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Abstract. The long series of multispectral measurements
from the Advanced Very High Resolution Radiometer
(AVHRR), which began in 1979, is now approaching its
end, with the last remaining AVHRR sensor currently op-
erating aboard EUMETSAT’s Metop-C satellite. Several cli-
mate data records (CDRs) built on AVHRR data now face
the end of their observational record. However, since many
modern imagers contain AVHRR-heritage spectral channels,
the potential for an extension of these AVHRR-based cli-
mate data records exists. This study investigates the possibil-
ity of simulating original National Oceanic and Atmospheric
Administration-19 (NOAA-19) AVHRR channels from the
Suomi National Polar-orbiting Platform (NPP) Visible In-
frared Imaging Radiometer Suite (VIIRS) radiances using
collocated AVHRR-VIIRS datasets from 2012-2013. Spec-
tral band adjustments (SBAs) were derived using linear re-
gression and neural networks (NNs). The NN approach pro-
duced the best results, and separating daytime from night-
time conditions when simulating AVHRR channel 3B at
3.7 um was key. Furthermore, daytime radiance corrections
in this channel must depend on actual surface and cloud re-
flectances to be realistic, which was achieved only through
the NN approach.

The cloud mask, cloud top height, and cloud phase prod-
ucts were produced from the simulated AVHRR radiances
using the same retrieval methods for NOAA-19 data used
to compile the CLARA-A3 CDR. CLARA-A3 is the third
edition of the EUMETSAT Climate Monitoring Satellite Ap-
plication Facility (CM SAF) CDR, with cloud parameters,
surface albedo, surface radiation, and top of atmosphere
(TOA) radiation products from AVHRR. Products were val-
idated using Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observations—Cloud-Aerosol Lidar with Orthogo-
nal Polarization (CALIPSO-CALIOP) cloud products and
agreed well with the original CLARA-A3 products, with the
best results provided by the NN simulation approach. The
NN-based approach best reproduced the corresponding prod-
ucts for cloud optical thickness (COT), cloud effective ra-
dius (CRE), liquid water path (LWP), and ice water path
(AWP).

The CLARA-A3 CDR will be complemented and ex-
tended with VIIRS-based products to cover the period 1979—
2024 (46 years). This edition will be known as CLARA-
A3.5. Future extensions and editions can follow a sim-
ilar approach by applying the same radiance simulation
method to collocated data from the Metop-C AVHRR and
the Metop Second Generation (SG) METimage sensors, with
the first satellite of the latter scheduled for launch in August
2025. The successful simulation of AVHRR radiances from
METimage and VIIRS data enables the CLARA CDR exten-
sion for several decades.

1 Introduction

Successful climate monitoring depends on the availability of
long observational time series from reliable and stable ob-
servation platforms and sensors. Observations with a very
long temporal coverage (i.e. at the century scale) have been
mainly restricted to measurements from land-based surface
stations and mostly limited to 2 m temperature measurements
(e.g. Morice et al., 2021). For even longer perspectives, vari-
ous proxy observations must be used (e.g. tree ring and sedi-
ment climatologies; Anchukaitis et al., 2017).
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However, to fundamentally describe and understand cli-
mate and climate change, global observations at high spatio-
temporal resolution are needed. Furthermore, a full range of
different meteorological parameters need to be covered. The
first steps towards realizing an observation system with a
truly global coverage were taken when information from po-
lar and geostationary satellites was introduced in the 1960s.
These sensors were later upgraded and introduced in op-
erational missions by the end of the 1970s (Kidd et al.,
2009; Giri et al., 2025). Additional observations with bet-
ter coverage of ocean surfaces and upper air were intro-
duced through various technological developments (Lin and
Yang, 2020; WMO, 2024; NDACC, 2024). Furthermore,
the systematic use of radiation network measurement data
(NDACC, 2021) from active and passive remote sensing in-
struments at surface stations and on space platforms is now
standard (Thies and Bendix, 2011; eoPortal, 2024). All these
developments made it possible to compile comprehensive
and consistent climate datasets by synthesizing data from all
types of observation platforms in reanalysis datasets (Hers-
bach et al., 2020).

Reanalysis datasets are undoubtedly capable of providing
the best possible description of the earth’s atmospheric and
surface state evolution, at least over the last 3—5 decades,
with access to a multitude of global observations and the
use of a physically consistent methodology based on model
physics constraints. However, because of the use of data from
an ever-changing observation system, not least after the in-
troduction of several new or improved satellite sensors over
the last few decades, the uncertainty regarding the existence
and magnitude of climate trends in reanalysis results is still
considerable (Bengtsson et al., 2004; Thorne et al., 2005;
de Padua and Ahn, 2024; Tarek et al., 2021). In addition,
some parameters of great importance to the earth’s radia-
tion balance are not yet fully assimilated from observations.
This concerns, in particular, cloudiness and cloud properties
(Yao et al., 2020). Furthermore, the reanalysis dependency
on physical constraints from the current numerical weather
prediction (NWP) model means that the results are not com-
pletely independent, since model physics cannot be consid-
ered as perfectly describing the real atmosphere/earth system
(as pointed out by Roebeling et al., 2025).

With this background, the value of a long time series of
single-sensor observations or measurements for climate stud-
ies would still be high. This concerns, in particular, climate
data records (CDRs) from satellite platforms, where several
of them now cover considerably longer periods than the stan-
dard World Meteorological Organization (WMO) climato-
logical 30-year period. The Advanced Very High Resolu-
tion Radiometer (AVHRR), operating on board polar satel-
lites since 1978, provides the longest available time series of
observations from meteorological satellite imagery. The third
edition of the European Organisation for the Exploitation
of Meteorological Satellites (EUMETSAT) Climate Moni-
toring Satellite Application Facility (CM SAF) CDR, with
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cloud parameters, surface albedo, surface radiation, and top
of atmosphere (TOA) radiation products from the AVHRR
(CLARA-A3; see Karlsson et al., 2023), covers more than
four decades of AVHRR observations. Neither AVHRR radi-
ances nor AVHRR-derived cloud and radiation products have
yet been assimilated in reanalysis datasets, which is an addi-
tional argument for their value as an independent observation
dataset. However, the last AVHRR instrument was launched
with the EUMETSAT satellite Metop-C in 2018. Thus, the
AVHRR era will soon be over.

This paper investigates methods to extend the CLARA
CDR with data from the AVHRR successor — the Visible In-
frared Imaging Radiometer Suite (VIIRS) — which is now op-
erational on the current polar meteorological satellites from
NOAA. If these methods are successful, the CLARA CDR
can be extended by at least 2-3 decades. The paper studies
two approaches to simulate AVHRR radiances from VIIRS,
using spectral band adjustment factors (SBAFs): (1) linear
regression and (2) a method that uses a multilayer perceptron
(MLP) neural network. As a further test of success besides
ordinary radiance-to-radiance comparisons, the simulated ra-
diances are used to produce the CLARA cloud properties,
which are then validated using independent cloud observa-
tions from the Cloud-Aerosol Lidar with Orthogonal Polar-
ization (CALIOP) on board the Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observations (CALIPSO) satellite
(Winker et al., 2009).

Section 2 describes the methodological background and
the datasets used. The methodology is then described in de-
tail in Sect. 3, followed by results in Sect. 4. Further analysis
and discussions are presented in Sect. 5, with conclusions
given in Sect. 6.

2 Methodological background and selected datasets
2.1 Introduction to spectral band adjustment methods

Adjusting measurements after introducing a slightly modi-
fied or new sensor version poses a long-standing challenge
that has received considerable attention over the years. Most
well known are the activities of the Global Space-based Inter-
Calibration System (GSICS; WMO, 2025), where the pri-
mary goal is to ensure a homogeneous behaviour of measure-
ment time series from a particular sensor or spectral channel.
We call this adjustment “inter-calibration” (Chander et al.,
2013a), and the purpose here is to provide a homogenous
data record without artificial discontinuities. The fidelity and
uncertainty in climate data records from the earth observa-
tions project (FIDUCEO) emphasized the difference between
homogenized and harmonized datasets (Giering et al., 2019),
with relevance for the CDR compilation. Harmonized data
would imply corrections to a measurement based on high-
quality reference measurements, thus providing the best pos-
sible estimation of the measured radiance. This correction
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would still allow differences to a similar instrument having
slightly different spectral responses. However, for a CDR,
which should allow for climate trend estimation, homoge-
nized data seemingly should be the best choice. Homoge-
nized data for a CDR means that measurements are corrected
with respect to one particular sensor in the measurement se-
ries instead of to one high-quality reference sensor. On the
other hand, this could also lead to sensor accuracy violation
(if the various sensors have significant differences in spec-
tral response). Thus, there are pros and cons of both spec-
tral adjustment methods, and any of them should be applied
with caution. Another important aspect is that radiance dif-
ferences between two sensors might be caused by additional
factors other than differences in spectral responses, e.g. radi-
ance biases or calibration errors.

When focusing on the current problem to simulate
AVHRR from VIIRS radiances based solely on spectral re-
sponse differences, no spectral adjustment methodology will
ever be able to simulate the AVHRR channels perfectly, since
some parts of the spectrum covered by another AVHRR-
heritage sensor channel are simply not observed by the cor-
responding AVHRR channel (and vice versa). However, if
channel differences are not very large, corrections may be
sufficient, depending on the intended applications. Piontek
et al. (2023) estimated that linear SBAFs can explain more
than 80 % of the variance, but the efficiency depends on the
selected channels.

