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Abstract. Marine atmosphere boundary layer (MABL) wa-
ter vapor amount and gradient impact global energy trans-
port through directly affecting the sensible and latent heat
exchange between the ocean and atmosphere. Yet, it is a
well-known challenge for satellite remote sensing to profile
MABL water vapor, especially when cloud or a sharp vertical
gradient of water vapor is present. Wu et al. (2022) identified
good correlations between the Global Navigation Satellite
System (GNSS) deep refraction signal-to-noise-ratio (SNR)
value and the global MABL water vapor specific humidity
when the radio occultation (RO) signal is ducted by the moist
planetary boundary layer (PBL), and they laid out the under-
lying physical mechanisms to explain such a correlation. In
this work, we apply a machine learning/artificial intelligence
(ML/AI) technique to demonstrate the feasibility of profile-
by-profile MABL water vapor retrieval using the SNR sig-
nal. Three convolutional neural network (CNN) models are
trained using multi-months of global collocated hourly ERA-
5 reanalysis and COSMIC-1, Metop-A, and Metop-B 1 Hz
SNR observations between 975–850 hPa with 25 hPa verti-
cal resolution. The COSMIC-1 ML model is then applied
to both COSMIC-1 and COSMIC-2 in other time ranges
for independent retrieval and validation. The Monte Carlo
Dropout method was employed for the uncertainty estima-
tion. Comparison against multiple field campaign radioson-
de/dropsonde observations globally suggests that SNR-ML-
method-retrieved water vapor consistently outperforms the
wetPrf/wetPf2 standard retrieval product at all six pressure

levels between 975 and 850 hPa and either outperforms or
achieves similar performance against ERA-5, indicating real
and useful information is gained from the SNR signal, though
training was performed against the reanalysis. The climatol-
ogy and diurnal cycle of MABL structure constructed from
the SNR-ML technique are studied and compared to the re-
analysis. Disparities of climatology suggest ERA-5 may sys-
tematically produce dry biases at high latitudes and wet bi-
ases in marine stratocumulus regions. The diurnal cycle am-
plitudes are too weak and sometimes off phase in ERA-5, es-
pecially in the Arctic and stratocumulus regions. These areas
are particularly prone to PBL processes, where this GNSS
SNR-ML water vapor product may contribute the most.

1 Introduction

As a key component of the Earth’s lower atmosphere, plan-
etary boundary layer (PBL) water vapor plays a pivotal role
in the Earth’s energy budget, exerting a profound influence
on weather and climate processes. It is an essential factor
of the Earth’s energy budget, influencing radiative forcing
and consequently climate variability and long-term changes.
Furthermore, PBL water vapor is instrumental in modulating
local and regional weather patterns by affecting cloud for-
mation, precipitation, and temperature. Therefore, the study
of PBL water vapor stands as a vital element in advancing
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our comprehension of the Earth’s atmosphere and its broader
implications for our planet’s climate system.

70 % of the Earth’s surface is covered by water. The sensi-
ble and latent heat exchange between the ocean boundary and
the marine atmosphere boundary layer (MABL) happens at
different spatial and temporal scales, which is determined not
only by ocean surface properties (e.g., wind speed, sea sur-
face temperature) but also by MABL thermodynamic struc-
tures. For example, in the context of susceptibility of polar
area to the climate change, Boisvert et al. (2015) found that
Arctic PBL humidity and temperature biases in the reanaly-
sis are the major error sources for the evaporation estimation
compared to satellite observations. Cloud–climate feedback
is another motivation highlighted by NASA’s PBL incubation
study (Teixeira et al., 2021). As another example, Millán et
al. (2019) found strong correlation between MABL cloud top
height and below-cloud water vapor amount using two joint
satellite retrieval products.

Data sparsity is a critical problem for advancing MABL
science. Satellite remote sensing undoubtedly provides the
best solution in terms of global coverage, but it is very dif-
ficult to retrieve MABL water vapor (WV) and its vertical
distribution when cloud or sea ice is present. When clouds
are present in the scene, emissions from clouds often over-
whelm the emission signal from the MABL water vapor and
prevent passive instruments sensing the below-cloud atmo-
sphere. When sea ice is present, scattering or surface emis-
sion from the sea ice is often inseparable from water vapor
emission signals and distorts the retrieval result. Taking the
aforementioned two research studies as examples, Boisvert
et al. (2015) use Level-2 AIRS water vapor and tempera-
ture retrieval products, which are only available for clear or
partially cloudy sky situations, so they inherently contain a
sampling bias. Millán et al. (2019) derived MABL total WV
amount from subtracting MODIS above-cloud water vapor
from AMSU-A total column water vapor, which still lacks
the vertical information of WV in the MABL.

