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Abstract. Air pollution, particularly from particulate matter
(PM), poses serious public health and environmental risks,
especially in urban areas. To address this, accurate source
apportionment (SA) of PM is essential for effective air qual-
ity management. Traditional SA approaches often rely on of-
fline data collection, limiting timely responses to pollution
events. SA applied on data from online techniques, especially
with high temporal resolution, is advantageous over offline
techniques, enabling the study of the diurnal variability of
emission sources and also the study of specific events. Re-
cent technological advancements now enable real-time SA,
allowing continuous, detailed analysis of pollution sources.
This study presents the first application of the ACSM—Xact—
Aethalometer (AXA) setup integrated with SoFi RT software
for real-time source apportionment of PM in Athens, Greece.
The AXA setup integrates chemical, elemental, and black
carbon (BC) data streams, covering a broad spectrum of PM
components and capturing a comprehensive representation of
PM sources in an urban environment. SoFi RT handles data
from the AXA instruments as separate inputs within a sin-
gle matrix, placing them in distinct diagonal blocks. Each
main instrument’s data (ACSM, Xact) is processed inde-
pendently, with the model applying instrument-specific con-
straints and generating separate source factors, effectively
performing two parallel source apportionments in a single
run of the ME-2 solver. Equivalent sources identified across

the two instruments are then combined post-analysis to pro-
vide a unified interpretation of source contributions. The ap-
portionment of BC to BCsr and BCy¢ (solid fuel and liquid
fuel) can be performed in either of the main instrument ex-
periments and does not require dedicated processing. The re-
sults demonstrate that traffic-related emissions are the largest
contributors to PM, with significant contributions from sec-
ondary species such as sulfate, nitrate, ammonium, and sec-
ondary organic aerosols, which together accounted for ap-
proximately 57 % of the PM mass. Primary sources such as
biomass burning and cooking contributed around 10 % each,
with natural sources like dust and sea salt comprising the re-
mainder. The SoFi RT software is employed for continuous
SA, offering automated analysis of PM sources in near real
time (minutes after the measurements). Our findings demon-
strate that this setup effectively identifies major pollution
sources. This work underscores the AXA system’s potential
for advancing urban air quality monitoring and informs tar-
geted interventions to reduce PM pollution.

1 Introduction

Air pollution, particularly the presence of particulate matter
(PM), continues to be a significant concern in urban envi-
ronments due to its adverse effects on public health and the
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environment (Cheung et al., 2024; Glojek et al., 2024; Kat-
souyanni et al., 1995; Morawska and Zhang, 2002). To ef-
fectively manage and mitigate air quality issues, it is crucial
to understand the specific sources contributing to PM levels.
Source apportionment (SA), the process of identifying and
quantifying these sources (Hopke, 2016), is a critical tool in
air quality management. Traditional methods of source ap-
portionment, however, often rely on offline analysis, which
can introduce delays in data collection and limit the abil-
ity to respond promptly to pollution events. This has led to
the growing need for real-time, continuous source apportion-
ment techniques that allow for faster, more detailed insight
into air pollution sources (Chen et al., 2022b).

In recent years, the implementation of real-time SA tech-
niques has become possible due to significant advancements
in measurement technology and data processing capabili-
ties. The development of high-resolution, real-time moni-
tors, combined with powerful computational tools, enables
the continuous collection and analysis of air quality data.
These systems can now deliver near-instantaneous informa-
tion about the composition and sources of particulate mat-
ter, allowing for more dynamic air quality management (Ng
et al., 2011b; Drinovec et al., 2015; Frohlich et al., 2013;
Furger et al., 2020). This real-time capability represents a
major shift in how air pollution is monitored and managed,
enabling more effective interventions and policy decisions
aimed at reducing pollution exposure in urban environments.

The available online instruments offer the capability to
measure various PM components. However, since no sin-
gle instrument can characterize all components, it is crucial
to use an ensemble of instruments that collectively provide
comprehensive information, capturing most of the PM mass.
Additionally, these instruments must produce data with the
same time resolution to ensure compatibility for use in source
apportionment approaches. One instrumental setup that can
cover the entire range of components is the aerosol chemical
speciation monitor (ACSM), Xact multi-metal monitor, and
Aecthalometer (AXA) setup. The ACSM measures the chemi-
cal composition of non-refractory submicron particles (PM;)
in real time, including key species such as sulfate (SOZz),
nitrate (NO5'), ammonium (N HI), and organic aerosols (Ng
et al., 2011b). The ACSM is especially valuable for identi-
fying secondary-like organic aerosol (SOA) formation, traf-
fic, cooking, and biomass burning emission, as these sources
are often rich in organic particulate components (Chen et al.,
2022b). The Xact multi-metal monitor offers real-time mea-
surements of elements in ambient PM. Trace metals are crit-
ical markers for a variety of pollution sources, particularly
those related to industrial activities, traffic (e.g., brake and
tire wear), and combustion processes. By continuously mon-
itoring the elemental composition of PM, the Xact instrument
helps to pinpoint both natural sources (e.g., dust) and an-
thropogenic activities (e.g., industrial emissions), which are
crucial for a complete understanding of the PM burden in
urban areas (Manousakas et al., 2021, 2022). Complement-
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ing the ACSM and Xact, the Aethalometer measures black
carbon (BC) concentrations in real time. Black carbon is a
primary component of PM that originates from the incom-
plete combustion of liquid and solid fuels, making it a key
indicator of traffic-related emissions (e.g., diesel exhaust)
and residential wood burning, respectively. The Aethalome-
ter’s capability to differentiate between these sources by an-
alyzing the wavelength dependence of light absorption pro-
vides further specificity in source apportionment (Zotter et
al., 2017). Given the strong association between black carbon
and both health risks and climate impacts, its measurement is
crucial for both public health and environmental policy. The
AXA setup represents a significant advancement in real-time
air quality monitoring, offering a comprehensive dataset that
captures a wide range of PM characteristics. Each instrument
in the setup plays a distinct role in measuring different as-
pects of PM composition, and together they provide a nearly
complete picture of the particulate matter mass.

Even though advances in instrumentation have made near
real-time source apportionment (RT-SA) approaches pos-
sible, efforts in this area remain quite limited. Chen and
co-authors demonstrated the application of an RT-SA tech-
nique for organic aerosols in three European cities, analyz-
ing ACSM data with an earlier version of SoFi RT (Chen et
al., 2022a). The results indicate that the RT-SA can provide
very comparable results to base case source apportionment
approaches, if the RT-SA is set up properly. Although this
study employed state-of-the-art optimized SA approaches, it
focused exclusively on the organic fraction of PM rather than
the total PM mass, and it did not utilize the capabilities of the
latest software version to process data from the Xact instru-
ment. In a study conducted in Shenzhen, China, a combina-
tion of instruments that provided information about most of
the PM mass was utilized (Yao et al., 2024). In this study not
all species that are provided from the instruments were used
in the source apportionment analysis (e.g., only m/z 44 was
used from Q-ACSM, and six elements from Xact). In another
study that took place in Delhi, India, an RT-SA methodology
that reports the results online has been set up (Prakash et al.,
2021). Data were collected from an Xact, an Aethalometer,
a total carbon analyzer, and low-cost sensors. Due to the na-
ture of the input data in Prakash et al. (2021), the source ap-
portionment focused primarily on the speciation of elements,
with no information provided about secondary species.

Source apportionment analysis is influenced by several
critical factors, including uncertainties in the data, the num-
ber of variables involved, and internal correlations between
the variables, particularly when integrating data from mul-
tiple instruments. Each of these factors affects the accuracy
and reliability of the source attribution process.

