Atmos. Meas. Tech., 18, 3533-3546, 2025
https://doi.org/10.5194/amt-18-3533-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Atmospheric
Measurement
Techniques

Propagating information content: an example with advection

David D. Turner!, Maria P. Cadeddu?, Julia M. Simonson'>**, and Timothy J. Wagner>

INOAA/Global Systems Laboratory, Boulder, CO, USA
2Argonne National Laboratory, Argonne, IL, USA

3’Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, CO, USA

4Developmental Testbed Center, Boulder, CO, USA

3Space Science and Engineering Center, University of Wisconsin — Madison, Madison, WI, USA

Correspondence: David D. Turner (dave.turner@noaa.gov)

Received: 23 December 2024 — Discussion started: 22 January 2025
Revised: 12 May 2025 — Accepted: 12 May 2025 — Published: 29 July 2025

Abstract. The mathematical algorithm to derive geophysi-
cal information from remote sensing observations is called
a retrieval. The mathematics of many retrieval problems are
ill-posed, and thus a priori information is used to help con-
strain the derived geophysical variable to realistic values.
One quantity of interest, therefore, is the information content
of the observation. Perfect information content in the obser-
vation would be achieved if the retrieval were able to capture
any perturbation in the desired geophysical variable with the
proper magnitude.

Many new data products can be derived by combining geo-
physical variables retrieved from multiple different remote
sensors. This paper explores, for the first time, how to de-
rive the information content of these derived products. The
approach uses traditional error propagation techniques to de-
rive the uncertainty of the derived field twice, both when the
observations are used in the retrieval and also when only the
a priori information from each remote sensor is propagated.
These two uncertainties are then used to provide an estimate
of the information content of the derived geophysical vari-
able.

This study demonstrates how to propagate the uncertain-
ties from six different instruments to provide the information
content for water vapor and temperature advection. A multi-
month analysis demonstrates that, in a mean sense, the infor-
mation content for temperature advection is nearly unity for
all heights below 700 m while, the information content for
water vapor advection is somewhat more variable but still
larger than 0.6 in the convective boundary layer.

1 Introduction

Observations are absolutely essential for science and under-
standing nature. They can serve both as the source of ideas
(e.g., “This is an interesting observation; I wonder what it
means?”’) and means to evaluate hypotheses (e.g., “My model
suggests this is true; can I make an observation that confirms
that the model is correct?””). In both of these cases, it is crit-
ical to understand the uncertainty in the observation in order
to correctly interpret the result.

Observations used in the natural sciences take advantage
of many different physical principles. Some of these instru-
ments are considered “in situ”; in other words, the instrument
makes its measurement of the desired geophysical variable at
the point of interest. Other instruments are remote sensors,
where the instrument is placed some distance from the loca-
tion of interest. Remote sensors come in two general types:
(a) active remote sensors, wherein the instrument transmits
some signal such as electromagnetic energy or sound towards
the measurement volume and analyzes the portion of the en-
ergy that is scattered from the volume towards the detec-
tor, and (b) passive remote sensors, which observe scattered
or emitted signals (typically electromagnetic radiation) from
the measurement volume.

Seldom do we measure the actual geophysical variable that
we desire; instead, virtually all instruments measure a sig-
nal that provides information that is related by some phys-
ical process to the variable we desire (Maahn et al., 2020).
For example, a simple mercury-based thermometer provides
a measure of temperature as the depth of the mercury in a va-
cated tube is directly proportional to the temperature due to
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the thermal expansion of the mercury in the reservoir; char-
acterizing the measurement uncertainty for instruments like
this is reasonably straightforward.

Deriving geophysical variables from the observations
made by remote sensors is more challenging. Generally, we
have a physically based “forward model” (denoted as F') that
relates the geophysical variable we want to observe with our
actual measurement; thus, the retrieval problem is essentially
deriving the inverse F' to map from the observation to our de-
sired geophysical variables. However, deriving the geophys-
ical variables of interest from observations made by passive
remote sensors is often a mathematically ill-posed problem;
i.e., there are often many possible values for the geophysi-
cal variables that would map through F to our observation,
especially given that there is always uncertainty in the ob-
servation. Thus, we use additional a priori information (i.e.,
information collected before the observation is made) to con-
strain the retrieval. This is not a new endeavor: scientists have
been retrieving information from passive remote sensors for
many decades (e.g., Smith et al., 1970), with the mathemat-
ical development of these “inverse methods” preceding it
(e.g., Twomey, 1966). A good high-level overview of differ-
ent retrieval methods is given by Maahn et al. (2020), but a
large number of detailed texts exist that explore the retrieval,
or inverse theory (e.g., Tarantola, 2005; Rodgers, 2000).