For many years, the standard methodology to handle these
spectral band adjustments has been to calculate SBAFs.
These can be derived from direct inter-comparisons of spatio-
temporally collocated measurements from the two sensors
(e.g. as described by Meirink et al., 2013). Relations based
on SBAFs can be either linear (Chander et al., 2013b) or
non-linear and sometimes more complicated, involving more
channels than the targeted spectral channel (Villaescusa-
Nadal et al., 2019; Claverie, 2023). When collocations are
not possible, spectrometer data can be used for calcula-
tions, most often relying on data from the SCanning Imaging
Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY, Bovensmann et al., 1999) or the Infrared At-
mospheric Sounding Interferometer (IASI; Blumstein et al.,
2004) for meteorological applications. Hyperspectral obser-
vations are then convolved with the narrow-band spectral re-
sponse function (SRF) to calculate the SBAFs (Piontek et al.,
2023). The NASA Satellite Cloud and Radiation Property
Retrieval System (SatCORPS) SBAF tool is a comprehen-
sive and widely used web-based tool based on this technique,
providing SBAFs for a wide range of sensors and satellites
(NASA, 2016; Scarino et al., 2016).

2.2 The challenge: bridging differences between the
spectral channels of AVHRR and VIIRS

Table 1 lists the AVHRR channels simulated in this study.
Notice that our reference sensor is the third version of this
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Table 1. Main AVHRR/3 sensor spectral characteristics. Note that
AVHRR channel 3A (marked in italics) is not subject to spectral
conversion here (see text for explanation).

Channel name  Central wavelength ~ Spectral interval

Channel 1 0.630 um 0.58-0.68 um
Channel 2 0.862 um 0.725-1.00 um
Channel 3A 1.61 pm 1.58-1.64 um
Channel 3B 3.74 pm 3.55-3.93 ym
Channel 4 10.80 um 10.3-11.3 ym
Channel 5 12.00 um 11.5-12.5 ym

sensor (AVHRR/3), as carried by the NOAA-19 satellite. The
choice of the AVHRR on NOAA-19 as our reference sensor
is natural, since we want to replace the loss of NOAA-19
observations in the afternoon orbit after 2012, due to orbital
drift. Section 2.5 provides an even stronger motivation for
choosing NOAA-19. It should also be mentioned that the
reference radiances for NOAA-19 AVHRR should be con-
sidered as harmonized data, since their quality and evolution
over time has been optimized for this particular AVHRR sen-
sor by a method described by Heidinger (2018).

In this study, we are not interested in simulating AVHRR
channel 3A, as shown in Table 1. The reason is that satellites
carrying the VIIRS sensor follow an afternoon orbit, a sun-
synchronous path with a daytime Equator crossing shortly
after noon. For all earlier satellites used in the CLARA-A3
CDR, where the AVHRR is in a similar orbit to VIIRS, only
AVHRR channel 3B was available (active). The AVHRR ob-
servations have a swath width of 2600 km, and the horizon-
tal resolution is approximately 1.1 km at the nadir. However,
it is much coarser (approximately 6 km) at the swath edges.
Cracknell (1997) provides more details on the AVHRR im-
ager.

Table 2 gives the complete set of medium-resolution chan-
nels (M-channels) of the VIIRS imager (described in more
detail by Hillger et al., 2013). The swath width is 3000 km,
the horizontal resolution is 750m at the nadir and only
slightly less (1.6 km) at the swath edges due to an oversam-
pling scanning technique that is different from the AVHRR.
The AVHRR-heritage channels are marked in bold numbers
in Table 2. In theory, AVHRR channel 2 may be simulated
using a combination of channels M6 and M7. However, sat-
uration problems with channel M6 (as reported by Cao et al.,
2013) produce unrealistic measurements, making it unsuit-
able for this purpose.

For a better visualization of the differences between the
two sensors’ channels, we can study the differences in spec-
tral responses, as illustrated in Fig. 1. It is clear that there
are indeed substantial differences for most channels, except
possibly for AVHRR channels 4 and 5. However, the differ-
ent wavelength scales at the x axes in the plots in Fig. 1 tend
to exaggerate differences for some channels (e.g. AVHRR
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Table 2. Main spectral characteristics of the medium-resolution (M)
channels of the VIIRS sensor. The AVHRR-heritage channels are
marked in bold. Notice that the channels marked in bold italics are
not used (see text for explanation).

VIIRS Corresponding
channel Central AVHRR
name wavelength ~ Spectral interval channel

M1 0.412 pm 0.402-0.422 um —

M2 0.445 pm 0.436-0.454 um —

M3 0.488 pm 0.478-0.498 pm —

M4 0.555 pm 0.545-0.565 um —

M5 0.672 pm 0.662-0.682 pm Channel 1
M6 0.746 pm 0.739-0.754 pm Channel 2
M7 0.865 um 0.846-0.885 um Channel 2
M8 1.240 pm 1.230-1.250 um -

M9 1.378 pm 1.371-1.386 um -

MI10 1.610 pm 1.580-1.640 pm Channel 3A
Mi11 2.250 ym 2.225-2.275 um -

Mi12 3.700 pm 3.691-3.709 pm Channel 3B
M13 4.050 pm 3.973-4.128 um —

M14 8.550 ym 8.400-8.700 um —

M15 10.763pm  10.263-11.263um  Channel 4
M16 12.013pm  11.538-12.488um  Channel 5

channel 1) and underrate differences for other channels (e.g.
AVHRR channel 2). AVHRR channel 2 shows the most sig-
nificant difference, with a broader spectral coverage than VI-
IRS AVHRR-heritage channels (M6 and M7).

2.3 VGAC - reduced-resolution VIIRS data

The CLARA-A3 CDR is based on the archived global
AVHRR dataset stored in a format called Global Area Cov-
erage (GAC), with a horizontal resolution of approximately
4km (Kidwell, 1991). Extending CLARA-A3 with VIIRS-
derived products requires resampling VIIRS data to an equiv-
alent horizontal resolution. This process benefits from a re-
sampled VIIRS dataset already developed at NOAA (Knapp
et al., 2019). This format is called VIIRS Global Area Cov-
erage (VGAC), and VIIRS data in this format are currently
available for almost the entire Suomi NPP record and some
years of the NOAA-20 data record. The horizontal resolu-
tion is 3.9 km, and the resampling procedure (e.g. radiance
averaging) is improved compared to the original GAC for-
mat for the AVHRR. The VGAC data have already been
tested for use in CDR production (Wang et al., 2023; Seo
et al., 2025). For this study, we used Suomi NPP VGAC data
from 2012, 2013, and 2019, as well as the NOAA-20 VGAC
data from 2019.

2.4 Selected approach

This study initially tested various SBAF relations, primar-
ily sourced from NASA (2016). Results were acceptable for
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most AVHRR channels, but for some channels (especially
channel 3B at 3.7 um), we encountered problems in using the
VIIRS-based simulations. For example, night-time cloud de-
tection significantly overestimated low-level cloud amounts.
The cloud detection method used (CMAPROB, described
by Karlsson et al., 2020) is a probabilistic method using
all AVHRR channels. AVHRR channel 3B is considered the
most crucial channel for this method’s performance, espe-
cially at night. Only minor deviations from original AVHRR
channel 3B radiances significantly affect the results at night.
The encountered problems were likely caused by the limita-
tion of IASI not observing radiances for wavelengths shorter
than 3.62 um. Since AVHRR channel 3B and VIIRS band
M12 spectral responses both allow for significant contribu-
tions at wavelengths shorter than 3.62 um (see Fig. 1), this
limitation can be substantial, especially since this affects
in particular the contribution from reflected solar radiation,
which rapidly increases with decreasing wavelengths. An ef-
fort to describe these contributions using radiative transfer
model (RTM) calculations was applied in the SatCORPS
tool, but this was made using assumptions, making results
more uncertain.

Due to the uncertainties encountered for the NASA-
derived SBAFs for this channel, we decided to proceed by
calculating SBAFs from collocated AVHRR- and VIIRS-
observed radiances. In practice this means that the derived
spectral band adjustments might be composed of more than
just the effects of differences in spectral responses, since we
cannot separate these effects from other effects (e.g. radiance
biases or calibration errors) when doing collocations.

2.5 Selected collocation and validation datasets

Since the VIIRS on the Suomi NPP satellite was already
launched in 2011 (with useful data delivered from Jan-
uary 2012 onwards), collocations with the AVHRR measure-
ments have been possible for more than a decade (Fig. 2).
However, the only satellite allowing nearly simultaneous
overpasses covering the entire globe was NOAA-19. In 2012
and 2013, NOAA-19 had nearly the same orbital configu-
ration as the Suomi NPP, with a daytime Equator crossing
overpass time near 01:30 pm (i.e. local solar time of 13:30 in
Fig. 2). After 2013, the orbital drift of the NOAA-19 satel-
lite gradually restricted available collocations to higher lati-
tudes. Notice also that for later satellites carrying the VIIRS
(i.e. NOAA-20 launched in 2018 and NOAA-21 launched
in 2022), these satellites still have fixed Equator crossing
times at 01:30 pm. Consequently, no further global colloca-
tions with AVHRR were possible.

Since NOAA-19 and the Suomi NPP had slightly differ-
ent orbital altitudes and thus slightly different orbital peri-
ods, simultaneous observations (in this case, limited to within
2 min) occurred approximately every 15th day. Considering
some data losses for both satellites, this resulted in a total col-
location dataset of 115 Suomi NPP orbits and corresponding
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Figure 1. Comparison of spectral responses for AVHRR (NOAA-19) and AVHRR-heritage channels of VIIRS (Suomi NPP). Spectral re-
sponse curves of AVHRR channels are given in blue to be compared with the response curves from VIIRS channels in red. The corresponding
AVHRR-heritage channel notations (M5, M6, M7, M8, M12, M15, and M16) are provided at their central wavelengths along the x axis. The

grey curves give the atmospheric transmittance for reference.

NOAA-19 orbits for the 2 years. At most, pixel data were
separated by 3 km and maximum satellite zenith angles of
up to 15° to avoid too much influence from directional ef-
fects. Collocations were calculated using nearest neighbour
matching with the Pyresample module in the Pytroll software
package (Raspaud et al., 2018). Table 3 lists the training and
validation datasets used.

The linear SBAF regression methods utilized the entire
training dataset (dataset 1 and 2). For the neural network
(NN) approach, training dataset 1 was used for the actual
training, and dataset 2 was used as a “during training vali-
dation dataset” to decide when to stop the training. The radi-
ance validation dataset was used to evaluate the performance
of all SBAF approaches.

