also shown in Fig. 8a as dashed and dotted lines, respec-
tively. Figure 8b and c show the values of the transformation
parameter W for each detected contrail for Flights 1 and 2,
respectively. For the single-frame attribution algorithm, an
ambiguous situation occurs 40 min after the first contrail de-
tection, when line segment E (which is the first detection
of the contrail formed by Flight 2) is close to the advected
flight tracks of both flights. In fact, Sattr for line segment E
is smaller for Flight 1 than for Flight 2 (which is the correct
flight). Thus, a single-frame attribution algorithm may erro-
neously match Flight 1 to line segment E. If, however, we
consider the temporal evolution of the value of W for both
flights, as shown in Fig. 8b and c, we see that, for both flights,
we can identify two sets of single-frame matches, each of
which can be connected by a line. For Flight 1, we can imag-
ine points A, B, C, D, F, G, and K forming such a line, while

points E, H, I, and J form another line. To understand why
this is the case, we note that, for a constant error in the wind
data used for advection, we would expect a displacement er-
ror between the advected flight track and detected contrail
that linearly increases with time, which roughly corresponds
to W increasing linearly with time. Importantly, for a flight
that formed a contrail, we expect the line connecting the de-
tections to intersect theW axis near zero, implying that if the
satellite could have observed this contrail forming, it would
be exactly at the location of the flight waypoints before any
advection. A contrail that is near an advected flight that did
not form it will usually have a nonzero intercept. Considering
Fig. 8b, this would lead us to attribute A, B, C, D, F, G, and
K to Flight 1 (but not E, H, I, and J). Looking at Fig. 8c in
isolation is somewhat more ambiguous, as E, H, I, and J, as
well as F, G, and K, form lines with relatively small W inter-
cepts for Flight 2. Only after we also see that Flight 1 forms
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Figure 8. Visualization of a contrail-to-flight attribution problem involving two flights that both formed a contrail. Panel (a) shows the
detected linear contrails for a 70 min period (covering eight GOES-16 ABI Full Disk scans), accompanied by the flight tracks advected to the
GOES-16 capture times. Each linear contrail and flight track is color-coded according to its corresponding satellite capture time. For Flight
1 and Flight 2, in panels (b) and (c), respectively, we show the value of the single-frame attribution parameter W , which approximately
measures the advection error perpendicular to the contrail, as a function of the time between the passage of the flight and the moment of
detection (i.e., the implied contrail age).

a line that includes F, G, and K, in addition to A, B, C, and
D – some of which formed before Flight 2 had even passed
through the region – can we confidently conclude that Flight
2 did not form F, G, and K, but it is the best candidate to have
formed E, H, I, and J.

3.4.2 Computing candidate single-frame attributions

The algorithm, based on this intuition, requires access to
all single-frame attributions for each flight and the ability
to analyze the temporal evolution of the W parameter (Ap-
pendix C3 discusses why we do not use V and θ also). For
the time dimension of this analysis, as shown in Fig. 8b and c,
we use the same “implied contrail age” as was used to set the
coefficient values in Eq. (2). Specifically, this is the mean of
the advection times of the included waypoints. This “implied
contrail age” can vary dramatically for the same contrail de-
tection when attributed to different flights, and the age is in
no way inferred from the satellite data directly.

In order to gain access to W values that have a meaning-
ful temporal evolution, we require slight modifications to the
single-frame algorithm described in Sect. 3.3. We make the
regularization coefficients Cfit, Cshift, and Cangle consistent
regardless of contrail age, specifically fixing them at the val-
ues they would take on for a flight that had advected for
30 min. We also need to avoid W arbitrarily changing sign
across satellite scans for the same flight and physical con-
trail. For the single-frame algorithm, the sign is unimportant,
as the values are always squared in Eq. (2), so making the
sign consistent has no negative effect on it. In order to im-

pose consistency, we require that the advected flight be rep-
resented with v values increasing with the timestamp of the
original waypoint and with positive w values being to the
right with respect to the advected flight heading. Specifically,
we start from the projected waypoints (wi,vi) described in
Sect. 3.3. If the v value for the earliest waypoint is greater
than for the latest waypoint, we multiply all of the wi and vi
values by −1. For an advected flight segment that is mono-
tonic in v as a function of time, this achieves the desired
invariant. Occasionally there are advected flights that loop
back on themselves, either due to unusual flight paths or
unusual wind patterns, and these can result in inconsistent
signs for the w values. We opt to tolerate failures in these
cases, as contrails produced by these flight segments are any-
way highly unlikely to be successfully attributed, or even
detected, by an algorithm based on linearized detected con-
trails.

We ignore the score thresholds used by Geraedts et al.
(2024) and, instead, keep all candidate single-frame attribu-
tions whose Sattr score is below a different, tunable threshold,
TS , making them available to the “Fitting” stage.

3.4.3 Fitting

The intra-flight “Fitting” stage aims to identify groups of
single-frame attributions of a given flight that are likely to be
the same physical contrail. The stage as a whole is adapted
from the Sequential Random Sample Consensus (RANSAC)
algorithm (Torr, 1998), which similarly aims to find multiple
linear structures among noisy data. An example of this stage
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Figure 9. Examples of single-frame attributions that share common waypoints of individual flights, plotted on the implied contrail age by
W axes. Each single-frame attribution is color-coded according to its single-frame score Sattr. Panel (a) shows two contrails for which the
detections at 60 min have a smallW value and low Sattr. The single-frame algorithm would incorrectly attribute these detections to this flight;
however, because of the large W intercept, we can be confident that they were formed by a different flight. Panel (b) shows three contrails,
only one of which was likely actually caused by this flight. Panel (c) presents a contrail with a shallow slope and near-zero W intercept that
is first detected long after this flight passed through. This was due to a later flight forming a contrail near the advection path of this flight, but
such cases can also be caused by occlusion or small wind shear causing the contrail to remain undetectable for longer. Panel (d) shows a case
in which the Sattr values move out of the match range for the single-frame algorithm as the contrail ages, leaving them available to incorrectly
match to other flights. Panel (e) presents one long-lived contrail that is likely caused by this flight, with a few other nearby contrails that
might make it tricky to fit lines correctly. Panel (f) shows a few short-lived contrails nearby that cause a danger of fitting spurious vertical
lines across contrails, unless there is a prior to prefer shallow slopes. Panels (g)–(j) present examples of a higher contrail detection density
that result in different degrees of difficulty in identifying the linear structures that track individual contrails.

is visualized in Fig. 10. The various subroutines of this stage
are given a italicized name, for ease of reference to the flow
diagram in Fig. 7, and are outlined in the following:

– Group by Common Flight Waypoints. Having computed
candidate single-frame attributions for all flights and all
detected contrails, we can now group together candidate
single-frame attributions that attribute detected contrails
to overlapping sets of waypoints belonging to the same
flight. No two resulting groups should contain attribu-
tions to the same flight waypoint. The remainder of the
fitting stage operates over each of these groups indepen-
dently.

Within these groups, we can then observe the temporal
evolution of W for the single-frame attributions. As we
saw in Fig. 8, there is a clear pattern where detections of
the same contrail in nearby frames result in a W value
that varies linearly in time, even when measured against
a flight that did not form the contrail. We show a number
of additional examples in Fig. 9, including some where
identifying the linear structures is more challenging due
to there being large numbers of nearby contrails.

– Enumerate Valid Attribution Pairs. We enumerate all
pairs from the set of attributions in a single group. From
each pair, we can then produce a candidate line. We fil-
ter out some of these pairs if they do not satisfy the cri-
teria of being temporally within Tt hours of each other,

have an absolute slope | dWdt |< TdW/dt , and have over-
lapping attributed waypoints. The slope term, in partic-
ular, is important for avoiding fitting lines that span mul-
tiple linear structures in the data. If the allowed slopes
were unbounded, an example like Fig. 9f could end up
with a near-vertical line that groups together what is
likely five or six different contrails. This term, in ef-
fect, encodes an expected upper bound on the rate of
W growth for a contrail. If no valid pairs are found, the
Fitting stage is terminated for this group.

– Make Fits. A pair that passes all of these conditions de-
fines a line, with slope dW

dt and W intercept Wt=0. The
other attributions in the group are labeled as inliers or
outliers to this line based on a residual threshold Tres.
Specifically, an attribution with implied age ti and W
valueWi is an inlier if ( dW

dt ti+Wt=0−Wi)
2 < Tres. This

threshold acts as a tolerance for measurement noise that
is relatively independent across satellite frames, such as
from contrail linearization and quantization of contrail
location due to satellite image resolution. Another fairly
common scenario that this helps with is if a contrail is
detected as a single linear contrail in one frame but is
split in two, lengthwise, in the subsequent frame. The
attributions to the two smaller contrails would end up
with slightly different implied ages than if they were
merged, but they likely have the same W value, so the
residual allowance enables them to still be inliers. This
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Figure 10. A visual depiction of the “Fitting” stage of CoAtSaC for a set of waypoints from a single flight. Panel (a) shows the results
of “Group by Common Flight Waypoints” and plots the resulting single-frame attributions in implied age by W space. In panel (b), we
“Enumerate Valid Attribution Pairs” and “Make Fits”. In this example, there are 18 single-frame attributions, producing 29 pairs that satisfy
the validity criteria. Each of them defines a line, which is plotted in an opaque distinct color, and a surrounding semitransparent region where
other attributions would be considered inliers to this fit. Panel (c) shows the “Select Best Fit” and “Remove Inlier Attributions” processes,
applied iteratively from top to bottom. In the top panel, we have all fits available, so we pick the best fit, shown in pink, with its slope above
it. In the second from the top, we show the first selected fit and its inliers in gray, depicting that we have removed the inliers. We then repeat
the process of generating fits from the remaining attributions and selecting the best one, shown in blue. One single-frame attribution would
have been an inlier to this fit, but it was claimed by the previous fit, so it is excluded here. The process is repeated until no more candidate
fits remain. In this example, four fits are produced. In panel (d), we show the four fits along with their Sfit values produced by “Score Fits”.
Note that the orange fit has the highest Sfit score and the shallowest slope, meaning that we are confident that it represents a single physical
contrail and also that it was not formed by this flight. Meanwhile, the pink fit has a large W intercept but a relatively low Sfit. The first round
of “Fitting” generally has more of these types of fits that will then get removed in the “Rejecting” phase and will not appear in the subsequent
rounds of “Fitting”.

process of computing fit lines and inliers is shown in
Fig. 10b. Hereafter, we refer to the fit line and its set of
inliers as a “fit”, and we note that a single-frame attri-
bution can be an inlier to more than one fit at this stage.

