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Abstract. The MethaneAIR imaging spectrometer was
originally developed as an airborne demonstrator of the
MethaneSAT satellite mission. MethaneAIR enables accu-
rate methane concentration retrievals from high-spectral-
resolution measurements in the 1650 nm methane absorp-
tion feature at a nominal spatial sampling of 5× 25 m. In
this work, we present a computationally efficient data pro-
cessing chain optimized for the detection and quantifica-
tion of methane plumes with MethaneAIR. It involves the
retrieval of methane concentration enhancements (1XCH4)
with the high-precision matched-filter retrieval, which is
applied to 1650 nm retrievals for the first time. Methane
plumes are detected via visual inspection of the resulting
1XCH4 maps. We evaluated the performance of this pro-
cessing scheme with simulated plumes, intercomparison with
other methods, and controlled methane releases. We applied
this processing chain to MethaneAIR data mosaics acquired
over the Permian Basin during flights in 2021 and 2023,
which resulted in the detection of hundreds of point sources
above 100–200 kg h−1, with a conservative detection limit
of around 120 kg h−1. Our results show the consistency of
MethaneAIR’s 1XCH4 matched-filter retrievals as well as
their potential for the detection and quantification of methane
point sources across large areas.

1 Introduction

The remote detection and quantification of methane emis-
sions from small infrastructure elements, also known as point
sources, is crucial to guide methane emission mitigation ef-
forts. Airborne and spaceborne imaging spectrometers are
being widely used for this application. Optical imaging spec-
trometers record the light reflected by the Earth surface after
interaction with the atmosphere in hundreds of contiguous
spectral channels. These spectrally resolved measurements
allow the quantification of atmospheric methane concentra-
tions from the 1650 or 2300 nm shortwave infrared (SWIR)
spectral regions in which methane absorbs radiation. The re-
sulting methane concentration maps can be used to identify
and quantify methane plumes, which can be attributed to the
corresponding sources.

We can classify the imaging spectrometers with potential
for methane mapping into two different instrument classes,
defined by the instrument’s spectral configuration. First, we
have the spectrometers sampling the entire solar spectrum
(∼ 400–2500 nm) with a relatively coarse spectral sampling
of between 5 and 10 nm and a relatively high spatial res-
olution (a few metres in the case of some airborne instru-
ments). Methane retrievals for this type of instrument ex-
ploit the 2300 nm methane feature. Most of the developments
towards the detection and quantification of methane point
sources are based on previous work with the AVIRIS and
AVIRIS-NG airborne spectrometers, which belong to this in-
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strument class. For example, Roberts et al. (2010) detected
methane emissions from a marine geological seep source
with AVIRIS; Thorpe et al. (2014, 2017) discussed methane
retrieval methods for AVIRIS and AVIRIS-NG; Franken-
berg et al. (2016) used AVIRIS-NG to survey methane point
sources in the Four Corners region (USA); and Cusworth et
al. (2022) assessed the methane emissions from different US
basins with AVIRIS-NG.

The second group of methane-sensitive spectrometers
sample a narrow spectral window around the 1650 nm
methane absorption, with a sub-nanometer spectral sampling
and a typically coarser spatial sampling. The GHGSat instru-
ments (spaceborne and airborne) and the Methane Airborne
MAPper (MAMAP) and MAMAP-2D airborne spectrome-
ters belong to this category. The 1-D (profiler) version of the
MAMAP spectrometer has been operating since the 2010s
(Krings et al., 2011). For example, MAMAP was used to
map methane emissions in the Upper Silesian Coal Basin in
southern Poland (Krautwurst et al., 2021). A 2-D configura-
tion (imager) of the instrument is now available (Gerilowski
et al., 2011). In general, the instruments sampling a narrow
spectral window around the 1650 nm absorption with a high
spectral resolution can better disentangle the methane signal
from that of surface structures. This makes these instruments
less affected by surface-driven systematic retrieval errors, al-
though this usually comes at the expense of a higher retrieval
noise.

The MethaneAIR instrument belongs to the spectrome-
ter class sampling the 1650 nm window. It was developed
as the airborne demonstrator of the MethaneSAT satellite
mission, launched on 4 March 2024 (Environmental De-
fense Fund, 2021). Unlike other airborne imaging spectrom-
eters solely used for point sources, MethaneAIR is intended
to provide information on both high-emitting point sources
and area sources and, subsequently, on total regional emis-
sions. To achieve its primary goals of total regional emis-
sion quantification, MethaneAIR is designed to fly at high
altitudes (typically about 12 000 m above ground). This al-
lows one to map wider areas faster while also disaggregat-
ing emissions from area and point sources, at the expense
of some loss in spatial resolution compared to airborne sys-
tems flying at lower altitudes. In addition, the need to sam-
ple area sources motivates the implementation of an accurate
methane concentration (XCH4) retrieval in MethaneAIR’s
operational processing chain that is based on the CO2-proxy
method (Chan Miller et al., 2024). The good performance
of MethaneAIR’s CO2-proxy XCH4 retrieval for the quan-
tification of methane plumes has been shown in Chulakad-
abba et al. (2023) and El Abbadi et al. (2024). However, this
retrieval is computationally demanding. Moreover, the nor-
malization of the retrieved methane column density by the
per-pixel XCO2 proxy increases the 1σ error of the result-
ing XCH4 maps, which may lead to higher plume detection
limits.

In this work, we delve into maximizing the effective-
ness of MethaneAIR measurements to rapidly process data
across large areas with the goal of improving plume detec-
tion limits. We propose a data processing scheme optimized
for the detection of methane plumes, namely, through a high-
precision data-driven methane concentration retrieval based
on the matched-filter concept and on the visual inspection
of the resulting methane concentration maps. We tested this
processing chain on large-scale flight campaigns performed
with MethaneAIR over the Permian Basin (USA) as well as
over a controlled-release experiment in Arizona (USA) in re-
cent years.