For the NN training, special handling of AVHRR channel
3B for very low brightness temperatures (BTs) had to be ap-
plied. The original AVHRR data have a rather poor radiomet-
ric resolution at very low temperatures, while the correspond-
ing data from the M12 channel of VIIRS are much improved
compared to the AVHRR data. The poor radiometric resolu-
tion for AVHRR in this channel often led to missing data or a
very large spread of realized BTs. It was decided not to let the
network learn this type of irregular behaviour of the AVHRR.
Thus, data points with missing channel 3B data or data with
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BTs below 220 K were slightly modified using a simple re-
lation between the VIIRS and AVHRR BTs. Before training,
the AVHRR BTs for these pixels were set to the original VI-
IRS M12 BTs plus the difference between AVHRR channel
4 and VIIRS M15 BTs, hereby assuming that the difference
in BTs for the 11 um channels should be the same as the dif-
ference for the 3.7 um channels. This would stop the network
from trying to learn these deficiencies of AVHRR channel 3B
for temperatures colder than 220 K.

In addition to validating the VGAC-simulated AVHRR ra-
diances, inspecting the performance of certain CLARA prod-
ucts derived from these radiances proved necessary. As noted
earlier, achieving a perfect simulation of the AVHRR radi-
ances is theoretically impossible. Therefore, it was impor-
tant to check if the derived products were good enough to
comply with the CLARA product requirements. Thus, we
produced the CLARA-A3 cloud products from the simulated
AVHRR radiances. Comparisons with the original NOAA-19
products (cloud property inter-comparison dataset in Table 3)
and cloud datasets from the CALIPSO satellite (cloud prod-
uct validation datasets in Table 3) were used to investigate
them. More details on cloud product validations are given in
Sect. 3.3.

Atmos. Meas. Tech., 18, 3833-3855, 2025
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Table 3. Description of the training and validation datasets used. The table shows the number of selected Suomi NPP and NOAA-20 orbits
being compared with the corresponding AVHRR radiances and cloud products; alternatively, (for cloud product validation) the number of
orbits being validated with CALIPSO cloud products. See text for details.

Number
Dataset of orbits  Period
Training dataset 1 65 2012: Feb, Apr, Jun, Jul, Aug, Oct, Nov, Dec
Suomi NPP 2013: Jan, Mar, May, Jul, Sep, Nov
Training dataset 2 34 2013: Feb, Apr, Jun, Aug, Oct, Dec
Suomi NPP
Radiance validation dataset 16  2012: Jan, Mar, May, Sep
Suomi NPP
Cloud product validation dataset 289 2012, 2013, 2019: all months
Suomi NPP
Cloud product validation dataset 274 2019: all months
NOAA-20
Cloud property inter-comparison 48  2012: all months
dataset Suomi NPP
03:00¢ T ‘ channels, in which measurements can be collocated during
06:00] e _ ~__ an overlapping period. The two training datasets described
S os:00f NORASNOAR1D.NOAALZ L — in Table 3 were merged and used to estimate the regression
212000 —— T T eTT TR ] parameters. The method has been applied with two different
5 1500] 1”5'%&\ configurations.

18:00+

21:00f
1980 1985 1090 1995 2000 2005 2010 2015 2020
Year

Figure 2. Local solar times at Equator observations for all AVHRR-
carrying NOAA satellites from TIROS-N to NOAA-19 and EU-
METSAT’s METOP A/B/C satellites. Shown are all data that were
used for the CLARA-A3 CDR processing. The figure shows as-
cending (northbound) Equator crossing times for afternoon satel-
lites (NOAA-7 to NOAA-19) and descending (southbound) Equator
crossing times for morning satellites (NOAA-12 to NOAA-17 and
METOP A/B/C). Corresponding night-time observations take place
12 h earlier/later. Take note that the Suomi NPP has a stable orbit
with the Equator crossing time at 13:30 LT.

3 Detailed description of applied spectral band
adjustment methods and validation procedures

3.1 Spectral band adjustment (SBA) methods

We have tested two different SBA methods for the simulation
of NOAA-19 AVHRR radiances from Suomi NPP VIIRS ra-
diances.

1. SBAs derived from linear regression

2. SBAs derived from a multilayer perceptron (MLP) neu-
ral network

Method 1 is the classical regression method, often used
in inter-calibration applications relating two nearby spectral

Atmos. Meas. Tech., 18, 3833-3855, 2025

Linear-1a: linear regression based on all training sam-
ples for individual channels

Linear-1b: linear regression separating results for day,
night, and twilight

Configuration Linear-1b accounts for the fact that some
channels might behave differently during the day and night.
This concerns, in particular, AVHRR channel 3B at 3.7 um,
which exclusively measures thermally emitted radiation at
night but both thermally emitted and reflected solar radiation
during the day. We have defined night as solar zenith angles
(SZAs) above 89°, twilight for SZAs between 80 and 89°,
and day as SZAs below 80°.

Appendix A provides linear regression parameters for both
methods.

Method 2 (hereafter described as the NN-based method or
SBA-NN) explores whether multichannel information from
VIIRS can be used to simulate individual AVHRR chan-
nel radiances, taking illumination conditions into account (in
the same way as for the Linear-1b method). The NN-based
method was trained on all training samples, allowing depen-
dence on multiple input channels for each target channel,
separated by night, twilight, and daytime conditions. The fol-
lowing section further describes this method and its training.

3.2 Definition and training of the SBA-NN

This study used multilayer perceptrons of the type quan-
tile regression neural networks (QRNNs; Pfreundschuh et
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Table 4. Training variables for the MLP network.

Variables

Reflectance at 0.6 um

Ratio of 0.6 and 0.9 um reflectances
Brightness temperature at 11 pm
BTD between 12 and 11 um

BTD between 3.7 and 11 um

BTD between 8.5 and 11 um

Ratio of 1.6 and 0.6 um reflectances

al., 2018; Cannon, 2011). These have been successfully used
to retrieve cloud top height parameters from polar satellite
imagery (Héakansson et al., 2018) in the EUMETSAT Now-
casting Satellite Application Facility (NWC SAF) project.
The resulting cloud top height products were also used later
in CLARA-A3. Separate networks were trained for day,
night, and twilight conditions. As input to the AVHRR train-
ing, the network had individual channels (as reflectances and
brightness temperatures), channel differences (i.e. brightness
temperature differences, or BTDs), and channel ratios from
VIIRS (e.g. M10 reflectance divided by M7 reflectance). As
truth to train against, the same variables for the AVHRR
were used (Table 4). However, the channels at 1.6 and 8.5 um
are not available on NOAA-19 AVHRR, which were con-
sequently used only as input to the network. We omitted
the variables concerning the reflective channels during night-
time conditions. The reason for using primarily channel dif-
ferences and ratios between channels in the training, rather
than just the original set of all individual channels, is that
many of the downstream applications for deriving CLARA
products (e.g. cloud mask, cloud optical thickness, effective
radii, and surface albedo) rely heavily on relations between
two or more AVHRR channels. Thus, simulating these rela-
tions between channels as closely as possible is important.

The networks were trained for three distribution quantiles:
16 %, 50 %, and 84 %, which estimate the retrieval error.
The sequential model from Keras/Tensorflow (Joseph et al.,
2021) defined the networks, with the MLP settings detailed in
Table 5. The code for the training and the resulting networks
is available on GitHub (https://github.com/foua-pps/sbafs_
ann, last access: 14 July 2025). Table C1 in Appendix C pro-
vides the details on the final networks.

The data underwent thinning before training. The input
data range was calculated and divided into 10 equal bins for
each variable, from which 1000 data points were randomly
selected per bin. Bins with fewer than 1000 points were sup-
plemented with additional random selections to reach exactly
400000 data points for the night-time network and 700 000
for each daytime and twilight network. Data thinning aimed
to give rare but important data points — such as cloud-free
snow-covered surfaces and hot deserts — larger representa-
tion in the training data.

https://doi.org/10.5194/amt-18-3833-2025

Table 5. MLP network settings.

Multilayer perceptron model setting ~ Value
Number of hidden layers 2
Number of neurons per hidden layer 15
Learning rate 0.02
Patience 30
Momentum 0.9
Decay 106

Activation function for hidden layers tanh
Kernel initializer glorot uniform

3.3 Evaluation methods

The results for the simulated radiances are primarily evalu-
ated by inter-comparing radiances in scatter plots and calcu-
lating appropriate scores of radiance agreement. This evalu-
ation is based on the radiance validation dataset in Table 3.

An equally important way of evaluating the results is to
investigate the impact on some central CLARA CDR cloud
products to verify that the products derived from the simu-
lated AVHRR radiances fulfilled the essential CLARA-A3
CDR product requirements. A favourable condition for the
chosen period was the possibility of collocating VIIRS and
AVHRR orbits with observations from the CALIPSO satel-
lite (also having Equator crossing times near to 01:30 pm).
Consequently, cloud products derived from VIIRS-simulated
AVHRR data could be efficiently validated using CALIPSO-
CALIOP cloud products (Winker, 2016). Thus, the validation
results for the cloud parameter cloud fractional cover (CFC
in %), cloud top height (CTH, in metres), and cloud phase
(CPH, meaning the percentage of liquid phase cloud tops)
could be derived. The validation methods were the same as
those described by Karlsson and Hakansson (2018).

The processing of the CLARA CDR cloud products is
based on the software package for the Polar Platform sys-
tem (PPS), originally developed in the EUMETSAT NWC
SAF project (https://www.nwcsaf.org/web/guest/home, last
access: 14 July 2025). PPS enables cloud product process-
ing for a wide range of imagers. The shift from one sen-
sor to another is generally dealt with by adjusting pre-
calculated cloud detection thresholds, atmospheric correc-
tions, and other adaptations from mainly RTTOV simulations
utilizing each sensor’s spectral response functions.