Using the low-frequency microwave L-band to transmit
signals along the limb path, the Global Navigation Satel-
lite System (GNSS) satellite overcomes the two difficulties
above and provides high vertical resolution (100–200 m) of
the MABL water vapor under all-sky conditions. GNSS Ra-
dio Occultation (GNSS-RO) retrieves temperature and wa-
ter vapor profiles using the 1D-Var approach routinely from
the Level 2 bending angle product (referred as “standard L2
product” or “operational L2 product” hereafter), the latter of
which is used operationally in numerical weather data as-
similation systems to improve weather forecasts (e.g., Kuo et
al., 2000). Because of the rapid growth of SmallSat/CubeSat
constellations from both the commercial and the non-profit
sectors, the GNSS-RO technique provides a promising future
for the needed global spatial–temporal sampling of MABL
WV and its variability. Like other limb sounders, the disad-
vantage of GNSS-RO is its relatively coarse horizontal reso-
lution (several hundred kilometers) that smears out horizon-

tally inhomogeneous signals. This is typically not a big con-
cern in MABL as the vertical gradient is much sharper than
the horizontal gradient and harder to characterize.

However, GNSS-RO WV retrieval profiles have exces-
sively high failure rate in the MABL. That is because the
GNSS-RO signal-to-noise ratio (SNR) decreases with de-
creasing altitude due to the atmospheric defocusing effect,
and the Level-2 RO signal hence often does not meet the
SNR threshold near the surface. As a result, the GNSS-RO
1D-Var-based retrievals often fail in the MABL due to weak
RO signals. Figure 1 gives an example of the success statis-
tics (%) as a function of height for temperature (Fig. 1a) and
water vapor (Fig. 1b) over the tropical ocean (10° S–10° N).
Using 0.5 and 1 km above the ocean surface as the refer-
ence lines, we can see that although the COSMIC-2 (Con-
stellation Observing System for Meteorology, Ionosphere,
and Climate-2) has significantly improved its SNR compared
to its predecessor COSMIC-1, the success rate is still about
60 % at 0.5 km and slightly over 70 % at 1 km for the GNSS-
RO WV retrieval, while this number is only 40 % and 55 %
for COSMIC-1 at respective altitudes. The low SNR widely
exists for commercial GNSS satellites, especially in the low-
est 500 m above the surface (Ganeshan et al., 2025). More-
over, even past the SNR threshold, some bending angle pro-
files are significantly biased in the PBL when ducting hap-
pens because the refractivity index becomes negative, which
leads to biases in the operational water vapor retrievals (Feng
et al., 2020).

Wu et al. (2022) found that the Level-1B deep SNR
from the straight-line height (HSL) is statistically signifi-
cantly correlated with the MABL water vapor amount in
the European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis v5 (ERA-5) after averaging over a
month at 2.5°× 2.5° grid resolution. The averaging is nec-
essary to effectively beat down the random noise. This paper
attributed such a positive correlation to the strong refraction
from a horizontally stratiform and dynamically quiet MABL
water vapor layer that acts to enhance the SNR amplitude
at deep HSL through ducting and diffraction/interference (a
summary recapitulation of the physical mechanism can be
found in Sect. 2.3). Some caveats of this work limit its appli-
cation to weather phenomena. First, it builds upon a single-
level regression statistics, the correlation coefficient of which
was found to be the highest at HSL =−100 km in the trop-
ics and HSL =−80 km at high latitudes. Hence, any simple
linear-regression-based retrieval algorithm will suffer from
arbitrary latitudinal discontinuities. As a matter of fact, SNRs
at different HSL levels are found correlated with MABL wa-
ter vapor with different signs and magnitudes (e.g., Fig. 2),
which should be used together to enhance the information
content. Secondly, the robust relationship is only found for
monthly averages in Wu et al. (2022) because the profile-
by-profile noise is usually too high to yield a meaningful re-
trieval from SNR, and only through averaging large amount
of profiles can the noise be lowered down to the level where
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Figure 1. Level-2 atmPrf (temperature) and wetPf2 (water vapor) successful retrieval rate (%) as a function of height above sea level from
COSMIC-1 during January 2008 (blue) and COSMIC-2 during January 2020 (red). The success rate is calculated by dividing the number of
valid GNSS-RO retrieval files by the number of Level-1B files at a certain height. The dashed gray lines mark the reference at 0.5 km from
the tropical ocean surface.

Figure 2. Correlation between collocated ERA-5 specific humidity at 975–850 hPa and SRO (a) and σ 2
SNR (b) at various excess phase levels

from the training COSMIC-1-ERA-5 dataset). Only grid indices are shown in the axis titles, and the corresponding Log10(φL1) values can
be found in Table A2.

the signal stands out. These are all caveats of a traditional sta-
tistical approach. The machine learning approach, however,
is suitable at picking up weak signals through a large num-
ber of training data. As such, the scopes of this paper are to
demonstrate the feasibility of using the ML method to extract
MABL WV information from the GNSS SNR signals and to
demonstrate the scientific value of this new product over the
existing operational water vapor retrievals.