2 Materials and methods

2.1 MethaneAIR’s specifications and data products

An overview of the MethaneAIR instrument and a list of its
technical specifications are provided in Staebell et al. (2021).
MethaneAIR is typically flown at a 12 km altitude, which
leads to a swath width of about 7.5 km, with an across-track
pixel size of about 5 m and an along-track pixel size of 25 m.
MethaneAIR’s methane band covers the 1592–1680 nm win-
dow, with a spectral resolution (full width at half maximum
of the spectral response function) of about 0.3 nm and a spec-
tral sampling of 0.1 nm. As is shown in Fig. 1, it samples
the methane absorption feature around 1650 nm and the CO2
absorption feature around 1610 nm, the latter of which is
used for the CO2-proxy methane retrieval (Chan Miller et
al., 2024).

The conversion of MethaneAIR’s raw level-0 data into
level-1B spectral radiance data cubes is described in Conway
et al. (2024). Subsequent processing levels in MethaneAIR’s
operational processing chain include dry-air column methane
mixing ratio (XCH4) maps in the original instrument co-
ordinates as the level-2 product (Chan Miller et al., 2024),
geoprojected and orthorectified XCH4 mosaics as the level-3
product, and information on methane fluxes (both detected
plumes from high-emitting point sources and spatially dis-
tributed areal fluxes) as the level-4 product.

As input, this study uses MethaneAIR level-1B data,
which correspond to calibrated and georeferenced radiance
spectra. MethaneAIR’s level-1B spectral radiance datasets
are stored as “granules” of 301× 1280 spatial pixels (along
the track× across the track). The full flight line is recon-
structed after appending all granules in the along-track direc-
tion. For the across-track direction, 1280 is the size of the de-
tector’s focal plane array, but only a fraction of it (typically,
863 pixels) is illuminated. When the data are spatially binned
across the track (5 spatial pixels combined into 1) in order to
generate lighter data files with square pixels, the dimensions
of the illuminated part of a single granules is 301× 172 pix-
els (7.5 km along track and 4.7 km across track, for nominal
operations at a 12 km altitude).
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Figure 1. MethaneAIR’s spectral coverage and sensitivity to atmo-
spheric gases. A real MethaneAIR at-sensor radiance spectrum is
shown in panel (a). The spectral window used for the retrieval of
methane concentration enhancements (1XCH4) in this work is de-
picted with a dash line. Spectral transmittance spectra for methane,
CO2, and water vapour convolved with MethaneAIR’s spectral re-
sponse functions are displayed in panel (b). A nadir observation and
a Sun zenith angle of 25° are assumed. The column contents of each
gas are displayed in the legend.

2.2 1XCH4 retrieval

A useful variable for the detection and quantification of
methane point sources from remote-sensing data is the per-
pixel methane concentration enhancement (1XCH4). For
the retrieval of 1XCH4 maps with MethaneAIR, we have
adapted the matched-filter retrieval. This has been widely ap-
plied to a range of airborne and spaceborne spectrometers
sampling the 2300 nm methane absorption with a 5–10 nm
spectral resolution (e.g. Thompson et al., 2015, 2016; Foote
et al., 2020; Cusworth et al., 2021; Irakulis-Loitxate et al.,
2021; Guanter et al., 2021; Roger et al., 2024), but it has
not been previously tested on MethaneAIR-like spectrome-
ters measuring in the 1650 nm window with a 0.1 nm spectral
sampling.

The matched-filter retrieval expresses the input radiance
spectra as the perturbation of an average radiance spectrum
by a change in the methane column concentration. This is
modelled as a so-called target spectrum, which represents the
radiative transfer signal of a unit methane absorption. Fol-
lowing the notation by Thompson et al. (2016), if we name
1XCH4 as α̂, the matched-filter takes the following form:

α̂(x)=
(x−µ)T6−1t

tT6−1t
, (1)

where x is the spectrum under analysis, µ and 6 are the
respective mean and covariance of the background spectral
radiance, and t is the target spectrum representing the per-
turbation of the background radiance signal by a methane
enhancement. The t spectrum has units of radiance over
methane column concentration, and it is generated as µ · k,
with k being a unit methane absorption spectrum calculated
using radiative transfer simulations.

The variable µ is calculated on a per-column basis in or-
der to account for the different radiometric responses of de-
tector elements across the track. We acknowledge that this
per-column µ formulation neglects the impact of difference
between each pixel’s spectral albedo and µ. This issue may
be alleviated by the albedo correction proposed by Foote et
al. (2020), which adds an “albedo factor” to Eq. (1) in order
to quantify the difference between µ and x for each pixel.
The magnitude of this correction will depend on the spatial
heterogeneity of the scene. Preliminary tests show that this
correction can modify the single 1XCH4 retrievals by up to
10 % in the Permian (results not shown). However, the sign
of the correction can be either positive or negative depend-
ing on the albedo of the surface (or surfaces) crossed by a
particular plume. For this reason, we can expect that an un-
corrected albedo effect may lead to an increase in the scatter
of the estimated flux rates within a distribution, although it
will not lead to a change in the total or the average flux rate
of the distribution. In any case, we will implement this cor-
rection in a future version of the retrieval.