We used a variety of validation scores depending on the in-
vestigated parameters (all scores described in detail by Karls-
son and Hékansson, 2018). For the cloud mask evaluation,
we first converted cloud probabilities to a binary cloud mask
using the probability threshold of 50 %. Then, we calculated
the overall cloud fractional cover (CFC) to be compared with
the CFC calculated from the CALIPSO cloud products. The
mean error (bias in percentage points — %), the dimension-
less hit rate, and the Kuipers scores were then calculated.
Since the CALIOP cloud lidar on CALIPSO is more sen-
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sitive to cloud occurrence than AVHRR, the Kuipers and
hit rate scores were also calculated for CALIOP observa-
tions, with the thinnest clouds excluded (i.e. excluding con-
tributions from cloud layers with cloud optical thicknesses
< 0.20). For CTH, the cloud top of the topmost cloud layer
detected by CALIOP was used as the validation reference.
Computed validation scores for CTH were mean error and
mean absolute error (both in metres). Also here, the effect of
removing the thinnest clouds from the CALIPSO dataset was
studied but now using a slightly relaxed cloud optical thick-
ness threshold of 0.4, claiming that the prospect of retrieving
a cloud top height requires that clouds are also detected with
reasonable confidence.

Notice that the Suomi NPP-CALIPSO matchups for the
years 2012-2013 (i.e. basically the cloud product validation
dataset for the Suomi NPP in Table 3) are independent of the
AVHRR-Suomi NPP matchups (i.e. the two training datasets
for the Suomi NPP) in the same period. More clearly, the
likelihood of simultaneous nadir observations from all three
platforms is extremely low.

In addition to evaluating the performance of cloud prod-
ucts for 2012 and 2013, we also made the same validation ef-
fort based on CALIPSO data for all months in 2019. The pur-
pose was mainly to choose a period with more independent
data, well separated in time from the 2 years when SBAF
methods were initially derived. Thus, we wanted to see if the
results were still valid for the Suomi NPP data 6 years later.
In addition, we also wanted to see if the next VIIRS sensor
on NOAA-20, with slightly different spectral responses for
some involved channels, would produce results with similar
quality. This validation effort used data from cloud validation
datasets from 2019, as shown in Table 3.

As a final confirmation that simulated CLARA-A3 cloud
products would perform satisfactorily overall, we also
made inter-comparisons between the original and simulated
AVHRR cloud property products for the NOAA-19/Suomi
NPP matchups in the year 2012. Cloud property products
COT, CRE, LWP, and IWP could not be validated in the
CALIPSO validation study. Comparing them with the origi-
nal AVHRR products indicates their validity, even though the
validation dataset (i.e. the cloud property inter-comparison
dataset in Table 3) partly includes cases used for training the
methods. The analysis also computes agreement scores sim-
ilar to those defined for the radiance inter-comparisons.

4 Results
4.1 Results for simulated AVHRR radiances

Figure 3 shows scatterplots with results of the simulated
AVHRR reflectances for the two visible AVHRR channels
(channels 1 and 2; see Table 1). For the linear regressions,
we only show results of version Linear-1b, since the two
linear versions give almost identical results for the visible
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Figure 3. Radiance inter-comparisons for AVHRR channels 1
(0.6 um, a—c) and 2 (0.9 um, d-f). Original AVHRR vs VIIRS
reflectances (%) are shown in (a) and (d). AVHRR vs VIIRS-
simulated reflectances are shown in (b), (c), (e), and (f). (b) and
(e) show results from the Linear-1b method, while (c) and (f) show
simulated results from the SBA-NN method.

channels. Results are compared to the original reflectances
from AVHRR and VIIRS. It is clear that original channel re-
flectances are highly correlated in both sensors, although VI-
IRS reflectances are generally slightly higher than AVHRR
reflectances. The relatively large spread around the identity
line is largely explained by remaining but small collocation
errors in space and time. Furthermore, sampling differences
in how radiances are averaged in AVHRR GAC and VIIRS
VGAC fields of view (FOV) can also contribute to the scatter.

Simulations with the linear method improve the agreement
(i.e. bring results closer to the identity line) in Fig. 3 for both
channels but appear to create overcompensated results for
high reflectances. The NN-based method delivers the best
results, effectively removing most of the off-diagonal devi-
ations observed in the linear method.

As seen in Fig. 1, the spectral responses for VIIRS and
AVHRR for the infrared channels 4 and 5 are very similar,
which is also verified by the results in the middle and bot-
tom panels of Fig. 4. Original and simulated results for the
two AVHRR channels are here more or less identical. Some
deviations are, however, seen for AVHRR channel 3B (up-
per panel in Fig. 4), and the NN-based method is somewhat
better than the linear method for reducing these deviations.

Although AVHRR simulations for the infrared and short-
wave infrared channels appear to agree well with the origi-
nal AVHRR radiances in Fig. 4, we must emphasize that for
some CLARA applications (like cloud detection), the qual-
ity of the simulated AVHRR channel differences is very im-
portant. Similarly, estimating surface albedo in CLARA re-
quires accurate inter-channel relations (i.e. reflectance ratios)
between the two visible channels. Figure 5 closes in on those
features.
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Figure 4. Radiance inter-comparisons for AVHRR channel 3B
(3.7 um, a—c), channel 4 (11 um, d—f), and channel 5 (12 um, g-i).
The figure shows merged results for all daytime categories. Orig-
inal AVHRR vs VIIRS brightness temperatures (K) are shown in
(a), (d), and (g). AVHRR vs VIIRS-simulated brightness temper-
atures are shown in (b), (¢), (e), (f), (h), and (i). (b), (e) and (h)
show results from the Linear-1b method, while (¢), (f), and (i) show
simulated results from the SBA-NN method.

The close-up of differences and ratios in Fig. 5 reveals
deviations from the identity line for original and simulated
results. The brightness temperature differences for the three
original infrared and shortwave infrared channels are rel-
atively large. The linear approach somewhat improves the
agreement, but the NN-based method can almost completely
remove the differences. The linear method cannot improve
the agreement for the reflectance ratio, while the NN-based
method provides an excellent agreement.

Figure 6 summarizes the quality (uncertainty) of simulated
results, i.e. the difference distribution between simulated and
real AVHRR results for the studied methods based on the
same datasets as in Figs. 3, 4, and 5. Notice that the figure
also shows results for the previously illustrated channel dif-
ferences and ratios and results for the Linear-1a method (not
shown in Figs. 4 and 5). For reference, the figure also shows
the original deviation between the AVHRR and VIIRS chan-
nels.

We immediately notice that the SBA-NN method is supe-
rior to all other methods by showing the highest frequency at
the zero-difference level (dark purple curves in Fig. 6). This
method creates no secondary peaks, and the distribution is
clearly non-Gaussian (i.e. the grey distribution indicated in
Fig. 6 is Gaussian, with the same bias and standard devia-
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Figure 5. Results for selected channel differences and ratios. The
figure shows merged results for all three daytime categories. (a)—(c)
show results for original and simulated brightness temperature dif-
ferences (K) between AVHRR channels 4 and 5 (11-12 um). (d)—(f)
show results for original and simulated brightness temperature dif-
ferences (K) between AVHRR channels 4 and 3B (11-3.7 um). (g)—
(i) show results for original and simulated reflectance ratio between
AVHRR channels 2 and 1 (0.9/0.6 pm). Original AVHRR and VI-
IRS relations are shown in (a), (d), and (g); results for the Linear-1b
method in (b), (e), and (h); and results for the NN-based method in
(¢), (), and (i).

tion). Notice, in particular, that this method has excellent re-
sults for channel differences and ratios (lowest row in Fig. 6).

Results in Fig. 6 clearly show that AVHRR channel 3B
simulations require separate handling of day and night mea-
surements. If the simulation method is not different between
day and night (i.e. as in Linear-1a), the error difference
clearly peaks outside the zero level (e.g. green curves in the
leftmost plots in the middle and bottom rows in Fig. 6).

Tables B1-B4 in Appendix B summarize all results for the
selected overall statistical measures. Appendix B also pro-
vides results subdivided for day, night, and twilight condi-
tions.

4.2 CALIPSO-based validation of derived CLARA
cloud products for 2012 and 2013

Tables 6—8 show results from the CALIPSO-CALIOP val-
idation of the three CLARA-A3 cloud products based on
VIIRS-VGAC-simulated AVHRR radiances. Section 3.3 de-
scribes the general validation setup and the validation scores
used.
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Figure 6. Frequency distributions of differences between simulated
and real AVHRR radiances and brightness temperatures. For ref-
erence, original AVHRR and VIIRS channel deviations are also
shown (dotted green curve: no SBA in the legend). (a)—(e) show
results for all five AVHRR channels, while (f)—(h) show results for
BTDs (channel 4 to channel 5 and channel 4 to channel 3B) and the
reflectance ratio (channel 2 divided by channel 1).

The tables contain validation results for eight different val-
idation setups.

1. NOAA-19 CLARA-A3

Achieved validation results in a previous validation of
the CLARA-A3 products for products generated from
the NOAA-19 AVHRR instrument over 2012-2013.
These results are included, since this study aims to pro-
duce results from VIIRS-VGAC data compatible with
earlier NOAA-19 AVHRR-based products.

2. PPS VIIRS

Validation results based on uncorrected AVHRR-
heritage channels of VIIRS-VGAC data in 2012-2013.
Notice that this category means that PPS cloud products
have been produced in the VIIRS environment (i.e. ap-
plying pre-calculated cloud detection thresholds, atmo-
spheric corrections, and other adaptations using spectral
responses of the five AVHRR-heritage channels of VI-
IRS).

3. VGAC no SBA

Similar to the previous category but is now based on
PPS cloud products produced in the AVHRR envi-
ronment (i.e. applying pre-calculated cloud detection
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thresholds, atmospheric corrections, and other adap-
tations using spectral responses of the original five
NOAA-19 AVHRR channels). This environment is also
used for all following categories.

4. VGAC Linear-1a

Validation results based on the VIIRS-VGAC simula-
tion of AVHRR channels based on the Linear-1a method
in 2012-2013.

5. VGAC Linear-1b

Validation results based on the VIIRS-VGAC simu-
lation of AVHRR channels based on the Linear-1b
method in 2012-2013.