When combining data from different instruments such as
an ACSM, an Aethalometer, and an Xact, the precision of
each instrument in detecting specific pollutants varies. These
uncertainties propagate through the apportionment model
and can reduce the confidence in the derived source con-
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tributions. The number of variables used in source appor-
tionment, the temporal variation of the fingerprints of the
sources, the degree and frequency of transient sources, as
well as the internal correlation of the variables also play a
significant role. The ACSM measures mass spectral data that
includes multiple fragments from the same parent molecules
and hence are internally correlated with each other. Combin-
ing a large number of internally correlated variables (ACSM)
with a much smaller number of independent variables (Xact,
Aethalometer) can lead to SA results that are not equally
based on all instruments. In the literature, there are stud-
ies that report combining all variables from the ACSM and
Xact in a meaningful way to obtain comprehensive source
apportionment results; however, none of these studies has ap-
plied real-time source apportionment techniques (Belis et al.,
2019; Yao et al., 2024), or they are not using all the available
variables (Zhang et al., 2023).

Athens, Greece, is an ideal case study for implementing
this advanced monitoring approach. The city experiences a
complex mixture of pollution sources, including local traffic,
industrial activities, residential heating, and regional biomass
burning, all of which contribute to its air quality challenges
(Diapouli et al., 2017a; Manousakas et al., 2021). Addition-
ally, these sources vary significantly over time due to weather
conditions, seasonal changes, and daily traffic patterns. The
real-time source apportionment provided by the AXA setup
offers the potential to better characterize these sources and
their fluctuations, enabling more effective mitigation strate-
gies.

To harness the full potential of the data generated by
these instruments, the SoFi RT (Source Finder Real-Time)
software is employed for continuous source apportionment.
SoFi RT applies advanced statistical methods to separate and
quantify the different sources contributing to the PM bur-
den, providing real-time insights into pollution events and
their temporal variability. This model is designed to automat-
ically collect, treat, and use the data for source apportionment
analysis in multiple flexible days, which, to the best of our
knowledge, makes it the only commercially available model
with such capabilities. Similar capabilities are demonstrated
in software developed under the framework of the Clean Air
China project that is currently available for the participants
of this project. This software offers real-time capabilities but
with very limited options compared to SoFi RT (rolling win-
dow, bootstrapping and perturbation analysis, criteria-based
selection, averaging, etc.).

In this paper, we present the first application of the AXA
setup integrated with SoFi RT in Athens. We demonstrate
the system’s ability to deliver real-time, continuous source
apportionment by integrating chemical, elemental, and black
carbon data streams. This study highlights the effectiveness
of this novel approach in capturing the majority of the PM
mass, providing a comprehensive understanding of the pri-
mary pollution sources in Athens. Our findings offer impor-
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tant insights for improving air quality management and de-
veloping targeted interventions to reduce pollution levels.

2 Methodology
2.1 Sampling

The Demokritos station (DEM), positioned at 270 m above
sea level (37.995°N, 23.816°E), is a vital hub for atmo-
spheric monitoring and research (Eleftheriadis et al., 2014;
Diapouli et al., 2017b; Kalogridis et al., 2018). It is integrated
into major research initiatives, such as the Global Atmo-
sphere Watch (GAW) program, Aerosol, Clouds, and Trace
Gases Research Infrastructure (ACTRIS), and PANhellenic
infrastructure for Atmospheric Composition and Climate
Change (PANACEA). The station is located on the National
Centre for Scientific Research (NCSR) “Demokritos” cam-
pus, within a vegetated area at the foot of Mount Hymettus,
approximately 8 km northeast of Athens’ city center. Its lo-
cation provides a unique vantage point for capturing subur-
ban aerosol dynamics influenced by urban pollution under
prevailing westerly winds and regional contributions during
specific atmospheric conditions.

From 1 to 31 March 2024, measurements of non-refractory
PM; components, i.e., organic matter, sulfate (SOi_), ni-
trate (NO3'), ammonium (NHI), and chloride (Cl7), were
conducted using a time-of-flight aerosol chemical specia-
tion monitor (ToF-ACSM) developed by Aerodyne Research
Inc. (Billerica, MA, USA). This instrument operated with a
time resolution of 10 min, and data were subsequently av-
eraged to 30 min intervals for analysis. Detailed operational
parameters and calibration procedures for the ToF-ACSM are
provided in Zografou et al. (2022).

Equivalent black carbon (eBC) concentrations were moni-
tored during the same period using an Aethalometer AE33
(Magee Scientific Corp., Berkeley, CA, USA), which em-
ploys DualSpot Technology to compensate for the filter ma-
trix and filter loading effects in real time (Drinovec et al.,
2015), while multiple scattering is compensated for by the
H factor provided by ACTRIS. In this study, the AE33 oper-
ated with a PM¢ inlet, and minute-resolved eBC mass con-
centrations at the relevant wavelengths were used as raw data
from the instrument under near real-time conditions. Contri-
butions of solid (eBCyr) and liquid (eBCjr) fuel sources to
eBC were quantified using the Aethalometer model by San-
dradewi et al. (2008).

Hourly concentrations of 37 elements (Al, Si, P, S, Cl, K,
Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br,
Rb, Sr, Y, Zr, Nb, Cd, In, Sn, Sb, I, Ba, Hg, Tl, Pb, and Bi)
in PMj 5 were measured from 4 to 26 March 2024 using an
Xact 6251 ambient metals monitor. Air was drawn through
a filter tape at a flow rate of 16.7Lmin~! over a one hour
sampling interval. The filter tape was then analyzed in an
X-ray chamber with a rhodium anode (50kV, 50 W) under
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three sequential energy settings optimized to target specific
element groups. Calibration and performance were verified
using Micromatter standards, ensuring high accuracy in ele-
mental measurements. The elements included in the analysis
were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br,
Sr and Pb.

In this study, different PM fractions were used to imple-
ment the RT-SA approach. For this reason, we do not at-
tribute the sources collectively to specific size fractions, as
doing so would introduce uncertainty. It is important to note
that, although the comparison of carbonaceous aerosol frac-
tions appeared consistent in this study, leading to good recon-
struction of PM» 5 mass, this may not be the case in all envi-
ronments. Variations in local emission sources, atmospheric
processing, and particle size distributions can lead to incon-
sistencies between size fractions. Therefore, where possible,
harmonized size cuts should be applied, and caution should
be exercised when interpreting what the total mass repre-
sents.

2.2 Source apportionment

2.2.1 Optimized source apportionment analysis
(OP-SA)

Two different main processes in the implementation of
source apportionment can be distinguished: Optimized
Source Apportionment analysis (OP-SA), and Real-Time
Source Apportionment analysis (RT-SA). The flow chart for
these approaches is presented in Fig. 1. The first step in the
source apportionment approach is to assess the situation in
the area by conducting OP-SA. This involves utilizing all
available tools and adhering to a classical offline analysis
protocol, where data are analyzed at the conclusion of the
campaign. OP-SA serves two purposes: it acts as a verifica-
tion method for RT-SA and establishes the baseline condi-
tions in the area; the data generated can be used to set up
RT-SA during its initial stages.

In this study, initial OP-SA was conducted using all the
available data, analyzed separately for the Xact (elemen-
tal content), AE33 (BC data), and ACSM (organic content)
datasets. With respect to the RT implementation, the model’s
performance was evaluated under two conditions: using op-
timal initial parameters, derived from site-specific informa-
tion concerning the number and chemical composition of the
sources, and under less optimized, generic conditions, which
relied on non-site-specific data informed by general knowl-
edge of source composition. For the optimized RT operation,
the number and types of sources (source profiles) identified
by the OP-SA were used as initial parameters to configure
the RT-SA run. In both cases, the results of the RT-SA were
subsequently compared with those of the OP-SA as a method
of evaluation and verification. The RT-SA was implemented
using the same data as the OP-SA, following the conclu-
sion of the campaign on simulating conditions. During this
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process, the raw files from the instruments were input into
the RT model without any pretreatment, replicating normal
operational conditions. This approach ensures a stable envi-
ronment for evaluating the model’s performance, free from
potential instrumental failures that could affect the results.
Detailed descriptions of the implementation of each step are
provided in the following sections.