In the case of the target spectrum k, this is calculated
at high spectral resolution from pre-computed transmittance
spectra stored in a look-up table (LUT). For that, we in-
terpolate the LUT considering the mean value of the Sun
zenith angle and the ground-to-sensor distance within each
data granule, whereas a per-column view zenith angle is used
in order to account for across-track gradients in the observa-
tion angle. It must be stated that local gradients in surface
elevation are not accounted for by this approach. The spec-
tral convolution of the high-spectral-resolution k spectrum
with MethaneAIR’s spectral response function is also per-
formed on a per-column basis in order to account for po-
tential across-track variations in the instrument spectral re-
sponse, as caused by e.g. changes in the thermal environ-
ment of the sensor. An initial step in our processing chain
detects and corrects potential global spectral shifts in the
MethaneAIR spectral calibration.

Regarding the inverse covariance matrix 6−1, it was cal-
culated on a per-column basis in our first implementation of
the retrieval. However, we noted that the relatively low num-
ber of along-track samples (301) in the level-1B data gran-
ules (see Sect. 2.1) affected the calculation of 6−1 so that
the retrieval was biased low. This effect has also been found
in the processing of short flight lines from the AVIRIS-NG
sensor (Ayasse et al., 2023). To overcome this issue, we cal-
culate a global 6−1 from all of the pixels in the granule,
which proved to solve the underestimation of 1XCH4 while
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also being effective to account for across-track offsets thanks
to the per-column calculation of µ. This granule-level 6−1

calculation is allowed by MethaneAIR’s uniform spectral re-
sponse in the across-track direction (very low spectral smile
effect).

The 1623–1670 nm window was selected for the matched-
filter retrieval, as it provides a good compromise between the
number of methane lines available for the retrieval and the
potential disturbance by other gases (see Fig. 1). Other nar-
rower fitting windows were tested, but they yielded higher
precision errors without a clear gain in retrieval accuracy.

2.3 Plume detection and quantification

Methane plumes are detected through visual inspection of the
1XCH4 maps generated from each level-1B granule, follow-
ing the approach described in Guanter et al. (2021) for the
PRISMA spaceborne spectrometer. In short, the candidate
plumes identified through a first screening based on visual
inspection are compared with the input spectral radiance data
at the continuum of the 1650 nm absorption feature to discard
false positives due to surface patterns (e.g. clouds). However,
thanks to MethaneAIR’s high spectral resolution, the large
majority of the plumes that we derived from MethaneAIR
were clear enough to have confidence in the detection, mak-
ing the need for cross-checking with very high resolution im-
agery very small.

The relatively low sensitivity of MethaneAIR 1XCH4 re-
trievals to the background surface would allow one to imple-
ment an automatic detection process for the larger plumes us-
ing thresholds on1XCH4 or machine learning segmentation
and classification methods (e.g. Joyce et al., 2023; Růžička et
al., 2023). However, we opted for the manual approach in or-
der to ensure that the maximum number of plumes was prop-
erly detected. This method also minimizes the occurrence of
false positives.

For the estimation of emission rates (Q) from the detected
plumes, we use the integrated mass enhancement (IME) ap-
proach (Frankenberg et al., 2016; Varon et al., 2018). Follow-
ing the mass-balance principle, the total mass enhancement
in the plume is related to the magnitude of the emission with
a parameterization dependent on wind speed, as follows:

Q=
Ueff · IME

L
, (2)

where the plume length L is approximated by the square root
of the detectable plume. This model calculates an IME in
kilogram units as the total excess mass of methane contained
in the plume. Plumes are manually delineated in the1XCH4
maps using a Python script that has been implemented for
this purpose. As proposed by Varon et al. (2018), we use an
effective wind speed (Ueff) in order to account for eddy-scale
turbulence at the MethaneAIR’s spatial resolution, combined
with the effects of retrieval noise. This Ueff is related to the

10 m wind speed U10 as follows:

Ueff = 0.34 ·U10+ 0.42 . (3)

This relationship was proposed by Maasakkers et al. (2022)
for GHGSat for surface-level emissions (landfills in their
case). GHGSat and MethaneAIR share a similar spatial res-
olution (∼ 25 m) and a comparable retrieval noise (both in-
struments rely on high-spectral-resolution measurements in
the 1650 nm window). U10 data are taken from the GEOS-
FP meteorological reanalysis product (GEOS-Chem, 2024).
Errors in Q estimates are obtained from the propagation of
1XCH4 retrieval errors and a 50 % uncertainty in wind speed
through Eq. (2). The 50 % uncertainty in wind speed is cho-
sen as a conservative estimate for this variable, which drives
the uncertainty in Q estimations.

2.4 Reference plume quantification methods

We have intercompared ourQ estimates from the IME model
with those from the modified IME (mIME) model and the di-
vergence integral (DI) Q estimation method. Both were de-
veloped for MethaneAIR and have been thoroughly validated
with controlled-release tests (Chulakadabba et al., 2023).

The mIME model was proposed by Chulakadabba et al.
(2023). They assumed a logarithmic dependence between
Ueff and U10. For U10, they used the 10 m root-mean-square
wind obtained from each large-eddy simulation (LES) real-
ization specifically run for the case of interest, rather than re-
lying on operational meteorological products. However, we
have chosen a more simple approach based on GEOS-FP
winds, as we have to run the Q estimates for a large num-
ber of plumes.

For the DI method, we calculate the fluxes along rectan-
gular boxes around the source of interest. First, we compute
the flux for each pixel along the chosen rectangular box. We
then determine the gradient of XCH4 and multiply it by the
wind vector at each pixel. Based on Green’s theorem, we sum
all of the fluxes to obtain the total flux for a given rectan-
gle. By repeating this calculation for rectangles of different
sizes around the source, we obtain a statistical estimate of the
flux around the source of interest. In other words, we sample
the flux spatially across the observing region using the DI
method. Unlike the IME method, we neither sum all of the
pixels within the plume nor use an effective wind speed.