6. VGAC SBA-NN

Validation results based on the VIIRS-VGAC simula-
tion of AVHRR channels based on the SBA-NN method
in 2012-2013.

7. VGAC SNPP 2019 SBA-NN

Validation results based on the Suomi NPP VIIRS-
VGAC simulation of AVHRR channels based on the
SBA-NN method in 2019.

8. VGAC NOAA-20 2019 SBA-NN

Validation results based on the NOAA-20 VIIRS-
VGAC simulation of AVHRR channels based on the
SBA-NN method in 2019.

The tables also show the original requirements for the three
cloud products in the CLARA-A3 CDR in the rightmost
columns. Products generated from VIIRS-VGAC-simulated
data should also fulfil these requirements. In the CLARA-A3
evaluation, very thin clouds detected by CALIPSO-CALIOP
were removed based on COT thresholds of 0.2 and 0.4 for
CFC and CTH, respectively. Karlsson and Hakansson (2018)
suggested this CFC COT threshold after studying the effects
of COT thresholding during the CLARA-A2 CDR CFC vali-
dation exercise. They found the best overall validation scores
when excluding clouds with COT lower than this threshold.
This COT thresholding was later used to define the CLARA-
A3 CFC requirement (Table 6, rightmost column). Here, us-
ing different CFC and COT thresholds (Tables 6 and 7) is mo-
tivated by wanting to discard the thinnest clouds when vali-
dating the CTH product. These clouds are always the most
difficult to deal with for any CTH retrieval, i.e. the thinner
the clouds, the more challenging it becomes to compensate
for semi-transparency effects. The COT threshold for CTH
validation is more arbitrarily chosen. It should be higher
than 0.2, although not drastically, since cloud detection effi-
ciency increases rapidly for COTs larger than 0.2 (see Karls-
son and Hakansson, 2018). A reasonable threshold of 0.4 was
found to remove some of these thin cloud uncertainties. The
threshold should not be too high to give justice to all semi-
transparency correction efforts, i.e. it would not make sense

https://doi.org/10.5194/amt-18-3833-2025
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to only look at opaque clouds. To highlight improvements
more clearly, Tables 6 and 7 show both COT thresholded
results used for CLARA-A3 requirements and original re-
sults that include optically thin clouds. Relying only on COT
thresholded results would overlook important improvements
to the overall CDR, particularly for the CFC product.

If comparing results in columns “PPS VIIRS” and “VGAC
no SBA” for CFC in Table 6, we notice that to process VIIRS
data for AVHRR-heritage channels in the correct PPS VIIRS
environment generally gives better results than when pro-
cessing these data in the AVHRR PPS environment. It proves
that there is indeed a need to apply spectral band adjustments
to properly use VIIRS-based data in the AVHRR PPS envi-
ronment. Some signs of this is also seen in the CPH results in
Table 8, while it is more difficult to judge the changes seen
for the CTH results in Table 7.

Regarding the CFC results, it is clear that all methods
(except Linear-1a, which actually worsens results further)
perform well, indeed much better than the CLARA-A3 re-
quirements and very close to the achieved validation results
for CLARA-A3. The SBA-NN method has the best overall
scores for the VIIRS-VGAC simulations validated against
all CALIPSO-detected clouds. A closer look at the results
(not shown here) reveals that clearly better results are mainly
explained by superior CFC performance during night condi-
tions.

Results for CTH in Table 7 are also somewhat similar for
all methods, but it is difficult to draw conclusions based ex-
clusively on the bias parameter. As Hakansson et al. (2018)
pointed out, the cloud top distribution is largely bi-modal
with peaks for low-level and high-level clouds. Since de-
termining high-level cloud tops is much more difficult than
for low-level cloud tops (i.e. high-level clouds are predomi-
nantly semi-transparent), the actual distribution of low-level
and high-level clouds in the validation dataset has therefore
great importance for the bias results. Consequently, the error
structure is generally non-Gaussian, making the bias parame-
ter inappropriate as a measure of uncertainty. A more reliable
uncertainty parameter here is the mean absolute error. We no-
tice that all results based on simulated AVHRR data are in
line with or even slightly better than the AVHRR reference
results from CLARA-A3.

For the CPH product results in Table 8, the differences in
the results between the various products are even smaller, so
no method can be determined as clearly standing out com-
pared to any other method.

It is encouraging to see that the method found to best simu-
late AVHRR radiances according to the previous section (the
SBAF-NN method) also appears to perform well based on
the Suomi NPP and NOAA-20 data from 2019. Only a minor
degradation appears visible for NOAA-20, which has a VI-
IRS sensor with slightly different spectral channel responses
compared to the Suomi NPP.

https://doi.org/10.5194/amt-18-3833-2025

Table 6. Validation scores for cloud fractional cover (CFC): bias [%], Kuipers score, and hit rate (both [-]). See text and Sect. 3.3 for details.
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Table 8. Validation scores for cloud phase (CPH, here the fraction of liquid clouds): bias [%], Kuipers score, and hit rate (both [—]). Total number of used orbits and samples are given

in Table 6. See text and Sect. 3.3 for details.

CLARA-A3

NOAA-19 PPS  VGAC VGAC VGAC VGAC VGAC SNPP  VGAC NOAA-20 product

Parameter CLARA-A3 VIIRS noSBA Linear-la Linear-1b SBA-NN 2019 SBA-NN 2019 SBA-NN  requirement
CPH mean bias 1% —4% —6 % —1% 1% 0% 0% 2% 5%
CPH Kuipers 0.67 0.66 0.66 0.69 0.68 0.68 0.67 0.68 0.6
CPH hit rate 0.84 0.83 0.83 0.85 0.85 0.84 0.84 0.84 -

Table 7. Validation scores for cloud top height (CTH): bias and mean absolute error (both [m]). Total number of used orbits and samples are given in Table 6. See text and Sect. 3.3 for

details.
CLARA-A3
NOAA-19 PPS VGAC VGAC VGAC VGAC VGAC SNPP  VGAC NOAA-20 product
Parameter CLARA-A3 VIIRS no SBA Linear-la Linear-1b SBA-NN 2019 SBA-NN 2019 SBA-NN  requirement
CTH bias —900m —1049m —1129m —504 m =501 m —598 m —633m —408 m -
CTH bias (COT > 0.4) 807 m 644 m 641 m 1166 m 1143 m 1034 m 1122 m 1288 m 800 m
CTH mean abs error 1664 m 1678 m 1755 m 1560 m 1538 m 1541 m 1673 m 1656 m -

//doi.org/10.5194/amt-18-3833-2025
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Figure 7. Frequency distributions of CPP differences between prod-
ucts based on the VIIRS-simulated and real AVHRR radiances. For
reference, also products based on uncorrected VIIRS radiances are
shown (dotted green curve: no SBA in the legend).

4.3 Inter-comparing original AVHRR-based and
VIIRS-VGAC-simulated cloud physical products
for 2012

Only some of the CLARA-A3 cloud products can be vali-
dated using CALIPSO-CALIOP. The cloud physical prod-
ucts (CPP) of CLARA-A3 consist not only of the CPH prod-
uct (validated in the previous section) but also the CWP
product, subdivided into cloud liquid water path (LWP) and
ice water path IWP). COT and CRE are needed for their
generation. Even if we cannot easily validate these prod-
ucts from independent data, comparing the original AVHRR-
based products to the VIIRS-VGAC-generated products in
the used AVHRR-VIIRS collocation dataset is possible.
Here, we show such inter-comparisons based on all collo-
cated data for 2012. Notice that since the CPP products are
only derived during the daytime, the only difference between
the Linear-1a and Linear-1b methods is that the latter also
has a distinction between twilight and day.

Figure 7 shows frequency distributions of the differ-
ence between VIIRS-simulated CPP products and original
AVHRR-based CPP products for all SBA methods. The fig-
ure also shows resulting frequencies for the case where no
spectral band adjustments are applied (i.e. the no SBA case).
Table 9 summarizes the resulting mean absolute deviations
(MADs) for the different cases.

It is clear from Fig. 7 that if no SBA corrections are made,
the difference distributions of the two fundamental parame-
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Table 9. Mean absolute difference (MAD) for the various spec-
tral band adjustment methods for CPP products based on simulated
data versus products based on the original AVHRR data. Minimum
MAD:s for each CPP product are shown in bold numbers.

COT CRE LWP Iwp

-1 [um] [gm~2] [gm~?%]
No SBA 8.8 3.4 61.1 85.8
Linear-1a 5.9 3.0 49.8 75.9
Linear-1b 54 3.0 44.8 67.8
SBA-NN 5.1 2.6 42.0 55.9

ters COT and CRE (i.e. fundamental for the calculation of
LWP and IWP) are not symmetrically distributed around the
zero-difference value. In particular, the CRE difference dis-
tribution appears biased, with a secondary peak for nega-
tive differences (i.e. underestimated CREs compared to the
AVHRR values). SBA corrections improve the results and es-
pecially the SBA-NN method, which produces a well-defined
narrow peak centred at the zero-difference level. This is also
reflected in Table 9, showing minimum MADs for the SBA-
NN method.

5 Discussion
5.1 AVHRR radiance simulations

Our simulations show that radiance simulations based on lin-
ear regression methods can only partially remove differences
between the original AVHRR and the AVHRR-heritage VI-
IRS channels. Although correlations between channels are
generally high (especially for the infrared channels), there
are obvious remaining non-linear features that linear meth-
ods cannot handle properly. In contrast, the SBA-NN method
handles these non-linear features more accurately when sim-
ulating radiances. This includes channel differences and ra-
tios during network training, which are particularly impor-
tant for downstream applications and which further improve
results.