Artificial intelligence/machine learning (AI/ML) applica-
tions in remote sensing field have been trending in the last
decade. They have been increasingly used in remote sens-
ing fields in recent years. Traditional physics-based radiative
transfer (RT) theories and models are used to link the remote
sensing measurements (e.g., GNSS radio occultation signal)
to the physical quantities (e.g., temperature and water vapor
profiles). They are often highly non-linear and computation-

ally expensive and involve many explicit or embedded as-
sumptions/simplifications, which may or may not propagate
properly into part of the retrieval errors eventually. Given the
fact that satellite measurements usually contain a large num-
ber of data, and the association is highly non-linear between
the measurement space and the physical space, the retrieval
process becomes an ideal test bed for ML capabilities. Some
pioneer works have attempted this approach to retrieve PBL
atmosphere profiles and achieved notable success. For exam-
ple, Ye et al. (2021) used the routine radiosonde measure-
ment at an Atmospheric Radiation Measurement (ARM) site
as the ground truth to train a ground-based infrared spectrom-
eter to predict the PBL height. The capability is limited to
only the stations where both observations are routinely avail-
able. Milestein and Blackwell (2016) employed a neural net-
work (NN) framework for retrieving the temperature and wa-
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ter vapor profiles from the spaceborne Atmospheric Infrared
Sounder (AIRS) observations (AIRS Version 7 product). The
training “truth” was from the ECMWF analysis fields. It is
worth mentioning that Milestein (2022), in a follow-up work,
pointed out that the ML-only retrieval framework tends to
smooth out sharp gradient features in proximity to the PBL
top. To mitigate this caveat, Milstein et al. (2023) employ the
3D deep neural network training on the AIRS granule image
against ERA-5 reanalysis that helps PBL height recognition
from passive imagers.

In this paper, we will explore the ML capability at retriev-
ing the MABL WV information from the deep SNR signal
at profile-by-profile basis (i.e., Level-2 standard). Section 2
introduces the training and validation datasets as well as the
model structure; Sect. 3 presents the retrieval results and in-
dependent validation; Sect. 4 expands the discussion to the
usage of this product in studying MABL water vapor cli-
matology and diurnal variabilities; and Sect. 5 summarizes
the major findings and shortcomings of the current work that
may be improved in the future.

2 Data and model

This section introduces the training, validation, and indepen-
dent validation datasets, as well as the ML model architec-
ture and the underlying physical foundations, that the ML
technique is rooted in.

2.1 Training and validation datasets

The definition of SNR follows Wu et al. (2022), which uses
the normalized SNR (SRO):

SRO = (SNR− σ)/(SNR0− σ) (1)

σ 2
S = VAR

(
SRO− SRO

)
. (2)

SNR0 is the free-atmosphere SNR. In practice, we use av-
eraged SNR between the 35 and 65 km altitude range as the
SNR0, and any profile with SNR0 < 200 or σ 2

SNR0
> 0.05 is

considered to be of “low signal” and is filtered out. σ is the
instrument-specific noise determined for each individual in-
strument from very deep HSL. The value for σ used in this
work is an updated version from Table A1 in Wu et al. (2022)
and shown in Appendix A (Table A2). Wu et al. (2022) also
found an instrument-dependent shift of the mean SRO profile
as a function HSL. Luckily, such an issue can be resolved us-
ing the excess phase at L1 (φL1) as the vertical coordinate. In
practice, the raw calculated SRO and σ 2

S are mapped to a fixed
52-level Log10(φL1) vertical grid. They are roughly linearly
correlated with HSL. The value for the vertical grid is listed
in Table A2 in the Appendix A. In practice, we also filtered
out bad open-loop profiles, profiles with data gap greater than
2 km, and profiles with outlier SRO or σ 2

S values.
The ERA-5 reanalysis is so far the best global reanaly-

sis dataset in terms of PBL water vapor amount and dis-

tribution. Johnston et al. (2021) compared specific humid-
ity from ERA-5 and MERRA-2 reanalysis against collocated
and coincident GNSS-RO wetPf2 specific humidity retrieval
profiles and found ERA-5 outperforms MERRA-2 every-
where in the PBL. They both exhibit consistent dry biases
with larger bias from mid-latitudes to high latitudes. How-
ever, ERA-5 percentage bias is roughly half of that from
the MERRA-2 reanalysis in the PBL and tropopause layers.
Given that many previous works used ERA-5 reanalysis or
ECMWF analysis for training or validating the satellite re-
trievals for water vapor (e.g., Milestein and Blackwell, 2016;
Milstein et al., 2023), especially some recent ones using them
as the standard to evaluate recent GNSS-RO missions (e.g.,
Chang et al., 2022; Zhran, 2023; Ganeshan et al., 2025), it is
well justified to use ERA-5 hourly reanalysis as the “train-
ing” dataset to create a large sample globally. However, it
is also warned in Johnston et al. (2021) that GNSS-RO re-
trievals tend to have their own biases especially in MABL,
and in fact some other research suggested wet biases in cer-
tain regions (e.g., Virman et al., 2021).

In this work, we created a collocated and coincident ERA-
5-SNR training and validation dataset. The SNR records are
from four satellite series: COSMIC-1, COSMIC-2, Metop-A,
and Metop-B. The periods for training, independent testing,
and prediction are listed in Table 1. Note that the testing pe-
riod is independent from the training period to avoid potential
self-correlation using standard random splitting procedure.
The prediction period however covers both training and vali-
dation periods, mainly for generating enough samples to con-
struct statistically robust climatology (e.g., diurnal cycles).
This however creates an unfortunate data leakage concern
(e.g., as pointed out by Kapoor and Narayanan, 2023) for
the comparison with the MAGIC campaign but not for the
rest of other independent validation datasets (Table 2). The
target variables are specific humidity at the aforementioned
six pressure levels (975, 950, 925, 900, 875, and 850 hPa).
The input parameters are 52 levels of SRO, 52 levels of σ 2

S ,
latitude, longitude, month, and rising/setting flag.

