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Abstract. Launched in 2020, the Korean Geostationary En-
vironmental Monitoring Spectrometer (GEMS) is the first
geostationary satellite mission for observing trace gas con-
centrations in the Earth’s atmosphere. Observations are made
over Asia. Geostationary orbits allow for hourly measure-
ments, which lead to a much higher temporal resolution
compared to daily measurements taken from low-Earth or-
bits, such as by the TROPOspheric Monitoring Instrument
(TROPOMI) or the Ozone Monitoring Instrument (OMI).
This work estimates the hourly concentration of surface ni-
trogen dioxide (NO;) from GEMS tropospheric NO, verti-
cal column densities (VCDs) and additional meteorological
features, which serve as inputs for random forests and linear
regression models. With several measurements per day, ma-
chine learning models can use not only current observations
but also those from previous hours as inputs. We demon-
strate that using these time-contiguous inputs leads to re-
liable improvements regarding all considered performance
measures, such as Pearson correlation or mean square er-
ror. For random forests, the average performance gains are
between 4.5 % and 7.5 %, depending on the performance
measure. For linear regression models, average performance
gains are between 7 % and 15 %. For performance evaluation,
spatial cross-validation with surface in situ measurements is
used to measure how well the trained models perform at lo-
cations where they have not received any training data. In
other words, we inspect the models’ ability to generalize to

unseen locations. Additionally, we investigate the influence
of tropospheric NO, VCDs on the performance. The region
of our study is South Korea.

1 Introduction

The concentration of nitrogen dioxide (NO») near the Earth’s
surface is of significant interest for several reasons. NO; is
not only a precursor to health hazard and air pollutant ozone,
but also a direct threat to human health. Moreover, it is linked
to environmental issues such as acid rain; see, e.g., Jacob
(2000).

At present, surface NO, is measured by networks of
ground-based in situ monitoring stations. However, due to
the limited number of such stations, they cannot provide
global information about the surface NO, concentration.
This limitation is one of the reasons why satellite remote
sensing has become popular for deriving global estimates of
surface NO;. Satellites detect the fingerprint of NO, within
the backscattered solar radiation due to its strong absorption
of light in the wavelength range of 350-500 nm. One of the
first studies on deriving surface NO, from remote sensing
observations was conducted by Lamsal et al. (2008) across
the USA and Canada. In their study, surface NO, was esti-
mated by applying an assumed NO, vertical distribution cal-
culated with a chemical transport model to tropospheric NO»
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vertical column densities (VCDs), where the tropospheric
NO; VCDs were obtained from the Ozone Monitoring In-
strument (OMI; Levelt et al., 2006). Numerous further stud-
ies followed, also utilizing chemical transport models and
observations from satellites in low-Earth orbits. For exam-
ple, we refer to the studies of Lamsal et al. (2010, 2013),
Bechle et al. (2013), Wang and Chen (2013), Kharol et al.
(2015), Geddes et al. (2016), Gu et al. (2017), and Cooper et
al. (2020, 2022). Both OMI data and other observations have
been considered, e.g., from the Global Ozone Monitoring Ex-
periment (GOME; Burrows et al., 1999), the Scanning Imag-
ing Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY; Bovensmann et al., 1999), and the TROPO-
spheric Monitoring Instrument (TROPOMI; Veefkind et al.,
2012).

During the last 10 years, machine learning approaches
have received increasing attention in determining surface
NO, from satellite remote sensing observations. One advan-
tage is the shorter computation time once the model has been
trained. Diverse machine learning models have been used for
this task, exploiting not only tropospheric NO, VCDs as in-
put, but also additional input features to improve the model’s
performance, such as meteorological parameters, traffic den-
sity, or population information. Studies that consider obser-
vations from satellites in low-Earth orbits have been con-
ducted by, for example, Kim et al. (2017), Jiang and Chris-
takos (2018), de Hoogh et al. (2019), Chen et al. (2019), Di
et al. (2020), Qin et al. (2020), Kim et al. (2021), Chan et al.
(2021), Dou et al. (2021), Ghahremanloo et al. (2021), Li et
al. (2022), Wei et al. (2022), Huang et al. (2023), and Shetty
et al. (2024). For a detailed review on the methods used, the
input features included, the regions of consideration, and the
achieved performance, we refer to the work of Siddique et al.
(2024).

Satellites in low-Earth orbits, such as OMI and
TROPOMI, pass over the same region in middle and low
latitudes once a day, which means they can provide at best
one measurement per day and location. If the area is cloud-
covered during the time of observation, the measurement of
lower-tropospheric gases is not accurate, which makes the
data coverage even more limited. Since satellites in low-
Earth orbits provide observations at most once a day, most
studies either predicted surface NO, at this specific satellite
observation time (e.g., Kim et al., 2017) or estimated daily
(e.g., Di et al., 2020), monthly, or annual averages of surface
NO,. Nevertheless, it should be mentioned that there are a
few studies that have estimated hourly NO;. As an exam-
ple, Kim et al. (2021) linearly interpolated daily tropospheric
NO; VCDs to an hourly resolution, from which they esti-
mated hourly surface NO;, concentrations over Switzerland
and northern Italy.

In contrast, geostationary satellites permanently observe —
more or less — the same region, leading to more data points
for a given location that can be used for a prediction al-
gorithm of surface NO,. In particular, these larger datasets
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make machine learning approaches even more attractive. The
first geostationary satellite instrument for observing trace gas
concentrations in the Earth’s atmosphere is the Geostation-
ary Environmental Monitoring Spectrometer (GEMS; Kim
et al., 2020), which was launched in February 2020 by the
Republic of Korea. It provides hourly measurements of ra-
diances over 20 countries in Asia, including South Korea.
Alongside GEMS, there exists only one other geostationary
satellite that monitors trace gases, namely NASA’s TEMPO,
which was recently launched in April 2023 and is observ-
ing North America. A third geostationary satellite, ESA’s
Sentinel-4 mission, was launched in 2025 and monitors Eu-
rope.

Until now, only a few studies have been conducted on
hourly surface NO, retrieval from geostationary observa-
tions: Zhang et al. (2023) presented a scientific GEMS NO,
product (POMINO-GEMS), which empirically corrects for
overestimation and stripe artifacts in the operational GEMS
NO; product. They then converted their tropospheric NO;
VCDs of 2021 over China to hourly surface NO, using a
chemical transport model. Further studies that exploit ma-
chine learning approaches have been conducted over China.
Yang et al. (2023b) used a random forest regressor to predict
hourly surface NO; over China from GEMS radiance data
at six wavelengths from the UV and visible bands, as well
as some additional meteorological, temporal, and spatial fea-
tures. Furthermore, a multi-output random forest was used
to simultaneously predict five more air pollutants, such as
ozone. Although prediction accuracy achieved by the multi-
output model was slightly worse regarding surface NO, the
overall training time for predicting all six pollutant concen-
trations was smaller. Ahmad et al. (2024) combined two ma-
chine learning models. First, a random forest was used to pre-
dict NO, mixing heights from meteorological input features.
These were then fed into an extreme gradient boosting re-
gressor, together with tropospheric NO, VCDs from GEMS,
temporal variables, and meteorological variables. The study
demonstrates the benefit of using NO, mixing height as in-
put.

Hourly surface NO; has also been predicted from GEMS
observations over South Korea, the region considered in this
study. In the work of Lee et al. (2024), predictions were made
for the whole year of 2022. Therein, the total amount of
VCDs instead of tropospheric NO; VCDs was used as the
only input of a (linear) mixed-effect model to predict surface
NO;. Their model is a piecewise-defined function whose out-
put depends not only on the total column of NO», but also on
the day and hour at which and region in which the prediction
is to be made. For this, South Korea was divided into nine re-
gions, which presumably leads to a more direct region-wise
relationship between surface NO, and column densities of
NO,. In other words, implicitly, spatial and detailed temporal
information is also exploited in their approach. This makes
their model specialized to South Korea and the year 2022.
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Another study that predicted surface NO, over South Ko-
rea was conducted by Tang et al. (2024). Therein, daily sur-
face NO; concentrations instead of hourly surface NO;, were
predicted. Further, they did not use NO; column densities as
input for a machine learning model. Instead, they inspected
the influence of aerosol optical depth, which is part of the
GEMS data products. Aerosol optical depth, together with
surface NO; predictions from a chemical transport model
and other features such as meteorological parameters, served
as inputs for a random forest to estimate surface NO,.

In order to train and evaluate machine learning models of
surface NO», in situ NO, observations from ground-based
networks are used. Within the literature, there are two fre-
quently used strategies to evaluate the performance of a ma-
chine learning model in predicting surface NO,. First, stan-
dard k-fold cross-validation is considered; see, for example,
the works of Ghahremanloo et al. (2021), Chan et al. (2021),
Yang et al. (2023b), and Ahmad et al. (2024). This means
that the whole dataset is randomly split into k equally sized
subsets. One of them serves as the test set, whereas the other
k — 1 values are used to train the model. Training and test-
ing are repeated k times, until each subset has served once
as a test set. The average test performance (e.g., Pearson cor-
relation) is calculated and represents the final evaluation of
the model. For standard k-fold cross-validation, data from
all available in situ stations are contained in both the train-
ing and the test datasets (with large probability). However,
what if the trained model should afterwards predict surface
NO; at a new location which has not contributed data to the
training set? With the result from standard cross-validation, it
would be impossible to say how reliable the model can gen-
eralize to this unseen location. It may have overfitted to the
locations that it has dealt with during training. Therefore, if
global charts covering large areas like the entirety of South
Korea are desired, it would be more appropriate to evaluate
the model’s performance via so-called spatial k-fold cross-
validation. This means the set of available in situ stations is
divided into training and test stations, the model is trained
with data from training stations only, and — finally — its per-
formance in predicting surface NO; at the test stations is
evaluated. Unsurprisingly, performance measured with spa-
tial cross-validation is indeed worse compared to standard
cross-validation, which has been observed, e.g., within the
studies of Ghahremanloo et al. (2021), Chan et al. (2021),
Yang et al. (2023b), and Tang et al. (2024). In our work we
focus on spatial k-fold cross-validation, as we wish to inspect
how well a model can generalize to unseen locations.

1.1 Goals of this study

Due to the hourly measurements GEMS provides over the
same region, it is natural to ask whether one can benefit di-
rectly from the time resolution itself and not only from the
resulting larger size of the dataset. Hence, we propose train-
ing a machine learning model ¢ that predicts surface NO, at
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a given location z and time ¢ not only from corresponding tro-
pospheric NO, VCD and meteorological data at time ¢, but
also from (k — 1) € Ny previous hours (Ny denotes the set of
natural numbers including zero). This means the model is a
mapping ¢ : RPX — R, where p is the number of different
features:

tropospheric NO,VCD(z, t)

tropospheric NO,VCD(z,t —k+ 1)

input(z,t) := )
put(z, 1) meteorological features(z, t)

meteorological features(z,t —k + 1)
+—> @(input(z, 1)) ~ surface NO»(z, ).

Here tr — j refers to the time j hours before ¢, where j €
{0,1,...,k —1}. In all that follows, k is also referred to as
the time contiguity of the input features, as it determines how
many times each input feature is included in the whole input
vector. Note that k = 1 stands for the case in which only input
features at current time ¢ are included. Of course, one could
also use features at later times ¢ + j, but for simplicity and
better readability, we focus on making predictions based on
previous-time features in this work.