The theoretical foundations for applying positive ma-
trix factorization (PMF) are extensively detailed in numer-
ous publications (Manousakas et al., 2021; Paatero, 1999;
Paatero and Tapper, 1994). Briefly here, PMF is a mathe-
matical tool used for source apportionment. It decomposes a
dataset into a set of factors and their contributions, helping to
identify and quantify pollution sources. PMF assumes non-
negative values for factors and contributions, making it suit-
able for real-world environmental data. It allows researchers
to trace pollution back to its sources based on the chemi-
cal composition and temporal patterns of the collected data.
SoFi RT v.9 by Datalystica was the tool used to implement
SA.

SoFi uses the ME-2 (Paatero, 1999) solver, which allows
exploring the rotational space around the base solution by
introducing limits and/or penalties into the PMF model for
deviation from predetermined values for the factor profiles
and contributions for one or more factors, a technique called
constraining. The implementation of constraints is executed
through the a-value approach, in which one or more output
factor profiles and/or time series are required to be within
predefined limits of a reference profile and/or time series,
with the tightness of the constraint is defined by the scalar
a (0 <a < 1). Constraints may apply to the entire profile or
time series, or to selected variables and/or time points only.
The degree of freedom is regulated by the scalar a (a =0
means 0% allowed deviation from the anchor profile, and
a = 1 means 100 % allowed deviation). Using constraints in
elemental datasets has been shown to provide improved fac-
tor separation compared to conventional unconstrained PMF
(Canonaco et al., 2013; Daellenbach et al., 2023; Perrone et
al., 2018; Stefenelli et al., 2019).

Additionally, SoFi offers the possibility of implementing
a rolling window approach. It has been found in numerous
studies that the rolling window, first introduced by Parworth
et al. (2015), provides better results for organic aerosol SA
compared to the conventional techniques (Bhattu et al., 2024;
Canonaco et al., 2013, 2015; Tobler et al., 2021), while to the
best of our knowledge, this technique has not yet been eval-
vated for high-time-resolution elemental composition data.
The rolling approach is described in detail in Canonaco et
al. (2021) and Chen et al. (2022a), and only a short sum-
mary is given here. This approach involves running PMF on
a small subset of the data, referred to as a “window.” The
process begins with the window, which is then shifted by a
predefined time step, gradually covering the entire dataset. At
each step, multiple individual PMF runs may be performed,
with the results either accepted or rejected based on a pre-
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Figure 1. Flow chart of the two SA approaches: (Online) RT-SA (red flow chart), and (Offline) OP-SA (green flow chart). Both approaches
use the AXA data; RT-SA uses untreated raw data, and OP-SA uses treated data. OP-SA serves as the reference method. RT-SA can be set up
either by A. using optimized running parameters obtained by the OP-SA, or B. using generic parameters that require little to no knowledge

of the study area.

defined criteria scheme controlling the quality of the factors
modeled. The final source apportionment solution is deter-
mined by the set of all accepted PMF runs.

The specifics for each component SA are presented in the
following subsections.

2.2.2 Elemental content

For the elemental component of OP-SA, all data were used
in a single dataset consisting of 515h of elemental PM> 5
measurements. The elements selected for the analysis were
based on their signal-to-noise ratio (S / N) using a threshold
equal to 0.5, and their below detection limit (BDL) values.
In the end, 22 elements ranging from Si to Pb were selected
for the analysis. To identify the optimum solution, a number
of factors ranging from three to nine were selected. A five-
factor solution was identified as the most environmentally
reasonable and mathematically stable.

The selection of the number of factors in the PMF analysis
is identified as the step with the highest uncertainty. In this
study, the optimal solution of the OP-SA was determined by
combining mathematical diagnostics (e.g., Q/Qexp, scaled
residuals, residual structure, and unexplained variation) with
an evaluation of the physical relevance of the factors, based
on indicators such as diurnal variations, correlations with
external data, and time series analysis. A range of uncon-
strained solutions was initially examined to identify the high-
est number of factors that could be interpreted with phys-
ical meaning. The solutions were deemed mathematically
suitable when the residuals were found to be normally dis-
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tributed, unstructured over time, and consistent across all
variables, in line with the findings of Reff et al. (2007). Ro-
tational ambiguity was addressed using an approach sim-
ilar to that described by Canonaco et al. (2021). The a-
value method (providing insights into rotational ambiguity)
was combined with the classical bootstrapping method (BS)
and newly available perturbation analysis (PR). BS analysis
slightly alters the input by removing some entries and substi-
tuting them by repeating other entries. This accounts for the
effect of a small set of observations and random errors in the
solution. PR allows for perturbation of the dataset within the
uncertainties of the variables. The uncertainties can be multi-
plied by a factor; in this case, a factor of one was used, mean-
ing that the values could vary within one reported uncertainty
(a factor of two would mean double, and so on). The concept
is that the values can range within % the uncertainty, with the
absolute value being unknown in reality. The model perturbs
the dataset randomly based on the uncertainty or a percentage
of the uncertainty (the uncertainty is multiplied by a random
value between =+ a user-defined value). The combination of
BS with PR and a high number of runs allows for the eval-
uation of random errors, measurement uncertainty, and the
rotational ambiguity of the solution.

In this setup, the number of runs was set to 1000, with the
a value fixed at 1, and BS and PR enabled. With this setting
the model performs 1000 runs with slightly altered input on
each occasion in terms of number of samples (BS) and ab-
solute concentration of the variables (PR). Since the order of
the factors can change with each run, the user must either sort
them post-analysis or constrain them to maintain a fixed po-
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sition. For this reason, all factors were constrained using pro-
files from the base run (original single run) with an a value
of 1, permitting a 100 % variation in the anchor profiles. Us-
ing a high a value enables the identification of uncertainty
without artificially reducing it by not allowing the factors to
vary too much from the base case solution. In such cases, the
constraint becomes less influential, as each factor can adopt a
wide range of shapes. The reported solution is the average of
all 1000 runs (no criteria selection used), and the uncertainty
was estimated as the variation of the runs, with an average
uncertainty of approximately 10 % or less across all factors.

2.2.3 Organic component

The OP-SA PMF analysis of the organic component retrieved
four factors, including a hydrocarbon-related OA (HOA), a
cooking-related OA (COA), biomass burning (BBOA), and
one oxygenated OA (OOA). The initial step of the procedure
involved a set of constraint-free runs for a range of factors
from three to six. After comparing the four- and five-factor
solutions, which varied in the number of SOAs retrieved (one
SOA versus two SOAs, respectively), in terms of Q/Qexp, the
four-factor solution was deemed more suitable. Then, the pri-
mary organics factors that were identified in the constraint-
free runs were constrained one by one for a series of profile-
constrained runs to evaluate the suitability of the constraints.
Using the profiles from the unconstrained runs of the specific
dataset for the Demokritos station ensures that the constraints
are tailored to the site, eliminating potential biases that could
arise from relying on profiles from the literature, which may
not accurately reflect the conditions of the area. To assess
the uncertainty of the solution and further optimize the re-
trieved profiles the model was run for 1000 iterations, con-
straining the profiles of the primary organic aerosols (POAs)
using the profiles from the previous steps, with BS enabled
using a random a value up to 0.3. Higher a values are not
suitable for ACSM data, as the identity of the factors can
change (Crippa et al., 2014; Chen et al., 2022b), in contrast
to Xact data that are generally more stable. The benefits of
this approach are twofold. First, it allows for a comprehen-
sive assessment of the uncertainty in the solution by explor-
ing the variability across multiple runs. Second, it optimizes
the retrieved profiles by further fine-tuning them within real-
istic constraints while ensuring they remain representative of
local conditions. From these iterations, only the runs that met
specific environmental criteria were selected, further enhanc-
ing the accuracy and reliability of the source apportionment
results by ensuring alignment with real-world conditions.

A list of criteria was used to identify environmentally rea-
sonable solutions. This list, based on the methodology de-
scribed by Chen et al. (2022b), included several key ele-
ments to ensure the validity of the results. First, a ¢ test
was applied to verify that the correlation of the time series
of HOA and BBOA with external tracers of their respective
emission sources (eBCjs for HOA and eBCgf for BBOA) was
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statistically significantly higher than their correlation with
other factors. This ensured that the solutions were physically
meaningful and aligned with known emission sources.