These two Q estimation methods are more challenging
to run over a large number of plumes than our basic IME
method, but they can provide an ideal reference to assess the
performance of our simple IME-based Q estimates.

2.5 End-to-end simulations of 1XCH4 retrievals

We have used simulations to assess potential retrieval bi-
ases. We embedded simulated methane plumes into real
MethaneAIR level-1B data cubes. The simulated plumes
were generated with the LES extension of the Weather Re-
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search and Forecasting model (WRF-LES). Concentrations
in WRF-LES plumes were scaled to recreate a range of Q
values.

The spatially distributed 1XCH4 values from the simu-
lated plumes were converted into per-pixel plume transmit-
tance spectra with the same LUTs used for the generation
of the k spectrum, which is an input to the 1XCH4 re-
trieval. With this approach of using the same radiative trans-
fer scheme for the forward simulations and for the 1XCH4
retrieval, we avoid introducing uncontrolled systematic er-
rors in the end-to-end simulation framework (e.g. as from
different gas vertical profiles).

This mixed forward simulation approach combining real
radiance data with simulated plumes has already been
used for the sensitivity analysis of high-resolution methane-
sensitive instruments (Guanter et al., 2021; Roger et al.,
2024; Gorroño et al., 2023). The use of real radiance data
ensures that the actual measurement noise and potential ra-
diometric and spectral offsets are intrinsically included in the
simulation.

2.6 MethaneAIR datasets used in this study

We evaluated MethaneAIR’s potential for surveying methane
point sources across large oil and gas basins using level-
1B data from several MethaneAIR flight campaigns. In this
work, we report results from the analysis of two MethaneAIR
research flights focused on the Permian Basin (USA), where
a high concentration of active methane sources can be found.
Those Permian Basin flights took place on 6 August 2021
(“RF06” flight) and on 20 July 2023 (“MX025” flight),
and covered a region of about 120× 80 km2, including the
Delaware sub-basin of the Permian Basin’s oil and gas field,
with flights longer than 2 h.

In addition, we processed data from two other research
flights, RF01E and RF03E, that were carried out on 25 and
29 October 2022 over a single-blind volume-controlled
methane-release experiment near Phoenix (USA) (Chulakad-
abba et al., 2023). We only considered the plumes entirely
contained in a MethaneAIR granule (as opposed to plumes
located at the intersection between two granules). This re-
sulted in 16 match-ups between MethaneAIR acquisitions
and controlled releases. We observed that the winds during
the 29 October campaign were less consistent and had a poor
alignment with different observational sources and model
outputs.

3 Results

3.1 1XCH4 retrieval performance

Results from the processing of a sample data granule of the
RF06 campaign are displayed in Fig. 2, which shows a map
of the input at-sensor radiance at 1623 nm (shortest wave-
length in the retrieval window; see Fig. 1) as well as the cor-

responding 1XCH4 map. The processing involved 1XCH4
retrieval, plume detection, and Q estimation using the IME
model. Four plumes were detected through the visual in-
spection process, with Q values ranging from 87± 33 to
512± 180 kg h−1. It can be observed that these four plumes
clearly stand above the background noise, although an au-
tomatic detection and segmentation of the smaller plumes
would have been challenging. It can also be seen that there is
a very low occurrence of systematic outliers in the 1XCH4
maps despite the relatively high variability in the surface pat-
terns, unlike the case of coarser-spectral-resolution instru-
ments (Jongaramrungruang et al., 2021).

We expect that MethaneAIR’s high spectral resolution en-
ables a better decoupling of methane and surface reflectance
in the retrieval than what is usually found in coarser-spectral-
resolution retrievals (Ayasse et al., 2018). Further insights
into the impact of the surface reflectance and spatial hetero-
geneity on the retrieval are provided in Fig. 3. It compares the
intensity and spatial variability in the at-sensor radiance with
those of the retrieved 1XCH4 for selected granules from the
RF06 and RF01E flights during which no methane plumes
were detected. The spatial sampling is MethaneAIR’s native
5× 25 m sampling. The results show that the 1XCH4 vari-
ability is very close to a normal distribution, even for the
RF01E granule for which the input radiance was far from
Gaussian. The standard deviation is 33 and 38 ppb (parts per
billion) for the RF06 and RF01E granules, respectively. We
interpret those numbers as the retrieval 1σ error for those
granules. This 1σ error combines the per-pixel retrieval noise
(measurement noise propagated to 1XCH4 retrieval noise
for each input spectrum), the variability introduced by the
sensitivity of the retrieval to the surface spectral reflectance,
and the potential contribution of methane sources in or close
to the data granule under analysis. The lower 1σ error is
found for the RF06 granule, which is consistent with the
higher and more spatially uniform at-sensor radiance. How-
ever, it must be remarked that the Permian Basin presents a
high concentration of methane point sources, so it is possible
that part of the variability captured in the σ calculated for the
RF06 granule is due to methane plumes outside the analysed
granule or below MethaneAIR’s detection limit.

A comparison between the matched-filter 1XCH4 re-
trieval and the CO2-proxy XCH4 retrieval implemented in
MethaneAIR’s operational processing chain is shown in
Fig. 4 for a subset of the granule displayed in Fig. 2.1XCH4
is calculated from the XCH4 generated by the CO2-proxy
through the removal of the XCH4 background, which is es-
timated as a single offset from the plume-free pixels in the
subset. The comparison of the two retrievals shows that the
1XCH4 values from the data-driven matched-filter retrieval
agree well with the more sophisticated CO2-proxy XCH4 re-
trieval, which has been thoroughly validated (Chan Miller
et al., 2024). Two small clusters of pixels with systematic
offsets corresponding to the larger plume can be seen in the
difference map, at pixel coordinates (10, 60) and (10, 40).
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Figure 2. 1XCH4 map retrieved from a MethaneAIR data granule from the RF06 Permian campaign. A map of the at-sensor radiance at
1623 nm is shown in panel (a), and the retrieved 1XCH4 map is displayed in panel (b). The red points and the text boxes on the radiance
map depict the location and flux rate of the four plumes detected in this subset.