Figure 2 elucidates the linear correlation between
COSMIC-1 SRO at each of the 52 levels and ERA-5 spe-
cific humidity at 975, 950, 925, 900, 875, and 850 hPa over
global ocean. The largest positive correlations are found
around Level #40 to Level #45, which roughly correspond to
HSL =−100 to −80 km (Table A2). Based on the monthly
averages, Wu et al. (2022) found the highest correlation at
HSL =−100 km in the tropics and at HSL =−80 km for
the polar regions, which is consistent with our profile-by-
profile correlation as well. But Fig. 2 also shows positive or
negative correlations at different Log10(φL1) levels, which
prevent methods like multi-variable linear regression from
working. σ 2

SNR also exhibits non-linear patterns with slightly
weaker correlations with MABL water vapor that are op-
posite in sign compared to those of SRO. It is worth not-
ing that these relationships are also instrument dependent, as
can be clearly seen in the SRO cross-correlation for Metop-
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Table 1. Training, testing, and prediction periods. Periods are given in yyyy.mm–yyyy.mm.

Training (90 % and 10 % COSMIC-1 2012.01—2012.12, 2016.01–2016.03, 2017.01–2017.03

random-splitting) Metop-A 2017.01–2017.03

Metop-B 2017.01–2017.03

Testing COSMIC-1 2018.01–2018.03

Metop-A 2018.01–2018.03

Metop-B 2018.01–2018.03

Prediction COSMIC-1 2012.01–2012.12, 2013.01–2013.12, 2016.01–2016.03,
2017.01–2017.03, 2018.01–2018.03

COSMIC-2 2020.01–2020.12

Metop-A 2012.01–2012.12, 2013.01–2013.12

Metop-B 2013.02–2013.12

Table 2. Campaign information.

Campaign
name

Period used for
validation
(yyyy.mm–yyyy.mm)

Location Weather
regime

Type Reference

MARCUS 2017.11–2018.03 Southern Ocean Mixed-phase
PBL cloud

Radiosonde Keeler et al. (2022)

ATOMIC 2020.01–2020.02 Tropical North
Atlantic

Tropical trade
wind zone

Radiosonde
and Dropsonde

George et al. (2021)

EUREC4A 2020.01–2020.02 Tropical North
Atlantic

Tropical trade
wind zone

Radiosonde Stephan et al. (2021)

MAGIC 2012.10–2013.09 Eastern North
Pacific Ocean

Subtropical
MABL

Radiosonde Keeler et al. (2022)

ARRecon 2018.02;
2020.01–2020.02

Northeast Pacific
off the coast of
California

Atmospheric
river

Dropsonde Zheng et al. (2024)

A and Metop-B in the Appendix Figs. A1 and A2. Con-
sidering the instrument-dependent correlation patterns, three
ML models are developed separately for COSMIC, Metop-
A, and Metop-B satellites, although it is probably redundant
to build two separate ML models for Metop-A and Metop-B
separately as their correlation patterns are nearly identical.
For the COSMIC series, we observed a similar pattern from
COSMIC-2 compared to Fig. 2 after downsampling the fre-
quency to 1 Hz (not shown). Therefore, the ML model devel-
oped using COSMIC-1 observations is applied directly to the
downsampled COSMIC-2 SNR observations. Through this
practice we can also test the transfer learning among simi-
lar satellite series for the hope of stitching them together for
longer record in the future research.

The correlation holds with the same slope at a piece-wise
level using individual profiles. For example, between SNR
at HSL =−100 km and ERA-5 specific humidity at 950 hPa,

Wu et al. (2022) observed the near linear correlation with
monthly averaged and gridded data, while we can see that
the same slope is preserved at a profile-by-profile level in
Fig. 3. While this robust correlation proves that developing
a Level-2 MABL specific humidity retrieval product using
SNR profiles is feasible, the discernible larger noise at indi-
vidual profile level versus month averages (Fig. 3d) suggests
it is a challenging task. The ML method is hence introduced
to tackle this highly complex regression problem.

GNSS-RO operational water vapor retrieval product pro-
vided by the University Corporation for Atmospheric Re-
search (UCAR) is employed to evaluate the quality of
the SNR-ML retrievals. This operational product is called
“wetPf2”. Compared to an old processed “wetPrf” version
from 2013, “wetPf2” has better penetration depth (Wee et
al., 2022) and is used for constructing Fig. 1, but the “wet-
Prf” product is used for the MAGIC campaign comparison
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Figure 3. Density plots of the SNR-specific humidity relationship for (a) Metop-A, (b) Metop-B, and (c) COSMIC-1 constructed from the
entire training dataset between 45° S and 45° N. The SNR value is taken from HSL =−100 km, while the specific humidity value is taken at
950 hPa. Figure 9c from Wu et al. (2022) is reproduced here as panel (d) to demonstrate that the same relationship with the same slope holds
at an individual profile level.

because of data availability constraints at the time when this
research was conducted. We compared the success rate in
the MABL between wetPrf and wetPf2 during January 2008
(not shown) and only found very marginal improvements for
COSMIC-1. Note that the key Level-2 profile to enable the
1D-VAR retrieval used by the wetPrf/wetPf2 product is the
bending angle, which is assimilated in the ERA-5 reanaly-
sis. Therefore, this is not an independent evaluation dataset.
The purpose of this comparison is to identify the merits and
caveats of the SNR-ML retrievals against an existing mature
product.