Second, the ratio of lunchtime to early morning concentra-
tions of COA was required to be greater than 1, reflecting the
expected diurnal variation typically associated with cooking
emissions. Lastly, the fractions of m/z 43 (fs3) and m/z 44
(faa) for the SOA were required to be positive, as these val-
ues are indicative of secondary organic aerosol processes and
must adhere to physical and chemical plausibility. These rig-
orous criteria helped to refine the results by selecting only
those solutions that were consistent with known environmen-
tal and chemical behavior, thereby improving the reliability
and interpretability of the source apportionment analysis.

In a previous study, Zografou et al. (2022) identified
five organic matter (OM) factors at the Demokritos sta-
tion in Athens for a year-long dataset (2017-2018): HOA,
COA, BBOA, and two types of oxygenated organic aerosols
(OOAs) — one more oxidized (MO-OOA), and one less oxi-
dized (LO-OOA). However, in the current study, only a sin-
gle OOA factor was identified. This finding is supported by
the POA-subtracted fa4—f43 plot, which includes the trian-
gle framework proposed by Ng et al. (2011a). In cases where
two OOAs are present, the plot typically exhibits a linear re-
lationship between f14 and f43, which was not observed in
this study.

Furthermore, the mass spectrum of the single OOA closely
resembles that of the MO-OOA from the 2018 dataset re-
ported by Zografou et al. (2022), suggesting that the OOA
identified in this study represents the more oxidized fraction
of secondary organic aerosols. The absence of a distinct LO-
OOA may indicate differences in atmospheric conditions,
such as reduced variability in oxidation states or changes in
the sources and processes affecting the organic aerosol com-
position between the two datasets, taking into account that
this study refers to a single-month dataset compared to the
year-long dataset used in the previous study. This highlights
the importance of site-specific and temporal factors in shap-
ing the chemical composition of atmospheric aerosols.

2.3 Real-time source apportionment analysis (RT-SA)

2.3.1 Description of the RT model and RT-SA
approach

The RT-SA was conducted using the SoFi RT software de-
veloped by Datalystica Ltd., a tool specifically designed to
streamline and automate the SA process. This software inte-
grates seamlessly with various instruments, as illustrated in
Fig. 1, to collect raw data in real time. It then applies essential
preprocessing steps, such as filtering, excluding, correcting,
and making other necessary adjustments, before performing
an automated SA run.

Once the instruments are operational, the software auto-
matically detects when new data are generated and immedi-
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ately processes them. SoFi RT produces SA results within
seconds of the data arriving, ensuring a near-real-time anal-
ysis capability. The RT model results appear in the form of
pie charts showing source contributions and detailed source
profiles. These outputs are updated at a time resolution equiv-
alent to that of the instrument used, which is typically hourly
or even more frequent. This functionality provides an effi-
cient and dynamic way to monitor source contributions in
near real time, offering valuable insights into environmental
processes and also allowing for rapid decision-making and
adaptive air quality management. The RT application elimi-
nates manual intervention, minimizes processing delays, and
ensures consistency in the analysis.

Once the software is granted access to the relevant instru-
mental output files, which can be stored on any cloud ser-
vice, the entire process runs automatically. SoFi RT performs
two types of automated source apportionments: a more ad-
vanced method (rolling PMF), where multiple PMF runs are
conducted to assess errors based on statistical and rotational
uncertainty, and a simpler method using chemical mass bal-
ance (CMB) to provide real-time source apportionment re-
sults based on the most recent scans. The software can op-
erate with data from individual instruments (or PM compo-
nents) separately, but it can also process data from the entire
AXA setup simultaneously.

To better understand the results of the RT and how to set
the model up properly, it is important to know how it op-
erates with the AXA setup. The Aethalometer data are de-
composed to BC that corresponds to liquid (mainly traffic)
and solid (mainly biomass) fuel combustion. The measured
absorption coefficients at wavelengths 470 and 880 nm, to-
gether with the alpha values based on Zotter et al. (2017),
are used to estimate the contributions to eBC (equivalent BC
from eBCjs and eBCgt). Moreover, these fractions of BC can
be used within the SoFi RT software in order to constrain the
solution of the organic factors from the ACSM, by, for exam-
ple, performing ¢ tests on the correlation of their time series
to the time series of factors of the same emission (HOA and
eBCjs, BBOA and eBCyy).

First, the data from both instruments are automatically ar-
ranged into two diagonal blocks of a single input matrix. The
model then classifies the data from the two instruments into
separate classes and automatically retrieves the instrument-
specific constraints. The current version allows no interac-
tion between the data from the instruments, hence there will
be factors dedicated to either ACSM or Xact data. This in-
formation is retrieved from the constraints information (an-
chor name and length) and is automatically identified and
applied. The factor contributions and profile of the counter-
instrument is automatically set to zero, to have independent
factor solutions. This method is equivalent to conducting two
separate PMF analyses, one for each instrument, though it is
performed in one single ME-2 run. The results display all
variables (ACSM and Xact) along the x axis, but the factors
for ACSM and Xact are reported separately. The resulting
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time series of source contributions are separate for each in-
strument; they consist of a set of time points equal to the
rolling window length for the ACSM sources, and an equiv-
alent set for the Xact. Afterwards, the relative contributions
for the Xact-related data are included for these time points,
while the ACSM contributions are set to zero. This approach
offers several practical advantages, including reduced com-
putational demand, minimized risk of model crashes during
real-time operation, and simplified implementation without
the need for multiple ME-2 engines for separate analyses,
but most importantly avoids any manual post-combination
of PMF results. These features make the method particularly
suitable for use by non-specialists in routine monitoring en-
vironments.

The source contributions are presented in a consolidated
pie chart that includes the sources of each PM component,
though derived from independent PMF runs. This approach
has the advantage of providing information about the sources
of PM for species representing the entire PM mass. At the
same time, it avoids the need to assume equivalent uncer-
tainties for all instruments or to assess whether the model is
equally weighting the data from both instruments. The dis-
advantage is that the secondary species are not apportioned
to sources but rather to oxygenation states, as is normally the
case for ACSM.

As discussed, the data from each instrument are treated in-
dependently in the analysis. Even though there are other pos-
sible approaches, this was deemed the most reliable for RT
implementation. A detailed overview of these approaches,
along with an evaluation, is provided in the supporting ma-
terial of Cheung et al. (2024). The main advantages of the
separate run approach include a straightforward method for
estimating uncertainties, low uncertainty for factors with mi-
nor contributions, robust results that align well with RT
approaches, reduced impact of apportionment uncertainty
on high-mass variables, and easy implementation by non-
experts.

Different analytical techniques typically use distinct meth-
ods for estimating uncertainties, and this difference is es-
pecially pronounced in inherently different methods, such
as mass spectrometric and spectrometric or other analytical
techniques. The number of variables and the internal corre-
lations within the dataset from a single instrument typically
yields a result in which instruments are systematically over-
/under-weighted. Considering that in RT the treatment of un-
certainties is an automated process managed by software de-
signed to operate unattended and, in many cases, by non-
experts, achieving accurate uncertainty handling becomes an
even more challenging task. By utilizing independent runs,
the software can estimate the uncertainty per instrument us-
ing well-established and tested approaches by the manufac-
turers of the instruments that guarantee robust results.

Since the RT capabilities of the model may be used not
only by scientists but also by monitoring networks and
policy-makers, the robustness of the results is crucial. By
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utilizing separate runs and avoiding the need to scale the un-
certainties, the results become very robust. Additionally, in-
cluding secondary species in the apportionment introduces
a limited number of variables with very high mass into the
analysis. Because of this uneven mass distribution, even low
uncertainty in the apportionment of these variables can lead
to significant uncertainties in the contributions of the sources.
Since these species are typically apportioned to specific fac-
tors associated with secondary sources rather than attributed
to primary sources, the loss of information is not significant
and does not justify the added uncertainty in the analysis.