The challenge with retrievals from passive remote sensors
is understanding not only the uncertainty in the retrieval, but
also the information content that is offered by the observa-
tion itself given that there is also some contribution from the
a priori constraint. Westwater and Strand (1968) provide a
concise definition for information content vis & vis retrievals:
“The information content... is defined as a reduction in the
uncertainty in the (retrieval) after the (observations) are in-
troduced.” The information content of a remote sensing mea-
surement is not a new concept, but is an important one as it
allows the user of the retrieval to understand how many in-
dependent pieces of information are in the observation itself
and how that information is distributed among the geophysi-
cal variables that are retrieved.

Often, geophysical variables retrieved from remote sen-
sors are used to derive estimates of other geophysical vari-
ables. An example of this is deriving convective available
potential energy (CAPE) from a ground-based passive re-
mote sensor from which thermodynamic profiles are re-
trieved. Blumberg et al. (2017) demonstrated how to use
Monte Carlo sampling of the posterior covariance matrix of
the retrieved profile to estimate a large number of profiles
that would technically satisfy the radiance observation, com-
puted CAPE from each profile, and then estimated the uncer-
tainty in CAPE by looking at the distribution of the CAPE
values provided by the Monte Carlo sampling. Monte Carlo
sampling is a computational approach to estimate uncertain-
ties, but a more traditional error propagation approach could
have also been adopted (e.g., the “error analysis” chapter in
Bevington and Robinson, 2003).
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However, there are times when geophysical variables are
derived using multiple remote sensors, each with their own
uncertainties and information contents. In this paper, we ex-
plore the idea of propagating uncertainties and information
content from multiple instruments through the derivation
equation to provide the uncertainties and information con-
tent of the derived quantity. To our knowledge, this is the first
time this has been demonstrated for information content.

We chose the recent work by Wagner et al. (2022) that
derives the profiles of horizontal water vapor and tempera-
ture advection using a network of ground-based instruments
to illustrate this approach. This paper will first explain our
method to propagate the information content, perform a de-
tailed examination of a single case, and then provide a more
statistical description of the information content in the de-
rived advection products.

2 Observations used to compute advection

Horizontal advection occurs when there is a spatial gradient
in a scalar variable over and upwind of desired region, which
is then advected over the region. Wagner et al. (2022) used
the network of profiling ground-based remote sensors at the
Department of Energy’s Atmospheric Radiation Measure-
ment (ARM; Turner and Ellingson, 2016) Southern Great
Plains (SGP; Sisterson et al., 2016) site in north-central
Oklahoma. At each of the network sites, there are two in-
struments: the Atmospheric Emitted Radiance Interferome-
ter (AERI; Knuteson et al., 2004) and a Doppler wind lidar
(DL; Pearson et al., 2009). The AERI is a passive infrared
spectrometer, and thus the “TROPoe” algorithm is used to re-
trieve thermodynamic profiles above the instrument (Turner
and Lohnert, 2014; Turner and Blumberg, 2019). The DL is
an active remote sensor that measures radial velocities along
the direction of the outgoing laser beam, and by scanning
the lidar in a velocity—azimuth display (VAD; Browning and
Wexler, 1968) manner (i.e., making measurements at a num-
ber of different azimuth directions at a constant elevation an-
gle), profiles of horizontal winds can be derived (e.g., New-
som et al., 2017). Key to this study is that we have a full error
covariance matrix for all data used in the analysis. We will
first describe the two datasets, then discuss how advection is
derived from them.

2.1 Temperature, humidity, and wind retrievals

The thermodynamic and wind profiles were both retrieved
using physical-iterative retrieval methods that are based upon
Gaussian statistics; this is usually referred to colloquially
as “optimal estimation”. Optimal estimation approaches pro-
vide an error covariance matrix, denoted S, which embodies
the uncertainty for each retrieval. In this study, temperature
and humidity retrievals use the TROPoe algorithm, which
was explained in Turner and Lohnert (2014). These retrievals
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were done at 5Smin resolution. Two separate studies have
reframed the derivation of the horizontal winds from VAD
scans using a retrieval approach, thereby constraining the de-
rived winds with a priori information (Baidar et al., 2023;
Gebauer and Bell, 2024). We elected to use the Baidar et
al. (2023) wind retrievals, which we will refer to as “DLoe.”
While the Gebauer and Bell algorithm allows for the inclu-
sion of non-Doppler lidar observations in the wind profile
retrieval, in the absence of those additional observations the
approach essentially defaults to that of Baidar et al. (2023).
The temporal resolution of the DLoe data was 15 min. There-
fore, we do not expect the results shown here to have any
significant dependence on which DL retrieval algorithm was
used.