Our main aim is to inspect whether the performance of
the model in predicting surface NO» at unseen locations will
increase by using inputs with higher time contiguity k. Un-
seen locations are locations from which the model has not
seen any training data. As it turns out, it is indeed beneficial
to use larger time contiguity k > 1 for the machine learn-
ing models considered, namely random forests and linear re-
gressors. To the best of our knowledge, this observation has
not been made in the literature yet. Regarding work on non-
geostationary satellite data, the usage of time-contiguous tro-
pospheric NO, VCDs is simply impossible, as only single
measurements per day are available. We further carefully de-
sign experiments that are suitable for answering our main re-
search question about the benefit of time-contiguous inputs.
Last but not least, we inspect the influence of tropospheric
NO; VCDs on the models’ ability to predict surface NO,
and their influence on the benefit of using time-contiguous
inputs. This is of interest as it addresses the question of how
useful and necessary satellite observations of NO; are for the
prediction of surface NO; concentrations.

1.2 Outline

In Sect. 2 we describe the different sources of data in-
cluded in our study. Furthermore, we describe the construc-
tion of the datasets used for training machine learning mod-
els in our study and give a mathematical description of these
datasets. Afterwards, in Sect. 3.2 we describe the experi-
ments that provide clear insights into the research questions,
e.g., whether time-contiguous inputs can enhance the quality
of surface NO, predictions. We also discuss different loss
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functions for measuring the performance of trained mod-
els on the test dataset. Section 4 serves as a quick recap of
the machine learning models used in this study. Finally, we
present and discuss the results of our experiments in Sect. 5.

2 Data

In our study, we exploit two data sources for the prediction
of surface NO;. The first source is tropospheric NO, VCDs
derived from GEMS measurements, and the second is meteo-
rological data from the ERAS dataset (Hersbach et al., 2023).
Further, measurements of surface NO, at in situ stations from
the air quality network of South Korea serve as the ground
truth in this study. This section begins with a brief descrip-
tion of these data sources, followed by a description of the
data preprocessing steps. In particular, we explain how the
VCDs were paired with ERAS and in situ data and how time-
contiguous datasets were constructed. For clarity, we provide
mathematical definitions of these time-contiguous datasets.

2.1 Data sources

2.1.1 GEMS tropospheric NO vertical column
densities

GEMS is a UV-visible imaging spectrometer on board the
geostationary satellite GK2B. At its launch on 18 February
2020, GEMS was the first geostationary air quality monitor-
ing mission. GEMS is located over the Equator at a longi-
tude of 128.2°E and covers a large part of Asia (5°S—-45°N
and 75-145°E) on an hourly basis. With four different scan
modes, which all include South Korea, the field of regard
(FOR) shifts westward with the Sun. During daytime, GEMS
provides up to 10 observations over a given location accord-
ing to the season and location, with a spatial resolution at
Seoul of 3.5 km x 8 km. The GEMS irradiance and radiance
measurements in the UV-visible spectral range can be used
to derive column amounts of, for example, ozone (O3), sulfur
dioxide (SO;), and NO,, but also cloud and aerosol informa-
tion (Kim et al., 2020). For this study, we use the tropospheric
NO, VCD product.

During the time of this study, the operational GEMS L2
tropospheric NO, VCD product was available in v2. This
version was evaluated by, e.g., Oak et al. (2024) and Lange
et al. (2024), showing that it is high biased compared to
the TROPOMI tropospheric NO, VCD product and ground-
based tropospheric NO, VCD datasets. Additionally, the v2
product showed enhanced scatter. In preparation for the Eu-
ropean geostationary instrument on Sentinel-4, the Institute
of Environmental Physics at the University of Bremen (IUP-
UB) has developed a scientific GEMS NO, product. The
GEMS IUP-UB tropospheric NO, VCD v1.0 product was
evaluated by Lange et al. (2024), showing good agreement
with the operational TROPOMI NO; data and ground-based
observations. Here, an earlier version (v0.9) of the same
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data product was used. Briefly, the retrieval is based on a
differential optical absorption spectroscopy fit in the 405—
485 nm spectral window, using daily GEMS irradiances as
background spectra. The stratospheric correction is based
on a variant of the STREAM algorithm of Beirle et al.
(2016), and tropospheric vertical columns are computed us-
ing air mass factors by applying the tropospheric NO; pro-
files from the TM5 model run performed for the operational
TROPOMI product (Williams et al., 2017). The TMS model
has an hourly temporal resolution with a spatial resolution
of 1° x 1°. As the model a priori is interpolated in space and
time, no obvious structures from the coarse model resolu-
tion are visible in the data, but the lack of detail may still
impact the results. Cloud screening is based on the opera-
tional GEMS cloud product v2 and a threshold of 50 % cloud
radiance fraction, but no additional cloud correction is per-
formed. Each pixel has a quality indicator (ga value) based
on fitting residuals, cloud fraction, and surface properties.
Here, only data with the highest ga value (good fits, cloud
radiance fraction below 50 %, no snow or ice detected) are
used.

Further, the GEMS IUP-UB product does not yet have full
error propagation. The tropospheric NO, VCD error is there-
fore estimated to be 25 %. The main uncertainty results from
the assumptions used in the calculation of air mass factors,
in particular for surface reflectivity, the NO, vertical pro-
file, and aerosol loading. Uncertainties are expected to be
larger in the morning when the boundary layer is shallow and
smaller around noon and in the evening. Uncertainties intro-
duced by the stratospheric correction can be important over
clean regions but can be neglected over pollution hotspots.

2.1.2 Meteorological data

In order to predict surface NO», it would not be sufficient
to use tropospheric NOy VCDs as the only source of infor-
mation. This is because VCDs represent integrals over the
entire troposphere, capturing contributions from NO; at var-
ious altitudes, not just near the surface. A common strategy
is to incorporate additional meteorological features into the
prediction of surface NO;y; see for example the works of Di
et al. (2020), Qin et al. (2020), Ghahremanloo et al. (2021),
Chan et al. (2021), Li et al. (2022), and Yang et al. (2023b). In
our study, we utilize meteorological features from the ERAS
dataset, the fifth-generation reanalysis by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), which
provides comprehensive global climate and weather data for
the past 8 decades (Hersbach et al., 2023).

Our selection of meteorological features is partially in-
spired by the choices made in the aforementioned studies,
including variables such as boundary layer height, wind com-
ponents, surface temperature, or pressure. The 18 features
from ERAS that are considered in this study are listed in
Table B1, where we use the same nomenclature as in the
description of the ERAS dataset; see again Hersbach et al.
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(2023). In the geographical reference system, the resolution
of all meteorological features is 0.25° x 0.25°, which corre-
sponds to approximately 28 km x 22 km over South Korea.
Consequently, ERAS data are approximately 8 times coarser
in latitude and 3 times coarser in longitude than the GEMS
tropospheric NO, VCDs.

2.1.3 In situ measurements of surface NO,

In this study, we use in situ surface NO, measurements from
the air quality network AirKorea as the ground truth, pro-
vided by the Korean Ministry of Environment (National In-
stitute of Environmental Research (NIER), 2025). There is a
large number of in situ stations in South Korea that, among
other air-pollution-related species, measure surface NO,. We
used data from 637 stations, which are depicted in Fig. 1a.
The instruments utilize the chemiluminescence method, as
described by Kley and McFarland (1980). Our in situ dataset
includes measurements from January 2021 until the end of
November 2022, and we received the data in December 2022.

2.2 Pairing of data sources and data preprocessing

In the following, we explain the spatial and temporal pair-
ing of the data sources. Tropospheric NO; VCDs and me-
teorological data possess spatial resolutions, as described in
the previous section. Consequently, each data point covers an
area (pixel) on the Earth’s surface, rather than a single point.
Here, we associated the location of an in situ station with the
VCD pixel or meteorological pixel, whose center is nearest
to the station’s location (longitude, latitude). Note that the
center of a VCD pixel coincides with the respective center of
the GEMS satellite pixel, since no regridding is applied.
Tropospheric NO, VCDs are based on GEMS observa-
tions that have been collected within 30 min starting at a
quarter to the respective hour, e.g., from 01:45 to 02:15 UTC.
In situ measurements of surface NO; are available as hourly
averages, starting on the hour. Temporally, we matched them
with the VCDs using this timestamp and found that these data
pairs showed the highest Pearson correlation. For example,
VCDs between 01:45 and 02:15 UTC were matched with in
situ measurements with a timestamp of 01:00 UTC. Unfor-
tunately, at the end of our project, we learned that this was
a misinterpretation of the in situ measuring times by 1h, as
the hourly averages actually start at the hour before the given
timestamp instead of at the hour of the timestamp, as we had
assumed. This means that the VCDs and surface NO, were
not optimally matched within our experiments. However, the
abovementioned correlation tests give us confidence that the
conclusions of this study are not affected by this mistake, in
particular with respect to the improvements in performance
when adding data from other measurement times. To main-
tain consistency in notation, we continue to use the originally
interpreted in situ measuring times, but they should be re-
garded as occurring 1 h earlier. Most meteorological features
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are given on the hour, which means at a specific point in time.
There is one exception, namely evaporation, which is avail-
able as an hourly average starting on the hour, similar to in
situ measurements. Since the averages of these data sources
are taken over different periods of time, there is not a unique
way to pair them temporally. Our approach is the following.

Due to the hourly resolution of all data sources, time 7 is
expressed by t = YYYY/MM/DD/HH throughout this work.
For example, t =2021/01/23/01 refers to 23 January 2021 at
01:00 UTC. We associate the in situ measurements of sur-
face NO,, which started at time ¢ and went on for 1 h, with 7.
In the example, time r =2021/01/23/01 refers to surface NO,
that has been averaged from 01:00 UTC until 02:00 UTC. Re-
garding tropospheric NO, VCDs, the same ¢ refers to mea-
surements that started 45 min later. Hence, t =2021/01/23/01
describes the VCDs at a time between 01:45 and 02:15 UTC.
Finally, for the meteorological features that are instanta-
neously on the hour, ¢ stands for the feature’s value 1 h later
att + 1. Thereby, it is closest to the corresponding VCD time
frame. For example, t =2021/01/23/01 is associated with the
meteorological feature at 02:00 UTC.

To sum up, given a location z of an in situ station and
a time t =YYYY/MM/DD/HH, we specified a single data
point (f(z, t),s(z, t)) that stores surface NO; s(z,¢) com-
bined with the vector of input features f(z, ), which consists
of tropospheric NO, VCDs and meteorological features. As

a data preprocessing step, we exclude data points that violate
any of the following conditions:

1. All features are available at location z and time ¢ (tropo-
spheric NO, VCDs and surface NO; might be missing
for a given z, t, for example, due to clouds).

2. Tropospheric NO, VCDs are non-negative. Negative
VCDs can occur as a result of measurement noise in
the satellite data or uncertainties in the stratospheric
correction. We excluded them in an effort to improve
the quality of the dataset. However, toward the end of
the project, we tested the effect of this filter on a sub-
set of the dataset and found only very small changes.
This is probably due to the fact that applying this fil-
ter only leads to a reduction in the dataset by less than
0.5 %. Since negative VCDs are usually found over re-
gions with low tropospheric NO, VCDs, the filter leads
to a loss of the input variable and thus a loss of predic-
tions for these regions. In retrospect, we can conclude
that the implementation of this filter was not necessary,
as it only had little influence on our dataset and can
thus be neglected in future work. Regarding the ran-
dom forests used in this study, which are trained on
non-negative VCDs only, they are still able to make rea-
sonable but potentially biased predictions over clean re-
gions with negative VCDs as inputs. In this case, the
random forests would treat negative VCDs as being
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Figure 1. (a) Map with the 637 in situ stations from the air quality network of South Korea used in this study. (b) An exemplary split into
90 % training stations and 10 % test stations, considered during multiple 10-fold spatial cross-validations.

zero. In contrast to the VCDs, the in situ measurements
of surface NO, are never negative.