However, these enhancements are close to the noise level
and have a different sign, leading to an almost zero offset
when aggregated to calculate the IME and, subsequently, Q.
Furthermore, we observe that the retrieval noise is lower for
the matched-filter retrieval, namely, σ of 34 ppb for the CO2-
proxy retrieval and 23 ppb for the matched-filter, which en-
ables the detection of a smaller plume on the right-hand side
of the matched-filter map. Note that these numbers are for
a 25× 25 m sampling, whereas the σ values in Fig. 3 were
for the native 5× 25 m sampling. The higher retrieval pre-
cision error of the CO2-proxy retrieval can be explained by
the fact that the per-pixel normalization of the methane re-
trieval by the retrieved per-pixel CO2 column density adds
noise to the methane product. From this comparison, we con-
clude that the 1XCH4 maps generated with the matched-
filter retrieval can lead to lower plume detection limits than
the CO2-proxy retrieval because of their higher signal-to-
noise ratio, without an observable drop in retrieval accuracy.
Nevertheless, physically based total-column XCH4 retrievals
from the CO2-proxy (as opposed to the data-driven 1XCH4
retrievals by the matched-filter) are preferred for the esti-
mation of area- and total-emission budgets, which is a key
application of MethaneAIR. A physically based pixel-wise
XCH4 retrieval can better account for spatial gradients in the
methane background caused by atmospheric transport and to-
pography. This implies that the matched-filter 1XCH4 out-
put is currently not an alternative to the CO2-proxy XCH4

retrieval for the calculation of area and total methane fluxes
from MethaneAIR data cubes.

We have further tested the consistency of the matched-
filter 1XCH4 retrievals by means of simulated plumes.
A comparison between the input and the retrieved
methane concentration enhancement from a simulated plume
(Q= 500 kg h−1, U10= 3.4 m s−1) is shown in Fig. 5. The
plume was embedded into a real MethaneAIR granule fol-
lowing the procedure described in Sect. 2.5. There is a good
agreement in the peak1XCH4 values between the simulated
and the retrieved plume, which is evidenced by the lack of
spatial structures in the difference map on the right-hand side
of Fig. 5. On the other hand, the effect of retrieval noise is
relatively large, causing some of the lower methane concen-
tration patches within the plume fall below the noise level.
This needs to be considered when assessing potential error
sources in theQ estimation process. This issue is partly alle-
viated by the IME /L ratio in the IME model (Eq. 2), which
reduces the impact of missing pixels in the masked plume,
and by the Ueff term (Eq. 3), which is generated using realis-
tic estimates of the retrieval noise.

3.2 Quantification of emission rates

The first test for the evaluation of the IME-based Q quan-
tification method consisted of a comparison with the diver-
gence integral (DI) method described in Chulakadabba et al.
(2023). We generated Q estimates for a subset of 12 plumes
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Figure 3. Variability in at-sensor radiance at 1623 nm (a) and re-
trieved 1XCH4 (b) for sample subsets from the Permian Basin
and Arizona campaigns (RF06 and RF01E, on 6 August 2021 and
25 October 2022, respectively).

from the RF06 campaign with the two methods. The same
1XCH4 maps from the matched-filter retrieval were used
as an input for the two methods, but each method was con-
strained with different wind data: the IME-based method was
run with GEOS-FP data, as this is the configuration that we
apply for the processing of the large plume datasets derived
in this work, whereas the DI method was constrained with
HRRR wind data, as this is the configuration that poten-
tially provides the most accurate reference for intercompari-
son with the IME approach.

The results from the quantification of the 12 plumes by
the two methods are displayed in Fig. 6. Despite the different
fundamental basis and wind data used by the two methods,

Figure 4. Comparison of 1XCH4 maps generated with
MethaneAIR’s official CO2-proxy retrieval and the matched-
filter retrieval proposed in this study. For the CO2-proxy XCH4
retrieval, the 1XCH4 map is generated as the per-pixel methane
column mixing ratio (XCH4) minus its mean value.

https://doi.org/10.5194/amt-18-3857-2025 Atmos. Meas. Tech., 18, 3857–3872, 2025



3864 L. Guanter et al.: Mapping methane point sources with MethaneAIR

Figure 5. Results from end-to-end 1XCH4 retrieval simulations for a Q= 500 kg h−1 plume embedded in a Permian Basin data granule
from the RF06 campaign. The input WRF-LES plume is displayed in panel (a), the retrieved 1XCH4 map is shown in panel (b), and the
difference between the two is given in panel (c).

we find a relatively good agreement in the quantification of
those selected plumes, with differences in Q typically being
below 20 % for most of the plumes. As the DI Q estimation
method has been thoroughly validated through independent
controlled-release tests (El Abbadi et al., 2024), this good
agreement between the two methods suggests that our imple-
mentation of the IME model for MethaneAIR, constrained
with GEOS-FP winds, can reproduce the emission rates for
the conditions of the RF06 Permian Basin campaign.