Following the nomenclature of Rodgers (2000), we will
represent the covariance of the a priori information as S, the
uncertainty in the observations as the covariance matrix Sp,,
and the sensitivity of the forward model F as K = 0 F/ox,
where x represents the geophysical variables we are retriev-
ing. The posterior covariance matrix of the retrieval of x is
then

Sx=<KTS;11K+S;1)_l )

as given by Eq. (3.31) in Rodgers (2000), where the super-
script T in this context denotes matrix transpose. Most prac-
titioners only show the square root of the diagonal of S,, as
this represents the 1o uncertainties at that level for that vari-
able; however, the off-diagonal elements of S, represent the
covariance in the uncertainties between levels and/or vari-
ables and will be important for this study.

The averaging kernel of the retrieval provides a wealth of
information about the retrieved quantities. Again, following
Eq. (3.28) in Rodgers (2000), the averaging kernel of the re-
trieval is computed as

A=S,KTS k. )

The diagonal of the A is extremely important, as it provides
a measure of the degrees of freedom for signal (DFS) that the
observations provide to the retrieval for each variable (and as
we are working with profiles here, each element of the diago-
nal is for a specific height above the ground), with the sum of
the diagonal (i.e., the trace of A) being the total DFS for the
entire retrieval. The DFS at a given height ranges from O (i.e.,
there is no information in the observations) to 1 (i.e., there is
perfect information content in the observations). The latter
implies that, if there was a perturbation to the state vector
(i.e., the true atmospheric values of the variables we are re-
trieving), then the retrieval would perfectly capture the mag-
nitude of that perturbation. In other words, the DFS quanti-
fies the information content for each variable that is being
retrieved in the vector x. Other definitions of information
content are possible that are related to the DFS. For exam-
ple, the Shannon information content (Shannon, 1948) is re-
lated to the decrease in entropy between the a priori estimate
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(S,) and the estimate after the measurement (i.e., S,). In this
work, however, we limit to the analysis of DFS, which we
will discuss in more detail in Sect. 3.

The AERI instruments have diminishing information con-
tent on the thermodynamic profile above 1 km, with very lit-
tle information above 3 km. However, as illustrated in Turner
and Blumberg (2019), observations from other instruments
can be added as part of the observation vector to improve
the retrieved solution (and thus increase its information con-
tent). The TROPoe retrievals used for this work, which were
processed by the ARM data center, included AERI radiance
data, microwave radiometer brightness temperatures at 23.8
and 31.4 GHz, surface observations of temperature and rel-
ative humidity, and temporally interpolated profiles of tem-
perature and water vapor mixing ratio from the radiosondes
launched roughly every 6 h at the SGP Cl1 facility as part of
the observation vector. However, to prevent overfitting to the
C1 radiosondes, the uncertainties in the radiosonde temper-
ature profiles were assumed to be 20°C and 5gkg™! at the
surface, decreasing linearly to 4.5 °C and 1 gkg~! at 3km, to
allow the algorithm to place more emphasis on the high-time-
resolution remote sensors as part of the retrieved profile. The
uncertainties in the collocated microwave radiometer bright-
ness temperatures were assumed to be 0.3 K for each fre-
quency. Thus, virtually all of the information content in the
TROPoe retrievals below 1.5km is from the AERI instru-
ments, but the microwave radiometer (MWR) and radioson-
des start to have more influence above 2 km (especially for
the retrieved water vapor profile).

2.2 Case study: 13 June 2019

For this study, we will only use the “down” triangle (Fig. 1)
discussed in Wagner et al. (2022), namely, the triangle that
is created by the site near Waukomis, OK (E37; located at
36.311°N, 97.928° W), the central facility (C1; located at
36.606° N, 97.485° W), and the site near Morrison, OK (E39;
located at 36.374°N, 97.069° W). Note that the distances
from E37 to Cl1, C1 to E39, and E39 to E37 are approxi-
mately 50, 45, and 78 km, respectively.

Figure 2 provides an example of the retrieved temperature
(T'; panels al, a2, a3) and water vapor (q; panels b1, b2, and
b3) profiles over the SGP site for 13 June 2019 at the E37,
C1, and E39 sites. Similarly, the DLoe-retrieved winds are
shown in Fig. 2, with u (panels c1, c¢2, and ¢3) and v (panels
dl1, d2, and d3) winds from the three sites, respectively. The
thermodynamic and kinematic evolution looks qualitatively
very similar across the three sites over this day; however,
there are small variations in the retrieved profiles that affect
the calculated advection (shown in the next subsection).