3. The GEMS ga value is equal to 1. Therefore, the trained
models presumably cannot make reliable predictions for
scenarios where the ga value is smaller than 1. It would
be an interesting future direction to examine the effects
of lowering the threshold for the ga value. This would
result in a larger but more complex dataset.

Data points (f (z,1),s(z, t)) that fulfill these conditions are

collected within the so-called data basis. A data point in the
data basis is not time contiguous, as it only provides infor-
mation at a single time ¢ and not at previous hours. The con-
struction of time-contiguous datasets is described in the next
section.

2.3 Description of time-contiguous datasets

In the Introduction, we motivate the use of time-contiguous
inputs for machine learning models in order to predict sur-
face NO,. For better clarity, we introduce notations and def-
initions in a mathematical form.

2.3.1 Spatial and temporal coordinates

Z is the set of positions (longitude, latitude) on the Earth’s
surface in terms of longitude and latitude. Hence, it can be
seen as the Cartesian product [—180, 180) x[—90, 90). In this
study, we deal with in situ stations in South Korea which are
located within [124,131) x [33,39); see Fig. 1a. These sta-
tions are simply identified with their location z € Z in what
follows.

T is the set of all measuring times YYYY/MM/DD/HH
between January 2021 and November 2022. For example,
2021/01/23/01 refers to 23 January 2021 at 01:00 UTC.
Note that for a given ¢ € T, the expression ¢ — j for j € N
stands for the time j hours before 7. For example, for
t+ =2021/01/23/01 and j =3, itis r — j =2021/01/22/22.
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2.3.2 Surface NO; and input features

Recall from the previous section that surface NO, mea-
sured at time ¢ € 7 and at in situ station z € Z is denoted
by s(z,t). As already mentioned, surface NO; is to be pre-
dicted from the tropospheric NO,; VCD and meteorological
variables such as the boundary layer height. These input fea-
tures at z € Z and ¢t € T are denoted by fi(z,1),..., fp(z,1),
where p €N is the number of considered features (deter-
mined by some feature selection procedure; see Sect. 3.1).
At this point, it is only important that f; denotes the VCDs.
For simplicity, we just write f(z,t) € R? for the vector of all
features at location z and time .

2.3.3 Data preprocessing

We review the data preprocessing described in the previous
section in light of the mathematical notation. A measure-
ment f1(z,t) of a tropospheric NO, VCD is valid if it ex-
ists (measurements may be missing at some times t € T), if
f1(z,t) =0, and further if the GEMS ga value is equal to 1.
For all other features f>(z,1),..., fp(z,t) and surface NO;
s(z,1), it suffices that the measurement exists in order to be
categorized as valid. Note again that in situ measurements of
surface NO» are always non-negative in the present dataset.

In the following, we collect all locations and times (z, t)
at which we have access to valid measurements. Namely, the
domain of valid measurements Q2 is defined as

Q={(neZxT: ands(z,1), fi(z,1),..., [p(z,1) are valid}. (1)

2.3.4 Time-contiguous datasets

In order to consider time-contiguous measurements, we de-
fine for N € N the set

Qv={@neQ:(r—jeQforj=1,...N—-1}. (2)

In other words, Q5 collects locations and times (z,t) at
which valid measurements also exist for at least N — 1 pre-
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vious hours. Note that Qy € Qy_1 € Q2 for all N e N, and
Q1 coincides with €2, the domain of valid measurements.
Given (z,t) € Qy and k € {1,..., N}, this definition allows
us to build a valid time-contiguous feature vector:

fzn

(Gi—1)
St e R, 3)

FGt—k+1)

which can serve as input for a machine learning model ¢y :
RPK — R to predict surface NO; s(z, 1).

Hence, Q2 parameterizes the datasets occurring in our
study. In fact, Qx parameterizes N different datasets of fea-
ture vectors paired with surface NO,. They only differ within
the time contiguity k € {1, ..., N} of the feature vectors, that
is, how many previous hours (namely k — 1) are consid-
ered for each feature (at most N — 1). Mathematically, these
N datasets can be understood as functions Dy : Qy —
RPK x R mapping (z,1) € Qy to the feature vector in Eq. (3)
paired with surface NO, at location z and measuring time 7.
Further, D1 1 just describes the data basis mentioned in the
previous section.

The number of elements in 2y — that is, the size of all
datasets Dy x — are listed in Table 1 for N =1, ..., 5. Hence,
if a model is to be trained with time-contiguous inputs (k >
1), this comes with the price of a smaller number of data
points. For example, time-contiguous models cannot be used
to make predictions at initial hours of a day. It should be
mentioned that among all features described in the previous
section, ERAS5’s soil type and high vegetation cover are the
only features that do not depend on time ¢. This is why, in
practice, we never included them & times but rather a single
time only, when building the time-contiguous feature vector
in Eq. (3) at (z,t). However, for the sake of simplicity, we
neglect this fact within the notation.

2.3.5 Normalization of input features

For any given split into training and test data, the input fea-
tures are normalized before being fed into the machine learn-
ing models to improve the stability of their performance.
More precisely, each feature undergoes an affine transforma-
tion A such that its mean on the training data becomes 0 and
its standard deviation becomes 1. Let Xiain and oOain be the
mean and standard deviation of a feature in the training data,
respectively. Then, the transformation applied to both train-
ing and test data points is given by
Alx) = X — Xtrain )
Otrain

and is applied to both training and test data points.

A compact overview of the spatial and temporal resolu-
tions of the data sources used is shown in Table 2. In addition,
for each data source, the applied data preprocessing steps are
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Data preparation Spatial cross-validation

TeSt mOdeI | N

Pairing at !
locations z, times ¢ Train model \
(Sect. 2.2)

| I

H|ds mau e Jo} speisal auljadid

Filter data, Normalization with

e.g. threshold respect to training
for ga-value data via Eq. (4) /
Build time- Spatially split Dy
contiguous into training and <~~~

datasets Dy test data

Figure 2. A flowchart for all data processing steps. The left col-
umn shows the construction of the time-contiguous datasets Dy .
For preprocessing, the data are filtered according to the criteria in
Sect. 2.2; see also Table 2. Evaluating the performance of models
on Dy i is done via spatial cross-validation; see Sect. 3.2. This
pipeline is outlined in the right column.

listed. Moreover, the overall workflow for all data-processing
steps is illustrated in the flowchart in Fig. 2.

3 Experimental setup

In Sect. 3.2, we describe and discuss the experiments con-
ducted to inspect our main research questions. Before that,
we explain how features were selected for these experiments.
Afterwards, we discuss different performance measures and
loss functions used to evaluate the quality of the models’ pre-
diction of surface NO» on test data points.

3.1 Feature selection

In this study, we considered 23 different features from which
we selected 17 to build the feature vectors used in Eq. (3)
as inputs for the machine learning models. The selected and
excluded features are listed in Table B1 and are used in Ex-
periment 1 and Experiment 2; see Sect. 3.2. For the fea-
ture selection, we proceeded as follows: on the data basis
Dy 1, we considered 200 different splits into 90 % training
and 10 % test stations. For the training data of each split, we
calculated the Pearson correlation (see Sect. 3.3 for a defini-
tion) between in situ measurements of surface NO; and the
respective feature. We selected features which had an abso-
lute mean correlation larger than 0.1. It is worth mentioning
that for all 17 of the aforementioned features, the correla-
tion was in fact larger than 0.1 in 98 % of the splits, whereas
this was never the case for the remaining six features. More
complex feature selection strategies could be applied in the
future. However, during this study we focus on the benefits
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Table 1. Size of time-contiguous datasets Dy i, which consist of data points for which valid measurements also exist for at least N — 1
previous hours, but only k values are used for constructing the time-contiguous feature vector in Eq. (3). Note that the size is independent of
the time contiguity k. The overall considered time period covers January 2021 until November 2022.

N 1 2 3 4 5
1341642 959458

Number of data points 699777 505719 356117

Table 2. Overview of spatial and temporal resolutions of the data sources used. Applied preprocessing steps are also listed for each data
source.

NO; VCDs Surface NO; ERAS features

3.5km x 8 km
(latitude x longitude)

28 km x 22 km
(latitude x longitude)

Spatial resolution Local measurements

Temporal resolution One measurement per hour

and location

Hourly averages One measurement per hour

and location™

Preprocessing Missing values removed
Negative values removed

Threshold ga value: 1

Missing values removed
(No negative values exist)

(No missing values exist)

Preprocessing during cross-validation =~ Normalization via Eq. (4) Normalization via Eq. (4)  Normalization via Eq. (4)

* Exception: ERAS evaporation is available as hourly averages.

of time-contiguous inputs and not on the optimal choice of
input features.

3.2 Experiments

Recall from Sect. 2.3 that 2y is the set of locations and mea-
suring times (z,¢) at which all measurements are also avail-
able at (N — 1) previous hours. Note that Q5 does not pa-
rameterize a single dataset but N different datasets Dy  :
Qy — RP* x R via

fz,t)
fz,t=1)

Dy : (z,1) —> ,s(z,0) |,

FGt—k+1)

which only differ in the time contiguity k € {1,2,..., N} of
the time-contiguous feature vector (f(z, t),..., flz,t —k+
1))", defined in Eq. (3).

As mentioned in the Introduction, we wish to inspect how
well a machine learning model is able to make predictions of
surface NO; at locations from which it has not seen train-
ing data. This is why we use multiple (six-times) 10-fold
spatial cross-validations in all experiments. This involves
splitting the dataset 60 times randomly into 90 % training
and 10 % test data based on the locations of the in situ sta-
tions; see Fig. 1b for a visualization of a single split. Per-
formance is measured on all the different test datasets and
averaged. Due to the limited number of available in situ
stations, significant variance in the model’s performance is
expected across different splits. Therefore, multiple 10-fold
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spatial cross-validations provide a more reliable estimate of
the model’s performance compared to a single 10-fold spatial
cross-validation. In all that follows, whenever it is mentioned
that a machine learning model is trained or tested on Dy , it
implies that the model is trained or tested solely on those data
points in Dy x corresponding to the designated training or
test stations. Note that for fixed N, surface NO; that is to be
predicted in Dy x is exactly the same for all the different k.
Furthermore, for all models, the same 60 splits into training
and test stations are considered for spatial cross-validation,
which ensures perfect comparability. For a basic outline of a
cross-validation pipeline, see Fig. 2.

Let us recall from Sect. 1.1 that our main research ques-
tion is whether time-contiguous inputs for machine learning
models enable higher accuracy for predicting surface NO,.
We propose two experiments to gain insight into this ques-
tion.

Experiment 1. Do time-contiguous input features
provide additional information?

For fixed N, consider the datasets Dy for differ-
ent time-contiguities k =1, ..., N. The chosen machine
learning model, such as a random forest regressor, is
trained and tested on Dy  for all 60 splits from spatial
cross-validation. A comparison is made with respect to
different k. Fixing N ensures that, regardless of k, the
same ground truth (surface NO») is predicted for com-
puting the cross-validation scores on the test sets. Ad-
ditionally, all models are trained with the same num-
ber of training data points, eliminating any advantage
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or disadvantage due to differing dataset sizes. Thus, this
experiment provides pure insights into the information
gain provided by time-contiguous inputs. We conduct
this experiment for all N € {2, 3,4, 5}.

Experiment 2. Are time-contiguous input features
beneficial in spite of a smaller available dataset?