In order to further validate the plume detection and quan-
tification skill of our processing chain, we have processed
several MethaneAIR acquisitions over a controlled-methane-
release experiment on 25 October 2022 in Arizona (USA)
(RF01E campaign; see Sect. 2.6). Results from the 1XCH4
maps for three of the weakest releases detected during
this experiment (metered values of 205, 96, and 63 kg h−1)
are shown in Fig. 7. Each map covers an area of about
2.5 km×2.5 km. The maps show that the methane enhance-
ments stand out from the background in all three cases, with-
out systematic retrieval artefacts being present in the vicin-
ity of the plume. Approximately the same number of pixels
is affected by 1XCH4 values above the noise level for the
Q= 63 kg h−1 andQ= 96 kg h−1 plumes. This could be due
to the stronger wind during the weaker emission (0.9 m s−1

versus 2.2 m s−1, according to in situ measurements) caus-
ing a larger plume to originate close to the source, which
implies that the probability of plume detection is not always
inversely proportional to wind speed, but there is an opti-
mal wind speed for plume detection in some cases: low-to-
moderate winds enabled the development of a plume cover-
ing several pixels with 1XCH4 values above the noise level.

These results suggest that plume detection limits of about
60 kg h−1 could be achievable with MethaneAIR flying at

Figure 6. Comparison betweenQ estimates obtained with the IME-
based model used in this work (see Sect. 2.3) and the divergence
integral method (DI) described in Chulakadabba et al. (2023) (see
Sect. 2.4) for 12 selected plumes from the RF06 campaign. Error
bars represent the 1σ error for the IME Q estimates and the 95 %
confidence interval for the DI estimates.

12 km above the ground. However, two points must be noted.
First, the location of the controlled-release site is known be-
forehand, so the identification of the enhancement and its
confirmation as a real plume are much simpler in this case
compared with the real case, where the location is unknown.
Second, the plume detection process depends on several fac-
tors, including retrieval noise, occurrence of systematic er-
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Figure 7. 1XCH4 maps over the controlled-methane-release experiment in Arizona on 25 October 2022. Overpasses corresponding to
relatively weak emissions have been chosen. The flux rate (Q) and 10 m wind speed (U10) in the title of each panel correspond to the metered
values.

rors, and wind speed. This means that the “minimum detec-
tion limit”, defined as the smallest source that can be detected
in a given dataset, may substantially overestimate the plume
detection capability of a sensor. The “probability of detec-
tion” concept leads to continuous probability of detection
functions, which express the probability with which a plume
of a given flux rate will be detected, and can better represent
the variability in detection limits found under normal oper-
ating conditions (e.g. Conrad et al., 2023). We will continue
this discussion in Sect. 3.4.

The metered Q values from the controlled releases were
used for a first assessment of the performance of our IME-
based Q estimation model. The comparison between the
metered values and the Q estimates from our processing
(matched-filter 1XCH4 retrievals and IME-based Q esti-
mates constrained by GEOS-FP winds) are shown in Fig. 8.
The results from MethaneAIR correlate well with the me-
tered values for the two campaign dates (r = 0.98 and 0.94
for 25 and 29 October, respectively), for both high and low
flux rate values (100–1000 kg h−1 range), which gives con-
fidence in the performance of our entire processing chain.
However, we find an important overestimation of about 40 %
in the MethaneAIR flux rate estimates from 29 October,
which we attribute to the large overestimation of wind speed
that we find in GEOS-FP with respect to the metered wind
speeds for that date (Fig. 8). This poor performance of
GEOS-FP winds for 29 October is consistent with the poor
performance of other wind sources and WRF-LES simula-
tions with respect to the reproduction of in situ winds for that
date. A higher sampling density over this site and others with
different surface and wind conditions would be needed to ex-
tract more solid conclusions about the performance of our
processing chain, similar to the more comprehensive analy-
sis presented in Chulakadabba et al. (2023) and El Abbadi et
al. (2024).

3.3 Attribution of plumes to sources

MethaneAIR’s nominal operation mode provides a native
pixel size of 5.76× 25 m2, which is larger than the 1–5 m
spatial sampling range often found for airborne spectrome-
ters (El Abbadi et al., 2024). This coarser spatial sampling is
selected for MethaneAIR in order to increase the areal cov-
erage of each overpass, which is required to evaluate areal
fluxes as well as point sources. However, MethaneAIR’s spa-
tial sampling is still usually sufficient to attribute the de-
tected plumes to their sources. This is illustrated in Fig. 9,
which shows examples of methane plumes represented on
top of at-sensor radiance maps from the same MethaneAIR
acquisitions from which the 1XCH4 maps were derived.
The analysis of the combined 1XCH4 and radiance maps
is often sufficient to identify the facilities responsible for
each emission. However, the combination with infrastruc-
ture databases, such as the Oil and Gas Infrastructure Map-
ping database (OGIM; Omara et al., 2023), and very high
resolution optical imagery is needed to refine the informa-
tion on the sources. Combining MethaneAIR radiance and
1XCH4 maps with those external data sources, we attribute
the plumes in Fig. 9 to different infrastructure elements. For
example, plume no. 1 comes from a complex well pad, plume
no. 2 comes from a compressor station, plume no. 3 comes
from a pipeline, and plumes nos. 4 to 7 come from processing
plants.

A zoomed-in view of Fig. 9’s methane plume no. 7 is
provided in Fig. 10. The plume is represented on top of a
very high resolution satellite image downloaded from Google
Maps. It is difficult to determine the exact source responsible
for the emissions, but we discard the flare and the compressor
units as potential sources because they are located elsewhere
at the plant.
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Figure 8. Comparison of metered flux rates from the controlled-release experiments in Arizona (25 and 29 October 2022) with flux rates
estimated from MethaneAIR data using the processing chain described in this work. The metered flux rates correspond to 30 s averages. Error
bars on the y axis represent the 1σ error for the IME Q estimates from MethaneAIR, while error bars on the x axis represent the standard
deviation in the metered flux rate values in the 30 s window. The comparison of the wind speed (U10) measured in situ with that retrieved
from the GEOS-FP dataset for the two dates is also shown.