The advantage of the above-mentioned setup is that for
the proper functioning of SoFi RT the user needs to provide
limited initial information. After that, the model can run au-
tonomously. In this current version of SoFi RT, where the
number of factors is assumed to stay static, the user pro-
vides (a) general storage settings, (b) the total number of fac-
tors (in this current version the factors are fully instrument-
independent), (c) possible instrument-wise constraint infor-
mation, (d) various other model parameters (e.g., number of
iterations, a values, window length, etc.). This information
can either be passed through an instruction file or by directly
interacting with the SoFi panels.

2.3.2 Organic RT-SA

General details on how to set up and monitor the RT runs for
the ACSM are provided by Chen et al. (2022b). Briefly here,
since the RT requires as input the number of sources and an
initial set of source profiles, the first step includes identifying
this information. If there is prior knowledge in the specific
site, it can be used to set up the initial parameters. If not, sea-
sonal pre-tests are required to identify the number of factors
that are relevant in the region. This procedure is very impor-
tant, as it will set up the starting point of the model iterations
and it is suggested to follow the analysis protocol described
in Chen et al. (2022b). The POAs are typically constrained
using the a-value approach, while the SOAs or OOAs (oxy-
genated OA) are left unconstrained. If more than one OOA
are present, the user needs to define additional criteria for
repositioning or sorting the unconstrained factors over the
single PMF runs. The model can utilize complementary mea-
surements for validation of the source apportionment results
using the criteria-based selection, as performed manually in
the past SA studies.

As discussed earlier, this study aimed to assess the RT
model’s performance with optimal initial parameters and
explore its operation under less optimized, generic condi-
tions. To achieve the first goal, we used OP-SA results to
set the organic RT-SA, constraining POA profiles while leav-
ing OOA profiles unconstrained. The RT-SA was set to per-
form a rolling window approach with a values equal to 0.1, a
5 d window with 1 d shift, 50 repeats per window, and boot-
strapping enabled. This setting allowed the model to adjust
the profiles to temporal changes. The window size was cho-
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sen because the dataset is small, allowing for enough subsets
and iterations. For longer datasets (e.g., 1 year), a more tra-
ditional method like the one in Canonaco et al. (2021) is rec-
ommended. The evaluation under optimized conditions aims
to assess the stability of the model, the processing of the raw
files, and the overall performance.

For checking the performance of the model under a non-
optimized setup, we used as constraints the most commonly
used profiles worldwide based on the studies of Crippa et
al. (2013) and Ng et al. (2011b). These profiles are used in
numerous studies to constrain the POAs (Chen et al., 2022a).
Generally, these profiles work well for HOA and COA be-
cause their fingerprints are relatively consistent across dif-
ferent locations. HOA is typically associated with traffic
emissions, which have similar chemical characteristics glob-
ally due to the widespread use of similar fuels and combus-
tion technologies. Similarly, COA profiles are dominated by
cooking emissions, which also exhibit comparable chemical
signatures worldwide, driven by commonalities in cooking
practices and the types of oils and fats used.

In contrast, BBOA profiles are less consistent globally, as
they are highly dependent on the type of biomass burned,
and the combustion conditions. Different types of wood, agri-
cultural residues, or other biomass materials produce unique
chemical markers during combustion. Additionally, varia-
tions in burning methods (e.g., open fires, stoves) and atmo-
spheric conditions can further alter the BBOA profile. As a
result, using a generic global profile as a constraint for BBOA
may not capture the local and regional variability, leading to
less accurate modeling outcomes for this source.

The performance of both approaches was evaluated by
comparing the results of the RT-SA with those of the OP-SA;
the results are presented in the following section.

2.3.3 Elemental RT-SA

Even though the RT function for the OA has been previously
evaluated, its application on Xact data has not yet been as-
sessed. Since in the RT model the source profiles and the
number of sources are fixed parameters, the RT performance
can be significantly affected by two main factors: variations
in the chemical composition of source profiles, and changes
in the number of sources. Unlike the OA data, where predict-
ing the number and type of sources is relatively easier, often
allowing for the same profiles to be used as starting points
independent of the time and location, elemental composi-
tion data are much more unpredictable. While certain factors
with similar chemical compositions are common on a global
scale (e.g., dust, salt, secondary species, and possibly traffic),
many others show significant variation depending on domi-
nant local processes such as industry or regional pollution
patterns. Even in cases where sources share similar tracer
profiles, like dust for example, the relative concentrations of
variables within those factors can change based on the lo-
cation and the type of dust (e.g., local natural, local anthro-
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pogenic, or transported natural dust). Additionally, transient
sources frequently appear, which can have a substantial im-
pact on elemental concentrations, in case they become part
of the main modeled factor solution. These sources are of-
ten short-lived and cannot be predicted at the beginning of
the analytical cycle. Even though there are studies that sug-
gest optimized SA approaches for offline SA analysis of Xact
(Manousakas et al., 2022), they are quite complicated to op-
erate under RT conditions.

For the optimized RT-SA, the source profiles retrieved
from the OP-SA were utilized in this case as well. The num-
ber and types of sources identified by the OP-SA were used
as initial parameters to run the RT model. The model’s abil-
ity to adapt to potential changes in factor profiles relied on
the selected a value, which allowed for adjustments to the
profiles when combined with the rolling window approach.
An a value of 0.5 was chosen, enabling the model to mod-
ify the profiles by up to 50 %. Higher a values (even 1) are
possible for the Xact, as the zero values for some variables,
which almost always exist, help maintain the profile’s iden-
tity more stably compared to the usual case for the ACSM.
This approach provides the model with flexibility to adjust
the profiles while maintaining alignment with the initial pa-
rameters. The success of this approach heavily depends on
the quality and representativeness of the initial parameters.
To ensure optimal performance, locally derived OP-SA data
must be available.

While the previous method is effective in delivering ro-
bust results and offering the model some flexibility to adapt
to changes, it requires prior knowledge of the specific area
being studied. Increasing the a value further enhances the
model’s adaptability, but there are limitations on how high it
can be set without introducing modeling issues. For instance,
setting an a value of 1 provides significant flexibility by al-
lowing all variables to potentially reach zero. However, vari-
ables that are already at zero remain fixed and cannot be ad-
justed, which can limit the model’s ability to capture certain
dynamics accurately.

An additional limitation is that although all variables can
theoretically reach zero, the maximum relative increase per-
mitted is only 100 % (i.e., doubling their current value),
which may be insufficient for variables with low initial con-
centrations. Furthermore, allowing variables to reach zero
can result in the model unintentionally altering the identities
of factors. This occurs when the model compensates by re-
distributing species into other factors, prioritizing those with
higher initial concentrations that align with the zeroed vari-
ables. Consequently, this process can lead to factors effec-
tively exchanging their “identities,” undermining the consis-
tency and reliability of the source apportionment results. To
account for that, these exchanged/mixed PMF runs can be ef-
fectively filtered out using proper (ideally based on statistical
tests) thresholds within the criteria scheme.

The notable effect that zero values in the PMF input matrix
have on the solution is also described in previous publica-
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tions (Paatero et al., 2002). The presence of zeros in profiles
can play a crucial role in maintaining factor identity, espe-
cially when a significant number of variables are set to zero
for each factor and there is minimal overlap in the zeroed
variables across different factors. These zeros effectively an-
chor the factors, preventing ambiguity and ensuring their dis-
tinctiveness (see Table S1 in the Supplement).

Building on this observation, we developed a novel ap-
proach for creating constrained profiles. This approach in-
volved setting certain variables to zero (those deemed irrel-
evant for factor identification, on established knowledge of
source compositions, findings from prior studies, and the op-
timized source apportionment results obtained in the present
study) while allowing random initial values to the remain-
ing variables. This method allows the model to determine the
relative concentrations of variables within each factor with-
out imposing any predefined assumptions about their relative
composition. By doing so, the model gains the flexibility to
adapt and allocate variables freely based on the data, ensur-
ing that the profiles remain data-driven and unbiased.

This “zero/nonzero” strategy was tested to evaluate its
ability to provide sufficient information for the model to ac-
curately identify relevant factors. Simultaneously, it removed
constraints on the relative concentrations of species, offering
a more adaptable framework for the model. The approach
aimed to strike a balance between maintaining factor iden-
tity through zero constraints and enabling a versatile, uncon-
strained exploration of the data to optimize the accuracy and
reliability of source apportionment results.