One very important finding in our study is that for the
3.7 um channel (AVHRR channel 3B), which measures both
emitted thermal and reflected solar radiation during day-
time, it is crucial to separate radiance simulations for day-
time and night-time conditions. It is well known that radi-
ances in this channel behave very differently during night
and day. However, it is also clear that small differences in
spectral responses between the original AVHRR channel 3B
and the AVHRR-heritage channel M12 of VIIRS lead to
clearly different daytime behaviour of the two channels. This
is a consequence of the small difference in central wave-
lengths shown in Tables 1 and 2. The lower central wave-
length value in M12 means that this channel is slightly more
sensitive to reflected solar radiation, which results in a larger
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reflectance contribution to the observed brightness tempera-
ture in this channel. Thus, any relation deduced from purely
night-time measurements (with only thermal emissions) will
fail if applied to daytime measurements. From this, we also
need to emphasize that, even if previously shown results for
cloud screening in Table 6 indicate that good results could
be achieved without any spectral band adjustments of VI-
IRS heritage channels (i.e. staying with the VIIRS process-
ing of AVHRR-heritage channels without any adaptations
to the AVHRR data), any retrieval that is highly dependent
on AVHRR channel 3B needs to make spectral band adjust-
ments on the corresponding VIIRS channel.

Central to this study was the definition of the AVHRR-
VIIRS collocation dataset for 2012 and 2013. The fact that
the NOAA-19 and Suomi NPP had very similar, but not iden-
tical, orbits caused some concern, since it led to an uneven
global sample extraction. The small orbital differences led to
the largest orbital track separations in the tropics, resulting
in large (less favourable) angular differences. To avoid too
much influence of angular differences, which could lead to
differences from anisotropic reflection and atmospheric ab-
sorption effects, we set a maximum viewing angle of 15°
for both sensors. This value was a compromise between the
wish of getting samples for all latitudes and still limiting the
effects of differences due to anisotropic reflection and atmo-
spheric absorption. It allowed samples to be obtained from all
latitudes, but the number of resulting samples also became an
increasing function of latitude. Initially, we tried even stricter
limits on viewing angles, but this resulted in only a few sam-
ples from very warm surfaces at low latitudes, thereby ham-
pering the neural network training.

5.2 Resulting cloud masks, cloud top heights, and
cloud phases

The CLARA-A3 CDR’s cloud detection method depends
heavily on radiances in AVHRR channel 3B. As mentioned
in the previous section, the difficulties in handling this chan-
nel properly clearly affected the validation results based
on the CALIPSO-CALIOP cloud products. Using the ra-
diance simulation Linear-1a method resulted in serious er-
rors in night-time cloud masking, even if daytime results
were acceptable. Night-time results clearly improved with
the Linear-1b method but even more so with the NN-based
method.

The performance of the SBA-NN cloud mask was slightly
better than the original results from NOAA-19 in the
CLARA-A3 CDR. However, it should be noticed that the
previous validation of the CLARA-A3 products allowed
slightly larger time differences between the AVHRR and
CALIPSO observations (i.e. 5 min instead of 2 min), which
probably led to slightly degraded results for CLARA-A3
compared to using a maximum 2 min time difference in both
datasets.
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Results for the other two CALIPSO-examined cloud prod-
ucts did not show a large variation and the existing variation
was mostly linked to the cloud mask quality.

Results for these three cloud products, based on the dif-
ferent AVHRR simulations and on the original AVHRR and
uncorrected VIIRS radiances, generally did not differ very
much in the achieved validation results (at the least, if not
including, night-time results for the Linear-1a method). In
fact, they all reside well within the requirements previously
set for CLARA-A3. We conclude that, for these products,
the AVHRR-heritage channels of VIIRS, corrected or not,
contain enough information to provide results close to the
original AVHRR-based products. It is also encouraging that
the good results are stable enough to be repeated in 2019 for
the Suomi NPP satellite. Results are also good for the VIIRS
sensor on NOAA-20 in 2019, although with some degrada-
tion compared to the Suomi NPP. We expect this degradation
to some extent due to differences in the spectral responses
between the two VIIRS sensors. However, the differences re-
main small enough to avoid the need for radiance corrections,
as results still meet the CLARA-A3 product requirements.

5.3 Resulting cloud physical parameters

The inter-comparison of the original AVHRR-based CPP
products and products based on VIIRS-simulated radiances
showed that very accurate AVHRR radiance simulations are
more important here than for the previously discussed cloud
products. This concerns the COT parameter (which depends
largely on AVHRR channel 1) and the CRE parameter (which
depends largely on AVHRR channel 3B). A simulation of
visible and short-wave infrared radiances should preferably
be subdivided into twilight and daytime categories. However,
the most important for the simulation of channel 3B is that
the simulation method must be derived exclusively from day-
time data.

The success of the SBA-NN method compared to the lin-
ear methods reveals something very interesting: the neural
network appears capable of applying different radiance cor-
rection factors to different objects in simulated channel 3B
images. Notice that only objects able to reflect solar radia-
tion in channel 3B should have a correction factor that differs
from the one applied during night-time (when only thermally
emitted radiation is measured). Furthermore, this correction
factor should also vary depending on the reflection efficiency
of the object, i.e. the correction factor should be dependent
on the object’s reflectance. Any linear correction method will
fail here, since the correction factor is practically always
constant, regardless of the object in the image. The objects
reflecting the most in this channel are typically thick wa-
ter clouds. Since the linear regression will produce a nearly
constant average correction factor (only slightly moderated
by an offset parameter), the correction factor in this chan-
nel is likely too small for thick water clouds and too large
for darker objects with low reflectance (e.g. snow-covered
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Table 10. Resulting SBA corrections (i.e. adjustment factor com-
pared to uncorrected VIIRS channels) for simulation methods
Linear-1b and SBA-NN for markup points in Fig. 8.

Markup point and associated ~ SBAF Linear-1b  SBA-NN
cloud or surface type 3.7 um 3.7 um
X1: Snow (wet) 0.993 0.999
X7 Very low (stratus) 0.992 0.987
X3: Cloud-free ocean 0.992 1.000
X4: Medium-level clouds 0.992 0.985
Xs5: Very high clouds 0.992 1.000
X6: Snow (dry) 0.993 0.999
X7: Low (stratocumulus) 0.993 0.992
Xg: Ice-covered ocean 0.993 0.998

surfaces). This is one explanation for underestimating simu-
lated liquid cloud CRE values, which leads to underestimated
LWP values. Only the SBA-NN method can correct for this
effect.

Together, Fig. 8 and Table 10 illustrate the capability
of the SBAF-NN method to generate different SBAs in
AVHRR channel 3B for different objects in a VIIRS-VGAC-
simulation of AVHRR data over the Greenland area from
21 July 2012. Crosses mark locations in the scene with differ-
ent cloud and surface types, as interpreted by the Polar Plat-
form system (PPS) cloud type product (Dybbroe et al. 2004).
Table 10 shows the resulting SBA corrections for AVHRR
channel 3B for the Linear-1b and the SBA-NN methods in
all the marked points. Specifically, notice the different SBA
corrections for SBA-NN for highly reflecting objects (X»,
X4, and X7) compared to those for weakly reflecting or non-
reflecting objects (X3, X5, and X¢). This means that the NN
is capable of identifying the different behaviour of different
objects, thus making a kind of implicit object type identifica-
tion when assigning which SBAs to use.

These results show the advantage of the NN approach in
absorbing information, not only from the closest AVHRR-
heritage channel but also from a larger set of VIIRS chan-
nels for making it possible to give different objects differ-
ent effective SBA corrections. For example, notice that snow
surfaces, which should hardly be SBA corrected at all ac-
cording to Table 10, are known to have very low reflectance
in AVHRR channels 3A and 3B. Thus, when also including
channel M10 in the training process, this could help in iden-
tifying snow surfaces with higher confidence than if solely
using channel M12 in this spectral region. Another example
is the inclusion of VIIRS channel M14 in the training pro-
cess, a channel that is not available at all on AVHRR. This
channel is partly affected by water vapour absorption, and
this might potentially be useful for getting a better treatment
of the simulation of brightness temperature differences be-
tween AVHRR channels 4 and 5, generally affected by both
water vapour absorption and differences in cloud transmis-
sivities.
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RGB\(3.7 fm; 11 ym, 12 um)

Figure 8. Excerpt of a VIIRS-VGAC-simulated AVHRR orbit
from the Suomi NPP on 21 July 2012 (with first orbit scanline at
15:16 UTC). The scene shows Greenland, the Labrador Sea, and
the adjacent Canadian islands (with southern direction upwards) in
a colour composite (left) based on VIIRS-simulated AVHRR chan-
nels 3B, 4, and 5 and a corresponding PPS cloud type classification
(right). SBAF corrections for the Linear-1b and SBA-NN methods
for the marked positions are given in Table 10.

5.4 Prospects for remaining CLARA-A3 products

We have shown that NOAA-19 AVHRR radiances can be
simulated from Suomi NPP VIIRS-VGAC radiances and that
they can be used to produce cloud products with the same or
even better quality than the original products included in the
CLARA-A3 CDR. Whether the other CLARA-A3 products
(i.e. surface albedo, surface radiation, and TOA radiation)
can also be reproduced successfully from VIIRS-VGAC data
remains to be investigated. Preliminary tests based on the
SBA-NN radiance simulations have been performed for all
products, with promising results. However, more extensive
validations need to take place, which is outside this paper’s
scope. Nevertheless, there is no reason to believe in the fail-
ure of the remaining products if basic radiances and cloud
products are produced with high quality.

6 Conclusions

AVHRR radiances from the NOAA-19 satellite have been
successfully simulated from Suomi NPP VIIRS-VGAC radi-
ances in 2012-2013, when observations from the two satel-
lites could be collocated efficiently in both time and space.
Two methods based on linear regression for each channel
and one method based on an MLP neural network have
been tested. The latter was trained using all AVHRR-heritage
channels on VIIRS plus a few additional channels. Special
attention was given to day and night differences, while con-
straints on channel differences and channel ratios were ap-
plied to the neural network.