– Select Best Fit. The goal of this subroutine is to identify
the candidate fit that is most likely to represent a sin-
gle physical contrail, irrespective of whether the contrail
was formed by this flight. Multiple single-frame attri-
butions attributing a single physical contrail to a flight
that did not form it will still form a line, but the line
will generally have a nonzero intercept, Wt=0. We do
not prioritize finding fits with near-zero intercepts, as it
is often easy to spuriously fit a line that spans multiple
physical contrails and has a near-zero intercept. Given
the set of candidate fits, we select the best fit to be the
one with the most inliers. We break ties by selecting the
fit with the smallest absolute slope, as steep slopes are
more likely to join together different physical contrails,
particularly in scenes with many short-lived contrails,
like Fig. 9f. The best fit is then stored as an output of
the “Fitting” stage.

– Remove Inlier Attributions. We remove all of the best
fit’s inliers from the set of candidate attributions in the
group. We then return to “Enumerate Valid Attribution
Pairs” with the remaining candidate single-frame attri-
butions, repeating until a valid pair cannot be found.
This is shown in Fig. 10c.

– Score Fits. At the end of “Fitting”, we have some num-
ber of fits for each group of flight waypoints. Unlike in
“Select Best Fit”, where our goal was just to identify
fits that most likely represent a single physical contrail,
independent of whether it was formed by this flight, we
can now make an initial determination of whether the
contrail in each fit was likely to have been formed by
this flight. To this end, we compute a score as

Sfit = Cslope

∣∣∣∣ dWdt
∣∣∣∣+Cintercept |Wt=0| +Csinglemininliers(Sattr), (3)

where | dWdt | is the absolute value of the slope of the fit
line; |Wt=0| is the absolute value of the W intercept of
the fit line; and Cslope, Cintercept, and Csingle are tunable
coefficients. This encodes the assumption that a small
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W intercept, combined with a low minimum Sattr (which
primarily helps avoid substantial rotation error) are in-
dicators that the contrail tracked by this fit was formed
by this flight. The presence of the slope term is perhaps
surprising, as information about the slope was already
used in the “Make Fits” and “Select Best Fit” subrou-
tines. The black-box optimizer described in Sect. 3.5
could have setCslope to zero and did not, but we can only
speculate as to why. We hypothesize that it may be due
to “Select Best Fit” only considering slope in the con-
text of ties in the number of inliers. In a scene with many
short-lived contrails nearby (Fig. 9g, for example), this
could produce fits with moderately steep slopes that
cut across many physical contrails and, therefore, have
more inliers than the fits that only contain a single con-
trail. The slope term here then allows such fits to have
high Sfit values and to, thus, likely be handled by the
“Rejecting” phase. The results of the scoring process
can be seen in Fig. 10d.

The “Fitting” stage does not itself act on the Sfit score,
but a subsequent “Rejecting” stage will consume these
scores, and the final time “Fitting” is run, these scores
will determine the final attribution decisions.

3.4.4 Rejecting

Whereas the “Fitting” stage uses evidence from one flight at a
time to make assessments about which of its single-frame at-
tributions are correct, the inter-flight “Rejecting” stage com-
bines this evidence across flights to eliminate as many incor-
rect single-frame attributions as possible. Without this stage,
there is a strong possibility that the “Fitting” stage would pro-
duce fits for multiple flights containing the same contrail de-
tections, all with Sfit scores below the target threshold. This
is not inherently problematic, as there can be errors in the
contrail detection process that result in merging together dis-
tinct contrails. Even when that is not the case, we could ex-
press some of the uncertainty in the algorithm by dividing
the attribution between multiple candidate flights with differ-
ent confidences. However, there are cases in which looking
across the different flights that have fits containing the same
contrail can be used to refine our results.

The existence of the “Rejecting” stage also allows for
“Score Fits” to be somewhat more permissive in allowing
uncertain fits through to the next stage. For example, in
Fig. 10d, the pink fit has an Sfit score just below the thresh-
old that would result in a positive attribution decision, despite
having a relatively large W intercept. In most cases, a fit like
this is unlikely to result in a correct attribution. In cases of
substantial linearization error, however, such a fit can pro-
duce correct attributions. Without a “Rejecting” stage the op-
timal strategy would be to score such a fit above the threshold
and not attribute the correct cases. However, by considering
further evidence from other flights, the vast majority of the
incorrect cases can be ruled out and correct ones can be kept.

The subroutines of “Rejecting”, each given an italicized
name to correspond to Fig. 7, work as follows:

– Group By Common Linear Contrails. The mechanism
for combining information across flights is to group to-
gether fits produced by the “Fitting” stage that contain
attributions to the same detected linear contrail. As fits
contain attributions to multiple detected linear contrails,
the same fit can end up in multiple such groups.

– Reject Attributions to Later Flights. The first case of in-
terest is if any pair of fits share at least two contrail de-
tections and if one of them also includes contrail detec-
tions that predate the other flight waypoints. In this case,
we can assume that the later flight just flew very close
to the existing contrail, and we reject the single-frame
attributions between the common contrails and the later
flight. An example of this can be seen in Fig. 8, where a
fit to contrails F, G, and K for Flight 2 might have pro-
duced a low Sfit score. Only when we consider Flight 1’s
fit to A, B, C, D, F, G, and K do we notice that Flight 1’s
fit includes all of the contrail observations from Flight
2’s fit as well as four earlier ones, some of which were
observed before Flight 2 even passed through. With ac-
cess to that information, we can confidently say that
Flight 2 did not form this contrail.

– Reject Attributions from Worse Fit. The second case re-
lies on the quality of the fits produced in the “Fitting”
stage. As we saw in Fig. 10, some fits that it produces
have W intercepts far from zero, implying a low like-
lihood that the constituent single-frame attributions are
correct. This and other measures of fit quality factor into
the Sfit score. Therefore, we compare these values for
each of the fits, and if any is more than a threshold Tb
higher than the lowest value, we reject all of its single-
frame attributions as well. In Fig. 10d, the orange and
pink fits, as well as their constituent single-frame attri-
butions, which have W intercepts far from zero, should
be eliminated by this process, assuming that the algo-
rithm has access to the flights that did form those con-
trails.

– Remove Rejected Single Frame Attributions. The single-
frame attributions that were rejected as a result of the
two prior subroutines are then removed from the set
of candidate single-frame attributions made available
to the next iteration of “Fitting”. As more confidently
incorrect single-frame attributions get removed, fitting
lines to the messier cases – like Fig. 9g–j – becomes
easier.

3.4.5 Final attribution decisions

In principle, one could iterate between “Fitting” and “Reject-
ing” arbitrarily many times, until the algorithm converges.
Note that the “Fitting” stage should always be run last. In
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practice, with the tuned parameter values that we use, there
are very few remaining contrails attributed to multiple flights
after running just “Fitting–Rejecting–Fitting”. The resulting
fits define the final attribution decision for their constituent
detected contrails, which is determined by Sfit < 3, with the
value 3 being chosen for consistency with Geraedts et al.
(2024).

3.4.6 Scalability

A critical benefit of CoAtSaC is that it, like the Geraedts et al.
(2024) algorithm, is highly scalable. The “Fitting” stage can
be parallelized over flights, and the “Rejecting” stage can be
parallelized over contrail detections. This lends itself well to
being implemented in the Dataflow Model (Akidau et al.,
2015) using a framework like Apache Beam (Apache Soft-
ware Foundation, 2024). In principle, this enables the algo-
rithm to scale to all flights and all contrail detections glob-
ally, where the speed of the algorithm is proportional to the
number of compute nodes provided to it. This is in contrast
to approaches like Chevallier et al. (2023) that optimize over
a full graph of flights and contrail detections, which requires
holding the complete graph in the memory of a single com-
puter.

3.5 Tuning the attribution algorithm

Given a dataset of synthetic linear contrails labeled with the
flight that formed them, divided by time span into train, vali-
dation, and test splits, we can then apply it both to tuning and
to benchmarking an attribution algorithm. Specifically, we
simply run the attribution algorithm using SynthOpenCon-
trails’s linear contrails instead of detector-produced contrails
and then drop 20 % of flights (as discussed in Sect. 2.5) and
compare the resulting attributions to the ground-truth labels
that we have for each synthetic linear contrail. From that, we
can compute the metrics of interest, as defined in Sect. 2.5.

Using this setup, we apply Google Vizier (Golovin et al.,
2017) as a black-box optimization service to search through
the space of parameters of CoAtSaC, aiming to find the op-
timal set producing the highest values for the four metrics of
interest using the train split of SynthOpenContrails. We can
simultaneously monitor performance on the validation split
to ensure that the optimizer has not overfit. How one chooses
to prioritize each of the metrics relative to each other – an in-
crease in one often leads to a decrease in another – depends
largely on the intended use case for the attributions. If the
goal is an MRV system that aims to capture the largest possi-
ble fraction of contrail warming – while tolerating some in-
accuracies in the specifics – contrail recall might be the most
important metric. If one instead aims to generate training data
for a contrail forecast model, where noise in the labels could
impair the model, flight precision might be the better met-
ric. Using the attributions to evaluate a contrail avoidance
trial might require more of a balance between the metrics,

depending on the size of the trial. For the purposes of this
study, we slightly prioritized flight precision, while keeping
the other metrics above reasonable performance thresholds.
The parameters chosen by this tuning are given in Table 4.

4 Results

4.1 Benchmarking attribution algorithms on
SynthOpenContrails

We compare the performance of CoAtSaC with the single-
frame algorithm of Geraedts et al. (2024) and the tracking
algorithm of Chevallier et al. (2023) on the metrics speci-
fied in Sect. 2.5 over the SynthOpenContrails test split. Both
of the previously published algorithms were slightly modi-
fied, as detailed in Appendix D, in order to produce these
results, but they were not retuned. Importantly, the tracking
algorithm was adapted to operate on the linearized contrails,
rather than the contrail instance masks for which it was de-
signed, which may have negatively impacted its performance
metrics presented here. Due to time and computational con-
straints, the tracking algorithm was only evaluated on half of
the time spans in the test split, as detailed in Table F3 in Ap-
pendix F. This subset is hereafter referred to as the “tracking
subset”.