The performance of both approaches was evaluated by
comparing the results of the RT-SA with those of the OP-SA;
the results are presented in the following section.

3 Results
3.1 OP-SA results

To evaluate the performance of the RT model, its results were
compared with those obtained using the classical offline ap-
proach to source apportionment. The outcomes of each ap-
proach are presented in separate sections for each instrument.
For clarity, the results of the OP-SA are detailed extensively
in the following sections, while the RT-SA results are pre-
sented primarily in comparison to the OP-SA outcomes.

3.2 Elemental component SA results

Following the SA approach described in the previous section,
six factors were identified utilizing the elemental composi-
tion data. The factor profiles are presented in Fig. 2.

3.2.1 Dust

Dust is traced by Si, K, Ca, Ti, Mn, and Fe. Greece, like
the other south European countries, is often affected by dust
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Figure 2. Factor profiles for the elemental SA. The bars represent the normalized (Sum = 1) factor profile, while the stars represent the

normalized (Sum = 1) contribution of the factor for each species.

transport events. Mineral dust has somewhat different com-
position depending on its origin, with the main difference
being the relative content of Al, Si, and Ca. Elements such as
Fe and Ca originate strongly from transported natural dust,
but also have significant local emissions either from anthro-
pogenic dust emissions such as construction and the abrasion
of building materials and road surfaces (Ca), or traffic emis-
sions (Fe; Amato et al., 2013; Nava et al., 2012; Shaltout
et al., 2018). For the aforementioned reason, dust sources in
certain regions may appear as two distinct sources, one which
is Ca dominated and represents local/urban dust or construc-
tion, and one that is Al and Si dominated and represents natu-
ral and/or transported dust (Manousakas et al., 2021). Ratios
of Al and Si to Ca can be used to distinguish between an-
thropogenic and natural transported dust (Shen et al., 2016;
Skorbitowicz and Skorbitowicz, 2019). The Si/ Ca ratio in
the factor profile is approximately 1.5, indicating that the fac-
tor is affected by both natural and anthropogenic emissions,
which is common in urban environments. The time series of
source contributions for this source reveals some events that
are attributed to long-range transportation events (Fig. S3).

3.2.2 Traffic-related factors

In the analysis, two factors that refer to vehicular traffic emis-
sions have been identified; one factor refers to emissions
from brake wear, and one factor refers to emissions from tire
wear. Since we are focusing on the elemental components
of PM, both correspond to non-exhaust emissions, as ex-
haust emissions contain mostly carbonaceous species (Har-
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rison et al., 2021). Brake wear is traced by Cr, Mn, Fe, and
Cu. Cu is the most abundant element in brake linings, hav-
ing a concentration that reaches > 10 %, while Cr, Fe, and
Mn can also be emitted when braking as they are compo-
nents of brake linings and/or brake disks/drums (Thorpe and
Harrison, 2008). The tire wear factor is traced by Zn, Mn,
As, and Pb, while Fe, Ca, and S contribute significantly to
the mass of the factor. Although tire wear is predominantly
associated with the release of organic compounds, approxi-
mately 13 % of tire composition consists of inorganic mate-
rials, such as those found in curing agents, accelerators, and
various additives (Thorpe and Harrison, 2008). Additionally,
several trace metals, including Cd, Cu, Pb, and Zn, are used
in tire manufacturing. Among these, zinc has the most sub-
stantial presence in tire tread, comprising about 1 % of its to-
tal weight (Kleeman et al., 2000). While the chemical com-
positions of tire wear and brake wear do have some differ-
ences, their temporal emission profiles provide a strong ba-
sis for differentiating them. These time-based variations help
distinguish the two sources in real-time PM monitoring, as
each has distinct peak emission times linked to driving be-
havior, road use, and traffic conditions. Tire wear tends to
be more continuous throughout the day, as tires are in con-
tact with the road surface during any kind of driving, though
it has been suggested that particles from tire wear are ele-
vated during higher driving speeds (Gustafsson et al., 2008;
Kim and Lee, 2018; Yan et al., 2021). Brake wear emissions
are more sporadic and directly related to braking intensity,
which typically increases during rush hours or in areas with
stop-and-go traffic. Consequently, brake wear peaks during
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periods of heavy congestion, especially in urban areas where
frequent braking occurs, leading to higher PM contributions
during morning and evening rush hours. In traditional source
apportionment analysis, which relies on 24 h filters, there is
often insufficient variability in the data to separate brake and
tire wear, resulting in both being grouped as a single source.
However, with hourly resolution data these sources may be
differentiated. The diurnal profiles of brake and tire wear are
notably distinct: brake wear exhibits clear rush hour peaks,
with noticeable spikes in the morning (around 07:00) and
evening (around 19:00), while tire wear shows a more irregu-
lar profile, with a less pronounced peak around noon (12:00),
when traffic density is lower, and vehicle speeds are higher
(see Fig. S1 in the Supplement). Traffic data from the nearby
highway corroborates these findings, indicating lower traffic
density at 12:00 and higher density in the 07:00-09:00 and
17:00-19:00 periods, which aligns well with the observed
profiles for both factors (see Fig. S2).

3.2.3 Salt

The salt factor is traced by Cl and refers to sea salt, as
road salting rarely takes place in Greece, especially during
spring. The interesting observation about this source is that
it presents pronounced peaks during the same time as the
dust transport events (Fig. S3). Sea salt can be transported
with African dust, especially during large-scale dust storms
that originate from the Sahara Desert. The process involves
strong winds lifting both dust particles from the desert and
sea salt from the ocean surface into the atmosphere. These
particles can travel long distances together, becoming part of
a mixed aerosol layer in the atmosphere (van Der Does et al.,
2016; Goudie and Middleton, 2001). The mass concentra-
tions of PM| and PM3 5, as measured by an Optical Particle
Counter (OPC, GRIMM 1.109), are shown in the Supple-
ment (Fig. S4). There were periods during which chloride
appeared in the sea salt factor identified by the Xact monitor
but was not detected by the ACSM, since the chloride con-
tained in sea salt is refractive and not captured by the ACSM.
Moreover, these peaks corresponded to instances where the
PM; 5 mass was significantly higher than the PM; mass.

3.2.4 Sulfate

Sulfate is traced by S, and represents the secondary sulfates
in the region. Sulfate has been identified in the past as an
important source in the region (Almeida et al., 2020; Am-
ato et al., 2016a, b). The area’s climate conditions, character-
ized by low precipitation and high solar activity, promote the
buildup of pollutants and the generation of secondary par-
ticles. For instance, model simulations suggest that SO is
carried throughout the Mediterranean basin, where sulfate
is formed as a result of significant photochemical activity
(Pikridas et al., 2013). Sulfates have been found to have sim-
ilar concentrations in several areas in the Mediterranean re-
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gion (Argyropoulos et al., 2012), highlighting the regional
character of these secondary aerosol species.

3.2.5 Regional

This factor represents regional pollution that is transported
to the sampling site, most likely from outside of the city. The
factor includes tracers from heavy oil combustion (V and Ni),
biomass burning (K), as well as industrial processes (S, As,
Br, and Pb; Jang et al., 2007; Samara et al., 2003; Sdnchez-
Rodas et al., 2007). In addition to local emissions, Athens
is affected by industrial activities in nearby areas and ship-
ping emissions from the Port of Piraeus. Factories involved
in manufacturing and petrochemical production contribute
significant emissions that can be transported to Athens by
prevailing winds. Emissions from heavy oil combustion and
industrial activities are often grouped together in a source ap-
portionment factor due to synchronous transportation mech-
anisms that result in their simultaneous presence in the at-
mosphere, making it difficult for models to effectively dis-
tinguish between sources. The unique geographic and me-
teorological conditions of Athens, including its location in a
basin surrounded by mountains, create an environment where
pollutants can become trapped. Prevailing winds can carry
emissions from both heavy oil combustion and nearby indus-
trial sources into the city at the same time, leading to over-
lapping pollutant plumes that complicate the identification of
specific sources. Furthermore, both heavy oil combustion and
industrial activities release a variety of pollutants with simi-
lar chemical compositions. This overlap makes it challenging
to attribute specific air quality issues to a single source. In-
stead, a composite source apportionment factor is employed
to assess the total impact of these emissions on air quality.