In addition to the independent testing, which is a standard
procedure for ML/AI training and evaluation against the wet-
Prf/wetPf2 operational product, a handful of shipborne ra-
diosonde campaign and airborne dropsonde campaign data
are collected for further independent assessment. The cam-
paign names, location, and total number of valid profiles are
presented in Fig. 4 and Table 2. We can see from the sum-
mary of weather scenarios during each campaign that this
independent validation dataset comprehensively covers ma-

jor marine weather regimes from the extremely dry South-
ern Ocean (MARCUS), mid-latitude stratocumulus region
(MAGIC), and tropical trade cumulus region (EUREC4A,
ATOMIC) to episodically wet atmospheric river events (AR-
Recon). This exercise is critical for assessing the quality of
ERA-5, the wetPrf/wetPf2 retrieval, and the Level 1 SNR-
based retrieval under different weather scenarios. Moreover,
as the ML model trained solely on COSMIC-1 SNR data is
then applied to the COSMIC-2 data, the independent vali-
dation using the three campaigns in 2020 (ARRecon-2020,
EUREC4A and ATOMIC) provides some solid evidence to
evaluate the robustness of the “transfer learning”.

2.2 Machine learning model selection

The convolutional neural network (CNN) model (LeCun et
al., 2015) is chosen as our regression ML model. The model
internal architecture is illustrated in Fig. 5. There are a to-
tal of 109 input parameters, including one dimensional ar-
ray of SRO of 52 elements, one dimensional array of σ 2

S of
52 elements, both interpolated to a fixed excess phase grid
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Figure 4. Maps for radiosonde/dropsonde locations from different shipborne or airborne campaigns in (a) the tropics, (b) the mid-latitudes,
and (c) the Southern Ocean. Detailed campaign information can be found in Table 2. The total number of valid radiosonde/dropsonde profiles
is listed in the parentheses in the legends.

Figure 5. CNN model internal structure for this work. The num-
bers above the right-pointing arrows are the Monte Carlo dropout
value applied between each layer. Numbers inside the parentheses
of Conv1D layer indicate filter size and pool size, while numbers in-
side the parentheses of the dense layer indicate the number of fully
connected nodes. The training takes 100 epochs, which suffices for
quick convergence.

(Table A2), and latitude, longitude, month, and rising/set-
ting flag. The output parameters are specific humidity at six
pressure levels between 975 and 850 hPa with a cadence of
25 hPa.

Compared to some earlier ML models (e.g., random for-
est, gradient boosting), CNN also learns the vertical cross-
correlation within the 52-layer input SNR profiles, as well as
within the targeted six layers of specific humidity profiles.
We conducted a comprehensive search of best hyperparam-
eters using the root-mean-square error (RMSE) as the loss
function.

In the prediction step, 30 predictions were carried out
given each input set of variables, the mean and standard devi-
ation of which were used as the final prediction and estimated
uncertainty. It is worth highlighting that in each convolu-
tional and fully connected layer, a dropout rate of 0.25 is ap-
plied to generate the variation, which is then used to calculate

the standard deviation of the “ensemble prediction” as a way
to measure the retrieval uncertainty. This so-called “Monte
Carlo” dropout method was designed in ML as a standard
technique to regularize model over-fitting (Srivastava et al.,
2013) but was also employed widely as a Bayesian approx-
imation to quantify model uncertainties (Gal and Ghahra-
mani, 2016). Admittedly, the current method only provides
a quantification for ML model errors. There is no consid-
eration of SNR measurement errors, nor propagation of the
error to the final retrievals at this moment, although this is
certainly a procedure that can be in place in future works.

We also tried some earlier ML models, e.g., random forest
(RF), gradient boosting (GB), and support vector machine
(SVM), from the scikit-learn library and one deep learning
model multilayer perceptron (MLP) from the pytorch library.
The model performances are actually very close in terms
of evaluating the RMSE except for the SVM, the latter of
which performed discernibly worse than the rest ML mod-
els. It is not a surprise finding as this is a relatively simple
and straightforward task that ML models should handle eas-
ily, but this is not the case for the multi-variable linear re-
gression type of logistic models (hence, it explains the poor
performance of SVM). As the main focus of this paper is
science and new information content embedded in SNR sig-
nals, we will not deviate attention by spending more time
discussing these model results. The semi-transparency of RF
and GB models is appreciated by us though. We compared
the feature importance rankings with the findings of Wu et al.
(2022) and find high consistencies (e.g., high ranking of SNR
atHSL =−100 km in the tropics, and SNR atHSL =−80 km
ranks the top in the polar region).

