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In a recent publication (Kiemle et al., 2024), the following
was stated:

“Another low-power option for IPDA is (modulated)
continuous-wave (cw) laser operation instead of emitting
pulsed signals (e.g., Campbell et al., 2020). For measure-
ments with a precision requirement below 1 %, however, the
length of the atmospheric column must be known to an accu-
racy of better than 3 m, which is only practicable with short
laser pulses in combination with a sufficiently large detec-
tion bandwidth (Table 3; Ehret et al., 2008). Alternatively, a
precision range finder had to be added, which annihilates the
cost benefit of cw lidar.”

We reported doing those things with a continuous-wave
(CW) lidar system in the referenced publication without the
aid of an external range finder, so this statement is incorrect.
The CW technique was first used in radar many decades ago
to do ranging, so there really is not an advantage or necessity
to choose one technology over another if ranging is the only
consideration. In fact, one of the main applications for CW
lidar is ranging. The same physics applies to either technol-
ogy. If a narrow pulse is required for target discrimination
purposes, this can also be achieved with CW using a modu-
lation with a wide bandwidth. Once the matched filter trans-
form is performed, a narrow-width synthetic pulse can be
achieved. A 3 m resolution CW ranging lidar would require
a modulation bandwidth of 1f =

c
21r

= 50 MHz, where c is
the light speed and 1r is the ranging resolution. This is not
difficult, especially if optical communication hardware is uti-
lized. Another method would be to use frequency-modulated
CW (FMCW; Gao and Hui, 2012) or phase-modulated CW
(PMCW; Zhi et al., 2025) and heterodyne detection. In fact,

FMCW lidar is used in the auto industry to detect near ob-
jects (Kim et al., 2020).

Regarding the point of a narrow pulse (or alternatively a
narrow synthetic CW pulse) being required to do ranging
down to 3 m, the following is the case: if the field is clut-
tered by clouds or other features, we would say this statement
is probably true depending on the situation, but in clear-sky
conditions where the ground is the only return, interpolation
can be used. Interpolating lower-resolution lidars is not a par-
ticularly controversial technique and has been used exten-
sively in the past (Hu et al., 2007; Ai et al., 2011; Dobler et
al., 2013; Lu et al., 2014; Campbell et al., 2014). If the field
is cluttered by closely spaced scatterers, one return could in-
terfere with another to distort the shape of the pulse and af-
fect the range measurement. If the ground is the only return,
this is not likely to occur except through ground topography,
which would also affect a pulse lidar. In some pulse lidars
where there is variability from pulse to pulse, interpolation
can be more problematic depending on the system. However,
CW does not suffer from this. Each modulation frame is gen-
erated from a preset waveform and clock, and there is a very
high degree of repeatability. Not only that, but each synthetic
pulse is generated from multiple sweeps in our processing,
and the interpolation is a natural feature of the way that we
do the matched filtering, using a type of circular Fourier in-
terpolation by collapsing the Kronecker comb of the matched
filter in the frequency domain, so the results of the modified
matched filter produce an interpolated synthetic pulse with
very good results (Campbell et al., 2014). As long as the sig-
nal is Nyquist sampled, the original continuous signal can
be recovered to within the limits of noise. This is the basic
tenet of the Nyquist–Shannon sampling theorem. Fourier in-
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terpolation (or at least our version of it designed for circular
correlations) is the most natural and accurate interpolation
method for this type of band-limited signal.

The paper in question shows results from the Multifunc-
tional Fiber Laser Lidar (MFLL), an instrument that was
developed over many years by Harris Corporation (now
L3Harris) in collaboration with NASA Langley Research
Center. MFLL evolved from an instrument that used a single-
frequency modulation for each wavelength that was orthog-
onal to one another in its early development (Dobbs et
al., 2008) to what it was on the Atmospheric Carbon and
Transport – America (ACT America) flights where it used or-
thogonal swept frequency modulations (Dobler et al., 2013;
Campbell et al., 2020). Although it is true that ranging is
more problematic with single-frequency modulations, swept
frequency modulation is a technique commonly used in many
older CW radars to do ranging, and that is what was be-
ing used by MFLL for the ACT America flights. The re-
sults show that the ranging is clearly less than 3 m, which
meets and, actually, exceeds the science/instrumentation re-
quirement. The authors have also experimented with PN
code modulation on different instruments with good results
(Campbell et al., 2014).
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