We compute each metric as specified in Sect. 2.5 over the
dataset in aggregate, as shown in Table 5, and we also com-
pute them independently per time span in Fig. 11 to give a
sense of the variance. We reiterate the caution that these num-
bers should be interpreted as relative performance metrics
amongst the different attribution algorithms: 20 % of flights
are artificially excluded in the evaluation, so the upper bound
on contrail recall is 80 %, and SynthOpenContrails design
choices for outbreak handling and detectable contrail lifetime
may influence the metrics.

The high-level takeaway is that CoAtSaC outperforms
both of the other algorithms with respect to contrail preci-
sion, contrail recall, and flight precision, while the single-
frame algorithm performs best with respect to flight recall.
The tracking algorithm performance appears slightly better
than the single-frame algorithm with respect to both preci-
sion metrics, but the confidence intervals overlap substan-
tially. Generally CoAtSaC’s recall gains are fairly minor,
while the precision gains are on the order of 20 % better
than the tracking algorithm and 25 % better than the single-
frame algorithm. The improvements being far higher in pre-
cision than recall is a consequence of the tuning strategy
that we used in Sect. 3.5, and we suspect that we could
have tuned to higher recall at the expense of precision. It
should be noted again here that the weather data selections
(see Appendix B1) lead to certain advection error character-
istics which (while we have validated them at a distributional
level in Appendix B1) could still feasibly (but not necessar-
ily) advantage one or another attribution algorithm on this

Atmos. Meas. Tech., 18, 3495–3532, 2025 https://doi.org/10.5194/amt-18-3495-2025



A. Sarna et al.: Benchmarking and improving algorithms 3513

Table 4. The parameter values used for CoAtSaC.

Parameter Description Value Units

Ts Maximum value of Eq. (2) considered in CoAtSaC 12 unitless

Tt Maximum allowed temporal gap between single-frame
attributions to be considered as a valid pair for the “Fitting”
stage

0.5 h

TdW/dt Maximum allowed slope between single-frame attributions to
be considered as a valid pair for the “Fitting” stage

13 km h−1

Tres The maximum squared residual allowed for a single-frame
attribution to be considered an inlier with respect to a fit line

3.5 km

Cslope Coefficient of the line absolute slope term in computing Eq. (3) 0.08 unitless

Cintercept The coefficient of the intercept term in Eq. (3) 0.2 unitless

Csingle The coefficient of the single-frame attribution score term in
Eq. (3)

0.3 unitless

Tb A threshold on the difference between Eq. (3) values for
different fits that include the same contrail detection, above
which the higher-scoring fit is rejected

0 unitless

Table 5. Performance of attribution algorithms on SynthOpenContrails (test split) using the metrics defined in Sect. 2.5. Metrics are computed
using 1000 iterations of block bootstrapping over the different time spans in the dataset. The metrics are presented as “mean [5th percentile,
95th percentile]“ over the bootstrap samples. Refer to Sect. 3.5 for an explanation of why these should be interpreted as relative performance
metrics and may not reflect expected performance in the real world. As Chevallier et al. (2023) could not be evaluated on the full dataset, we
report metrics for the other algorithms over the full dataset and then for all algorithms just on the subset of time spans for which Chevallier
et al. (2023) could be evaluated. Bold font indicates the best-performing algorithm in each column.

Algorithm Contrail precision Contrail recall Flight precision Flight recall

Full dataset

Single frame (Geraedts et al., 2024) 40.5 % [38.2, 43.0] 33.1 % [32.0, 34.2] 41.4 % [39.5, 43.6] 62.2 % [61.2, 63.2]
CoAtSaC (ours) 67.0 % [65.4, 69.0] 36.6 % [35.6, 37.8] 68.4 % [66.8, 70.2] 50.7 % [49.5, 51.9]

Tracking subset

Single frame (Geraedts et al., 2024) 48.7 % [45.1, 52.7] 34.1 % [31.7, 36.6] 45.7 % [41.3, 50.6] 61.8 % [60.0, 63.8]
Tracking (Chevallier et al., 2023) 50.4 % [46.6, 54.0] 28.6 % [26.4, 30.8] 50.5 % [46.4, 55.3] 46.8 % [44.4, 49.5]
CoAtSaC (ours) 72.6 % [69.8, 75.4] 39.1 % [37.0, 41.1] 71.4 % [67.6, 75.0] 52.4 % [50.1, 55.2]

benchmark in a way that is not representative of real-world
performance.

An investigation into the flight recall decrease between the
single-frame algorithm and CoAtSaC, seen in Table 5, shows
that the flights correctly attributed by the single-frame algo-
rithm but not by CoAtSaC are almost all cases in which a
contrail was only detected in a single-frame, which CoAt-
SaC inherently cannot attribute correctly. We investigated
various ways to add handling for single-frame contrails to
CoAtSaC, including simply using the single-frame attribu-
tions for any contrail detections not attributed by CoAtSaC,
but all attempts resulted in substantially lower precision. Of
note, SynthOpenContrails may artificially amplify the num-
ber of contrails that are detectable in only one frame. Specif-

ically, each time span within SynthOpenContrails defines a
4D box in space and time, and a contrail that advects into the
box towards the end of its “linearizable” lifetime or advects
out of the box early in its “linearizable” lifetime will only
have a single linear contrail in the dataset, despite the fact
that it would have been linearized in multiple frames if the
boundaries of the space–time box had been shifted. While it
is reasonable to assume that contrails that are truly only de-
tectable in one frame have a smaller warming impact than
those detected in multiple frames, future research is needed
to quantify this.

As the tracking algorithm could only be evaluated on a
subset of the dataset, Table 5 includes metrics for all algo-
rithms on just that subset. The fact that the metrics for CoAt-

https://doi.org/10.5194/amt-18-3495-2025 Atmos. Meas. Tech., 18, 3495–3532, 2025



3514 A. Sarna et al.: Benchmarking and improving algorithms

Figure 11. The values of each metric computed over each of the 28 individual time spans in the test split, demonstrating the variance in
metric values across different scenarios. Note that the tracking algorithm is only evaluated on a subset of time spans.

SaC and the single-frame algorithm are meaningfully differ-
ent than those computed over the full dataset is indicative of
the variance in performance across time spans. Figure 11 vi-
sualizes this variance by showing the metrics computed over
each individual time span. This demonstrates the diversity
of scenes present in SynthOpenContrails as well as the im-
portance of evaluating on the full dataset. The causes of this
variance are further explored in Sect. 4.2.

4.2 Performance as a function of contrail properties

Because the SynthOpenContrails contrails are rasterized di-
rectly from CoCiP’s outputs, we can propagate the properties
that CoCiP assigns to each contrail segment through to the fi-
nal linear contrail instances and then analyze how attribution
performance varies with each property. For these analyses,
we only look at contrail-detection-level metrics, as many of
the properties of interest cannot be meaningfully aggregated
to the flight level. We also measure the metrics uniformly
across all contrail detections in the dataset, rather than us-
ing block bootstrapping, as in the top-level results. Figure 12
shows some examples of performance when computed on
subsets of the dataset, when sliced according to various con-
trail properties. While the relative performance of the algo-
rithms remains quite constant across all of these subsets, the
performance for all algorithms falls off with increasing con-
trail density and age; improves with length; and has more
complex relationships with altitude, season, and time of day.

4.2.1 Contrail density

One of the most dominant effects, as seen in Fig. 12a, is
that precision and, to a lesser degree, recall decrease with
higher contrail density for all algorithms. This is likely also
responsible for the seasonal and diurnal effects in Fig. 12e
and f, as the higher contrail counts in these cases imply a
higher spatial density. It is notable that the special handling
for contrail outbreaks in SynthOpenContrails generation sub-
stantially influences the density upper bound; consequently,
it may have removed many contrails where the attribution al-
gorithms would have exhibited the lowest performance. Ap-

pendix E1 discusses how the density effect dominates geo-
graphic effects that would otherwise be interesting to study.

4.2.2 Contrail altitude

Contrail altitude also seems to have an impact on the per-
formance of all algorithms, as can be seen in Fig. 12b. As
mentioned in Sect. 2.1, the weather data input to CoCiP
were inadvertently missing pressure levels between 450 and
975 hPa, which likely caused a small secondary peak of con-
trails near 6 km altitude, due to the weather conditions for
contrail formation and persistence being interpolated down
to implausibly low altitudes. We excluded these approxi-
mately 1000 implausible contrail detections from this plot to
improve the visibility of the remaining data. Within the more
plausible altitude bins, there appears to be a trend toward
improved performance with increasing altitude up until ap-
proximately 11.5 km, after which it then decreases again. It is
possible that this is again a contrail density effect, but Meijer
et al. (2024) showed that contrail altitudes generally decrease
with increasing latitude within this region, and Fig. E1 in Ap-
pendix E1 shows that the regions of highest contrail density
are in the middle latitudes, so we would expect the opposite
effect. Appendix E2 investigates whether the ice crystal ra-
dius approximation described in Appendix C2 could be con-
tributing to this effect.

We further investigated the altitude aspects of the incorrect
attributions from each algorithm. We observe that very few
contrails in SynthOpenContrails are formed below 9.5 km.
While all three algorithms attribute a meaningful fraction
of contrails to flights cruising below this threshold, CoAt-
SaC and, to a lesser extent, the tracking algorithm show a
substantial reduction in these implausible attributions ver-
sus the single-frame algorithm. We see a similar effect when
comparing the altitudes of the incorrectly attributed advected
flight waypoints to the true altitudes of the synthetic con-
trails to which they were attributed. We conclude from this
that, while CoAtSaC provides a substantial decrease in at-
tributions with large altitude error, introducing an indepen-
dent altitude signal to the attribution process is nonetheless
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Figure 12. Performance metrics of each attribution algorithm shown as a function of various properties available to SynthOpenContrails. The
recall and precision used here are contrail-detection-level metrics computed uniformly over the dataset. The green bars show the number of
contrail detections in each bin for the full dataset, on which CoAtSaC and the single-frame algorithm were evaluated, while the purple bars
indicate the tracking subset. Panel (a) shows performance binned by contrail pixel density (defined as fraction of contrail pixels in the 49×49
pixel window surrounding the center of the contrail). Panel (b) shows performance binned by contrail barometric altitude. Panel (c) shows
performance binned by contrail length, as measured along the linearized contrail. Panel (d) shows performance binned by contrail age.
Panel (e) shows performance binned by season. Panel (f) shows performance binned by solar hour of the day at the contrail center.

a promising direction for future work. Further details of this
investigation can be found in Appendix E3.