The neural network approach achieved the best results for
all individual channels. We found it crucial to separate day-
time from night-time results when simulating AVHRR chan-
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nel 3B at 3.7 um. The small spectral response differences be-
tween AVHRR channel 3B and VIIRS M12 channel, lead-
ing to a smaller effective wavelength for the VIIRS chan-
nel, meant that different simulation methods had to be used
for day and night. Furthermore, radiance corrections during
the daytime had to depend on the actual object reflectance to
be realistic. Only the neural network approach was able to
achieve this.

Selected NOAA-19 cloud products (cloud mask, cloud top
height, and cloud phase) in the CLARA-A3 CDR were pro-
duced from VIIRS-VGAC-simulated radiances based on the
same retrieval methods as used when compiling CLARA-
A3. The resulting products were validated using CALIPSO-
CALIOP cloud products and compared to the original
CLARA-A3 products. Product qualities agreed well with the
original CLARA-A3 products and are clearly within product
requirements. In addition, the cloud microphysical products
COT, CRE, LWP, and IWP were well reproduced when based
on the neural network-simulated radiances.

In order to check the validity of the derived spectral adjust-
ments on a longer time scale, it is suggested to regularly re-
peat the validation efforts on derived cloud products based on
new observations from active sensors on EarthCARE (Illing-
worth et al., 2015) and similar missions in the future. In
addition, regular checks of simultaneous nadir observations
(SNOs) at high latitudes between VIIRS and IASI (and its
successors) can help in deducing the stability of the infrared
band spectral responses. The possibility of making similar
checks for VIIRS and METimage visible bands seems un-
fortunately not possible from the Tropospheric Ozone Moni-
toring Instrument (TROPOMI; Veefkind et al., 2012), due to
very limited spectral coverage of AVHRR-heritage channels.
The Ocean Color Instrument (OCI) on the PACE (Plankton,
Aerosol, Cloud, ocean Ecosystem; Gorman et al., 2019) mis-
sion and the EMIT (Earth Mineral dust source Investigation)
sensor aboard the International Space Station offer potential
sources (Connelly et al., 2021) of suitable reference mea-
surements. Sentinel-3’s Ocean and Land Colour Instrument
(OLCI,; Donlon et al., 2012) can also provide reference data.
While OLCI is not fully hyperspectral, it includes 21 bands
within the 0.4-1.0 um range and operates with a 10:00 am
Equator overpass time.

CLARA-A3 will be complemented and extended with
VIIRS-VGAC-based products to cover the period 1979-2024
(46 years), and this edition will be named CLARA-A3.5. In-
terestingly, for the future, the same radiance simulation ap-
proach could be applied on radiances from the upcoming
METimage sensor on the EPS-SG satellites, with an expected
first launch in August 2025. This satellite will have nearly the
same Equator crossing time as the current Metop-C satellite
with the last AVHRR sensor on board. This would enable
collocations in the same way as the currently used colloca-
tions of NOAA-19 and Suomi NPP data. If AVHRR radi-
ances can be successfully simulated from METimage data,
the CLARA CDR can be extended by several decades based
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on measurements from VIIRS and METimage sensors. Fi-
nally, the possibility to also use MODIS-based AVHRR data
simulations can be considered to improve observational cov-
erage for some earlier years in the CLARA CDR (e.g. for
1999-2001 when the NOAA-16 orbital drift was consider-
able). However, the highest priority is to secure a CDR ex-
tension with VIIRS and METimage data.

Appendix A: Coefficients for linear regression methods

Table Al. Linear regression parameters for the Linear-1a method
based on all data (i.e. merged training datasets 1 and 2 in Table 3).
For details on channel wavelengths for the two sensors, see Tables 1
and 2.

AVHRR channel ~ Simulated Slope Offset Number of
from VIIRS observations
channel

Channel 1 (%) M5 0.8534 1.8517 19010 195

Channel 2 (%) M7 0.8507 1.1157 19010195

Channel 3B (K) MI12 0.9734 6.1707 41474568

Channel 4 (K) M15 1.0006 —0.0378 41474568

Channel 5 (K) Mi16 0.9906 2.1505 41474568

Table A2. Linear regression parameters for the Linear-1b method
based on all data (i.e. merged training datasets 1 and 2 in Table 3)
but restricted to day conditions. For details on channel wavelengths
for the two sensors, see Tables 1 and 2.

AVHRR channel  Simulated Slope  Offset Number of
from VIIRS observations
channel

Channel 1 (%) M5 0.8960 1.7118 15102309

Channel 2 (%) M7 0.8907 0.5547 15102309

Channel 3B (K) MI12 0.9817 3.0744 15102309

Channel 4 (K) M15 0.9926 2.0934 15102309

Channel 5 (K) M16 0.9774  5.6555 15102309

Table A3. Linear regression parameters for the Linear-1b method
based on all data (i.e. merged training datasets 1 and 2 in Table 3)
but restricted to twilight conditions. For details on channel wave-
lengths for the two sensors, see Tables 1 and 2.

AVHRR channel  Simulated Slope Offset Number of
from VIIRS observations
channel

Channel 1 (%) M5 0.6710 4.5075 3904 507

Channel 2 (%) M7 0.7120 3.7473 3904 507

Channel 3B (K) MI12 0.9973  —0.7479 3904 507

Channel 4 (K) M15 1.0024 —0.5164 3904 507

Channel 5 (K) M16 0.9967 0.6742 3904 507
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Table A4. Linear regression parameters for the Linear-1b method
based on all data (i.e. merged training datasets 1 and 2 in Table 3)
but restricted to night conditions. For details on channel wave-

lengths for the two sensors, see Tables 1 and 2.

AVHRR channel  Simulated Slope Offset Number of
from VIIRS observations
channel

Channel 3B (K) MI12 0.9948 1.3254 21971492

Channel 4 (K) M15 1.0042 —0.9186 21971492

Channel 5 (K) M16 0.9962 0.7373 21971492

Appendix B: Detailed score statistics for radiance and

image feature simulations
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Table B1. Radiance validation scores (for quantity VIIRS-AVHRR) for day (4 307 482 samples). Shown are values of median error (median),
mean absolute error (MAE), interquartile range (IQR), mean error (bias), root-mean-squared error (RMSE), and regression parameters (slope,
offset, and correlation) for the simulation of each AVHRR channel and each channel combination and for every tested simulation method.
Individual best scores are highlighted in bold numbers.

Channel or feature ~ Method Median MAE IQR Bias RMS  Slope Offset  Correlation
0.6 um (%) SBA-NN —-0.091 3700 3.878 —0.219 6.331 0.961 1.157 0.970
Linear-1b 0.310 3.941 4.652 0.052 6.444 0945 1.969 0.969
Linear-1a —0.905 4.278 5394 —1.401 6.675 0.901 2.096 0.969
No correction  —1.926 5.107 6.840 2.228 7.500 1.055 0.287 0.969
0.9 um (%) SBA-NN —0.134 3817 4.060 —-0.290 6.464 0.953 1.341 0.968
Linear-1b —0.175 4403 5.605 —0.110 6.904 0.933 2.229 0.963
Linear-1a —0.774 4.646 5988 —1.094 7.054 0.891 2.715 0.963
No correction 3318 5929 7.690 3.557 8.398 1.048 1.880 0.963
3.7 um (K) SBA-NN 0.008 1.779 2.093 —-0.122 2.899 0.972 7.802 0.987
Linear-1b —0.180 2.617 3.582 —0.343 3.805 0.933 18.523 0.978
Linear-1a 0.606 2.694 3.646 0.384 3.829 0.926 21.488 0.978
No correction 1.820 3.096 3.520 1.806 4.176  0.951 15.736 0.978
11 um (K) SBA-NN —0.070 1.528 1.024 —0.008 3.371 0.983 4711 0.986
Linear-1b —0.072 1564 1.114 —-0.035 3.378 0.973 7.279 0.986
Linear-1a —0.043 1.521 0.977 —-0.007 3.382 0.981 5.190 0.986
No correction  —0.170 1.542 0980 —0.131 3.384 0.980 5.224 0.986
12 um (K) SBA-NN —0.073 1.504 1.000 —0.001 3.311 0.982 4.908 0.986
Linear-1b —0.134 1.557 1.160 —0.035 3.324 0.972 7.499 0.986
Linear-1a —0.065 1.512 0.991 0.011 3.334 0985 4.019 0.986
No correction 0.290 1.596 1.060 0.389 3.377 0.994 1.886 0.986
0.9 um/0.6 um (-) SBA-NN —0.000 0.054 0.051 —-0.001 0.123 0.896 0.104 0.952
Linear-1b —0.024 0.079 0.088 —0.022 0.147 1.013 —0.035 0.942
Linear-1a —0.001 0.068 0.082 0.007 0.139 0.976 0.031 0.943
No correction 0.026 0.096 0.088 0.062 0.237 1.299 —-0.239 0.937
11 um-12 pum (K) SBA-NN —0.001 0.217 0.230 —-0.007 0.395 0.910 0.124 0.947
Linear-1b 0.032 0266 0.344 —0.001 0426 0.817 0.265 0.941
Linear-1a 0.030 0.279 0.385 —0.018 0.434 0.794 0.280 0.941
No correction —0.420 0.566 0.620 —0.520 0.732 0.739 —0.141 0.915
11 pm-3.7um (K) SBA-NN —0.049 1981 2.165 0.114 3.272 0908 —1.143 0.940
Linear-1b 0.255 2.754 3444 0.308 4.127 1.060 1.120 0.928
Linear-1a —0.554 2879 3.657 —0.391 4.213 1.065 0.498 0.926
No correction  —1.890 3.343 3530 —1.937 4575 1.070 —0.992 0.929
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Table B2. Radiance validation scores (for quantity VIIRS—AVHRR) for twilight (852 881 samples). Shown are values of median error (me-
dian), mean absolute error (MAE), interquartile range (IQR), mean error (bias), root-mean-squared error (RMSE), and regression parameters
(slope, offset, and correlation) for the simulation of each AVHRR channel and each channel combination and for every tested simulation

method. Individual best scores are highlighted in bold numbers.