Note that for TROPoe, the algorithm simultaneously re-
trieves both T and ¢ (ie., x = [T, q]T) so that the poste-
rior covariance matrix S;; (computed using Eq. 1) includes
the level-to-level covariances of temperature to temperature,
water vapor to water vapor, and temperature to water vapor.
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Figure 1. A satellite image of north-central Oklahoma, showing the locations of the three sites used in this analysis (©Google Earth). The
inset shows the three sites, including the distances between them, where the background color indicates the elevation across the domain.

Similarly, the DLoe algorithm simultaneously retrieves the u
and v wind components (i.e., x = [u, v]T), and thus its pos-
terior covariance matrix S,y includes the cross-correlated er-
rors between u and v. For TROPoe, S;, was approximated
as a diagonal matrix from the AERI radiance uncertainties
(Turner and Blumberg, 2019). For DLoe, Sy, was specified
as a diagonal matrix based upon the DL’s signal-to-noise ra-
tio at each height (Baidar et al., 2023). The uncertainties in
the retrieved T and ¢ as well as # and v winds were derived
from the square root of the diagonals of S¢q and Syy, respec-
tively, and are shown in Fig. 3.

The temperature retrievals show very small uncertainties,
less than 0.5 °C, below 500 m that increase to nearly 1.5 °C
near 2 km above ground level (Fig. 3al, a2, and a3). Note that
differences in the noise characteristics among the AERIs will
result in differences in the retrieval uncertainties; this is also
true for the Doppler lidar systems. High-frequency variation
is seen in the uncertainties for the C1 temperature retrieval
(Fig. 3 panel a2), which is a result of temporal variation in
the uncertainties in the downwelling infrared radiation obser-
vations in the temperature-sensitive spectral region observed
by the AERI at that site. The water vapor uncertainty data are
qualitatively very similar across the three sites, with again the
lowest uncertainties below 500 m (Fig. 3b1, b2, and b3). The
uncertainties in the # and v winds from the DLs are relatively
low below about 1.5 km, but above that height the uncertain-
ties increase drastically due to the poor signal-to-noise ratio
in the DL radial velocity observations above 1.5 km due to a
relative lack of aerosols. However, Fig. 3 (panels cl and d1)
also demonstrates that the DL at the E37 site has much poorer
data quality (i.e., higher instrument noise levels) relative to
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the DLs at the other two sites (Fig. 3c2, c3, d2, and d3),
with the uncertainties in the retrieved winds from the E37
DL being much larger than for the other two DLs (Fig. 3c2,
c3, d2, d3), especially above 1km. It is important to note
here that the a priori information used for TROPoe and DLoe
was identical at the three sites; thus, the variability across the
three sites in the derived uncertainties and information is due
to the differences in the instrument uncertainties at the dif-
ferent locations.

2.3 Advection

Michael (1994) demonstrated that the horizontal advection of
a scalar ¢ (<«>) is computed as a line integral around the net-
¢

work of observations that outlines a polygon in space. Wag-
ner et al. (2022) extended this to vertical remote sensors to
get profiles of horizontal advection. For this work here, we
used observations at three sites (the triangle shown in Fig. 1),
and the advection was computed as

3 _
o —> 19 WAy —VAx)
¢ Atriangle

) 3)

where Agiangle 1S the area of the triangle (in mz), the summa-
tion is over each leg of the triangle, the averaged quantities
(9, u, and v) are computed from the two vertices that make
up that leg, and Ax and Ay are the distances between the two
vertices of that leg in the zonal and meridional directions (in
m) (Wagner et al., 2022). Using Eq. (3) as the forward model
F, we compute the profiles of advection of <;> and <;> simul-
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Figure 2. Time-height cross-sections of temperature and humidity retrieved from the AERI instruments (rows a and b), as well as # and v
winds retrieved from the DLs (rows ¢ and d), at the E37 (column 1), C1 (column 2), and E39 (column 3) sites for 13 June 2019. The derived
temperature advection and water vapor advection fields are in panels (e) and (f), respectively. The time (x axis) is UTC; local time is UTC—5.