2.3 Underlying physical mechanisms

It is necessary to provide a summary of the underlying
physics to emphasize the solid physical ground for this
product, so that readers will not misunderstand this as a
pure statistics-based ad hoc finding. The underlying physi-
cal mechanisms to explain the observed high correlation be-
tween MABL water vapor and the GNSS SNR signal remain
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an active research area. Wu et al. (2022) articulated that the
diffractive effect on the RO signal under the condition of limb
sounding through a sharp MABL can extend the signal below
the sharp edge of the obstacle with a limited depth.

Both diffractive and refractive processes are required to
happen along the radio wave propagation to produce the
RO signal at deep HSL. Another example (Sokolovskiy et
al., 2024) found enhancement of SNR when super-refraction
happens. In reality, complex MABL can produce a mixed ef-
fect in the soundings from a combination of conditions that
include normal bending, grazing reflection, super-refraction,
ducting, or diffraction (Sokolovskiy et al., 2014). As a result,
sophisticated physical radiation transfer models (e.g., radio-
hologram, canonical transform) can in principle be used but
at the expense of high computational costs and are hence im-
practical operationally. Moreover, the retrieval itself is essen-
tially still an under-constraint problem, which commonly oc-
curs because satellite retrievals and assumptions (no matter
physically making sense or not) need to be made to fully con-
strain the physical model. As the quasi-linear relationship is
preserved at a profile-by-profile level with larger noise com-
pared to the monthly gridded and smoothed data (Fig. 3), and
the height dependency of the regression coefficient is highly
non-linear (Fig. 2), a ML model is simply the best choice to
extract the signal.

3 Results

3.1 Retrieval performance evaluation

As seen in the first comparison, Figs. 6 and 7 showcase
the statistical closeness to the 1 : 1 line and the resemblance
of geographical distributions for the 3 independent test-
ing months: January–March 2018, for COSMIC-1. All six
pressure levels are compiled together to make Fig. 6 but
would otherwise look extremely similar if plotting level by
level. The only deviation from the 1 : 1 line occurs at very
small specific humidity values (ERA-5 specific humidity
< 1 g kg−1); i.e., very dry conditions normally occur at high
latitudes.

Such a discrepancy reveals itself more clearly when we
map out the percentage difference (Fig. 7b). The largest per-
centage differences indeed are found at polar regions as well
as near the coastal lines, with SNR-ML-retrieved humidity
tending to be larger than ERA-5. Note that to satisfy duct-
ing or other diffraction conditions in order to use SNR sig-
nal at deep HSL, the surface is required to be flat. There-
fore, the discrepancies around the coastal line are believed to
be related to issues with SNR-ML retrievals when topogra-
phy starts to play a role. However, as we will show later in
Fig. 10, ERA-5 indeed shows consistent dry bias at high lat-
itudes compared to independent radiosonde measurements.
So, the SNR-ML retrieval might produce results closer to the
truth, as will be seen later as well. Moreover, one can vi-

Figure 6. Heatmap for independent validation from January–March
2018 for COSMIC-1, combining all six levels together.

sually discern discrepancies in the tropical deep convection
zone/Intertropical Convergence Zone (ITCZ), where ERA-5
in general is wetter than SNR-retrieved values. Such a dis-
crepancy is not conspicuous in Fig. 7b, simply because of
the large value in the denominator. We will also show later
that none of the three datasets we will evaluate (SNR-ML
retrieval, GNSS-RO wetPrf/wetPf2 retrieval, and ERA-5 re-
analysis) capture the tropical MABL structures well. For the
SNR-ML method, it is probably because the ducting assump-
tion is easily and frequently violated in the tropical MABL.

3.2 Uncertainty quantification

Unfortunately, for very dry conditions, SNR-ML-method-
retrieved specific humidity also inherently comes with large
uncertainties, as can be clearly seen in Fig. 8. The SNR sig-
nal is too weak in this situation to yield any robust retrievals,
even with powerful ML models. Although we still believe
the SNR-ML retrievals might be “more correct” than ERA-
5 for very dry conditions, in practice we mark any retrieval
with greater than 50 % uncertainty with a quality flag in the
published product, and those data do not pass quality control
to be used later in this paper for independent validation or
construction of the climatologies. This threshold only filters
out about 2 % of the data with very weak SNR signals. If we
were to apply a threshold of 20 %, about 16 % of data would
be filtered out. In the later section when the diurnal cycle is
compared using multi-year regional averaged data, we found
that heavy averaging effectively beats down the noise, so as
to reveal a visible diurnal signal in the extremely dry polar re-
gion, whereas ERA-5 is essentially a fixed value (Fig. 14b).
We can also see from Fig. 8 that almost all SNR-ML re-
trievals greater than 2 g kg−1 pass quality control. Readers
should keep in mind that our current uncertainty estimation
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Figure 7. Geographic distribution of the (a) predicted values using COSMIC-1 SNR observations versus (c) ERA-5 validation values at
950 hPa for January–March, 2018. Panel (b) is the percentage difference between panels (a) and (c). Only ERA-5 samples that are collocated
and coincident with COSMIC-1 SNR-ML retrievals are selected for this comparison.