4.2.3 Contrail age

Contrail age is the other axis that seems heavily nega-
tively correlated with attribution performance, as shown in
Fig. 12d. The single-frame algorithm has a simple explana-
tion for this, as the Cage term in its score function makes it
less likely to attribute a flight to a contrail with a greater im-
plied age. CoAtSaC’s behavior is less straightforward. We
speculate that it may be tied to contrails growing wider and
less linear with age; therefore, the linearization becomes less
consistent. For example, if the contrail starts to curve, ei-
ther the linearization will keep it as a single contrail and
join the endpoints, which would likely produce very differ-
entW values than when it was more linear, or it could split it
into multiple smaller line segments, where the implied ages
would vary slightly among the segments, moving them away
from the fit line that would join the contrail’s detections in its
younger, linear phase. This is perhaps an argument for mov-
ing towards a more expressive representation of contrail de-
tections, such as instance masks, as used in Chevallier et al.
(2023). For the single-frame and CoAtSaC algorithms, the
performance artificially goes to 0 at 2 h because flights are

only advected for that long; consequently, any detected con-
trail older than that can only be attributed to incorrect flights.
The tracking algorithm allows for longer advection, so it
has nonzero performance past 2 h, but both precision and re-
call decline rapidly with respect to these older contrails. Ap-
pendix E4 examines whether similar effects are seen when
looking at the total CoCiP-predicted lifetime of the contrail,
as opposed to just the age at time of detection. Another poten-
tially age-related effect, the angle between the flight heading
and the wind direction, is discussed in Appendix E5.

4.2.4 Contrail length

As shown in Fig. 12c, contrail length has a meaningful
correlation with performance, with performance improving
monotonically with increased length for all metrics except
for single-frame recall. The improved performance with in-
creased length makes sense in the multi-temporal contexts
of CoAtSaC and the tracking algorithm, as longer contrails
are more likely to persist in multiple satellite frames just
due to the time it takes to form them from end to end. As
they evolve, they are also likely to produce more stable lin-
earizations and W values over time, due to being better con-
strained by additional contrail mask pixels and flight way-
points, respectively. The decrease in single-frame recall for
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Figure 13. The impact on contrail-level precision and recall when
only considering attributions derived from observations of a con-
trail in at least a minimum number of frames. The single-frame al-
gorithm is not presented here, as it does not link attributions across
frames.

longer contrails may be tied to longer contrails generally be-
ing less linear, as the wind fields are not uniform over larger
spatial regions. Even with a perfectly linear flight path, ad-
vection over time can make the contrail nonlinear, but (up
to a point) the linearization process will still coerce it into a
single linear contrail. This will negatively impact the fit term
of Eq. (2), as the rigid transform cannot make a nonlinear
advected flight path become linear.

4.2.5 Attributed frames

Finally, we assess the impact of requiring that contrails be
attributed in at least a certain number of frames in order to
be considered a match. Both the CoAtSaC and tracking algo-
rithms have a notion of chaining together contrail detections
that they assert are observations of the same physical con-
trail across multiple frames. We hypothesize that those that
are attributed in more frames will be higher-confidence at-
tributions; therefore, dropping those attributions with fewer
frames would increase precision. As shown in Fig. 13, this
largely holds true. CoAtSaC shows a fairly linear increase in
precision as the threshold for the minimum number of frames
increases, approaching perfect precision at the upper end of
the range, but recall decreases quite rapidly. The tracking al-
gorithm shows more modest gains in precision and even re-
duces somewhat at the high end, but its recall does not de-
crease quite as rapidly as it does for CoAtSaC. It appears
that this could be a valuable lever for an attribution use case
that needs very high precision, at the expense of recall.

5 Conclusions

We have presented a novel, highly scalable contrail-to-
flight attribution algorithm for geostationary satellite im-
agery (CoAtSaC) and a large dataset of synthetic contrail
detections (SynthOpenContrails). The SynthOpenContrails
dataset allows us to determine that the new algorithm sub-
stantially improves upon the previous state of the art. It also
allows us to study the performance of each algorithm as a
function of contrail and scene properties.

The new attribution algorithm can potentially enable
larger-scale live flight contrail avoidance trials, as the meth-
ods used to determine contrail formation in previous trials
(Sausen et al., 2024; Sonabend et al., 2024) would have dif-
ficulty scaling to a larger number of flights. The resulting
dataset of flights and contrails could also be used to eval-
uate contrail forecast models and to train machine learning
contrail forecast models similar to Sonabend et al. (2024). In
fact, using CoAtSaC attributions in place of Geraedts et al.
(2024) attributions indeed improves the primary evaluation
metric for Sonabend et al. (2024)’s forecast from 85.5 %
to 91.7 %. It is also a necessary step for observational ap-
proaches to become a main component of a contrails MRV
system or a Scope 3 emissions accounting system.

SynthOpenContrails should be helpful in continuing to im-
prove the state of the art in contrail-to-flight attribution. In
particular, it has made clear that there is substantial room
for improvement in areas of high contrail density and that
entirely different approaches to attribution might be neces-
sary in those settings. It also seems clear that incorporating
independent contrail altitude signals in the attribution algo-
rithm has the potential for significant improvement, and fu-
ture work will be needed to determine how to model those
signals in a synthetic contrails context.

When generating synthetic data from CoCiP outputs, we
found poor agreement between the CoCiP outputs and our
detections. Differences on a per-contrail level are not surpris-
ing given uncertainties in weather data (Gierens et al., 2020;
Agarwal et al., 2022), but we also found broader qualitative
differences, in quantities such as overall contrail density. For
the purposes of this study, distributional alignment between
the statistics of the synthetic and real contrail detections was
sufficient to evaluate a flight attribution system, and we were
able to achieve this by introducing variations in detectability
as a function of contrail age and density. It would be valuable
to disentangle the sources of these qualitative differences,
whether they be errors in CoCiP’s modeling, errors in the
weather modeling, errors in our classification of the subset
of contrails that can theoretically be detected in geostation-
ary imagery, or the specific skill of an individual detection
model. The answers to these questions could help improve
all components of the system, including the detection mod-
els, CoCiP and similar physics-based models of contrail for-
mation and evolution, and the weather models themselves. It
can also inform which of these components can and should
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be used in either a predictive or retrospective context for con-
trail avoidance. One path towards disentangling these ques-
tions and validating some of the subjective decisions made in
generating the synthetic contrails dataset would be to build
a high-fidelity, large-scale dataset of real contrail detections
with known flight attribution.

When evaluating an automated contrail monitoring sys-
tem, one is concerned with the errors from both contrail at-
tribution, which is the subject of this work, and contrail de-
tection, which is not. The methods in this work can only be
used to compare different attribution algorithms that operate
on the same contrail detections. A useful direction for fu-
ture work would be a method of measuring the end-to-end
performance of the overall detection and attribution system.
Observation-based datasets that can track contrails from the
moment of formation until they can be detected in a geosta-
tionary image (e.g., using ground cameras) could allow this.
Because the ultimate goal is the reduction of contrail warm-
ing, the fraction of total contrail warming detected by a mon-
itoring system could also be a useful metric. SynthOpenCon-
trails could potentially provide a way to estimate this, as it
does simulate the warming of each contrail, and whether that
contrail is detectable or not. However, the decisions around
detectability in Sect. 2.2 were made with the goal of produc-
ing any dataset that qualitatively resembled available contrail
detections. We have not established whether the decisions
are a unique way of generating plausible detections or how
the fraction of warming captured is sensitive to these deci-
sions. We leave this for future work, noting that, for these
purposes, observations of contrail warming on a per-contrail
basis would be very useful, and radiative transfer modeling,
such as in Driver et al. (2025), could also allow for the quan-
tification of detectable warming.

Appendix A: Synthetic dataset generation

A1 RunCoCiP

Here, we specify the settings that we use for the pycon-
trails library’s (Shapiro et al., 2024) implementation of Co-
CiP (Schumann, 2012).

In addition to flight track information and weather data,
CoCiP requires aircraft performance data, specifically the
aircraft wing span, aircraft mass, true air speed, fuel con-
sumption per flight distance, soot number emission index,
and the overall propulsion efficiency, which we estimate us-
ing the Poll–Schumann model (Poll and Schumann, 2021).
The Poll–Schumann model is an open-source point-mass
aircraft performance model that estimates fuel flow and
other performance characteristics for turbofan-powered air-
craft across various flight regimes. It calculates flight perfor-
mance based on inputs such as the Mach number, aircraft
mass, ambient temperature, and aircraft-specific character-
istics. To generate the required emission data for the Co-

CiP model, it incorporates the Fuel Flow Method 2 (DuBois
and Paynter, 2006) and the Improved FOX (ImFOX) method
(Zhang et al., 2022), in addition to the ICAO Aircraft Engine
Emissions Databank.

In order to correct for known biases in ERA5 humidity at
cruising altitudes (Agarwal et al., 2022; Meijer, 2024), we
further configure pycontrails to use “histogram matching” to
scale the humidity values in the weather data to match quan-
tiles of in situ measurements from the In-service Aircraft for
a Global Observing System (IAGOS) (Petzold et al., 2015).

We rely on the default pycontrails setting for the maximum
contrail lifetime, which is 20 h, although the longest lifetime
that we see in our dataset is 13 h.

A2 ReprojectGeostationary

For each flight waypoint that forms a contrail at a given time
step, CoCiP models the contrail in a 3D space defined by x,
y, and z axes, whose origin is at the advected waypoint lo-
cation (units are meters). z is the vertical axis pointing from
the center of the Earth to the contrail; x points along the hor-
izontal plane orthogonal to z, along the contrail’s length; and
y is the normal to x in the horizontal plane, with the positive
direction to the right of the advected flight heading. Within
this space, the contrail cross-section for a given waypoint is
modeled as a 2D anisotropic Gaussian in the y–z plane with
covariance matrix

σ =

[
σyy σyz
σyz σzz

]
. (A1)

To obtain the cross-section parameters at locations between
two waypoints, the Gaussian’s parameters are interpolated
linearly. CoCiP defines the width (B) and depth (D) as

B = (8σyy)
1
2 and (A2)

D = (8σzz)
1
2 (A3)

(see Sect. 2.1 of Schumann, 2012, for more details), and it
uses that width to compute optical depth properties. In order
to render off-nadir contrails in the perspective of a geosta-
tionary satellite, we need to recompute these values using the
viewing ray of the instrument. Therefore, we compute a vec-
tor from each contrail waypoint to the satellite and project
it onto the y–z plane, calling it zsat. We then rotate σ such
that zsat is now the positive vertical axis and then recompute
width, depth, and contrail optical depth from the resulting
covariance matrix. This process is demonstrated in Fig. A1.