In the first experiment, the models were trained on the
same amount of training data, with the time contiguity k
being the only variable. However, for smaller k there is
much more data available that can be used for training
the respective models; see Table 1. Therefore, we need
to extend the first experiment as follows: we still test
performance on Dy  for a fixed N. But for different k,
we train models on Dy for all M € {k,k+1,...,5},
i.e., with a different amount of training data. Note that
in Experiment 1, M has always been set to N. These
additional investigations are crucial to evaluate whether
time-contiguous inputs are beneficial for predicting sur-
face NO,. Even if time-contiguous inputs provide ad-
ditional information (as seen in the first experiment),
why should one use them if training with less or even
no time contiguity on larger datasets yielded better re-
sults? Again, we conduct this experiment for all N €
{2,3,4,5}, where N determines the test datasets.

In a third experiment, we analyze the influence of some
features on the performance of the machine learning models.
Since testing all the different combinations of input features
for all 15 different training and test cases in Experiment 2
would be out of the scope of this study, we focus only on
the influence of the tropospheric NO, VCDs, surface height,
and latitude. Note that longitude has not been included dur-
ing feature selection due to a low correlation with surface
NO;. Tropospheric NO, VCDs are the main consideration
within this third experiment since they represent the feature
which shows, among all considered input features, by far the
best Pearson correlation with surface measurements of NO,,
namely around 0.626; see also Table B1. Although latitude
only has a small variation over South Korea and hence a pre-
sumably small impact on predicting surface NO;, we consid-
ered it (and also longitude) during feature selection to check
whether it provides some helpful information. Other studies
have also used spatial coordinates to predict surface NO»,
mainly over large regions (Ghahremanloo et al., 2021; Li et
al., 2022; Qin et al., 2020) but also over smaller regions, such
as over Switzerland (de Hoogh et al., 2019). Using spatial
coordinates as inputs for a model, however, carries the risk
of spatial overfitting, which could make it more difficult to
predict surface NO, outside of South Korea with the same
model. This is why we inspect whether the models perform
equally well over South Korea without having latitude and
surface height as inputs.
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Experiment 3. What is the influence of tropospheric
NO;, VCDs, latitude, and surface height on the perfor-
mance?

We compare four different settings of input features:

Setting 1. All features selected in Sect. 3.1 are in-
cluded, which is exactly the same setup as for Ex-
periments 1 and 2.

Setting 2. VCDs are excluded as an input feature.
Setting 3. Latitude and surface height are excluded.

Setting 4. VCDs, latitude, and surface height are ex-
cluded.

We also conduct Experiment 2 for Settings 2, 3, and 4
and draw a comparison between these settings regarding
different performance measures. Further, within these
four settings, we inspect the models’ ability and reli-
ability in achieving performance gains when including
time-contiguous input features.

3.3 Performance measures

Throughout this section, x™ € R” is a vector consisting of n
in situ observations of surface NO,, where each coefficient
x; (ti,zi) = s(t;, z;) corresponds to a measurement that has
been taken at a given time #; and location (longitude, lati-
tude) z; of a given in situ station. For the sake of simpler
notation, we just write x; , neglecting the dependence on f;
and z; within the notation. Similarly, x € R" denotes the pre-
dictions for x™ made by a machine learning model, such as
linear regression or random forests. In the following, we dis-
cuss different performance measures that quantify the gap
between the model’s prediction x for x', the observed sur-
face concentration of NO>.

As pointed out in the Introduction, spatial cross-validation
is considered within this research; i.e., data are split into
training and test data station-wise. Since the overall number
of in situ stations is relatively small, namely 637, the statis-
tical properties of surface NO, for different test sets are very
likely to differ. In particular, the mean or standard deviation
of surface NO, of different test sets will vary. Hence, in or-
der to compare the quality of surface NO, predictions on dif-
ferent test sets, it is reasonable to use error measures that are
more robust or even insensitive to different data distributions.

In order to ensure better comparability of performances
of a model on different test sets, one should not use abso-
lute performance measures such as the mean absolute error
or root mean square error, since they depend on the scale of
the different test sets.

At first glance, it seems reasonable to consider the mean
percentage error:

n T
+ |xi — xi|
MPE(x,x):Z—Tl .

i=1 |xi

Atmos. Meas. Tech., 18, 3747-3779, 2025



3756 J. Godeke et al.: Hourly surface NO; retrieval from time-contiguous features

The reason why the mean percentage error enables us to com-
pare performances on different test sets is the following prop-
erty: for every ¢ € R” with ¢; # 0 it holds that

MPE (ch, cx) = MPE (xT, x) ,

where cx denotes pointwise multiplication. However, since
many in situ measurements xl.T are very close to or equal
to zero, the mean percentage error becomes unstable. As a
trade-off, we consider performance measures E (xT, x) that
are scale-insensitive; i.e., for every A € R ~ {0} it holds that

E (Axux) —E (xT,x) .

The normalized mean absolute error (NMAE) can be writ-
ten as

oy
) |xl' — Xl
NMAE (xT,x) — =l

P )
> I
i=1

so the NMAE is just the mean absolute error divided by the
mean absolute value of the ground truth x*. If normalization
by the standard deviation of x™ instead of its mean were con-
sidered, this would lead to a measure similar to the coefficient
of determination R?; see Appendix A. Note that in contrast
to the mean absolute error, NMAE is scale-insensitive. Sim-
ilarly, we define the normalized mean square error (NMSE)
as

n . )
]

2 : |x,' — xil

i=1

noo
Z |x,‘ 2

i=1

NMSE (xT,x) -

Whenever we talk about the correlation between xT and
x, we mean the Pearson correlation coefficient (C), which is
defined as

C( + ): cov (x7,x)

S o(xf)owx)’

where cov (x*, x) denotes the covariance between x' and x
and o (xT), and o (x) is the standard deviation of x* and x,
respectively. It should be noted that this is not a performance
measure in the sense that x” = if and only if C (x¥,x) =1.
Nevertheless, it quantifies the linear relationship between x
and xT. Furthermore, it is frequently used in the literature,
which is the reason why we consider it in our work, too.

We considered two further scale-insensitive performance
measures, the coefficient of determination (R?) and the index
of agreement (IOA), which are defined in Appendix A.
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4 Machine learning models considered

As mentioned in the Introduction, numerous machine learn-
ing models have been considered for predicting surface NO,
in the literature. Examining the benefit of time-contiguous in-
put features for all the different models is beyond the scope
of this research. This is because fair comparisons require in-
dividual hyperparameter tuning for the models, with different
time contiguities of the input features. Therefore, we restrict
our attention to one approach that, on the one hand, has per-
formed well in the literature and, on the other hand, does not
have many hyperparameters to tune. If there were many hy-
perparameters to be tuned and the models’ performance were
very sensitive to the choice of these hyperparameters, there
would be a risk that better performance was achieved only
due to better hyperparameter tuning. In this study, we use
a random forest regressor, which we describe in Sect. 4.2,
and present the selected hyperparameters. As a reference, we
consider a simple linear regression approach, which we re-
cap first in the next section. At the outset of this study, we
also experimented with neural networks (NNs) to estimate
surface NO,. While we observed similar results to those ob-
tained with random forests, the training time for NNs was
considerably longer. Therefore, and due to the large num-
ber of hyperparameters and architectural design choices for
NN, conducting as many experiments with NNs as we did
with random forests would have been outside the scope of
our study. This is why we chose to focus on random forests,
but we expect similar performance gains for neural networks
as well.

4.1 Linear regression

Although it has already been shown, e.g., by Ghahremanloo
et al. (2021), that linear regression models are not the best
for predicting surface NO,, we consider an ordinary least
squared regressor as a reference in our study, mainly because
it has no tunable hyperparameters, such as regularization pa-
rameters, or architecture parameters like those in neural net-
works (e.g., number of layers, width of layers, activation
functions, skip connections). Thus, it provides a clear view
on the question of whether time-contiguous inputs are bene-
ficial for this linear regression model. During this study, we
used the ordinary least squares regression model provided by
the Python scikit-learn package (version 1.2.2, Pedregosa et
al., 2011). In our case of predicting surface NO, from time-
contiguous inputs, the linear regression model is a parame-
terized function

g :RPF R
y+— Ay +b,

where y = (f(z, t),...f(z, t—k+1))T is a (time-contiguous)

feature vector defined in Eq. (3), A is a 1 X pk matrix, and
b € R is a bias term. Let (y,, Sn),],\;] be training data, where
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yn 1s a feature vector at location z, and time #, and s, the
corresponding in situ measurement of surface NO; at time #,,.
Training @y then means to search for a parameter 6 = (A, b)
that solves the following minimization problem:

- 2
min — .
b ;Wﬂ (Vn) — sl

We choose to minimize the squared error since the compu-
tation time is much shorter compared to that of other losses
such as the absolute error.

4.2 Random forests

There are two main reasons why random forests, a machine
learning model originally proposed by Breiman (2001), are
considered within this research. First, they have already
proven to be powerful for predicting surface NO; in various
studies; see, for example, Di et al. (2020), Ghahremanloo et
al. (2021), Li et al. (2022), and Huang et al. (2023) on OMI
and TROPOMI data and Yang et al. (2023b) on GEMS data.
Second, the studies of Probst et al. (2018, 2019) suggest that
random forests are less tunable compared to other machine
learning approaches. “Tunable” is defined as the extent to
which the performance of a random forest with typical de-
fault hyperparameters can be enhanced by adjusting (tuning)
those hyperparameters. As discussed before, this reduces the
risk of drawing incorrect conclusions about the benefit of us-
ing time-contiguous inputs.

In fact, according to Probst et al. (2018), there are mainly
four hyperparameters that empirically determine the perfor-
mance of a random forest:

— The first hyperparameter is the number of randomly
drawn features considered at every split of a tree. In
the Python scikit-learn software package (version 1.2.2,
Pedregosa et al., 2011) that we use for this study, it
is called max_features. However, in several other
software packages, it is denoted as mt ry.

— The second hyperparameter is the number of trees that
make up the random forest. In scikit-learn it is called
n_estimators. To be precise, it is not actually a hy-
perparameter, since more trees are in general more ad-
vantageous; see, e.g., Genuer et al. (2008) or Scornet
(2017).

— The third hyperparameter is the maximal number of
(randomly drawn) data samples from the training set
that is used for the construction of an individual tree,
denoted as max_ samples in scikit-learn.

— The fourth hyperparameter is the minimal num-
ber of observations that lands in a leaf node dur-
ing the training process. In scikit-learn it is called
min_samples_leaf.
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In their experiments, Probst et al. (2018) observed
that max_features had the biggest influence on the
performance and the influence of max_samples and
min_samples_leaf was smaller. This is why, during hy-
perparameter tuning, we mainly focus on max_features
but also consider different values for max_samples. Re-
garding max_samples, we consider values between 50 %
and 100 % of the size of the training dataset. On the other
hand, for max_features, values between 1 and (pk)/3
are considered, where pk is the number of inputs for the
model, i.e., the dimension of the time-contiguous feature
vector in Eq. (3). The value (pk)/3 is the default value of
scikit-learn. Genuer et al. (2008) suggested /pk for prob-
lems in which the number of data points is much larger
than the number of input features pk, which is clearly the
case in our study (hundreds of thousands of data points
versus less than 90 input features). As pk > 17, the value
J/pk is always within the considered interval during op-
timization. In fact, «/pk turns out to be quite close to
the optimal choice in our hyperparameter study. Regard-
ing min_samples_leaf, we inspect two typical default
values, namely 1 and 5. Following the rule “the more,
the better” for the number of trees (n_estimators) in
the forest, we use 8000 trees while tuning the other hy-
perparameters. Hyperparameter selection is made accord-
ing to the spatially cross-validated (10 splits) NMSE, lead-
ing to max_features =2, 3, 3, 3, 4 for time contigu-
ity k=1, 2, 3,4, 5 and further min_samples_leaf and
max_samples =5 using 100 % of the size of the training
data. All remaining hyperparameters are always set to the de-
fault values within scikit-learn.