Figure 9. Sample methane plumes detected in1XCH4 maps derived from data subsets from the MethaneAIR RF06 Permian Basin campaign.
The raw 1XCH4 maps are shown in the top row, and the plumes represented on top of the radiance maps are presented in the bottom row.
The numbers in white are used to refer to the different plumes in the text.

3.4 Large-scale 1XCH4 mapping

We have assessed MethaneAIR’s potential to survey methane
point sources across large regions using entire flight lines
from the RF06 and MX025 Permian Basin campaigns (see
Sect. 2.6). The area covered by each flight (hundreds of kilo-
metres in each case) is displayed in Fig. 11 using mosaics
of near-infrared reflectance (at-sensor radiance at 1623 nm
normalized by the top-of-atmosphere solar irradiance at the
same wavelength). The detected methane sources and their
intensity are depicted using red circles of varying size (see

Tables S1 and S2 in the Supplement for the plume coordi-
nates and flux rates for the RF06 and MX025 campaigns,
respectively). It can be seen that the distribution of active
sources varies considerably from one campaign to another, as
shown by the area marked with the blue rectangle. We note
that the RF06 and MX025 sampling areas cover some of the
most active oil and gas production regions in the Permian,
contributing more than one-third of the total Permian oil and
gas production in 2023 (Enverus Prism, 2024). In addition,
between 2021 and 2023, oil and gas production increased by
32 % and 40 % in RF06 and MX025, respectively. Further-
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Figure 10. Methane plume from MethaneAIR represented on top of a high-resolution image showing the facility responsible for the emis-
sions. The methane plume corresponds to plume no. 7 in Fig. 9. The background image was downloaded from © Google Maps and was
acquired by Airbus in 2023.

more, both RF06 and MX025 are active gas-flaring regions
in the Permian. We suggest that such increased oil and gas
activity could lead to increased emissions, plausibly due to
increased stress on the gathering and processing segments,
especially if their processing capacity did not increase ac-
cordingly.

A more quantitative view of the detected points sources
is provided in Fig. 12, which represents the distributions of
emission rates obtained from all of the plumes that have been
detected and quantified in the RF06 and MX025 datasets.
This figure shows the higher number of plumes detected in
the RF06 dataset compared with MX025 (121 and 78, re-
spectively). We also find a difference in the minimum flux
rates within each dataset, with the smallest flux rates in the
range of 25 kg h−1 for RF06 and 100 kg h−1 for MX025 (see
inset of Fig. 12), and that three plumes above 1500 kg h−1

could be detected in MX025, although the number of plumes

above 1000 kg h−1 is similar for the two datasets (five for
RF06 and six for MX025). Summing all of the flux rates, we
obtain a total of 36 t h−1 (metric tonnes per hour, 95 % CI of
30–42, where CI denotes confidence interval) for RF06 and
32 t h−1 (95 % CI of 26–40) for MX025.

These patterns are consistent with those found for the of-
ficial MethaneAIR level-4 product made available to users
(MethaneSAT Science Team, 2024); that is, a greater num-
ber of detections are noted in RF06, and higher flux rate
peak values and detection limits are found in MX025 (29
plumes and a minimum flux rate of 228 kg h−1 for RF06
compared with corresponding values of 19 and 492 kg h−1

for MX025). The total emissions calculated from the level-
4 dataset are 26.7 t h−1 for RF06 and 25.6 t h−1 for MX025,
which is consistent with the 29 t h−1 (95 % CI of 25–34) and
29 t h−1 (95 % CI of 23–36) that we obtain from our dataset
after filtering for plumes with flux rates above 200 kg h−1.
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Figure 11. Composite of at-sensor reflectance data showing the areas in the Permian Basin covered by the MethaneAIR campaigns RF06 (a)
and MX025 (b). At-sensor reflectance is calculated as the at-sensor radiance at 1623 nm normalized by the top-of-atmosphere solar irradiance
at the same wavelength. The red circles depict the methane plumes detected for each campaign. The blue rectangle depicts an area with strong
changes in emission activity between the two dates.

Figure 12. Summary of the flux rates (Q) estimated from the
methane plumes detected in the RF06 and MX025 datasets (red cir-
cles in Fig. 11). The inset shows a zoomed-in view of the plumes
with the smallest Q values. Uncertainties in the single Q estimates
are not represented for visibility purposes.

On the other hand, when using all of the detected plumes
in our quantification of total emissions (i.e. without filter-
ing out plumes< 200 kg h−1), we obtain an increase in the
total emission estimate of about 9 t h−1 (RF06) and 6 t h−1

(MX025) with respect to the level-4 product. This result
confirms the sensitivity of the total emission estimates from
single plumes to the detection limits offered by the instru-
ment and the processing chain, and it suggests that smaller
plumes contribute substantially to the totals despite the typi-

cal heavy-tailed distribution of point sources (e.g. Cusworth
et al., 2022).

In addition to inter-annual variations in oil and gas produc-
tion, external factors affecting our ability to detect and quan-
tify methane plumes with MethaneAIR may partly explain
the observed differences. In particular, wind speed is an im-
portant driver for plume detection (Ayasse et al., 2023). The
GEOS-FP wind product shows average wind speeds of about
3.5 m s−1 for RF06, whereas stronger winds of about 5 m s−1

are reported in GEOS-FP during the MX025 flights, with a
standard deviation of 0.5 m s−1 in both cases. The stronger
winds may have led to higher detection limits for the MX025
campaign. We have not analysed spatial and temporal vari-
ations in wind speed during data acquisition for each cam-
paign in depth, but such changes would also have an impact
on plume detections within each campaign.