taneously as

“)

o= F (xg37, xc1, XE39, WE37, WC1, WE39)

where o= (?), x= (5), and w = (%), where T, ¢, u, and

v are all profiles that have been interpolated to the same ver-
tical grid (as defined by the TROPoe retrievals of T and q).
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Temperature and water vapor advection fields calculated
for 13 June 2019 are shown in Fig. 2 (panels e and f, respec-
tively). Perhaps the most notable feature seen in this example
is the deep layer of cold air advection that ends at 12:00 UTC
(Fig. 2e) when the meridional wind direction changes from
northerly to southerly (Fig. 2d1, d2, and 3), which corre-
sponds nicely to the change in the synoptic pattern (Fig. 4).
Also, there are small pulses of positive water vapor advection
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Figure 3. Same as Fig. 2, but showing the 1o uncertainties of the various products, which were computed as the square root of the diagonal
of the posterior covariance matrices.

at 03:00 and 15:00 UTC (Fig. 2f) that are associated with the

onset and demise of the easterly component of the wind (seen

T IF \? IF \?

in Fig. 2cl1, c2, and c3). gi = O'XZE37 ( ) + o)fCl <—> + afw
The advantage of this formulation (Eq. 4) is that the uncer- x dxE37 dxci

tainties in the advection of T and ¢ (i.e., U‘?) can be easily 9F \2 5 9F \2 5 OF \2

estimated using standard error propagation techniques (e.g., T Ty dWE37 e\ Jwe

Bevington and Robinson, 2003) as

0XE39

aF \?
+03)E39< ) ’ (5)

dwEg39
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3539

Figure 4. Surface synoptic maps at 06:00 (a) and 18:00 UTC (b) on 13 June 2019. The yellow dot indicates the approximate location of
the ARM Cl site. From the NOAA Weather Prediction Center map archive at https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_

archive.php (last access: 13 May 2025).

since there are no correlated errors among any of the six dif-
ferent instruments. Writing this in terms of covariance matri-
ces, we get

T T
So = K p378x. 37K B37 + K 1Sx.c1Kx 1

T T
+ K g39Sx,E39Kx E39 + Ky, £375w,E37Kw E37

T T
+ KW,Clsw,Cl KW,CI + KW’E3QSW,E39KW,E397 (6)

where K is the Jacobian of F for both x and w, computed
at the three different sites, and the superscript 7 in this con-
text represents matrix transpose. Note that the translation of
Egs. (5) to (6) uses the fact that K, = dF/dx and that the
covariance of x can be written as o> or as the matrix Sy.
Using this approach, the uncertainties in the retrieved ther-
modynamic and wind profiles were propagated to provide the
uncertainties in the temperature and moisture advection (i.e.,
S.,) for the observations on 13 June 2019 using Eq. (6).

Tﬂne—height cross-sections of the 1o uncertainties of the
temperature and moisture advection are shown in Fig. 3e
and f, respectively. The uncertainties in both the tempera-
ture and water vapor advection for this day are small near the
surface (less than 0.3 Kh~! and 0.5 gkg~! h™!, respectively)
and generally increase with height. In particular, the uncer-
tainty in the magnitude of the temperature advection above
1.2km from 00:00 to 07:00 UTC is quite large (larger than
1.5Kh™"), suggesting that the cold air advection shown in
this time period (Fig. 2e) has a lot of uncertainty. However,
there are particularly low uncertainties in the derived temper-
ature and water vapor advection from approximately 09:00
to 15:00 UTC from the surface to nearly 1500 m that seem
associated with the change in the synoptic pattern (i.e., the
change in direction of the low-level winds shown in Fig. 4).

https://doi.org/10.5194/amt-18-3533-2025

3 Information content propagation

For retrievals, the concept of information content is used to
express how much information we are gaining through the
measurements over our prior knowledge. Information con-
tent heavily depends on the instrument’s noise level and the
sensitivity of the forward model. It is known that the in-
formation content in the AERI thermodynamic retrievals is
not large and that it decreases rapidly with height above the
surface (e.g., Turner and Lohnert, 2014, 2021); the sum of

the total information content from the surface to 3km (i.e.,
z=3km

> DFS(z)) is approximately 5 for T'(z) and between 3
z=0km
and 5 for g(z). The DL generally has high information con-

tent (near unity for each height level) where there is suffi-
cient aerosol concentration to provide the backscattered sig-
nal (which is usually only within the atmospheric boundary
layer). The question we want to address here is how does
the information content in individual instruments translate to
information content for the derived advection that requires
using data from multiple instruments?

For this, we need to look at the averaging kernel in more
detail. The averaging kernel A (Eq. 2) can also be expressed
as

_ KTS'K
KTSy K +87!
_ KTSIT,]IK +S;] _Sa—l
KTS:'K +8;!

st
KTSH K +S;!
S

=1—S—x. (7
a

This was also shown by Cadeddu et al. (2017), where I is
the identity matrix. The prior covariance matrix S, illustrates
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the climatological “volume” of state vector, and the poste-
rior covariance matrix Sy is the “volume” of that space that
results after the retrieval is performed and the information
from the observations is included. If there is no information
about the state vector from the observations, then S, will be
approximately S,, and thus A is approximately 0. If there
is a lot of information in the observations, then S, will be
markedly smaller than S, and thus A will be approximately
1. This matches the high-level definition of information con-
tent provided by Westwater and Strand (1968) well.