With 8000 trees, we chose a very high value for the num-
ber of trees, which may require an explanation. The good
news is given first: comparable results can be obtained with
far fewer trees in the forest. However, for hyperparameter
tuning and to gain a clearer insight into the benefit of time-
contiguous features, it is reasonable to choose a large num-
ber of trees, which we illustrate in the following: the random
forest algorithm in scikit-learn is not deterministic, meaning
that if the model is trained on the same training data multi-
ple times, the trained forests will differ from each other, also
causing the performance of the respective test dataset to vary.
However, we observe that with a higher number of trees in
the forest, the variance in the performance decreases for all
considered performance measures. In Fig. C1 in Appendix C,
we illustrate this effect using a single split into training and
test stations. Two random forests, one with 30 trees and the
other with 8000 trees, are each trained and tested 20 times
on the same data, similar to Experiment 2, but with 20 rep-
etitions of the same split instead of 60 different splits. We
observe that with 30 trees the scores on the test data, such
as Pearson correlation, NMSE, or NMAE, exhibit some vari-
ance. In contrast, there is barely any variance in the case of
8000 trees. This has the advantage that for each split into
training and test stations, the random forest only needs to be
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trained once to get an interpretable result. Thereby, it also
reduces the risk of choosing non-optimal hyperparameters.
Therefore, during all experiments, we set the number of trees
to a very large number (n_estimators = 8000) to stabilize the
non-deterministic behavior of training a random forest. Note
that stability can probably be achieved with far fewer than
8000 trees. However, in order to reduce the bias from the
observation above for a single split and single choice of hy-
perparameters, we choose a very large number that is still
manageable regarding storage and computation time.

5 Results

Before presenting the results and starting the discussion, it is
important to recall that for a given spatial split into train-
ing and test in situ stations, training or testing a machine
learning model on the dataset Dy x means that only the data
points corresponding to the training or test station locations
are used, respectively. Furthermore, for fixed N, the in situ
measurements s(z, t) of surface NO, (ground truth) that are
to be predicted in Dy j are exactly the same for all the dif-
ferent k. Further, recall that Dy x can be thought of as the set
of data points for which measurements at all N — 1 previous
hours are also guaranteed to be available, but only k — 1 val-
ues are added to the time-contiguous feature vector in Eq. (3).

In the following discussion of the experiments, introduced
in Sect. 3.2, we focus exclusively on the results when Dy j is
used for constructing test datasets, i.e., for N =4 only. This
is because we observe a similar benefit from a larger time
contiguity k when evaluating the machine learning models’
performance on Dy x for N € {2, 3, 5}. As a further example,
we provide detailed results for N =2 in Figs. C2 and C3 in
Appendix C.

5.1 Experiment 1: time-contiguous inputs provide
additional information

In Experiment 1, we train linear regression models and
random forests on D4y for different time contiguities k €
{1,...,4} of the input features. The test performances of these
models are evaluated via six-times spatial 10-fold cross-
validation and are illustrated in Figs. 3b and 4b, respectively.
Specifically, we show average Pearson correlation, NMSE,
and NMAE over all 60 splits into training and test stations.
We observe that, on average, both linear regression and ran-
dom forests benefit from a larger time contiguity k regarding
all considered performance measures. For example, the av-
erage correlation strictly increases from 0.702 for k=1 to
0.737 for k =4 in the case of linear regression, and for ran-
dom forests, it increases from 0.802 to 0.817. Further, the av-
erage NMSE decreases from 0.196 to 0.171 for linear regres-
sion and from 0.139 to 0.129 for random forests. Therefore,
both models benefit from larger time contiguity, but linear
regression shows greater improvement, which is expected as
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it cannot model non-linear effects. Furthermore, we observe
that the larger k, the smaller the improvement compared to
the case k — 1, which is to be expected since input features at
time ¢ — k presumably have a decreasing impact on surface
NO; at time ¢ for larger k.

Although the visualization of average performances sug-
gests an overall trend, it does not clearly indicate whether
larger time contiguities (k > 1) consistently improve perfor-
mance across all 60 station splits during cross-validation
compared to k = 1. However, we found that this improvement
holds true for all 60 station splits. The performance curves
for individual splits are more or less parallel to the average
curve. In Figs. 3a and 4a, we illustrate this for exemplary sta-
tion splits, where only five splits are shown for better visibil-
ity. To quantify the gain in performance for individual splits
between using time contiguity k = 1 and larger time contigu-
ities k > 1, we proceed as follows: for a given test dataset, let
E be the test performance (e.g., correlation) achieved by the
model using time contiguity k for its inputs. We define the
performance gain of this model over the case with no time
contiguity k = 1 in Experiment 1 as

E|— E;

> &)
E; — Eopt

where E,p is the optimal value of the respective perfor-
mance measure; €.g., Eqp = 1 for the Pearson correlation or
Eqpt =0 for NMSE and NMAE. The average performance
gains for the cases k € {2,3,4} compared to k=1 are de-
picted in Figs. 3c and 4c for linear regression and random
forests, respectively. In both cases and for all performance
measures, the highest average performance gain is achieved
with k = 4. Specifically, linear regression models achieve av-
erage performance gains of 15.2% in correlation, 13.0 %
in NMSE, and 7.7 % in NMAE, whereas random forests
achieve gains of around 7.8 %, 7.0 %, and 4.7 %, respectively.
It is noteworthy that, for linear regression, the performance
gain across all 60 splits is approximately at least 12.0 % in
correlation, 10.0 % in NMSE, and 6.1 % in NMAE. On the
other hand, random forests achieve performance gains of at
least 4.6 %, 4.0 %, and 3.1 %, respectively. Therefore, utiliz-
ing a larger time contiguity consistently provided beneficial
additional information for both linear regression and random
forest models.

Additionally, for kK =1 and the best time contiguity k =4,
we examine for each split the orthogonal regression curve
between the models’ predictions and ground truth measure-
ments of surface NO; on the corresponding test dataset. For a
fixed split, this is illustrated as a two-dimensional histogram
in the first row of Fig. 5 for linear regression and in Fig. 6 for
random forests. Although the histograms are restricted to sur-
face NO» and predictions between 0 and 40 pgm~> for better
visibility, all data points are taken into account to determine
the orthogonal regression curve. It becomes evident that both
the slope and the bias of the orthogonal regression curve im-
prove for k =4 (panel b) compared to k =1 (panel a), where

https://doi.org/10.5194/amt-18-3747-2025
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Figure 3. Linear regression models have been trained and tested on datasets Dy ; for 60 different splits into training and test stations, with
different time contiguity & of the input features. In panel (a), performances on test sets are shown for five exemplary station splits with respect
to three performance measures. Panel (b) shows the average performance over all 60 splits, with error bars illustrating the standard deviation.
Panel (c) shows the average performance gain relative to the case k = 1; see Eq. (5) for the definition of performance gain. Across each row,
the same performance measure is considered. The exact values in panel (b) can be found in Table B2, columns Dy 1 t0 D4 4.

improvement means that the slope becomes closer to 1 and
the bias closer to 0. In the second row of these figures, we
plot the mean orthogonal regression curve, which represents
the mean slope and mean bias of all 60 orthogonal regression
curves. An upper bound for all these curves is represented by
the line with the maximal slope and bias across all splits (note
that maximal slope and bias might not occur for the same
split). Similarly, a lower bound is obtained, and both bounds
are shown within the same plots. Both the mean orthogonal
regression curve and the upper and lower bounds improved
for k = 4 for both linear regression and random forests. How-
ever, the improvement is larger for the linear regression mod-
els, which is consistent with the previous discussion on per-

formance measures, such as NMSE.

https://doi.org/10.5194/amt-18-3747-2025

We want to stress another observation: looking at the up-
per and lower bounds of the orthogonal regression curves,
we see that all slopes are smaller than 1, whereas all biases
are positive. Further, there is a noticeable gap towards the
identity line. Regarding the latter, one possible explanation
could be that spatially splitting the dataset into training and
test sets causes a large difference in the statistical proper-
ties of the training and test sets. This may simply be because
there are overall just 637 different in situ stations available,
so the law of large numbers may not yet apply well when
sampling 10 % of test stations. However, this does not ex-
plain why the slopes and biases are not more symmetrically
distributed around slope 1 and bias 0. Studying the impact of

the number of available in situ stations and their locations on

Atmos. Meas. Tech., 18, 3747-3779, 2025
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Figure 4. Same as Fig. 3 but for random forests trained and tested on datasets Dy ; for 60 different splits into training and test stations,
with different time contiguity & of the input features. In panel (a), performances on test sets are shown for five exemplary station splits with
respect to three performance measures. Panel (b) shows the average performance over all 60 splits, with error bars illustrating the standard
deviation. Panel (c) shows the average performance gain relative to the case k = 1; see Eq. (5) for the definition of performance gain. Across
each row, the same performance measure is considered. The exact values in panel (b) can be found in Table B3.

the slopes and biases of these orthogonal regression curves the models’ input is more beneficial compared to time con-
will be an interesting task for future work. tiguity k=1, we need to consider that for k=1, one can
also train on these larger datasets. It should be noted that
we have also considered training on smaller datasets, thus on
Dy x with M > N. However, non-competitive results were
obtained for random forests in these cases. For linear re-
gression, performances were also worse but with some ex-
ceptions regarding the NMAE; see Fig. C2 in Appendix C.
This is why we restrict the following discussion to training
on larger datasets (M < N) only.

Focusing again on the test case N =4, we compare the
performance on test sets in Dy ; of models trained on larger
datasets Dy i for all M e{k,...,4} and all k € {1,...,4}.
Note that for M =4, this is just the setting of Experiment 1.
Altogether, 10 different linear regression models and 10 ran-

5.2 Experiment 2: time-contiguous inputs are
beneficial in spite of a smaller dataset

In Experiment 1, the models were trained and tested on Dy
for fixed N but with a different time contiguity k € {1, ..., N}
of their input features. This means that for a fixed station
split, the number of training data points was the same for all
the different k, since the size of Dy ; only depends on N
(see Table 1). However, for M € {k, ..., N — 1}, there would
be significantly more data points available in Dy, ; than in
Dy k, which could be used during training. To make a fair
conclusion about whether a larger time contiguity (k > 1) in

Atmos. Meas. Tech., 18, 3747-3779, 2025 https://doi.org/10.5194/amt-18-3747-2025
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Figure 5. Linear regression models trained on Dy ; with time contiguities (a) k = 1 and (b) k = 4. First row: for a fixed split (number 42) into
training and test stations, the models’ predictions on the corresponding test set D4 j are compared with in situ measurements of surface NO;
(ground truth) in a two-dimensional histogram. Second row: for all 60 station splits, orthogonal regression is considered between predicted
and ground truth surface NO,. Mean orthogonal regression refers to the line of average slope and bias over all 60 regression lines (blue line).
The regression line for the example in the first row is also shown (red line).

dom forest models are used to make predictions of the same
ground truths in the split-dependent test sets Dy k.