K.-G. Karlsson et al.: Extension of AVHRR-based climate data records

Channel or feature = Method Median MAE IQR Bias RMS  Slope Offset  Correlation
0.6 um (%) SBA-NN —0.191 3.902 5.275 —0.289 5.832 0.893 3.996 0.932
Linear-1b —1.280 6.778 9.636 0.128 9.355 0.705 11.981 0.813
Linear-1a 4.246 8.273 9.519 7.205 12.654 0.897 11.356 0.813
No correction 10.386 13.618 10.982 13.177 17.863 1.051 11.137 0.813
0.9 um (%) SBA-NN —0.312 4.490 5.865 —0.490 7.164 0.880 4.642 0.927
Linear-1b —0.894 7.233  10.089 0.215 10.395 0.752 10.774 0.839
Linear-1a 2.568 7.739 9.445 5.192 12374  0.899 9.512 0.839
No correction 9.207 13.059 11.397 12267 17911 1.056 9.869 0.839
3.7 um (K) SBA-NN 0.132 0.972 1.222 0.129 1.518 0977 6.114 0.990
Linear-1b —0.223 1.458 2.227 0.137 2.010 0.980 5.213 0.983
Linear-1a 0.569 1.533 2.226 0.886 2.190 0.957 11.988 0.983
No correction 1.210 1.879 2.230 1.582 2.556  0.983 5.977 0.983
11 pm (K) SBA-NN 0.028 0.707 0.697 0.033 1.285 0.991 2.248 0.996
Linear-1b 0.018 0.658 0.574 0.012 1.257 0.992 1.890 0.996
Linear-1a 0.052 0.663 0.585 0.041 1.258  0.991 2.365 0.996
No correction  —0.060 0.665 0.590 —-0.071 1.259  0.990 2-401 0.996
12 um (K) SBA-NN 0.019 0.712 0.694 0.028 1.299 0.991 2.293 0.996
Linear-1b —0.026 0.671 0.599 —0.010 1.276  0.992 1.879 0.996
Linear-1a —0.070 0.691 0.670 —0.054 1.279  0.986 3.348 0.996
No correction 0.120 0.682 0.580 0.138 1.284 0.996 1.209 0.996
0.9 um/0.6 um (-) SBA-NN —0.003 0.041 0.053 —0.004 0.063 0.832 0.170 0.916
Linear-1b 0.005 0.054 0.080 0.005 0.076  0.660 0.357 0.886
Linear-1a —0.050 0.069 0.079 —0.051 0.091 0.690 0.269 0.883
No correction  —0.032 0.060 0.079 —0.031 0.082 0.703 0.277 0.876
11 um-12 pm (K) SBA-NN 0.008 0.138 0.194 0.005 0.213 0.910 0.068 0.957
Linear-1b 0.039 0.158 0.224 0.022 0.229 0.852 0.126 0.952
Linear-1a 0.115 0.189 0.235 0.095 0.253  0.860 0.193 0.948
No correction  —0.190 0.241 0.250 —0.209 0.320 0.836 -0.094 0.946
11um-3.7um (K) SBA-NN —0.101 0.873 1.057 —0.096 1410 0971 —-0.297 0.981
Linear-1b 0.293 1.412 2.163 -0.125 1.946 1.130 0.761 0.979
Linear-la —0.466 1.441 2.131 —0.845 2.106 1.128 0.033 0.979
No correction  —1.240 1.867 2.140 —1.653 2.544  1.127 —-0.786 0.979
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Table B3. Radiance validation scores (for quantity VIIRS—AVHRR) for night (5 758 113 samples). Shown are values of median error (me-
dian), mean absolute error (MAE), interquartile range (IQR), mean error (bias), root-mean-squared error (RMSE), and regression parameters
(slope, offset, and correlation) for the simulation of each AVHRR channel and each channel combination and for every tested simulation
method. Individual best scores are highlighted in bold numbers.

Channel or feature = Method Median MAE IQR Bias RMS Slope Offset  Correlation
3.7 um (K) SBA-NN —0.069 1.164 1.208 —0.085 1.988 0.995 1.215 0.996
Linear-1b —0.073 1.185 1.255 —0.013 1.998 0.992 2.127 0.996
Linear-1a —0.902 1.554 1.672 —-0.768 2205 0.970 6.955 0.996
No correction 0.010 1.178 1.240 0.022 2.000 0.997 0.805 0.996
11 um (K) SBA-NN —0.038 0925 0.788 —0.042 1.772 0.996 1.050 0.997
Linear-1b —0.020 0.925 0.788 —0.000 1.772 0.995 1.332 0.997
Linear-1a —0.080 0945 0.834 —0.054 1.775 0.991 2.205 0.997
No correction  —0.200 0.971 0.850 —0.172 1.783 0.991 2.241 0.997
12 um (K) SBA-NN —-0.046 0905 0.773 —0.052 1.732 0.996 1.064 0.997
Linear-1b —0.044 0939 0.874 —0.007 1.748 0.996 0.963 0.997
Linear-1a —0.086 0.956 0930 —0.043 1.750 0.991 2.374 0.997
No correction 0.190 0.970 0.890 0.239 1.768 1.000 0.226 0.997
11 pm—12 pm (K) SBA-NN 0.007 0.172 0.216 0.009 0.281 0.954 0.061 0.972
Linear-1b 0.052 0.248 0.368 0.007 0.343 0.829 0.197 0.964
Linear-1a 0.028 0.245 0368 —0.010 0.343 0.838 0.170 0.963
No correction —0.320 0.443 0480 —0.411 0.581 0.779 -0.166 0.948
11pm-3.7um (K) SBA-NN 0.023 0.615 0.646 0.043 1.071 0.925 —0.100 0.959
Linear-1b 0.027 0.640 0.708 0.013 1.091 0950 —0.081 0.958
Linear-1a 0.830 1.066 1.006 0.714 1379 0.952 0.622 0.951
No correction  —0.270 0.706 0.730 —0.194 1.122 0944 —0.300 0.957
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Table B4. Radiance validation scores (for quantity VIIRS—AVHRR) for all cases (10918 476 samples but for visible channels and features
5160363 samples). Shown are values of median error (median), mean absolute error (MAE), interquartile range (IQR), mean error (bias),
root-mean-squared error (RMSE), and regression parameters (slope, offset, and correlation) for the simulation of each AVHRR channel and
each channel combination and for every tested simulation method. Individual best scores are highlighted in bold numbers.

Channel or feature ~ Method Median MAE IQR Bias RMS  Slope Offset  Correlation
0.6 um (%) SBA-NN —0.102 3.733 4.104 —0.230 6.251 0.956 1.339 0.969
Linear-1b 0.180 4.410 5.280 0.065 7.009 0.929 2.607 0.959
Linear-1a —0.227 4938 5.760 0.022 7.978 0911 3.242 0.947
No correction  3.0043 6.514 7.989 4.038 9.985 1.067 1.629 0.947
0.9 um (%) SBA-NN —0.153 3928 4356 —0.323 6.585 0.947 1.617 0.965
Linear-1b —0.231 4.871 6.202 —0.056 7.592 0917 2.952 0.952
Linear-la —0.333 5.157 6373 —0.055 8.176  0.904 3.430 0.944
No correction 4176  7.107 8.580 4996 10.578 1.063 2.721 0.944
3.7 um (K) SBA-NN 0.035 1.392 1.523 —0.083 2362 0.990 2.698 0.995
Linear-1b —0.098 1.771 2.046 —0.132 2.852  0.976 6.262 0.993
Linear-1a —0.419 2.002 2665 —0.184 2953 0974 6.735 0.992
No correction 0.410 1.989 2.460 0.847 3.082 1.001 0.580 0.992
11 um (K) SBA-NN —0.045 1.146 0.855 —0.023 2.504 0.992 2.118 0.994
Linear-1b —0.028 1.156 0.902 —0.013 2.506  0.988 3.113 0.994
Linear-1a —0.051 1.150 0.856 —0.028 2.509 0.989 2.945 0.994
No correction  —0.170 1.172 0.860 —0.148 2.514  0.988 2.981 0.994
12 um (K) SBA-NN —0.051 1.127 0.839 —0.026 2457 0.992 2.165 0.994
Linear-1b —0.070 1.161 0959 —0.018 2.469 0.989 2.934 0.994
Linear-la —-0.076 1.155 0.922 —-0.023 2476  0.990 2.654 0.994
No correction 0.220 1.194 0.930 0.290 2.505 0.999 0.508 0.994
0.9 um/0.6 um (-) SBA-NN —0.001 0.052 0.051 —0.001 0.116 0.894 0.105 0.951
Linear-1b —0.018 0.075 0.089 —0.017 0.138 1.004 —0.021 0.939
Linear-1a —0.008 0.068 0.085 —0.003 0.132  0.966 0.031 0.940
No correction 0.017 0.090 0.090 0.047 0.219 1279 -0.235 0.931
11-12 pm (K) SBA-NN 0.004 0.187 0.219 0.003 0.327 0.935 0.081 0.962
Linear-1b 0.043 0.248 0.344 0.005 0.371  0.830 0.212 0.955
Linear-1a 0.038 0.254 0.364 —0.005 0.376  0.823 0.210 0.954
No correction  —0.340 0476 0.530 —0.438 0.631 0.759 —0.146 0.934
11-3.7 um (K) SBA-NN 0.005 1.174 1.059 0.060 2232 0946 —0.310 0.968
Linear-1b 0.063 1.534 1.420 0.119 2.765 1.020 0.254 0.957
Linear-la 0.522  1.811 2.010 0.156 2.890 1.069 0.633 0.959
No correction  —0.500 1.837 1.880 —0.995 3.070 1.092 —0.363 0.961

Appendix C: Specification of derived MLP networks for
day, night, and twilight

Table C1. Configuration file names for finally chosen MLP networks.

Configuration file Time of day
ch7_satz_max_15_SUNZ_0_80_tdiff_120_sec_ 20241204.yaml Day
ch7_satz_max_15_SUNZ_80_89_tdiff 120_sec_ 20241204.yaml Twilight
ch4_satz_max_15_SUNZ_90_180_tdiff_120_sec_ 20241204.yaml  Night
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