From Eq. (7), we see that if we can obtain S, ., (the ad-

vection prior covariance) and S., (the advection posterior

covariance) then we can estimate the information content of
the derived advection that we are gaining through the mea-
surements. We have already demonstrated that S., can be

obtained through error propagation using Eq. (6), since the
AERI and DL retrievals provide posterior covariance matri-
ces. To get S, ., we again use Eq. (6), but instead replace

the posterior covariance matrices Sy and Sy, with the prior
covariance matrices used in the TROPoe (S, ) and DLoe
(Sa,w) retrievals, respectively. Note that the three facilities
(E37, C1, and E39) use identically the same prior covariance
matrix in TROPoe, and the same is true for DLoe; these have
been derived using 20 years of summertime radiosonde data
launched at the SGP central facility.

4 Example

To compute the information content (DFS) for the tempera-
ture and water vapor advection, the prior and posterior co-
variance matrices from the observations were propagated
through the forward model using Eq. (6), and then the av-
eraging kernel A was computed using Eq. (7). The diago-
nal of A provides a profile of DFS for both temperature and
water vapor advection, which are shown in Fig. 5 (panels e
and f, respectively). There is a striking similarity to the spa-
tial patterns of the 1o uncertainties (Fig. 3e and f) and the
DFS (Fig. 5e and f) time-height cross-sections. Generally
speaking, the DFS and 1o uncertainties are anticorrelated,
with higher DFS values being associated with lower 1o un-
certainties. In the region of cold air advection above 1.2 km
from 00:00 to 07:00 UTC, the DFS is very small for temper-
ature advection (Fig. 5e), suggesting that there is no infor-
mation in that region and thus those advection values should
not be trusted. However, the DFS figures also suggest that
the information content on advection can often be near unity
at heights approaching 2 km (Fig. 5e and f), even though the
AERI information content is very limited with DFS < 0.05 at
any height above 50 m for 7 and DFS < 0.3 for ¢ (Fig. Sal-
a3 and b1-b3); this is because the advection is essentially an
evaluation of spatial gradients, which the AERI is able to de-
termine even with its limited information content in the ver-
tical. The DL at the E37 site also is clearly the outlier of the
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three DLs from an information content perspective, which
can be seen by comparing the cl and d1 panels with the c2,
c3, d2, and d3 panels in Fig. 5, due to the larger instrument
noise level in the E37 DL.

There are several natural questions that could be asked to
better understand the information content results. For exam-
ple, are the site-to-site differences in the posterior covari-
ances (as evidenced by the changes in the 1o uncertainty pro-
files shown in Fig. 5 for a given variable like T or u) impact-
ful on the advection DFS profiles? To test this, we performed
two tests: use the posterior covariance matrix from the C1
retrieval as the posterior for the E37 and E39 retrievals for
(a) T and ¢ as well as (b) u and v. In both of these tests,
there was relatively little change to the resulting time—height
profile of DFS for temperature and moisture advection (DFS
differences were less than 0.1; not shown). We found this
surprising, especially since the E37 DL has much larger un-
certainties in u and v above 1km than the other two sites;
however, when we used the E37 DL posterior for all three
sites, the information content decreased by nearly 0.1 uni-
formly above 1.2km (not shown). Another sensitivity test
performed was to inflate the TROPoe posterior covariances
by a factor of 2. The new DFS time-height cross-section for
the temperature and advection data is shown in Fig. 6 (panels
a and b, respectively). Comparing these DFS results with the
baseline (Fig. Se and f) shows a qualitatively similar evolu-
tion of the DFS profiles but also a decrease in the DFS for
temperature and moisture advection by approximately 0.2 to
0.4 along the top contour (Fig. 6¢ and d). Interestingly, inflat-
ing the DLoe posterior covariance matrices by a factor of 2
had little effect (DFS differences less than 0.1) below 2 km,
with some DFS differences approaching 0.3 around 2.5 km
(not shown). Presumably, this is because advection is a spa-
tial calculation, and the uncertainties at the vertices have rel-
atively little impact on the derived advection. However, this
result would likely depend on the size of the polygon used
for the calculation; Wagner et al. (2022) demonstrated that
the current spacing of the C1, E37, and E39 facilities is close
to optimal in minimizing both the random error and sampling
error in the calculation.