Average performance measures from spatial cross-
validation are shown in Fig. 7a for linear regression and in
Fig. 8a for random forests. We observe that when training
with time contiguity k=1, i.e., on Djs 1, the best results
are obtained for M = 4. In other words, there is no improve-
ment on the test set Dy if training is done on the larger
datasets (M € {1, 2,3}). There is one exception for random
forests with the Pearson correlation, where training on D3 j
yields slightly better results on average compared to training
on Dy ;. However, this difference is quite small, as shown
in Fig. 8a. Moreover, for all performance measures, the best
performance across all 10 different training cases is achieved
by the models trained on D4 4 with time contiguity k =4.
Note that this is one of the training settings already consid-
ered in Experiment 1.

For individual splits, we consider the performance gains
that models with time contiguity k > 1 achieve compared to
models with no time contiguity (k = 1). Since, in contrast to
Experiment 1, we are now dealing with four different train-
ing cases for k =1, we slightly adapt the definition of per-
formance gains from Eq. (5): for a given split into train-
ing and test stations and fixed N, let Eys ; be the test per-

https://doi.org/10.5194/amt-18-3747-2025

formance (e.g., correlation) on Dy ; achieved by a model
trained on Dy x. We define the performance gain achieved
by this model in Experiment 2 as

min{M:Pe{l,...,S}}. (6)
E P,1— Eopt
In other words, for each split, the performance gain is always
computed with respect to the best model trained without time
contiguity (k =1).

Average performance gains are depicted in Figs. 7b
and 8b, which differ only slightly from those in Experi-
ment 1, as models trained on Dy | are better, on average, than
models trained on Djs 1. Linear regression models trained
with k =4 still achieve performance gains of 15.0 % in corre-
lation, 12.8 % in NMSE, and 6.6 % in NMAE, whereas ran-
dom forests achieve average gains of around 7.3 %, 6.6 %,
and 4.7 %, respectively. Again, we observe that improve-
ments over k=1 are not only true on average, but also for
each individual split: Figs. 7c and 8c show the minimal per-
formance gains over all 60 splits. It shows that linear re-
gression models for k =4 always achieve an improvement
of at least 11.7 % in correlation, 9.1 % in NMSE, and 4.4 %
in NMAE. Random forests achieve gains of at least 2.5 %,
3.0 %, and 3.1 %, respectively. Hence, models with a larger

Atmos. Meas. Tech., 18, 3747-3779, 2025
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Figure 6. Same as Fig. 5 but for random forests trained on D4 ) with time contiguities (a) k=1 and (b) k =4. First row: for a fixed
split (number 42) into training and test stations, the models’ predictions on the corresponding test set Dy j are compared with in situ
measurements of surface NO; (ground truth) in a two-dimensional histogram. Second row: for all 60 station splits, orthogonal regression is
considered between predicted and ground truth surface NO;. Mean orthogonal regression refers to the line of average slope and bias over all
60 regression lines (blue line). The regression line for the example in the first row is also shown (red line).

time contiguity k > 1 provide reliable and statistically signif-
icant improvements (with respect to the performance mea-
sures) compared to models with no time contiguity (k =1).
Similar observations are made for the coefficient of deter-
mination and the index of agreement, two further perfor-
mance measures. Definitions can be found in Appendix A
and achieved performances in Tables B2 and B3 in Ap-
pendix B.

So far, we have discussed the test case N =4 in detail. In
the remainder of this section, we briefly summarize our simi-
lar observations for general N € {2, 3,4, 5}: for all N, we ob-
served that the best test performances on Dy  are achieved
when training on Dy y, i.e., with time contiguity k = N. If
N =35, we observe that there is barely any difference between
training on Ds 5 and training on Dy 4, which implies that it is
not required to use a larger time contiguity than k =4. Also,
for the general test case N, models trained with time conti-
guity k > 1 achieve reliable performance gains over models
trained with k= 1. Results for the test case Djy are illus-
trated in Figs. C2 and C3 in Appendix C.

Altogether, our findings demonstrate that it is indeed re-
liably beneficial to use time-contiguous input features for
predicting surface NOy, in spite of a smaller available train-
ing dataset, which answers our main research question. As a

Atmos. Meas. Tech., 18, 3747-3779, 2025

rule of thumb, consider the case where surface NO, is to be
predicted at a given location and time for which input fea-
tures are also available at j > 1 previous hours. Then use
j' =min{3, j} hours, in addition to the features at the current
time, as input for a random forest that has been trained with
time contiguity k= j'+ 1 on a dataset Dy . If features are
not available at previous hours, use the random forest that
has been trained without time contiguity. We have demon-
strated within this experiment that time-contiguous models
provide valuable support whenever they are applicable. An
interesting future task would be to inspect whether a similar
rule can be observed for other machine learning approaches.

Within this section, we analyzed the difference between
time-contiguous models in terms of prediction accuracy.
However, we did not systematically assess other potential
differences that may arise when switching between models
trained with different time-contiguous features. For practi-
cal applications, when combining these models to create sur-
face NO, concentration maps, it remains an interesting av-
enue for future work to investigate whether the ensemble of
such models yields consistent combined spatial patterns in
predicted surface NO;.

https://doi.org/10.5194/amt-18-3747-2025
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Figure 7. Linear regression models trained on Dy  for M < 4 with different time contiguities k. Performance on D4 j has been evaluated
through six-times 10-fold spatial cross-validation. Panel (a) shows the average performance over all 60 station splits for three performance
measures. Panel (b) shows the average performance gain relative to the best case of k = 1; see Eq. (6) for the definition of performance gain.
Error bars illustrate the standard deviation. Panel (¢) shows the minimal performance gain. Across each row the same performance measure
is considered. The exact values in panels (a) and (b) can be found in Table B2.

5.3 Experiment 3: influence of tropospheric NO,
VCDs, latitude, and surface height

In Experiment 3, we compare the outcomes of Experiment 2
in four different settings regarding the input of the models,
as described in Sect. 3.2:

Setting 1. All features selected in Sect. 3.1 are in-
cluded as input features, which was the setting in Ex-
periments 1 and 2.

Setting 2. VCDs are excluded as an input feature.
Setting 3. Latitude and surface height are excluded.

Setting 4. VCDs, latitude, and surface height are ex-
cluded.

In this section, we focus exclusively on random forests and
discuss the test results on Dy j for the four different settings
above.

https://doi.org/10.5194/amt-18-3747-2025

Setting 1 is discussed in the previous section, where the re-
sults are illustrated in Fig. 8. Equally detailed illustrations for
the remaining three settings are provided in Appendix D. A
direct comparison between the four settings is made in Fig. 9:
panel (a) shows the average Pearson correlation, NMSE, and
NMAE achieved by random forests within these four set-
tings, while panel (b) displays the corresponding average
performance gains. For clarity, we only include the results
for the models trained on Dy for different time contiguities
k € {1,...,4}, excluding the models trained on larger datasets
Dy  (similar to Experiment 1).

In Setting 3, where latitude and surface height are ex-
cluded, the models achieve similar results to those in the
original Setting 1. Results are even slightly better without us-
ing these coordinates if k > 1. Moreover, the benefit of using
time-contiguous input features is larger in Setting 3: average
performance gains, calculated with Eq. (6), achieved when
training on Dy j are 9.3 % in Pearson correlation, 8.3 % in

Atmos. Meas. Tech., 18, 3747-3779, 2025
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Figure 8. Same as Fig. 7 but for random forests trained on Dyy ; for M <4 with different time contiguities k. Performance on Dy ; has
been evaluated through six-times 10-fold spatial cross-validation. Panel (a) shows the average performance over all 60 station splits for three
performance measures. Panel (b) shows the average performance gain relative to the best case of k =1; see Eq. (6) for the definition of
performance gain. Error bars illustrate the standard deviation. Panel (c¢) shows the minimal performance gain. Across each row the same
performance measure is considered. The exact values in panels (a) and (b) can be found in Table B3.

NMSE, and 5.7 % in NMAE. The minimum gains across all
60 station splits are 5.4 %, 3.7 %, and 3.8 % in correlation,
NMSE, and NMAE, respectively (see Fig. D1). This implies
that, similar to Setting 1, including time-contiguous features
also provides a reliable improvement in Setting 3. This ob-
servation that coordinates are not required as inputs to make
good predictions is promising, since it presumably increases
the models’ chances to also perform well outside of South
Korea. Nevertheless, this hypothesis remains to be investi-
gated within further research.

When excluding the tropospheric NO, VCDs (Setting 2),
all performance measures decline, which is expected be-
cause the VCDs correlate the most among all input features
with the surface NO, measurements. Despite this, the perfor-
mances remain acceptable. For instance, with time contigu-
ity k = 1, the average Pearson correlation in Setting 2 is 0.78,
whereas it is about 0.8 in Settings 1 and 3, when VCDs are in-
cluded. Interestingly, without VCDs in Setting 2, the average

Atmos. Meas. Tech., 18, 3747-3779, 2025

performance gains achieved with larger k are significantly
lower: in Setting 2, the average performance gain is around
2 %, whereas in Settings 1 and 3, it is 3.5 and 4.5 times larger,
respectively. Consequently, for time contiguity k = 4, the dif-
ference in performance is larger: models in Setting 2 achieve
an average correlation of 0.786, while those in Settings 1
and 3 reach almost 0.82. When tropospheric NO, VCDs, lat-
itude, and surface height are excluded in Setting 4, not only
do performances weaken further, but the performance gains
also drop below 1 %. In Setting 4, the average correlation is
below 0.765 for all k. Similar trends are observed for NMSE
and NMAE. This indicates that spatial coordinates play a
more critical role when VCDs are excluded, which presum-
ably leads to models that are less capable of generalizing to
locations outside of South Korea. Inspecting the connection
between including VCDs and the model’s ability to general-
ize to locations outside of South Korea remains an interesting
task for the future.
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Figure 9. In the four settings of Experiment 3 (named in the legends of the plots), random forests are trained and tested on Dy ;. for different
time contiguities k. Performance is evaluated through six-times 10-fold spatial cross-validation. Panel (a) shows the average performance
over all 60 station splits achieved within these four settings. Three performance measures are considered, one for each row. Error bars
illustrate the standard deviation. Panel (b) shows the average performance gain relative to the best case of k = 1; see Eq. (6) for the definition

of performance gain.

Furthermore, when tropospheric NO, VCDs are excluded,
in both Setting 2 and Setting 4, the use of time-contiguous
inputs no longer provides a reliable improvement. Across the
60 station splits, the performance gain is not always positive,
which can be seen in Fig. 9b. Due to this observation that
improvements by time-contiguous inputs are only reliable
when including VCDs, the following question arises: how
is performance affected if VCDs are treated as the only time-
contiguous input feature? The experiments covering this case
are illustrated in Fig. D4 in Appendix D. We observe that
the average performances and average performance gains are
higher if the other features are also considered time contigu-
ous. Therefore, one future task could be to find the optimal
choice of time contiguity k for each input feature individu-
ally.

At the end of this section, we show in Fig. 10 an example
of how predictions of surface NO, appear on a map for the
four investigated settings. We consider latitudes and longi-

https://doi.org/10.5194/amt-18-3747-2025

tudes within 32°N, 39° N and 124°E, 132°E, respectively.
GEMS tropospheric NOy VCDs on 7 April 2021 from 01:45
to 02:15UTC are shown in panel (a). We chose this time
and day due to little cloud cover in the area and thus only
a few missing satellite observations. Predictions of surface
NO; from 01:00 to 02:00 UTC made by random forests are
shown in panel (b) for Settings 1 and 3, whereas panel (c)
covers the settings with tropospheric NO, VCDs excluded.
All models have been trained with time contiguity k =4 on
Dy 4.