A3 FilterUndetectable

The FilterUndetectable subroutine of the synthetic data gen-
eration pipeline aims to compute a detectability mask that
filters CoCiP’s outputs to just what the Ng et al. (2024) de-
tector would detect. The criteria it uses are as follows:
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Figure A1. A simulated CoCiP plume ice particle concentration profile, placed at latitude 37° N and longitude 120° W, shown (a) in the
native CoCiP coordinate system and (b) recomputed from the GOES-16 perspective.

1. The maximum optical depth of the contrail cross-
section at the waypoint must be above a threshold Tτ .

2. As a proxy for other clouds limiting detectability, we re-
quire that the CoCiP-reported longwave radiative forc-
ing be above a threshold Trflw.

3. The contrail width must be below a threshold TBmax.
This is somewhat counterintuitive, as we generally think
of contrails being too narrow to be seen in geostationary
imagery. The contrails that are too narrow will be fil-
tered out naturally in the subsequent Rasterize subrou-
tine, so we do not address them here. Here, we are using
width as a proxy for linearity. The labelers who labeled
the detector training data were instructed to only la-
bel line-shaped contrails, because contrails that are past
their linear phase are generally challenging to distin-
guish from natural cirrus. Appendix B4 discusses why
it is reasonable to use width as a proxy for linearity for
the purposes of detectability.

4. The contrail length must be substantially larger than its
width. The labeler instructions in Ng et al. (2024) re-
quired that a contrail be 3 times as long as it is wide. To
simulate this, we say that a given contrail waypoint will
only be detectable if it has a certain number of neighbor-
ing waypoints n= b ·Cl/B/CTflight that are also visible
according to the previous criteria, where b is the aver-
age width of the contrail detection in question, Cl/B is
a ratio of flight seconds per meter of width, and CTflight
is the number of seconds between flight waypoints after
the initial resampling described in Sect. 2.1.1. In order
to tolerate small gaps in visibility, we search for the n
visible neighbors in a window of n ·Cndil waypoints in
either direction, where Cndil ≥ 1 defines the amount by
which we dilate the search window.

As a minor optimization, we qualitatively determined that
we most closely match human detectability if we slightly

loosen these criteria. Specifically, if a contrail in the given
time step has any waypoints that pass all four criteria, we
keep all of its waypoints in the contrail that pass criteria 2
and 3. This helps avoid unnatural single-waypoint contrails
and hard boundaries that are not due to occlusion.

A4 AdaptToDetector

Here, we detail the adaptations made directly to the CoCiP
outputs to better reflect the behaviors of the Ng et al. (2024)
detector.

The first is related to condition 3 of the detectability crite-
ria in the FilterUndetectable subroutine (see Appendix A3).
We found that using a fixed-width upper bound results in
contrails that suddenly disappear in unrealistic ways. In prac-
tice there is a decay in the odds of detection as a contrail
ages, becoming more dispersed and less linear. As the value
that will eventually be rasterized in the Rasterize subroutine
is directly derived from optical depth, we simulate this affect
by decaying CoCiP’s optical depth τ based on both the width
and age of the contrail. Specifically we apply the following:

τ ′ = τ ·

(
1−max

(
0,B −

TBmax−Cdecay

Cdecay

))
·min

(
1,eTage−a

)
, (A4)

where B is the contrail width in meters and a is the contrail
age in hours. This decays τ linearly to zero as the contrail
width grows from TBmax−Cdecay to TBmax, and it addition-
ally applies a multiplicative exponential decay based on the
contrail age, once it becomes older than Tage hours. See Ap-
pendix B4 for further discussion.

The second adaptation is a reflection of how the training
data for the detector were labeled. Specifically, the tool that
labelers used to draw polygons around contrails did not al-
low for the polygon to be less than two pixels wide. Conse-
quently, the contrail masks in the OpenContrails dataset (Ng
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et al., 2024) are never less than two pixels wide, and the de-
tector model learned this behavior, even for contrails that are
far narrower than what one would expect for a two-pixel-
wide contrail seen in the GOES-16 ABI. To instill this be-
havior in SynthOpenContrails, we artificially pad the widths
(only after all of the aforementioned width-based filtering
and adaptation) of contrails whose CoCiP-predicted widths
are between Tpadmin and Tpadmax by Cpad.

A5 Rasterize

Here, we detail the process of rasterizing CoCiP outputs in
the perspective of a geostationary satellite. This is an adapta-
tion of Appendix A12 in Schumann (2012).

At this stage, we still operate on just a single flight and a
single time step. We first parallax-correct each CoCiP way-
point location to the surface latitude and longitude where
the satellite would see it. Due to an error, we used the al-
titude output from pycontrails, which uses an International
Standard Atmosphere (ISA) approximation to convert pres-
sure to geometric altitude, for this process, although it would
have been more correct to use geopotential to compute it.
In Appendix B6, we show that this error is negligible for
our purposes. We then map the surface latitudes and longi-
tudes onto the satellite pixel grid but supersampled (Akenine-
Moller et al., 2019) to 8 times the true resolution in order to
minimize aliasing in the final raster. For each pair (i,j ) of
adjacent waypoints, with optical depths (τ ′i , τ

′

j ) and widths
(Bi , Bj ), we take a square kernel of pixels that includes both
waypoints and all pixels that are within max(Bi,Bj ) from the
segment joining the waypoints. Within this kernel, we look
up the latitude and longitude of the centers of each pixel, not-
ing that the grid will be somewhat irregular due to the curva-
ture of the Earth. We then compute (1) the distance s (in me-
ters) from the center of each pixel to the closest point on the
segment and (2) the fraction α (this is called w in Schumann
(2012), but we want to avoid confusion with other variables
of that name here) of the distance along the segment from i

to j of this closest point. Following Appendix A12 of Schu-
mann (2012), we can then compute the optical depth of the
contrail in this pixel as follows:

τras =
(
ατ ′i + (1−α)τ

′

j

)
·

(
4
π

)1/2

· exp
(
−

4s2

(αBi + (1−α)Bj )2

)
. (A5)

Having populated the kernels for each pair of waypoints,
we can then combine them back to the supersampled pixel
grid, taking a maximum over different waypoint pairs that
contribute to the same pixel. We can then downsample to
the native satellite resolution and convert to opacity: κras =

1− e−τras .

A6 HandleOutbreaks

In principle, the CombineRasters subroutine should produce
a final contrail mask, except that this results in certain large
areas that are almost entirely marked as contrails; thus, the
individual contrails cannot be identified. These are usually
in areas where the satellite imagery does exhibit very high
contrail density, which we hereafter refer to as “contrail out-
breaks”. In the satellite imagery, contrail outbreaks often ap-
pear as large areas with amorphous cirrus cloud cover no
longer identifiable as individual contrails, other than certain
areas of greater optical depth that are still linear. Generally
speaking, the Ng et al. (2024) detector will only identify
these greater optical depth contrails in outbreak scenarios. It
is also likely that the true contrail density is somewhat lower
than what CoCiP predicts, as CoCiP does not model the
inter-flight effects, where the formation of the first contrail
slightly dehydrates the atmosphere, making the next contrail
less likely to form (Schumann et al., 2015). As the objective
is to simulate the detector’s behavior, whether or not CoCiP
is overpredicting, we need to modify the outputs in these out-
break areas.

To accomplish this, for each contrail pixel in our mask,
we compute a local “contrail density” ρ as the fraction of
contrail pixels in the Cσk×Cσk pixel neighborhood that sur-
rounds it. We apply a logistic function

σ(ρ)= 1−
1

1+ exp(−Cσγ (ρ+Cσβ))
, (A6)

where Cσγ and Cσβ are parameters controlling the rate and
domain of scaling applied. We then scale the opacity for
that pixel as κ ′ras =

σ(ρ)
σ (0) κras. This process is demonstrated in

Fig. A2.

A7 Linearize

Here, we detail the Linearize subroutine of the synthetic con-
trail generation process, which takes a single frame of raster-
ized synthetic contrail opacities and maps them to individual
line segments, each representing a single contrail.

First, we reproject our rasterized contrail opacities into
overlapping square 256× 256 pixel tiles in the Universal
Transverse Mercator (UTM) projection, with the UTM zone
selected per tile, with a resolution of approximately 500 km
of surface distance along each side of the tile. The Ng et al.
(2024) detector itself consumes tiles of satellite radiances
with exactly the same reprojections applied, in order to avoid
many of the distortion issues in the native projection caused
by being farther from the satellite nadir. We then threshold
the reprojected opacities using 1−e−Tτ , as before. We found
that using OpenCV’s LineSegmentDetector, as described in
Ng et al. (2024), sometimes poorly linearizes wider contrails
(both synthetic and real), producing two line segments at ei-
ther edge of the contrail mask, rather than the desired single
line segment in the middle. Therefore, we use the line-kernel
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Figure A2. A demonstration of the effect of the HandleOutbreaks subroutine. In panel (a), we show an Ash-color-scheme false-color GOES-
16 ABI image taken at 22:00 UTC on 11 February 2020, centered just off the coast of Delaware. Many contrails are visible in dark blue,
along with some thinner cirrus clouds that may also have originated as contrails. There are also mixed-phase clouds shown in brown that
make some contrails difficult to discern. In panel (b), we overlay the detections from Ng et al. (2024) in yellow. In panel (c), we overlay (in
white) the results of our synthetic contrails generation before Eq. (A6) is applied. The density of contrail pixels is substantially higher than
in panel (b). In panel (d), we show the results of applying Eq. (A6). The density of contrail pixels is much more similar to panel (b).

convolution-based algorithm described in McCloskey et al.
(2021), which is based on Mannstein et al. (1999), for lin-
earizing both the real detector outputs and our synthetic con-
trail mask tiles. An additional benefit that this approach pro-
vides is that this linearization algorithm declares which mask
pixels in the tile correspond to each linear contrail that it pro-
duces, which allows us to maintain a mapping of the CoCiP
output properties contributing to each pixel corresponding
to each linear contrail. We then invert the UTM reprojec-
tion for these tile pixels to resolve which flights produced
the pixels that comprised each linear contrail. In some cases,
more than one flight is deemed to have contributed to a single
linear contrail, either due to actual contrail overlap or, erro-
neously, the linearization algorithm. In these cases, we use
a winner-takes-all approach and assign the linear contrail to
the flight that is responsible for the most pixels. The final step
is to deduplicate linear contrails from overlapping regions of
neighboring tiles; for this, we exactly follow the process de-
scribed in Ng et al. (2024).