So far, we have focused on the diagonal elements of the
covariance matrices, as the square root of the diagonal pro-
vides the 1o profile of uncertainties. Figure 7 shows the 1o
profiles derived from the advection’s prior covariance (i.e.,
Sa. <) and the mean 1o profile from the advection’s poste-

rior covariance (i.e., from S, ) for the 13 June 2019 case.

Clearly, the addition of the observations adds information, as
the posterior uncertainty profile is smaller. However, it is im-
portant to realize that the information content profile is not 1
minus the ratio of these two profiles; instead, as illustrated in
Eq. (8), the off-diagonal elements also play a role.

The off-diagonal elements from both S, ., and S., are

x

shown in Fig. 8, where the covariance matrices were con-
verted to correlation matrices for display purposes. Since
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Figure 5. Same as Fig. 2 with the three columns denoting E37, C1, and E39 (for panels a, b, ¢, and d), but showing the DFS of the various

products.

these covariance matrices are symmetric, only half of each
is shown with the prior shown below the diagonal and the
posterior above the diagonal. Note the large magnitude of the
level-to-level correlation in the advection of temperature with
itself (Fig. 8a) and water vapor with itself (Fig. 8b), as well
as the cross-correlation of temperature and water vapor ad-
vection (Fig. 8c). However, after the retrieval, both the mag-
nitude of the diagonal (Fig. 7) and the magnitude of the oft-
diagonal terms are markedly reduced. There are some nega-
tive correlations seen between two different levels (e.g., the
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correlation of temperature advection with itself at 300 and
900 m is approximately —0.3 — see Fig. 8a); these features
are similar to the structure of the correlation matrices in the
TROPoe covariance matrices but much weaker (see Turner
and Blumberg, 2019, Fig. 10 for an example).
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Figure 6. The time-height cross-section of DFS for temperature and moisture advection (panels a and b, respectively) for 13 June 2019,
where the posterior covariance matrices from the TROPoe retrievals of T and ¢ were inflated by a factor of 2. Panels (c) and (d) show the
time—height cross-section of the differences of the DFS from Fig. 5 (panels e and f) with panels (a) and (b) here.
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Figure 7. The lo profiles for temperature (a) and water vapor
(b) advection, derived from the prior (blue) and posterior (red) co-
variance matrices for 13 June 2019. The posterior profile is the mean
at each height over the day, with the error bars showing the standard
deviation at each height over that day.

5 Statistical summary

The example on 13 June 2019 shown in Figs. 2, 3, and 5 pro-
vides an illustration of the derived advection profiles, its un-
certainties, and its information content, which uses retrievals

Atmos. Meas. Tech., 18, 3533-3546, 2025

from six independent instruments in the derivation. This par-
ticular example was chosen because there was marked tem-
poral variability in the 24 h period. However, we are in-
terested in more general statements about the uncertainty
and information content in the derived advection. Recently,
nearly 2 years of advection data were derived from the SGP
observations (January 2018 to September 2019) using the
Wagner et al. (2022) approach; however, that analysis did not
include a description of the information content. Here, we
analyze that same dataset to provide a sense of the average
magnitude of the information content in both the temperature
and water vapor advection and how that information content
varies both over the diurnal cycle and as a function of height
over two 4-month periods. Table 1 indicates the number of
days of data that were available for each month in the 2-year
record and the number of cases in the “cool” and “warm”
seasons.

Time-height cross-sections of the mean information con-
tent for temperature advection and water vapor advection for
the cool season are shown in the top row of Fig. 9. Note
that the TROPoe algorithm has a minimum boundary layer
height of 300 m; thus, the nocturnal boundary layer heights
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Figure 9. The mean diurnal information content (a, b) for temperature advection (a, ¢) and water vapor advection (b, d) for the “cool season”
(Table 1). The variability of the information content, represented as the standard deviation, over this 4-month period is shown in the bottom
row. The black dots illustrate the mean depth of the atmospheric boundary layer, which is derived from the TROPoe retrievals using a parcel
method (e.g., similar to that used in Nielsen-Gammon et al., 2008), with the error bars indicating the variability of this height for each time
over the days included in the analysis. The single bar on the right side of all four panels shows the value averaged over the entire diurnal

cycle.

are largely this value. The standard deviations of the DFS
data for each time and height are shown in the bottom row
of Fig. 9 and provide a measure of the variability in the DFS
across the nearly 150d in this cool season analysis.