We observe that there is a high similarity between pre-
dictions made in Settings 1 and 3, when tropospheric NO;
VCDs are included as input features. This is in agreement
with our findings from Fig. 9 that in both settings similar
results are achieved regarding all considered performance
measures. This observation is promising, as excluding lati-
tude and surface height reduces the spatial bias of the model,
which is to be tested in future studies. Therefore, presum-

Atmos. Meas. Tech., 18, 3747-3779, 2025



3766

Predicted surface NOz [ug m~3]
Setting 1

126° E

128° E

J. Godeke et al.: Hourly surface NO; retrieval from time-contiguous features

Predicted surface NOz [ug m—3]
Setting 2

124°E 126° E 128°E

SN N

0 10 20 30 40 50 0 10 20 30 40 50

0°N Predicted surface NO2z [ug m~3] Predicted surface NO2 [ug m~3]
Setting 3 Seting 4

L

124°E

126° E

128° E

0 10 20 30 40 50 0 10 20 30 40 50
(a) (b) (c)

Figure 10. Predictions of surface NO, by random forests on 7 April 2021 from 01:00 to 02:00 UTC, for Settings 1-4 of Experiment 3.
Panel (a) shows tropospheric NO, VCDs from 01:45 to 02:15 UTC. Panel (b) shows predicted surface NO5 in Settings 1 and 3, when VCDs
are included as input. Panel (¢) shows predictions in Settings 2 and 4, when VCDs are excluded. In the second row of panels (b) and (c),
latitude and surface height are excluded. The black mask indicates missing data, e.g., due to clouds. All models have been trained with time

contiguity k =4 on Dy 4 for the same choice of training stations.

ably, the model’s chance of making suitable predictions in
different parts of the world increases. In Settings 1 and 3,
the impact of the tropospheric NO, VCDs on the prediction
of surface NO, is directly visible, since the hotspots of the
VCDs and predictions of surface NO, are depicted at the
same locations. On the other hand, when VCDs are excluded
in Settings 2 and 4, these hotspots are less recognizable due
to a smaller contrast to their neighborhood; see Fig. 10c. In
Settings 2 and 4, the predicted surface NO, has a coarser
resolution, which is to be expected considering that the res-
olution of meteorological inputs is 8 times coarser compared
to the VCDs. In all four settings, the contrast between the
hotspots and the background of predicted surface NO; is less
pronounced compared to the contrast observed in the tropo-
spheric NO, VCDs shown in panel (a). This effect is even
more evident in another example from 27 February 2022,
shown in Fig. 11. Notably, the predicted concentrations of
surface NO; over water are only slightly smaller compared
to those over land within all settings, even in regions far from
the coast, such as the southeastern parts of the maps. How-
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ever, emissions over water are not expected, aside from mar-
itime traffic. Furthermore, at some distance from the coast,
no contribution from land-based emissions is expected due
to the short atmospheric lifetime of NO,. Consequently, both
the tropospheric NO, VCDs and the surface NO, concen-
trations should be low in these areas. Given the predicted
surface concentrations of approximately 7 ugm™3, it appears
that the models have likely overestimated surface NO;, con-
centrations in these areas over water. This aligns with the
observation from Fig. 6, which shows that the models tend
to overestimate low surface NO; values. A possible explana-
tion for this could be that the models were trained only on
data from stations located on land or islands.

5.4 Seasonal and diurnal error distribution

In the previous sections, the performance of machine learn-
ing models is evaluated using whole-year data, spanning Jan-
uary 2021 to November 2022. In this section, we inspect
how prediction quality varies across different seasons and
throughout the day. Some variation is expected, as the ac-
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Figure 11. Same as Fig. 10 but on 27 February 2022. Panel (a) shows the VCDs from 06:45 to 07:15 UTC. Panels (b) and (c) show predicted
surface NO, from 06:00 to 07:00 UTC, for the four settings of Experiment 3.

curacy of GEMS observations also fluctuates. For example,
accuracy tends to be lower in the morning due to the shallow
boundary layer (Yang et al., 2023a). For the remainder of this
section, we focus on the best-performing models identified in
our earlier analysis. Specifically, we reconsider the random
forest models from Setting 3 in Sect. 5.3, which do not in-
corporate spatial coordinates as input features. These models
were trained on all respective training datasets Dy x, but for
this section, their performance is spatially cross-validated on
the test datasets for different seasons and times of the day in-
dividually. For simplicity, we restrict our attention to models
that were trained on the dataset Dy . Furthermore, we in-
spect whether benefits from time-contiguous inputs depend
on the season or time of the day.

First, we compare the test performance across differ-
ent seasons. Each season in South Korea is typically de-
fined as a 3-month period: spring (March—-May), summer
(June—August), autumn (September—November), and winter
(December—February). Table 3 shows the percentage of data
points in D4 belonging to each season. Notably, summer
has the fewest valid data points due to the applied filter for
the ga value during data preprocessing. In addition, the Pear-
son correlation between surface NO;, measured at the in situ
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stations, and VCDs is the lowest in summer (see Table 3).
These factors likely contribute to the significantly lower per-
formance of the random forest models in summer compared
to other seasons (see Fig. 12). In contrast, the model per-
formance is the highest in winter across all performance
measures, i.e., for Pearson correlation, NMSE, and NMAE.
Moreover, we observe that within each season, incorporating
time-contiguous inputs improves prediction quality. The per-
formance gains, calculated using Eq. (5), are also shown in
Fig. 12. Notably, the largest gains from time-contiguous in-
puts occur in winter, exceeding 12 % in Pearson correlation
for time contiguity k =4. The smallest gains are observed in
summer, with an improvement of only 5 % in Pearson corre-
lation.

Finally, the performance across different times of the day
is illustrated in Fig. 13. Since we focus on training and test-
ing on Dy, the earliest time window with available data
is 10:00-11:00 Korean standard time (KST). The best per-
formance is achieved around midday, while the performance
declines in the morning and afternoon. The worst results oc-
cur between 16:00 and 17:00 KST, possibly due to the fact
that surface NO; has the weakest correlation with VCDs at
that time (see Table 4). Moreover, it should be noted that for
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Table 3. Statistics for seasonal segments of the dataset Dy .

Spring  Summer Autumn  Winter
Proportion of Dy j dataset 41 % 16 % 20 % 23%
Proportion of Dy x if no ga filter was used 28 % 33% 23 % 14 %
Correlation of VCDs with surface NO, measurements 0.68 0.58 0.67 0.74
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Figure 12. Random forests trained on Dy j for different time contiguities k, without spatial coordinates as input features. Test performance
is evaluated in different seasons (winter, spring, summer, and autumn) through six-times 10-fold spatial cross-validation. Panel (a) shows the
average performance over all 60 station splits achieved in different seasons and for different k. Three performance measures are considered,
one for each row. Error bars illustrate the standard deviation. Panel (b) shows the average performance gain relative to the case of k = 1; see
Eq. (5) for the definition of performance gain.

datasets Dy x with N <3, in which data points at times ear-
lier than 10:00 KST occur, the performance is expected to
further decrease compared to the later morning hours.
Furthermore, at all times, time-contiguous models con-
sistently outperform models with no time contiguity k =1,

demonstrating a clear benefit from using time-contiguous in-
put features.
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Figure 13. Same random forests as in Fig. 12 but the test performance is cross-validated at different times of the day. The time windows are

chosen in line with the in situ dataset. Korean standard time (KST) is used.

Table 4. Statistics for different hourly segments of the dataset Dy j.

Time windows of predicted surface NO; (KST)

10:00-11:00  11:00-12:00  12:00-13:00  13:00-14:00  14:00-15:00  15:00-16:00  16:00-17:00
Proportion of Dy ; dataset 8% 12 % 20 % 20 % 19 % 14 % 7 %
Correlation of VCDs with surface 0.69 071 071 071 0.69 0.59 052

NO, measurements

6 Conclusions and outlook

For the first time, hourly tropospheric NO, VCDs are avail-
able thanks to the geostationary satellite of the GEMS in-
strument platform. To predict surface NO, levels at a given
time and location, we proposed to also include VCDs and
meteorological features from previous hours as inputs to the
machine learning models.

Our main research question was whether the considered
machine learning models, random forests and linear regres-
sion, benefit from hourly time-contiguous input features for
the prediction of surface NO,. We observed that using time-
contiguous input features led to reliable enhancements with
respect to all considered performance measures, as long as
tropospheric NO, VCDs were included. For random forests,
average performance gains were between 4.5 % and 7.5 %
depending on the performance measure. For linear regres-
sion models, average performance gains were larger, namely
between 7 % and 15 %. This is to be expected since the non-
linear structure of random forests allows for the extraction
of more information from non-time-contiguous inputs, gen-
erally also leading to better predictions compared to linear
regression models. These improvements were reliable in the
sense that positive performance gains were achieved not only
on average, but also across all 60 splits into training and test
in situ stations during spatial cross-validation. Moreover, we
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were able to demonstrate that performance gains were ob-
served despite having much fewer data points available for
training models with a larger time contiguity of their inputs.
As a rule of thumb, for the case where tropospheric NO;
VCDs are used as an input feature, we suggest the follow-
ing: whenever surface NO; is to be predicted at a given lo-
cation and time for which input features are available at j
previous hours, feed those features, together with those at the
current time, into a random forest that has been trained with
time contiguity k =min{j + 1,4} on a given training dataset
Dy k., specified in Sect. 2.3. If features are not available at
previous hours, one cannot use a time-contiguous model to
make a prediction for these data points, so one has to use the
random forest that has been trained without time contiguity.
Therefore, time-contiguous models should be understood as
a supportive tool that should be applied whenever possible.
Whether the rule of thumb above still applies to other ma-
chine learning models, such as neural networks or extreme
gradient boosting, would be an interesting aspect for future
studies.

Furthermore, when tropospheric NO, VCDs were in-
cluded as input in the models, we observed that latitude and
surface height were not required for achieving similar per-
formances and benefits from time-contiguous inputs. Pre-
sumably, this increases the chance that the models will also
provide good predictions beyond South Korea, which will
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be an interesting investigation for future work. If validated,
this would enhance the model’s flexibility and broader appli-
cability without the requirement of more training data, and
hence longer training time, from different regions. Another
task would be to determine the optimal time contiguity for
every input feature individually, which would reduce redun-
dancy among input features and hence lead to better perfor-
mances.

When tropospheric NOy VCDs were excluded as input
features, performance worsened but remained within an ac-
ceptable range. Additionally, we observed that the benefit of
time-contiguous features was significantly reduced, and the
performance gain was no longer reliable. Specifically, across
all 60 splits during spatial cross-validation, benefits were not
consistently observed. When both VCDs and spatial coordi-
nates were excluded, performance decreased further. This in-
dicates that spatial coordinates play a more critical role when
VCDs are not included, which presumably leads to models
that are less capable of generalizing to locations outside of
South Korea. Again, this motivates further research on the
connection between including VCDs and the models’ ability
to generalize to locations outside of South Korea.

Last but not least, we would like to address the time cov-
erage of the data, which spans January 2021 to Novem-
ber 2022. Although data from December 2022 are missing,
Sect. 5.4 shows that random forests performed best on winter
data. It would be interesting to investigate whether models
perform even better for a specific season when trained ex-
clusively on data from that season. We leave this for future
investigation. Furthermore, the Covid-19 pandemic occurred
during the considered data time window, resulting in emis-
sions that differ from those observed in non-pandemic condi-
tions. This bias should be considered when applying models
trained on Covid-19 data to pandemic-free settings.
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Appendix A: Further performance measures

In the following we describe further scale-insensitive perfor-
mance measures to fill the gap between surface NO, mea-
surements x' € R” and predictions x made by a machine
learning model.