Appendix B: Synthetic dataset design decisions

B1 Use of the ERA5 EDA control run for synthetic
dataset generation

In Sect. 2.1.2, we select the ERA5 EDA control run as the
weather data to use for generating SynthOpenContrails. We
note that the control run is not simply a lower resolution of
the nominal product, as the full EDA spread is used to set
bias terms of the data assimilation process in computing the
ERA5 nominal data (Hersbach et al., 2020). The important
characteristic of the weather used for the dataset is that the
differences, or error, between it and the weather used for ad-
vecting flights for the attribution algorithm (the ERA5 nomi-
nal product is used for all algorithms evaluated in this study)
be comparable to the error between the weather used for at-
tribution and reality. For our use case, we are primarily con-
cerned with the subset of weather error characteristics that

contribute to advection error, which is substantially narrower
than the full set of possible weather data errors.

One way to measure this error is to look at the distribu-
tion of W values from the single-frame attribution optimiza-
tion outputs (regardless of final attribution determination) be-
tween flights advected with the ERA5 nominal product and
real detected contrails and to compare it to the distribution
of W values for the same advected flights computed against
synthetic contrails generated (as described in Sect. 2) with
particular weather data. If the distributions match, the error
characteristics are likely close enough for our purposes. We
applied this test, using ERA5 nominal data to advect flights
and the ERA5 EDA control run for generating synthetic con-
trails. The distribution of W values for the real contrails has
a standard deviation of 15.0 km, while this value is 15.2 km
for the synthetic contrails. The distributions are plotted in
Fig. B1. We acknowledge that matching the W distribution
does not capture all components of advection error – in par-
ticular, the spatiotemporal error covariances may still differ
– and the fact that the EDA control run shares an under-
lying model with the ERA5 nominal product increases the
likelihood that this is the case. Further research is required
to determine (and maybe generate) a source of weather data
that exactly matches every relevant characteristic of this er-
ror: perturbing only the wind field may result in physically
implausible or inconsistent atmospheres and could be coun-
terproductive to the goal of generating well-matched error
characteristics. It is possible that recent advances in machine-
learned generative diffusion models being applied to ensem-
ble weather generation (Price et al., 2025) could generate
well-matched error characteristics. We expect that this will
become more necessary as attribution algorithms start to ap-
proach perfect accuracy.

B2 GOES-16 ABI scan-time offsets

Figure B2 shows the time interval between the nominal scan
start time for the GOES-16 ABI and when each pixel is actu-
ally captured. The disk is divided into 22 west-to-east swaths,
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Figure B1. The distribution of W values for all flight and contrail
pairs in the validation time spans that produce an Sattr value of less
than 12. The real contrail detection distribution is shown in orange,
whereas the SynthOpenContrails distribution is shown in blue. The
distributions are nearly identical.

which are captured from north to south over the course of
10 min. This needs to be taken into account when advect-
ing flights for the purposes of contrail-to-flight attribution, as
advecting to the nominal scan start time can introduce sub-
stantial error relative to when a detected contrail was actu-
ally captured. It similarly needs to be accounted for in syn-
thetic contrail detection generation in order to determine the
contrail location and properties at the correct times when the
satellite would have captured it.

B3 Advection time error in synthetic dataset
generation

In the RunCoCiP subroutine in Sect. 2.2, we configure CoCiP
to provide outputs on 30 s intervals and map the true satellite
capture time to the nearest CoCiP output time, which is a
maximum of 15 s away. At 75 m s−1 wind speeds this would
incur 1125 m of advection error, which is only slightly more
than half of the GOES-16 ABI nadir resolution. We measured
the distribution of ERA5 EDA control run wind speeds expe-
rienced by all flights in the dataset and found that 75 m s−1

is more than 3 standard deviations (SDs) above the mean
(mean = 25.3 m s−1, SD = 15.7 m s−1). Even the maximum
wind speed in the dataset (103 m s−1) results in subpixel er-
ror. Therefore, we consider this error to be negligible for the
purposes of our analysis.

B4 Width and age decay of synthetic detectability

In both the FilterUndetectable and AdaptToDetector sub-
routines of the synthetic dataset generation described in
Sect. 2.2, CoCiP’s predicted contrails growing very wide
is interpreted as a proxy for the contrails becoming unde-
tectable. Additionally, in Eq. (A4) in Appendix A4, contrail
age being over a threshold is multiplicatively applied as a

Figure B2. Scan-time offsets (the number of seconds after the nom-
inal scan start time) for locations on the GOES-16 disk, when using
the Scan Mode 6A (the current default scan pattern).

further decay of detectability. The justification for this lies in
how CoCiP makes some simplifying assumptions that cer-
tain physical processes can be partially or totally ignored
because they apply only at smaller spatial scales than the
contrail plume, whose cross-section CoCiP requires to be
Gaussian. One of these processes is sub-grid-scale (SGS) tur-
bulence. CoCiP takes SGS turbulence into account only as
a factor that slightly increases the rate of ice particle loss,
which is then applied uniformly across the contrail cross-
section, leading to a decrease in optical depth and total con-
trail lifetime (Sect. 2.12 of Schumann, 2012). While this as-
sumption of applying the effects of SGS uniformly across the
contrail may be fine for CoCiP’s own purposes, it creates a
challenge for the purposes of detectability, particularly when
the contrail is wide enough to span multiple satellite pix-
els: nonuniformity in rates of ice particle extinction across
the contrail would result in local variation in optical depth.
This could manifest as irregular widths, gaps, and deviation
of the width-wise center of the contrail away from the ad-
vected waypoint location, all of which would contribute to
becoming undetectable, and none of which are modeled by
CoCiP. The width-based decay is introduced here as a sim-
plified model of detectability loss due to these processes.

There are other approximations that CoCiP makes that
likely also affect detectability. Because, by definition, SGS
turbulence cannot be directly read from the weather model,
its magnitude is inferred to grow quadratically with wind
shear (Eq. A20 of Schumann, 2012), as derived from the
Richardson number. CoCiP does not directly compute wind
shear from the weather model data either; instead, it applies
an enhancement factor (Eq. 39 of Schumann, 2012), which
is a function only of contrail depth, to what would be com-
puted directly from the weather data. This enhancement is
inspired by Houchi et al. (2010), and it notably results in
matching radiosonde shear measurements at a distribution
level but not in the specifics. In CoCiP, a contrail’s width
increases with age as a function of primarily both wind shear
and vertical diffusivity (Eq. 29 of Schumann, 2012). Vertical
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diffusivity is also a function of turbulence, but CoCiP uses a
fixed value for turbulence in this case (Eq. 35 of Schumann,
2012). Taken together, all of these simplifying assumptions,
coupled with the relatively low spatiotemporal resolution of
the weather data, result in the CoCiP contrails growing wider
at a relatively uniform rate along the length of the contrail,
when in fact there should often be more variation. This effect
compounds with contrail age and is not strictly dependent on
contrail width; therefore, the age-based decay aims to capture
this effect.

B5 Beer–Lambert law applicability

In the Rasterize subroutine of Sect. 2.2, we apply the Beer–
Lambert law (Beer, 1852) to map CoCiP’s optical depth to
opacity, κ , which is then directly rasterized and thresholded
to determine a final synthetic contrail mask. CoCiP’s opti-
cal depth is computed at a 550 nm wavelength, whereas the
bands that the detector uses are in the thermal infrared range
(8.5–12 µm). Per Schumann et al. (2012), the absorption op-
tical depth in the thermal infrared range is approximately half
of the 550 nm optical depth. Because the final mask will be
determined by thresholding κ , this mismatch will simply re-
sult in a different threshold value being used. We find it rea-
sonable to apply the Beer–Lambert law here, despite con-
trails not being a purely absorbing-medium, as the contribu-
tion of scattering to the optical depth of high ice clouds is
negligible in the thermal infrared bands when compared to
that of absorption (Jin et al., 2019). This would not hold if
shortwave bands were used for detection.

B6 Barometric altitude conversion

We analyzed the impact of applying parallax correction of
advected flight waypoint locations relying on International
Standard Atmosphere (ISA) approximations for converting
pressures to geometric altitudes rather than using geopoten-
tial heights to be more precise. We took the pycontrails out-
puts for each waypoint at each time step where it contributed
to the final contrail masks in the SynthOpenContrails valida-
tion set. We measured the Euclidean distance in the GOES-
16 ABI’s native resolution for infrared bands between the
subpixel location that the waypoint would project to using
the ISA altitude and the geopotential height. We found the
mean distance to be 0.200 pixels and the standard deviation
to be 0.066 pixels. This suggests that the error it contributes
is likely negligible for the purposes of SynthOpenContrails
(and likely also more generally for the class of contrail-
to-flight attribution in geostationary satellite imagery algo-
rithms considered in this study).

Appendix C: Attribution algorithm design decisions

C1 The 2 h advection

The decision to advect flights for only 2 h could limit the
performance of the attribution algorithm. Many contrails do
persist and remain detectable in the GOES-16 ABI for longer
than 2 h (Vázquez-Navarro et al., 2015, showed this for the
Meteosat Second Generation satellite’s SEVIRI instrument,
which has a lower spatial resolution than the GOES-16 ABI
has), and this decision makes it impossible to attribute these
older observations properly, as the correct flight will not be
available to the attribution algorithm. Driver et al. (2025)
found that virtually all GOES-16 ABI detectable clear-sky
contrails will become so within the first 2 h of their lifetime.
This implies that, if the goal of attribution is to determine
whether a contrail formation forecast, like what was used in
Sonabend et al. (2024), was correct for a given flight seg-
ment, 2 h advection is usually sufficient. While CoAtSaC
is benchmarked at 2 h advection, it is technically duration-
agnostic. Beyond 2 h, however, we see a slight decrease in
attribution performance, likely due to increasing the number
of candidate flights involved in the attribution decision for
each observed contrail.