As can be seen, the information content for temperature
advection (Fig. 9, left column) is above 0.9 (with a standard
deviation less than 0.15) for most heights below 700 m, de-
creasing to a mean value of 0.8 by 1000 m. The standard de-
viation of the temperature DFS increases to about 0.4 at alti-
tudes above 900 m, implying that there is marked variability
in the DFS above this height from case to case. The mean
DFS in the water vapor (Fig. 9, right column) has smaller
values, with mean values between 0.5 and 0.7 in the lower
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to middle part of the daytime boundary layer (i.e., between
14:00 and 24:00 UTC), with the mean DFS decreasing to 0.4
to 0.5 at and above the top of the boundary layer. The stan-
dard deviation of the water vapor advection DFS is approxi-
mately 0.3 to 0.4, regardless of time of day or height.

Figure 10 shows the same statistics for the warm season.
There is little difference in the mean DFS or its standard de-
viation for the temperature advection over the diurnal cycle
or vertically between the cool season (Fig. 9, left column)
and warm season (Fig. 10, left column). However, there is
a marked difference in the water vapor information content
between the two seasons. The mean information content is
much larger in the daytime boundary layer during the warm
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Figure 10. Same as Fig. 9, but for the “warm season” (Table 1).

Table 1. Number of days per month between 14 January 2018 and
17 September 2019 used in the analysis for the two seasons.

“Cool season” “Warm season”

Number Number
Month of days Month of days
February 27 June 27
March 54 July 31
April 28 August 25
May 43 September 15
Total 152 Total 98

season, with mean values of 0.7 to 0.8 in the warm season
vs. 0.5 to 0.6 in the cool season. The variability in the DFS
for water vapor advection is also about 50 % smaller in the
daytime boundary layer in the warm season vs. the cool sea-
son. There is also an increase in the mean water vapor advec-
tion DFS above 2km in the warm season, which is primar-
ily contributed by the use of radiosonde data in the TROPoe
retrievals with a smaller contribution from microwave ra-
diometer brightness temperature observations, both of which
have a larger impact due to the overall wetter conditions in
the warm season.

6 Conclusions

To properly interpret remote sensing observations, which are
often constrained using a priori information, it is important to
understand the uncertainties and information content. Some
geophysical variables are derived from remote sensing ob-
servations, and thus the uncertainties and information con-
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tent need to be propagated through the derivation equation.
This work demonstrates how to propagate information con-
tent from multiple remote sensors through a derivation equa-
tion for a new quantity. The key is to propagate the uncer-
tainties from each individual retrieval through the deriva-
tion equation simultaneously, then propagate the uncertain-
ties from the a priori constraints through the same equation
in the same manner and look at the ratio of the covariance
matrices derived from the two datasets.

We illustrated this approach using a network of remote
sensors to derive the horizonal advection. To derive advec-
tion, we needed to have (at least) three non-colinear sites that
measure profiles of the quantity of interest (in this case, tem-
perature and humidity) with wind profiling at the same loca-
tions. In our case, we had six separate instruments, with three
providing thermodynamic profiles (using the same a priori
information) and three providing kinematic profiles (again,
using the same a priori information for all three). However,
because of differences in the noise characteristics of the dif-
ferent instruments, the uncertainties and information content
derived from each individual instrument varied. The poste-
rior covariance matrices (i.e., the individual retrieval uncer-
tainties) were used to derive uncertainties and information
content profiles for the derived temperature advection and
water vapor advection profiles.

A statistical analysis of the information content profiles
demonstrates that there is nearly perfect information content
(i.e., DFS close to 1) for temperature advection below 700 m.
This suggests that if there is a true change in the tempera-
ture advection below that level, then the observed tempera-
ture advection would capture the magnitude of that change
at the right level. The associated information content for wa-
ter vapor advection is different though; it is a strong function
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of height, time of day, and season. Nonetheless, the daytime
mean information content for water vapor advection in the
boundary layer in the warm season is above 0.7, suggesting
that the magnitude of any true perturbation in the water vapor
advection would be largely captured by this instrument suite.

This work demonstrates how to derive the information
content of an observation that is derived from multiple re-
mote sensing datasets. The key aspect is to frame the indi-
vidual derivations as retrievals so that both prior and poste-
rior covariance matrices are available. Propagating informa-
tion content, as was illustrated here, can inform the user of
the derived data on where the signal-to-noise ratio is the best
and potentially reduce the risk of misusing the data. How-
ever, it has been shown that a single microwave radiometer
making azimuth scans can identify spatial gradients of wa-
ter vapor (Schween et al., 2011). If this was paired with an
instrument measuring horizontal wind profiles, water vapor
advection could potentially be derived, but the propagation
of uncertainties and information content could be performed
the same way as shown here.
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