3.3 Organic matter offline SA

The mass spectrum of the identified factors is presented in
Fig. 3, which covers an m/z range up to 100. Higher-mass
ions, often associated with polycyclic aromatic hydrocar-
bons, showed minimal contribution to the spectra in this case.
The two factors related to hydrocarbons, HOA and COA, are
characterized by peaks at m/z 41 and 55, which are indica-
tive of alkanes, and at m/z 43 and 57, also representative of
alkane fragments (Zhang et al., 2010). These fragments are
crucial markers for identifying emissions from vehicle ex-
haust (HOA) and cooking sources (COA).

A distinctive feature differentiating HOA from COA is ob-
served in the ratio of the m/z 55 to m /z 57 peaks. In the case
of COA, this ratio is greater than one, which is indicative of a
predominance of lighter alkanes typical of cooking emissions
(Mohr et al., 2012). In contrast, HOA displays a ratio lower
than one, reflecting the heavier alkanes often associated with
vehicle emissions.

The BBOA factor stands out due to a prominent peak
at m/z 60, which is attributed to levoglucosan (and similar
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compounds related to biomass burning), widely recognized
as a biomass burning tracer (Lee et al., 2010). This peak is a
good marker for identifying organic compounds from wood
or crop burning.

The OOA factor, meanwhile, is predominantly represented
by a strong peak at m/z 44, which corresponds to CO;,
a marker for oxidized organic compounds, especially acids
(Duplissy et al., 2011). This ion is a product of atmospheric
oxidation processes, such as those occurring in SOA forma-
tion. Prevalence of m/z 44 is typically associated with the
oxidation of organic precursors in the atmosphere, reflecting
the processing of primary emissions into secondary aerosols
(Kanakidou et al., 2005).

The time series of the ACSM factors retrieved from RT
PMF appear in the Supplement (Fig. S5). An interesting
event occurred on the 7 March, when an annual Greek fes-
tival centered around meat grilling took place. During this
event there was a significant spike in COA contributions,
which was accompanied by a notable increase in BBOA con-
centrations. Figure S6 presents the factors’ diurnal trends.
HOA concentrations were observed to peak twice per day,
reflecting vehicle emissions, while COA also presented a
bimodal diurnal trend concentrations coinciding with lunch
and dinner times. BBOA showed a pronounced evening peak,
probably driven by the grilling event on 7 March.

When comparing the base-case solution factors to external
data, correlations were found between the HOA factor and
eBCys, with a Pearson correlation coefficient of 0.61. This
suggests a moderate relationship between HOA and liquid-
fuel-related particles. On the other hand, the BBOA factor
showed a strong correlation with eBCgt, with a Pearson coef-
ficient of 0.86. This strong correlation underscores the close
association between biomass burning sources and the BBOA
factor.

3.3.1 OP-SA source contributions

The results presented here are derived from the OP-SA but
are formatted to be equivalent to the output provided by
SoFi RT. During RT operation, the pie chart of source con-
tributions is updated within seconds after new data from the
instruments are processed by the model, which typically oc-
curs every hour or less.

When operating the AXA suite of instruments in SoFi RT,
the software generates a real-time consolidated pie chart
that includes sources from all individual analyses performed.
However, in the version used in this study (SoFi RT v.9),
all source contributions are reported separately in RT mode.
While offline mode offers additional options, such as com-
bining equivalent sources, including ions in the pie chart, and
adjusting dust contributions for the mass of corresponding
oxides, these features were not available in RT mode at the
time the study was conducted. However, they are included in
the latest available version.
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Consequently, the pie chart generated in RT mode rep-
resents only the apportioned mass of the analyzed species,
rather than the total PM mass. Future software updates will
address these limitations, providing users with greater flex-
ibility to customize the graphical representation of the data
according to their needs.

Figures 4 and 5 present the source contributions from the
OP-SA in a format equivalent to what SoFi RT reports during
real-time operation, ensuring consistency with the RT report-
ing style.

In Fig. 4, contributions from the same source category are
represented using different shades of the same color to en-
hance visualization and differentiation. The pie chart in Fig. 5
includes ions, adjusts dust to account for oxides, and incorpo-
rates the missing mass of sodium (Na) in sea salt to provide a
more comprehensive representation of source contributions.

The largest contributors are secondary species, which to-
gether account for 57 % of the total mass. Among these, sec-
ondary organics are predominant, followed by sulfate, ni-
trate, and ammonium. Notably, sulfate as measured by the
ACSM shows excellent agreement with the corresponding
factor in the elemental SA analysis (1.24ugm™> from the
ACSM versus 1.28ugm™> from the elemental SA). This
consistency underscores the reliability of the analysis.

Since the site is classified as an urban background site,
high concentrations of secondary species are expected, con-
sistent with previous findings (Eleftheriadis et al., 2021).

Among primary sources, traffic emerges as the highest
contributor. This category encompasses HOA, BCys, and
brake and tire wear identified in the elemental SA. Biomass
burning and cooking sources each contribute 10 % of the to-
tal mass. The contribution of cooking, however, is exception-
ally high for this dataset and not representative of typical re-
gional conditions. This elevated contribution is attributed to
a national celebration day included in the sampling period,
during which widespread barbecuing occurs. Similar high
contributions from cooking during such events have been re-
ported in other local studies (Manousakas et al., 2020).

Natural sources, including sea salt and dust, together ac-
count for 10 % of the total mass. These factors are explored
in detail in the elemental SA section and are linked primarily
to some transport events that occurred during the sampling
period.

Finally, the regional factor contributes 2 % of the total
mass. This factor is attributed to pollution transported from
surrounding areas, as discussed in the corresponding sec-
tions.

3.4 Comparison of the RT results with base-case SA
analysis

In Figs. 6 and 7, the ratios between the OP-SA application,
as described in the previous section, and the RT implemen-
tation of the a-value approach are presented. Based on this
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Figure 3. Mass spectrum of the base case of organics factors.

Brake wear

Figure 4. Consolidated pie chart of the average source contribu-
tions. The total mass does not include ions; dust is not adjusted for
the oxides; sea salt is not adjusted for the missing Na. BCff and
BCwb refer to BC from fossil fuel and biomass burning combus-
tion, respectively

comparison, the RT model application results appear robust,
with most ratios being close to 1 for both instruments.

To better visualize the quality of the RT solution compared
to the OP-SA solution for both instruments, the lines indicat-
ing the +10% (red) and +20 % (black) range from 1 in the
ratio of RT to base case were added in Figs. 6 and 7. In quan-
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Figure 5. Consolidated pie chart of source contributions. Traffic is
the sum of HOA, brake wear, tire wear, and BCj¢; biomass is the
sum of BBOA and BC(sf; dust is adjusted for the oxides; sea salt is
adjusted for the missing mass of Na; the sulfate factor from Xact is
not included to avoid double mass counting; chlorine from ACSM
is not included to avoid double mass counting.

titative terms, 98 %—100 % of the data were inside the =10 %
range in the case of COA, BBOA, and OOA for the ACSM
solution. For HOA, a lower percentage was observed within
this range, and 84 % was inside the £20 % range. Concern-
ing the elemental RT solution, the ratio of RT to base case for
the traffic-related factors brake wear and tire wear was 63 %

Atmos. Meas. Tech., 18, 3983-4002, 2025
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Figure 6. Ratio of the source contributions of the RT-SA analysis to the base-case offline SA application versus the source contribution in
ug m™~3 for the organics based on offline SA, with lines indicating the ranges +10 % from 1 (red) and £20 % from 1 (black).

and 77 %, respectively, inside the range £20 %. A lower per-
centage inside the 20 % range was observed for the sea salt
factor (57 %), while the highest percentage was shown for the
sulfate factor (90 %). Finally, 87 % and 81 % of the regional
and dust factor ratios, respectively, were within this range.