Figure 8. Percentage uncertainty distribution as a function of the
predicted values.

approach underestimates the real uncertainty because it does
not take SNR errors into account.

3.3 Comparison to independent radiosondes

In order to find collocation samples in every campaign, the
collocation criteria are slightly different given the consider-
ation of (1) the abundance of radiosonde/dropsonde profiles;
(2) the typical spatial and temporal homogeneity of the local
weather regime; and (3) the availability of daily COSMIC-
1, COSMIC-2, Metop-A, and Metop-B profiles. In practice,
for EUREC4A and ATOMIC, collocation is defined as lon-
gitude difference within 2°, latitude difference within 1.5°,
and time difference within 1 h. For the Southern Ocean cam-
paign, the thresholds become 4°, 2.5°, and 2 h correspond-
ingly. For ARRecon and MAGIC campaigns, the thresholds
are 4°, 1.5°, and 2 h.

Figure 9 shows the level-by-level comparison for all col-
located samples from all campaigns. SNR-ML retrieval re-

sults are shown by filled color symbols, while wetPrf/wetPf2
retrievals are shown by open symbols. In addition, the aver-
ages from each campaign collocation subsets are connected
together for better visual comparison against the 1 : 1 lines
(solid black lines for SNR-ML retrieval and dotted black
lines for wetPrf/wetPf2 retrievals). We can see that both
SNR-ML retrievals and wetPrf/wetPf2 retrievals demonstrate
generally good agreement with ground “truth” for different
weather regimes. For the SNR-ML retrieval results, better
correlations are found for the Southern Ocean (MARCUS
campaign) and stratocumulus weather regimes (MAGIC
campaign). Although wetPrf/wePf2 results are highly com-
parable to the SNR-ML retrievals, the collocation samples
are much sparser for the former (Table 3). This could be
attributed to the frequent occurrence of super refractions
in the stratocumulus region that causes a sampling bias of
the wetPrf/wetPf2 results (Xie et al., 2010; Feng et al.,
2020). Spreads are slightly larger during the atmospheric
river events (ARRecons). SNR-ML retrievals show an over-
all better agreement compared to the wetPrf/wetPf2 retrievals
at all six pressure levels, especially for the few extremely
large specific humidity values (> 12 g kg−1). The means of
all ARRecon collocated samples also suggest that SNR-ML
retrieval is the only one that does not produce a bias, while
wetPrf and wetPf2 are moderately (slightly) dry-biased in at-
mospheric river scenarios at> 900 (< 900) hPa. ERA-5 from
each campaign (only considering samples that SNR-ML re-
trieval collocation is found) exhibits good agreement with
the ground truth too. For the two deep tropics campaigns
ATOMIC and EUREC4A, we can clearly see that none of the
three datasets capture the humidity conditions in the MABL
very well. They are all dry-biased, and ERA-5 reanalysis is
slightly less dry-biased than GNSS retrieved values at 975
and 950 hPa. The SNR-ML method achieves overall compa-
rable performance to ERA-5, which is expected because the
model is trained on ERA-5.

For convenience in pinpointing ERA-5 MABL issues, we
also make Fig. 10 as each valid radiosonde/dropsonde pro-
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Figure 9. Scatter plots of collocated specific humidity [g kg−1] comparison between radiosonde “truth” and retrievals from SNR (closed
symbols) and wetPrf/wetPf2 standard retrieval (open symbols) for each pressure level. Thin black diagonal lines are the 1 : 1 lines for
reference. The mean and standard deviation from the SNR-ML retrieval from each campaign are shown as bigger same-color symbols with
black boundaries. In addition, these mean retrieved values from each campaign are connected by the bold black lines for SNR-ML retrievals,
bold dash-dotted black lines for wetPrf/wetPf2 retrievals, and bold solid gray lines for ERA-5 from the subset where collocations are found
for SNR-ML and radiosonde data samples.

Table 3. Number of collocated GNSS-radiosonde/dropsonde samples in each campaign. Two numbers in each cell are from SNR-ML method
and wetPrf/wetPf2 product, respectively, and their percentage differences are shown in the parentheses.

Campaign 975 hPa 950 hPa 925 hPa 900 hPa 875 hPa 850 hPa
name

EUREC4A 50, 19 (160 %) 50, 23 (117 %) 51, 29 (76 %) 51, 31 (65 %) 51, 34 (50 %) 51, 38 (34 %)
ATOMIC 49, 23 (113 %) 49, 27 (81 %) 49, 29 (69 %) 49, 29 (69 %) 49, 35 (40 %) 49, 44 (11 %)
MARCUS 13, 5 (160 %) 13, 7 (86 %) 13, 7 (86 %) 13, 7 (86 %) 13, 8 (63 %) 13, 9 (44 %)
MAGIC 72, 9 (700 %) 72, 25 (188 %) 72, 34 (112 %) 72, 40 (80 %) 72, 43 (67 %) 72, 46 (57 %)
ARRecon 120, 84 (43 %) 120, 101 (19 %) 120, 101 (19 %) 120, 106 (13 %) 120, 106 (13 %) 120, 106 (13 %)