We have further analysed the plume detection limits of
MethaneAIR for the Permian Basin using the data from the
RF06 and MX025 campaigns. As mentioned earlier in this
work, the detection of a plume in a 1XCH4 map depends
on several factors, including the wind speed, the retrieval
noise (driven by at-sensor radiance and local variability in
the surface albedo), and the modification of 1XCH4 gradi-
ents by neighbouring sources. Therefore, a parametric prob-
ability distribution function (PDF) depending on those fac-
tors would be needed to determine the probability of de-
tection (POD) of any given plume. For example, Conrad et
al. (2023) built such a PDF (depending on several parame-
ters, including wind speed) for several airborne sensors us-
ing about 500 controlled releases, leading to distributions of
true-positive and false-negative detections that could be used
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Figure 13. Histogram of the flux rates (Q) estimated from the
plumes detected in the RF06 and MX025 datasets. The two cam-
paigns have been combined in order to increase the plume sample.
The dash line marks the Q value for which the distribution of es-
timated Q values deviate from a power law, which can be inter-
preted as a rough estimation of the source detection limit obtained
for MethaneAIR data over the Permian Basin using the processing
scheme proposed in this work.

as a reference distribution to fit a parametric model. Ayasse
et al. (2023) used a similar approach to assess the POD of
the AVIRIS-NG/CAO systems. In the case of Bruno et al.
(2024), they assessed GHGSat-C1’s POD fitting a sigmoid
function to a range of WRF-LES plumes recreating different
plume intensities and morphologies.

In our case, however, we do not have a reference emission
distribution dataset that we can use to fit a POD model for our
MethaneAIR processing chain. As an alternative, we obtain
an estimate of MethaneAIR detection limits for the Permian
Basin by simply examining the shape of the emission distri-
bution curve that we obtain from combining the RF06 and
MX025 plume datasets. As the detection limit, we adopt the
flux rate at which the emission distribution curve (modelled
as a lognormal function) starts to deviate from the monoton-
ically increasing trend (typically in the form of a power law)
that would be expected if all plumes were detected. The result
of this analysis is shown in Fig. 13. We find that the flux rate
at which the distribution of MethaneAIR plumes deviates
from the power-law trend is about 124 kg h−1. We can ex-
pect that the majority of sources above this threshold would
be detected in the RF06 and MX025 datasets. Actually, this
number may change if the RF06 and MX025 datasets were
analysed separately (with a lower number for RF06 and a
higher number for MX025). However, the independent anal-
ysis of the two datasets is difficult because the single datasets
are too small for a robust lognormal fit.

4 Conclusions

We have developed a processing chain for the detection and
quantification of point source methane emissions with the
MethaneAIR airborne spectrometer. Our goal was to imple-
ment a 1XCH4 retrieval that was both computationally effi-
cient and able to maximize the probability of plume detec-
tion. We have achieved those goals by combining a data-
driven 1XCH4 retrieval, based on the matched-filter con-
cept, with a plume detection and segmentation approach,
based on visual inspection of the resulting 1XCH4 maps.
Flux rates are estimated from the detected plumes using
an IME-based method. This processing scheme enabled the
analysis of methane point sources across the Permian Basin
using data from two campaigns in 2021 and 2023.

We have shown the potential of the matched-filter retrieval
for high-spectral-resolution measurements in the 1650 nm
window. The results from our matched-filter 1XCH4 re-
trieval compare well with those from the physically based
CO2-proxy XCH4 retrieval used in MethaneAIR’s opera-
tional processing chain. The matched-filter retrieval can only
provide XCH4 enhancements; therefore, it is not an alterna-
tive to the CO2-proxy XCH4 retrieval, which does provide
the total XCH4 column content required to evaluate area
emissions. However, the 1XCH4 retrieval by the matched-
filter is simple to implement and computationally efficient;
moreover, it offers a lower retrieval noise than the CO2-proxy
XCH4 retrieval, which is advantageous for point source
work.

Our results from the processing and analysis of two
MethaneAIR flights over the Permian Basin show the poten-
tial of MethaneAIR with respect to the detection and quan-
tification of methane point sources across large areas, with
about 120 plumes being detected during the 2021 flight and
about 80 being detected during the 2023 flight, resulting in
a combined detection limit for which most of the plumes
would be detected of about 124 kg h−1. We attribute part of
the differences in the number of plumes detected from each
flight to changes in oil and gas production in the region over
time, although different data acquisition conditions between
the two campaigns may also have impacted the plume detec-
tion limits. In particular, the stronger winds found in 2023,
compared with those in 2021, may have led to the greater de-
tection limits, which is also consistent with the findings by
other authors (Ayasse et al., 2023).

We have opted for a manual plume detection and segmen-
tation approach in order to ensure that the maximum number
of plumes could be detected, with a minimum rate of false
positives. However, this step introduces the need for a human
in the loop in our processing chain, which challenges its ap-
plication to large volumes of data, despite the improvement
in processing time enabled by the matched filter. Machine-
learning-based plume detection approaches (e.g. Růžička et
al., 2023) could help reduce the need for human supervision,
although the implementation of a fully automated processing
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chain is challenging if both the detection limits and the prob-
ability of false positives are to be kept to a minimum, as was
the goal in this work.

Overall, the computationally efficient approach described
here as applied to MethaneAIR measurements can also be
extended to MethaneSAT in order to help advance the point
source detection capacity, as the spectral characteristics are
very similar between the airborne and satellite instruments.
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