The comparison shows that the highest variability exists
for low concentrations and for factors that either are charac-
terized by high-intensity events (sea salt) or have a high com-
mon number of tracers with other factors (HOA, regional,
traffic). Regarding sea salt, the factor has two unique fea-
tures: it is traced by only one element, and it is expressed by
high-intensity events. For these reasons, the factor is more
sensitive to the BS runs, and the stability of the results is af-
fected by the windows that include the high-intensity events.
This effect might be mitigated by increasing the repeats per
window and by disabling the BS analysis. In general, the re-
sults indicate that if site-specific profiles are used, the RT
analysis can offer results that are within 20 % difference in
most cases to the base-case offline SA analysis.

As discussed in the previous sections, the implication with
using site-specific constraints is that there needs to be prior

Atmos. Meas. Tech., 18, 3983—-4002, 2025

knowledge in the area, or an initial test period needs to take
place. Even though the software offers ways for the model to
adapt to changes (rolling window, adjustable a value), there
is still the need for a relatively good and robust starting point
in terms of profiles used.

For the implementation of the elements-based RT-SA, the
zero/non-zero approach was also used. This approach in-
cludes setting the variables that are not relevant to the factor
to zero, while leaving the others free to assume any value.
The profiles that have been used to test this approach are pre-
sented in the Supplement (Table S1). The results of this ap-
proach were satisfactory, presenting very good reproduction
of the base-case solution regarding the R? Pearson correla-
tion of the time series of the contributions of the solutions
(traffic = 0.88, sulfate = 0.94, sea salt = 0.99, dust = 0.99),
moderate for the regional factor (0.64), and very low for the
tire wear (0.04). In the Supplement the scatter plots between
the diurnal trends for the two approaches are also presented
(Fig. S7). The R? correlations in this case were lower, rang-
ing from 0.18 to 0.7. From these results it can be assumed
that the factors that have low mass do not follow a consis-
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Figure 7. Ratio of the source contributions of the RT-SA analysis to the base-case offline SA application versus the source contribution in
ug m~3 for the elements-based offline SA, with lines indicating the ranges 10 % from 1 (red) and £20 % from 1 (black).

tent pattern; some factors can be reproduced (e.g., regional),
some factors can be reproduced only in some cases, while
others cannot be well reproduced. Since in this zero/non-zero
approach there are no certain ratios that are fixed between el-
ements, when the factors have a high number of overlapping
elements then the model can swap them, assigning the mass
of one factor to the other (mostly favoring the factor with the
higher mass). This is supported by the two slopes that are
visible in the scatter plot between the offline base-case so-
lution and RT (Fig. S8). Overall, although the performance
of this approach is not exceptional, it can serve as a supple-
mentary tool in situations where prior information about the
sources is unavailable. It can be utilized until sufficient data
are collected to enable an OP-SA evaluation.

The performance of the RT-SA for the organic fraction
was also evaluated by comparing the use of reference pro-
files to the use of optimized profiles derived from local data.
The time series generated by the RT-SA using optimized pro-
files were compared to those generated using reference pro-
files, revealing varying levels of correlation depending on the
source.

For COA, the time series showed a strong correlation
(R? = 0.81; Fig. S9), indicating that the reference profile ad-
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equately represents the cooking organic aerosol emissions at
the study site. This result suggests that COA has relatively
consistent characteristics across locations, making reference
profiles effective for this source. In contrast, the correlation
for HOA was moderate to low (R% = 0.48; Fig. S9). This in-
dicates that while the reference profiles capture some gen-
eral trends, they fail to fully represent the local variabil-
ity in traffic-related emissions. Factors such as differences
in fuel composition, vehicle types, and driving conditions
may contribute to this discrepancy. The BBOA time series
showed very poor correlation (R* = 0.20; Fig. S9) between
RT-SA using the optimized BBOA profile and RT-SA using
the reference profile. This result highlights the spatial depen-
dence of BBOA characteristics, which are influenced by fac-
tors such as the type of biomass burned, combustion prac-
tices, and local atmospheric conditions. Reference profiles
for BBOA appear to lack the specificity needed to accurately
reflect the unique features of emissions at the study site, as
has been previously observed (Chen et al., 2022b).

Atmos. Meas. Tech., 18, 3983—-4002, 2025
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4 Conclusions

This study successfully demonstrated the integration of the
ACSM—Xact-Aethalometer (AXA) setup with the SoFi RT
software for real-time source apportionment (RT-SA) of
particulate matter in Athens, Greece. The findings under-
score the potential of real-time methodologies in advancing
air quality management, offering near-instantaneous insights
into pollution sources, and enabling dynamic responses to
pollution events.

The AXA setup proved effective in providing a compre-
hensive representation of PM sources. By integrating chem-
ical, elemental, and black carbon data, the system has the
ability to capture most of the PM mass (in the current study
almost 100 % with respect to OPC measurements), allow-
ing for detailed source characterization. The analysis showed
that traffic emissions are the dominant primary source of PM,
with substantial contributions from secondary species (57 %
of the total PM mass) such as secondary organics, sulfate, ni-
trate, and ammonium. Other primary sources such as biomass
burning and cooking each contributed approximately 10 % to
the total mass, with natural sources like dust and sea salt ac-
counting for the remainder. The consistency of these results
across RT and offline analyses demonstrated the robustness
and reliability of the RT methodology.

The results highlighted the diurnal patterns of specific
sources, with traffic-related emissions peaking during morn-
ing and evening rush hours, while cooking emissions spiked
during weekends and special events. Additionally, the setup’s
ability to differentiate between non-exhaust traffic emissions,
such as brake and tire wear, provided valuable insights into
source profiles.

A key methodological contribution of this work is how
data from the AXA setup are utilized in parallel. While fur-
ther testing on combining AXA data prior to source appor-
tionment analysis is warranted, this remains an ambitious
goal given the current early stages of applying RT tech-
niques. Combining data prior to analysis introduces chal-
lenges, such as differences in data uncertainties and vari-
able correlations across instruments, which can lead to biased
weightings or overrepresentation of certain components. By
maintaining separate analyses and combining results during
post-analysis, the unique strengths of each instrument are
preserved, uncertainty propagation is reduced, and a more
balanced attribution of sources is achieved.

The performance of the real-time source apportionment
(RT-SA) was evaluated under two distinct scenarios, high-
lighting the flexibility and innovation of the methodology. In
the first scenario, RT-SA results were compared to those of
the optimized offline source apportionment (OP-SA). This
comparison demonstrated that when site-specific constraints
are used, the RT model can deliver results closely aligned
with the OP-SA, showcasing its robustness and reliability un-
der optimized conditions. In the second scenario, the RT-SA
performance was evaluated using the novel zero/nonzero ap-
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proach for the elemental data and reference profiles for the
organic data. The zero/nonzero strategy represents an innova-
tive method of profile constraint, selectively setting variables
irrelevant to factor identification to zero while allowing oth-
ers to vary freely, enabling greater adaptability to local and
temporal conditions. For the organic data, the use of refer-
ence profiles highlighted the challenges associated with spa-
tially dependent factors, such as BBOA, compared to glob-
ally consistent factors like COA. These evaluations under-
score the versatility of the RT approach, demonstrating its
capacity to perform well under optimized conditions while
providing a viable alternative when prior site-specific infor-
mation is unavailable.

The application in Athens illustrates the practical utility
of RT-SA techniques in complex urban environments, where
diverse pollution sources and fluctuating conditions necessi-
tate advanced monitoring capabilities. The outcomes of this
study provide a foundation for improving air quality man-
agement strategies and developing targeted interventions to
reduce pollution exposure effectively. Future studies are es-
sential to further evaluate the stability and performance of
RT-SA over extended monitoring periods and under vary-
ing environmental conditions. Long-term studies will pro-
vide deeper insights into the model’s ability to adapt to sea-
sonal variations, transient sources, and evolving source pro-
files. Additionally, exploring alternative ways to utilize the
AXA data could significantly enhance its application in air
quality management.
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