Coefficient of determination (R?).

n
> Ix =l
i=1
n

> lx -

i=1

] n
2( % _1_ —_ 1 T
R (x ,x>_1 , where x _nélxl.
i

Note that R? is similar to NMAE, but normalization is done
by the mean absolute deviation of x' instead of its mean.
Further, within the literature, the expression R? sometimes
stands for the square of the correlation coefficient. However,
in general, these definitions are not equivalent.

Index of agreement (I0A).

n
> lx = xil?
i=1

10A (x%,x) =1-

n N i)\2
> (I =il + ¥ = 1)

i=1

Here X denotes the mean of all xl.T .
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Table B1. Features considered during feature selection in Sect. 3.1. For 200 splits into training and test stations, the Pearson correlation with
surface NO, was computed on the training set for each available feature. Average correlations are shown in the last column.

Feature name Source Average correlation with surface NO;
Selected features ~ Tropospheric vertical column density of NO,  IUP-UB retrieval on GEMS data 0.626
Latitude at the center of GEMS pixel GEMS data product 0.149
Surface height at the center of GEMS pixel GEMS data product —0.185
10m u component of wind ERAS —0.105
100 m u component of wind ERA5 —0.112
Instantaneous 10 m wind gust ERAS —-0.237
2 m temperature ERAS —-0.252
Surface pressure ERAS 0.293
Skin temperature ERAS —-0.226
UV-visible albedo for diffuse radiation ERAS 0.297
Downward UV radiation at the surface ERAS -0.217
UV-visible albedo for direct radiation ERAS5 0.283
Boundary layer height ERAS —0.318
Total column water ERAS -0.212
Evaporation ERAS 0.239
Soil type ERA5 0.163
High vegetation cover ERAS —0.130
Excluded features  Measuring time (hour) Defined in Sect. 2.2 0.001
Longitude at the center of GEMS pixel GEMS data product —0.054
10 m v component of wind ERAS 0.076
100 m v component of wind ERAS 0.076
Vertical integral of temperature ERAS —0.009
Total column ozone ERA5 0.062

Table B2. Linear regression models have been trained on Dy ; for N <4 with different time contiguities k and input features selected in
Sect. 3.1. Performance on Dy j has been evaluated through six-times 10-fold spatial cross-validation. Five different performance measures
are considered, defined in Sect. 3.3 and Appendix A. The best results are marked in bold.

Training datasets Dy

Dy Dy D3y Dy Dy 5 D35 Dy D33 Dy 3 Dy 4

Correlation  Mean 0.6806 0.6895 0.6992 0.7015 0.7257 0.7321 0.7351 0.7402 0.7431 0.7469
SD 0.0219 0.021  0.0207 0.0212 0.0199 0.0198 0.0201 0.0196 0.0198 0.0199

Mean gain [%] - - - - 7.9109 10.0592 11.0761 12.7933 13.7819 15.0394

SD gain [%] - - - - 1.788 1.6522 1.2735 1.699 1.4521 1.6349

NMSE Mean 0.2298 0.2149 0.2006 0.1961 0.1897 0.1815 0.1776 0.1766 0.173 0.1709
SD 0.0141 0.0128 0.0125 0.0135 0.0125 0.0128 0.0136 0.0129 0.0136 0.0137

Mean gain [%] - - - - 3.0353 7.2854 9.3237 9.7677 11.6669 12.7688

SD gain [%] - - - - 2.3991 1.4194 1.162 1.5324 1.3681 1.5287

NMAE Mean 0.4357 04161 0.3926 0.3791 0.3769 0.3657 0.3573 0.3599 0.3519 0.3499
SD 0.0164 0.0151 0.0135 0.01206 0.0127 0.0126 0.0127 0.0127 0.0127 0.0129

Mean gain [%] — - - - —0.6329 2.354 4.6017 3.922 6.0653 6.6

SD gain [%] - - - — 1.464 1.0568 0.6454 1.1123 0.7738 0.8988

R? Mean 0.3984 0.4378 04754 0.4874 0.5038 0.5255 0.5359 0.5382 0.5479 0.5535
SD 0.0432  0.0361 0.0311 0.0308 0.0324 0.0305 0.0305 0.0304 0.0303 0.0306

Mean gain [%] — - - — 3.0353 7.2854 9.3237 9.7677 11.6669 12.7688

SD gain [%] — - - — 2.3991 1.4195 1.162 1.5324 1.3681 1.5287

I0A Mean 0.809 0.811 0.8096 0.8003 0.8381 0.8365 0.8283 0.8423 0.8349 0.8379
SD 0.0145 0.0149 0.0164 0.0185 0.0145 0.0156 0.0173 0.0154 0.017 0.0169

Mean gain [%] - - - - 14.0378 13.2159 8.9272 16.3166 12.3957 14.018

SD gain [%] - - - - 1.5684 2.1544 2.9093 2.2224 2.9518 2.9977
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Table B3. Random forests have been trained on Dy  for N < 4 with different time contiguities k and input features selected in Sect. 3.1. Per-
formance on Dy ; has been evaluated through six-times 10-fold spatial cross-validation. Five different performance measures are considered,
defined in Sect. 3.3 and Appendix A. The best results are marked in bold.

Training datasets Dy i

Dy Dy 4 Ds3 1 Dy 1 D;» D3 Dy Ds3 3 Dy Dy 4

Correlation  Mean 0.7993 0.8 0.8023 0.8018 0.8119 0.812 08114 0.8164 0.8159 0.8173
SD 0.0213  0.0213 0.0216 0.0223 0.0208 0.0209 0.0213 0.021 0.0212 0.0211
Mean gain [%] - - - — 45676 4.6283 43439 6.8605 6.6466 7.3194
SD gain [%] - - - - 14329 14029 13676 1.6319 1.649 1.7219
NMSE Mean 0.1417 0.141  0.1389 0.1389 0.1327 0.1326 0.1328 0.1298 0.13  0.1292
SD 0.0155 0.0155 0.0155 0.016 0.0153 0.0154 0.0156 0.0154 0.0155 0.0155
Mean gain [%] - - - - 4.0239 4.153 4.015 6.2 6.0405 6.6102
SD gain [%] - - - - 1.2284 1.2229 1.3537 15193 1.6428 1.7201
NMAE Mean 03258 03238 03184 03144 0.3075 0.3066 0.3049 0.3014 0.3006  0.2995
SD 0.0168 0.0165 0.0158 0.0152 0.0151 0.0149 0.0146 0.0148 0.0146 0.0145
Mean gain [%] - - - - 21838 24769 3.0019 4.1298 43647 4.7212
SD gain [%] - - - - 0.6003 0.545 05486 0.6267 0.6423 0.6722
R? Mean 0.6301 0.632  0.6373 0.6375 0.6535 0.654 0.6534 0.6613 0.6607 0.6627
SD 0.0337 0.0337 0.0342 0.0355 0.0336 0.0338 0.0344 0.0341 0.0345 0.0344
Mean gain [%] - - - - 40239  4.153 4.015 6.2 6.0405 6.6102
SD gain [%] - - - - 1.2284 1.2229 13537 15193 1.6428 1.7201
10A Mean 0.8752 0.8756 0.8768 0.875 0.8846 0.8846 0.8833 0.887 0.886  0.8866
SD 0.0153 0.0153 0.0155 0.0162 0.015 0.0151 0.0154 0.0151 0.0153 0.0153
Mean gain [%] - - - - 63027 63035 52754 82736 75138 7.9427
SD gain [%] - - - - 1.4278 1.498 1.6812 1.8665 2.0031 2.0893
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Appendix C: Additional figures for Experiment 2

V Trained on D «
Trained on D3, «

)l K 2

Trained on D3«
Trained on Dy, k
c c X
c 0.800 c 0.800 X
s L] X ® onx
0 0.795 /»>|§ 0 0.795
5 5
20.790 20.790 »
2 @ ves
© 0.785 Ali  0.785
g W g
0.780 1 3 3 a 0.780 1 3 3 2
Time-contiguity k of inputs Time-contiguity k of inputs
0.170 '/Il 0.170
0.168] " 0.168 | yog*
§ 0.166 g 0.166
= 0.164 (\Ii = 0.164
0.162 81 ¥ 0.162 omx
0.160 0.160 mx x
1 2 3 4 1 2 3 4
Time-contiguity k of inputs Time-contiguity k of inputs
0.3300 0.3300
0.3275 0.3275
0.3250 0.3250 VQ.X
., 03225 4, 0.3225
< 0.3200 < 0.3200
Z0.3175 Clix 2 0.3175
0.3150 2 X 0.3150 onmx
0.3125 | 0.3125 .
0.3100 0.3100 X x
1 2 3 4 1 2 3 4
Time-contiguity k of inputs Time-contiguity k of inputs
(a) (b)

Figure C1. Random forests with 30 and 8000 trees (n_est imators) are considered in panels (a) and (b), respectively. Training and testing
have been performed 20 times for the same split into training and test stations. Testing was on the corresponding dataset Dy j, and training
was on different Dy ; for M < 4. Results for 20 individual repetitions are shown with respect to three performance measures.
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Figure C2. Linear regression models have been trained on D)y ; for M <3 with different time contiguities k and input features selected in
Sect. 3.1. Performance on D j has been evaluated through six-times 10-fold spatial cross-validation. Panel (a) shows the average perfor-
mance over all 60 station splits for three performance measures. Panel (b) shows the average performance gain (Eq. 6) relative to the best case
of k =1. Error bars illustrate the standard deviation. Panel (¢) shows the minimal performance gain. Across each row the same performance
measure is considered.
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Figure C3. Same as Fig. C2 but for random forests trained on Dy x for M <3 with different time contiguities k and input features selected
in Sect. 3.1. Performance on D j has been evaluated through six-times 10-fold spatial cross-validation. Panel (a) shows the average per-
formance over all 60 station splits for three performance measures. Panel (b) shows the average performance gain (Eq. 6) relative to the
best case of k= 1. Error bars illustrate the standard deviation. Panel (¢) shows the minimal performance gain. Across each row the same
performance measure is considered.
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Appendix D: Additional figures for Experiment 3
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Figure D1. Excluded latitude and surface height from input features (Setting 3 of Experiment 3): random forests have been trained on Dy ¢

for M <4 with different time contiguities k. Performance on Dy j has been evaluated through six-times 10-fold spatial cross-validation.
Panel (a) shows the average performance over all 60 station splits for three performance measures. Panel (b) shows the average performance
gain relative to the best case of k = 1; see Eq. (6) for the definition of performance gain. Error bars illustrate the standard deviation. Panel (c)

shows the minimal performance gain. Across each row the same performance measure is considered.
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Figure D2. Same as Fig. D1 but excluding tropospheric NO, VCDs from input features (Setting 2 of Experiment 3).
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Figure D3. Same as Fig. D1 but excluding tropospheric NO, VCDs, latitude, and surface height from input features (Setting 4 of Experi-
ment 3).
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Figure D4. Random forests: the selection of input features is the same as in Setting 3 of Experiment 3; i.e., latitude and surface height are
excluded. Comparison of two cases. First, only the time contiguity of tropospheric NO, VCDs is exploited. Second, the time contiguity of all
(time-dependent) input features is exploited, which is exactly the same as Setting 3 of Experiment 3. Models have been trained and tested on
Dy i for different time contiguities k. Panel (a) shows the average performance from six-times 10-fold spatial cross-validation and panel (b)
shows the average performance gain (Eq. 6).
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