C2 Advection algorithm

We simulate the advection of flights in 3D using the third-
order Runge–Kutta method (Bogacki and Shampine, 1989)
with winds linearly interpolated from the weather data. Sim-
ilar to Geraedts et al. (2024), we assume an initial wake vor-
tex downwash of 50 m and additional altitude loss due to sed-
imentation of the contrail’s ice particles over time. In order
to correctly compute sedimentation rates, we would need to
know the relative humidity along the advection path, but the
ERA5 relative humidity values at flight cruising altitudes are
known to be unreliable (Agarwal et al., 2022; Meijer, 2024).
As one of our goals with contrail attribution is to evaluate
contrail forecast models, most of which require relative hu-
midity as an input, we want to avoid the attributions that
we produce having correlated errors with the forecasts, so
we do not use relative humidity for computing sedimenta-
tion rates. Instead, we follow Geraedts et al. (2024) and sedi-
ment the contrail at a rate that is purely a function of contrail
age based on a statistical fit to model data from Schumann
(2012), which we would expect to be approximately correct
on average but not necessarily in the specifics.

C3 Rationale for not using transformation parameters
V and θ

The CoAtSaC algorithm presented in Sect. 3.4 focuses
specifically on the W parameter of Eqs. (1) and (2), but
it only indirectly consumes the V and θ values by way of
thresholding the single-frame Sattr values and incorporating
Sattr into Eq. (3). Here, we discuss why the advection errors
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implied by V and θ carry less signal than that of W for the
purposes of providing a signature useful for contrail-to-flight
attribution.

The problem with V is that, if there is substantial error in
the v direction (parallel to the contrail), it manifests as chang-
ing the set of advected flight waypoints that are determined
to be overlapping the contrail and are then input to Eq. (2).
This is tricky to resolve, as the contrail detections available at
this stage are linear by construction, and most advected flight
paths are also quite linear, so there are very few features to as-
sist with proper alignment. A tracking-based approach, sim-
ilar to Chevallier et al. (2023), that directly consumes a con-
trail pixel mask or even raw radiances could potentially align
features of the detected contrails across frames, potentially
also better aligning with any nonlinearities in the advected
flight path, to help minimize this drift in waypoint overlap.

The parameter θ also appears not to have much signal. We
speculate that this is due to θ being a second-order effect, as
it measures the change in advection error in the w dimension
over the length of the contrail. This measurement is made
noisy by the varying lengths of contrails and the fact that
they are often short relative to the spatial resolution of the
weather data. Specifically, as can be seen in Fig. 5, 21 % of
detected contrails have lengths shorter than the 31 km aver-
age grid size of the ERA5 weather data, and 59 % are shorter
than 62 km. This implies that variation in advection errors
across a flight segment matching to shorter contrails will be
dominated by the effects of the interpolation scheme in the
weather data, whereas more of the variance will be due to
inherent errors in the weather data for longer contrails.

Appendix D: Modifications to previously published
attribution algorithms

D1 Changes to the single-frame algorithm

For the single-frame algorithm, we evaluate the original pa-
rameter values specified in Geraedts et al. (2024) and do not
retune using SynthOpenContrails. One notable difference in
our implementation of the single-frame algorithm, both in
how it is used on its own and how it contributes to CoAt-
SaC, is that Geraedts et al. (2024) split flights up into 10 min
segments and computed attributions independently per seg-
ment, whereas we chose to apply the algorithm over full
flights. This avoids edge effects on segment boundaries, and
we find that it improves the results of the single-frame algo-
rithm slightly.

D2 Changes to the tracking algorithm

For the tracking algorithm in Chevallier et al. (2023), we
made the following changes for compatibility with the Syn-
thOpenContrails. The advection method used was a reimple-
mentation of that used in Geraedts et al. (2024), using ERA5
nominal data on pressure levels. The tracking algorithm was

designed to operate on contrail instance masks, which is not
an explicit output of SynthOpenContrails. It does implicitly
provide something similar, as the Linearize subroutine al-
ready calculates a set of mask pixels that it believes corre-
spond to each linearized contrail, but these were still qualita-
tively quite different from the instance masks used in Cheval-
lier et al. (2023). Therefore, we slightly adapted the track-
ing algorithm to operate directly on the linearized contrails
provided. This makes it more comparable with the other al-
gorithms used here but limits its performance somewhat. A
future goal is to adapt SynthOpenContrails to emulate an in-
stance segmentation model, as opposed to the global segmen-
tation model emulated in the current approach. The parame-
ters of the algorithm were otherwise kept exactly the same
as in the original paper, although they were originally tuned
for the GOES-16 ABI’s Scan Mode 3, which provided an im-
age every 15 min, and SynthOpenContrails uses the current
Scan Mode 6a, with data every 10 min. Future work should
use the training and validation splits of SynthOpenContrails
to further tune the parameters of the tracking algorithm. In
Chevallier et al. (2023), the results are presented by applying
a threshold on the minimum lifetime of the detected contrail,
with the expectation that this improves precision. Here, we
present all results without that filter. The impact of that deci-
sion is discussed in Sect. 4.2.5 and Fig. 13.

Appendix E: Performance as a function of contrail
properties

E1 Geographic slicing

Figure E1 shows the performance of each benchmark met-
ric binned by geographic region, along with the number of
synthetic contrails in each bin. The effect of contrail density
is so dominant here that it makes it very difficult to answer
some other questions using these data. For example, does
the performance degrade with decreasing spatial resolution
as you approach the edge of the disk that the satellite cap-
tures, perhaps due to increased error in the position of the
detected contrails? In the region of interest for this study,
with the GOES-16 ABI, this would be seen in the northwest-
ern United States and Canada, in the upper-left corners of
Fig. E1. However, what we see is that this region also has an
above-average contrail density. Consequently, further inves-
tigation is required to disentangle these effects. There may,
nevertheless, be other geographic performance biases that
can be explored with these data.

E2 Ice crystal radius error slicing

It stands to reason that the performance varying with alti-
tude, as discussed in Sect. 4.2.2, may be due to the ice crys-
tal radius approximation error (see Appendix C2), which we
see (in Fig. E2c) has a strong correlation with benchmark
performance for CoAtSaC and the single-frame algorithm.
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Figure E1. Contrail-detection-level performance metrics of each attribution algorithm binned geographically by Level 7 S2 Geometry
(Google, 2024) cell within the analysis region, rendered from the GOES-16 ABI perspective. Note that the bin sizes are the same for
the CoAtSaC and single-frame algorithms, as shown in the “contrail count” plot, but the “tracking” algorithm is only evaluated on a subset
of the data, so its bin sizes are shown separately, using a different scale.

Figure E2. Plots in the same style as Fig. 12 but binning by some additional properties. Panel (a) shows performance binned by total lifetime
of the contrail that was detected, as predicted by CoCiP, which is not the same as its detectable lifetime. Panel (b) shows performance binned
by the cosine of the wind direction relative to the flight heading for the true flight that formed the contrail. Panel (c) shows the performance
binned by the difference in contrail ice crystal radius between what CoCiP predicts and the prediction from the statistical function of age
mentioned in Appendix C2. The “tracking” algorithm is not plotted here, as we do not have access to its approximation.

Specifically, if the ice crystal radius approximation error cor-
relates with altitude, this would lead to sedimentation rate
errors and, thus, advection errors, which also correlate with
altitude. We in fact see this correlation in Fig. E3, where the
mean error decreases with increasing altitude. However, we
do not see the crystal radius error going back up at the higher
altitudes, so it does not explain the attribution performance
decrease there. The tracking algorithm uses a similar – but
not identical – method for approximating ice crystal radius
to the other two algorithms but, nonetheless, shows the same
general altitude effect.

It may be tempting to conclude that Fig. E2c and Fig. E3
taken together indicate that the approximation of ice crys-
tal radius used in the both the single-frame and CoAtSaC
algorithm is detrimental. It is important to point out, how-
ever, that this is a comparison to the “ground truth” that is
generated from reanalysis data, and the entire purpose of the
age-based approximation is that these data are known to have
inaccuracies, so matching the “ground truth” exactly would
not necessarily translate to better performance on real data,
but it would trivially improve performance on SynthOpen-
Contrails. Further study is needed to characterize this com-
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Figure E3. A violin plot showing the distribution of ice crystal ra-
dius error between what CoCiP predicts and the predictions from
the statistical function of age mentioned in Appendix C2, binned
by contrail altitude. The horizontal lines indicate the mean of the
distribution.

ponent of the error and whether something is needed beyond
just using different ERA5 EDA members in order to make
a synthetic dataset better able to model true sedimentation
rates.

E3 Altitude error

Figure E4 provides further visibility into how altitude fac-
tors into each algorithm’s results. Figure E4a shows the
ground-truth distribution of contrail formation altitudes in
SynthOpenContrails, binned by flight levels, defined as a
barometric altitude measured in hecto-feet (1 hecto-foot cor-
responds to 30.48 m). Note that flights in North America gen-
erally cruise at intervals of 10 flight levels. The top panel
shows the overall distribution and the lower panel shows the
tracking subset. Each bin is overlaid with the fraction of con-
trails in the bin that each algorithm attributes correctly. There
is no substantial difference in performance between flight
levels for any algorithm, and the differences between algo-
rithms reflect the dataset-wide contrail recall differences. We
observe that essentially all of the contrails are formed above
flight-level 300, and those few that are not are likely due to
the aforementioned weather interpolation error. There is also
an alternating effect in bin size between “even” (multiples of
20 flight levels) and “odd” flight levels, where the even flight-
level bins are generally substantially smaller than their neigh-
boring odd-flight-level bins. Within North America, the even
flight levels are assigned to flights heading south or west,
while the odd flight levels are assigned to flights heading
north or east. This may indicate different rates of producing
detectable contrails based on the degree to which the flight
heading is aligned with the prevailing winds, although we
note that this effect is not seen in Fig. E2b in Appendix E5.
Further study is needed to explain this phenomenon and to

understand if it is also present in real data or is an artifact of
CoCiP.

Figure E4b shows the distribution of flight levels for the
segments of each flight that are incorrectly attributed to con-
trails. These again look fairly similar across algorithms. We
note, however, that all three have nontrivial numbers of at-
tributions to flights below flight-level 300. The single-frame
algorithm has the highest rate (at 10.5 %), followed by the
tracking algorithm (with 7.8 %) and CoAtSaC (with 7.1 %).
This demonstrates that incorporating the temporal dynamics
into the attribution can reduce these seemingly implausible
attributions.

Figure E4c looks at the altitudes at the time of contrail ob-
servation, rather than formation. Specifically, it again looks
only at the attributions to incorrect flights, and it subtracts the
ground-truth altitude of the center of the contrail at the time
of observation from the altitude of the incorrectly attributed
flight segment after simulating its advection. All of the al-
gorithms show a fairly widespread, indicating that adding
an external signal for observed contrail altitude could help
substantially, even without perfect accuracy. The secondary
peaks, especially visible in the single-frame distribution, are
likely tied to the flight-level quantization of the original flight
tracks. In the single-frame results, we can identify the peaks
corresponding to three flight levels in each direction, whereas
the other two algorithms only clearly show one in each direc-
tion. This is, again, likely a result of incorporating temporal
dynamics, as the likelihood of having the same wind speed
at different flight levels may decrease with increasing dis-
tance between the flight levels. We further observe that the
distributions are asymmetrical. In 9.2 % of the single-frame
algorithm’s incorrect attributions, the true contrail altitude is
more than 2 km above the advected flight, although this value
is only 3.8 % in the reverse direction. The tracking algorithm
is 6.7 % versus 2.1 %, whereas CoAtSaC is 4.5 % versus
2.2 %. Generally, this shows that slightly fewer of CoAtSaC’s
errors are at substantially incorrect altitudes, which is again
attributable to wind speeds being more correlated at nearby
altitudes. The asymmetry is likely a result of contrails form-
ing near the upper range of commercial flight cruising alti-
tudes, which provides a relatively small upper bound on how
far above a contrail an incorrectly attributed advected flight
can be, but there is a much wider range of altitudes available
for incorrect attributions lower than the contrail.

E4 Contrail lifetime slicing

Figure E2a slices performance based on the total CoCiP-
reported lifetime of the detected contrail. The units here
are still contrail detections, so detections of the same con-
trail will appear in the corresponding histogram bin multiple
times, and the longer-lived contrails presumably appear more
times. However, this is artificially flattened out by the age-
based decay of optical depth in Eq. (A4). If we ignore the
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first bin, which is nearly empty, Fig. E2a is just a stretched
out version of the contrail age slicing in Fig. 12d.

E5 Relative wind angle slicing

We investigated the hypothesis that the relative angle be-
tween the flight heading and the wind direction impacts at-
tribution performance. This was motivated by the fact that
contrails that are advecting directly along the original flight
path are difficult for humans to attribute in most existing vi-
sualization methods. Furthermore, given that the advection is
almost entirely in the v direction (as in the v–w plane, not the
conventional u–v wind direction vectors), this could hurt an
algorithm dependent on wind error only in the w direction.
As we show in Fig. E2b, none of the algorithms seem to suf-
fer in this scenario. Performance on some metrics is actually
slightly higher when the flight is flying directly into or along
with the wind, as opposed to perpendicular to it. Perhaps the
more interesting property to study would be the direction of
wind shear relative to the flight heading, as it would directly
impact the rate of contrail width increase; however, unfortu-
nately, pycontrails does not currently provide that informa-
tion.
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Figure E4. Altitude-related distributions of the attributions from all three algorithms. In panel (a), the top subpanel shows the distribution
of flight levels at which the SynthOpenContrails contrails were formed (in green), weighted by the number of frames that each contrail is
detected in. The orange and blue bars show the fraction of contrail detections from each bin that are correctly attributed by the CoAtSaC and
single-frame algorithms, respectively. The lower subpanel shows the flight-level distribution of the subset that the tracking algorithm was
evaluated on (in purple) and the fraction of each bin that the tracking algorithm attributed correctly (in pink). Panel (b) shows the distribution
of flight levels of the flight segments incorrectly attributed to a contrail detection by each algorithm. Panel (c) looks at the time of contrail
observation, rather than formation, and shows the distribution of altitude error, as measured by the difference between the altitude of the
incorrectly attributed advected flight and the altitude of the contrail, from each algorithm.

Appendix F: Time spans and dataset splits

We document here the time spans used for all aspects of
this work. All dates and times are coordinated universal time
(UTC). The time spans are divided into train, validation, and
test splits, presented in Tables F1, F2, and F3, respectively.
For each span here, there are a number of derived time spans
applied for different purposes. These are documented in Ta-
ble F4.
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Table F1. Time spans in the train set.

Start time (UTC) End time (UTC)

2019-04-18 08:00 2019-04-19 06:00
2019-04-29 20:00 2019-04-30 18:00
2019-05-09 02:00 2019-05-10 00:00
2019-05-13 20:00 2019-05-14 18:00
2019-05-25 08:00 2019-05-26 06:00
2019-06-08 08:00 2019-06-09 06:00
2019-06-29 02:00 2019-06-30 00:00
2019-07-07 02:00 2019-07-08 00:00
2019-07-21 14:00 2019-07-22 12:00
2019-07-27 14:00 2019-07-28 12:00
2019-08-05 14:00 2019-08-06 12:00
2019-08-19 02:00 2019-08-20 00:00
2019-09-14 08:00 2019-09-15 06:00
2019-09-25 02:00 2019-09-26 00:00
2019-10-07 02:00 2019-10-08 00:00
2019-10-16 14:00 2019-10-17 12:00
2019-11-01 20:00 2019-11-02 18:00
2019-11-15 14:00 2019-11-16 12:00
2019-11-24 02:00 2019-11-25 00:00
2019-12-06 14:00 2019-12-07 12:00
2019-12-14 14:00 2019-12-15 12:00
2019-12-22 20:00 2019-12-23 18:00
2020-01-16 14:00 2020-01-17 12:00
2020-01-23 14:00 2020-01-24 12:00
2020-02-07 08:00 2020-02-08 06:00
2020-02-19 14:00 2020-02-20 12:00
2020-03-08 14:00 2020-03-09 12:00
2020-03-25 02:00 2020-03-26 00:00

Table F2. Time spans in the validation set.

Start time (UTC) End time (UTC)

2019-04-21 02:00 2019-04-21 06:00
2019-04-26 08:00 2019-04-26 12:00
2019-05-06 14:00 2019-05-06 18:00
2019-05-18 02:00 2019-05-18 06:00
2019-05-31 20:00 2019-06-01 00:00
2019-06-14 20:00 2019-06-15 00:00
2019-06-22 14:00 2019-06-22 18:00
2019-07-11 08:00 2019-07-11 12:00
2019-07-15 14:00 2019-07-15 18:00
2019-07-31 02:00 2019-07-31 06:00
2019-08-11 20:00 2019-08-12 00:00
2019-08-28 08:00 2019-08-28 12:00
2019-09-17 14:00 2019-09-17 18:00
2019-09-29 20:00 2019-09-30 00:00
2019-10-05 08:00 2019-10-05 12:00
2019-10-22 02:00 2019-10-22 06:00
2019-11-05 14:00 2019-11-05 18:00
2019-11-21 08:00 2019-11-21 12:00
2019-11-28 20:00 2019-11-29 00:00
2019-12-10 08:00 2019-12-10 12:00
2019-12-28 02:00 2019-12-28 06:00
2020-01-04 08:00 2020-01-04 12:00
2020-01-13 20:00 2020-01-14 00:00
2020-01-27 02:00 2020-01-27 06:00
2020-02-11 20:00 2020-02-12 00:00
2020-02-24 08:00 2020-02-24 12:00
2020-03-12 20:00 2020-03-13 00:00
2020-03-29 14:00 2020-03-29 18:00

Atmos. Meas. Tech., 18, 3495–3532, 2025 https://doi.org/10.5194/amt-18-3495-2025



A. Sarna et al.: Benchmarking and improving algorithms 3529

Table F3. Time spans in the test set. All time spans were used in the evaluation of the single-frame and CoAtSaC algorithms. Only the time
spans indicated in the third column were used in the evaluation of the tracking algorithm of Chevallier et al. (2023).

Start time (UTC) End time (UTC) Included in tracking algorithm evaluation

2019-04-15 02:00 2019-04-15 06:00 No
2019-04-22 14:00 2019-04-22 18:00 No
2019-05-03 20:00 2019-05-04 00:00 No
2019-05-10 14:00 2019-05-10 18:00 No
2019-05-22 08:00 2019-05-22 12:00 Yes
2019-06-05 14:00 2019-06-05 18:00 No
2019-06-27 08:00 2019-06-27 12:00 Yes
2019-07-02 14:00 2019-07-02 18:00 No
2019-07-19 20:00 2019-07-20 00:00 Yes
2019-07-24 08:00 2019-07-24 12:00 Yes
2019-08-03 02:00 2019-08-03 06:00 No
2019-08-16 20:00 2019-08-17 00:00 Yes
2019-09-11 08:00 2019-09-11 12:00 No
2019-09-20 08:00 2019-09-20 12:00 Yes
2019-10-02 14:00 2019-10-02 18:00 Yes
2019-10-10 02:00 2019-10-10 06:00 Yes
2019-10-27 20:00 2019-10-28 00:00 Yes
2019-11-11 02:00 2019-11-11 06:00 No
2019-11-18 20:00 2019-11-19 00:00 Yes
2019-12-02 02:00 2019-12-02 06:00 Yes
2019-12-17 20:00 2019-12-18 00:00 No
2019-12-19 08:00 2019-12-19 12:00 No
2020-01-10 14:00 2020-01-10 18:00 No
2020-01-20 08:00 2020-01-20 12:00 Yes
2020-02-03 02:00 2020-02-03 06:00 No
2020-02-16 02:00 2020-02-16 06:00 No
2020-03-03 14:00 2020-03-03 18:00 Yes
2020-03-19 08:00 2020-03-19 12:00 Yes

Table F4. Derived time spans from those specified in Tables F1,
F2, and F3 for different applications. The start and end times of each
span in the other tables are referenced here as t1 and t2, respectively.

Application Start time End time

Attribution statistics t1 t2
Attribution flight loading t1− 2 h t2
Attribution contrail detection loading t1− 2 h t2+ 2 h
Synthetic flight loading t1− 6 h t2+ 3 h
Synthetic rasterization t1− 2 h t2+ 3 h
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