file from all six campaigns can always be collocated with an
ERA-5 reanalysis data sample within 1.5° longitude, 1° lati-
tude, and 1 h difference. Now we can clearly see that ERA-5
frequently fails to produce the large variations in humidity in
the trade-cumulus region (EUREC4A), the former of which
tends to be always too wet. Otherwise, ERA-5 matches bet-
ter than SNR-ML retrievals and wetPrf/wetPf2 retrievals in
the deep tropics (EUREC4A and ATOMIC); however all of
the three datasets contain persistent dry biases, as can also be
seen in Fig. 9. Another discernible bias happens in the South-
ern Ocean during the MARCUS campaign, where ERA-5

is consistently dry-biased when specific humidity is below
∼ 3 g kg−1. The subset used to make the gray lines in Fig. 9
is overlaid with open symbols, so we can make a straight-
forward and fair comparison between ERA-5 and SNR-ML
retrievals. We can see that SNR-ML performs slightly bet-
ter than ERA-5 in the atmospheric river scenarios (two AR-
Recon campaigns) and slightly worse than ERA-5 in the stra-
tocumulus region (MAGIC campaign), both of which are
reflected in the correlation coefficient comparisons shown
in Fig. 11 as well. Overall, ERA-5 shows a small dry bias
globally at all levels, which agrees with early findings by
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Figure 10. Same as Fig. 9 except for all available radiosonde/dropsonde samples in all these campaigns with collocated ERA-5 specific
humidity. The means of each campaign are shown as bigger same-color symbols with black boundaries and standard deviation. The bold
solid black line connects the mean values from each campaign.

Johnston et al. (2021), who used wetPf2 GNSS-RO retrievals
to identify such a dry bias. Note that some of the campaign
profiles (e.g., ARRecon dropsondes) are actually assimilated
in the ERA-5 data, so it is not a completely independent
validation strictly speaking. However, it is also worth not-
ing that some previous publications employed ARRecon and
EUREC4A radiosonde data as “ground truth” for evaluating
ERA5 accuracy in capturing water vapor variabilities in the
PBL (e.g., Cobb et al., 2021; Krüger et al., 2022).

The violin plots in Fig. 11 and numbers of collocated
sample statistics in Table 3 help disentangle the merits and
caveats of SNR-ML retrievals from multi-dimensional sta-
tistical metrics. Only correlation coefficients of all collo-
cated samples collected from each campaign are displayed
in Fig. 11. The ARRecon-2018 and ARRecon-2020 sam-
ples are further combined. From Fig. 11a, we can see again
that the MABL specific humidity is not well captured in
the tropics by either of the three datasets (EUREC4A and
ATOMIC), but SNR-ML retrievals perform slightly better
than the operational wetPf2 products in the deep tropics and
trade-cumulus regions. In the rest of the three campaigns in
the mid-latitudes and high latitudes, they all agree very well
with the radiosonde/dropsonde ground truths. ERA-5 reanal-
ysis does the best job in the high-latitude Southern Ocean
(MARCUS) as well as the stratocumulus region (MAGIC),
while in the atmospheric river regime, SNR-ML retrievals

outperform the wetPrf/wetPf2 retrievals as well as the ERA-
5 reanalysis. It is worth noting that SNR-ML retrievals per-
form slightly better than wetPrf/wetPf2 retrievals in the stra-
tocumulus region (MAGIC) in both the medians and the top-
heavy skewness of its distributions, which can partially be
attributed to the scarcity of wetPrf/wetPf2 collocation sam-
ples in this weather regime and known bias in the Level 2-
retrieved refractivity gradient (Xie et al., 2010). For the polar
region (MARCUS), although SNR-ML retrievals exhibit the
lowest correlations among the three datasets albeit all corre-
lations are statistically significant, it is inconclusive at this
point to say that the SNR-ML method is not suitable for
the polar region. As a matter of fact, the SNR-ML method
generates the largest variabilities among the three when the
PBL is extremely dry (Fig. 6), but the SNR in this situation
is generally too weak to generate a robust retrieval (i.e., un-
certainty too large compared to the retrieved value). The re-
trievals from the SNR-ML method in dry polar winters have
more potential (see, e.g., Fig. 14) if future GNSS missions
could improve the SNR.

Figure 11b demonstrates the robustness of the SNR-ML
retrievals across all six PBL pressure levels. Although the
highest positive correlations are always identified in ERA-5
and/or wetPrf/wetPf2 products, the medians of SNR-ML re-
trievals are consistently the highest with consistent top-heavy
distribution except for 850 hPa, meaning that SNR-ML re-
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Figure 11. Violin plots of the correlation coefficients calculated from collocated samples for SNR-ML retrievals (blue), Level 2 retrievals
(orange), and ERA-5 (green). Panel (a) is all-level statistics for each campaign, and panel (b) is all campaigns but binned by different pressure
levels. Medium, standard deviation, and minimum/maximum values and the skewness of the distribution are shown as the white dots, black
box, extended vertical thin lines, and the horizontal widths in each violin, respectively. The number of total samples is listed above each
violin. For ERA-5, only the subset of samples for which SNR-ML retrieval collocations are available are selected to calculate the statistics.

trievals agree with radiosonde/dropsonde “truths” more con-
sistently, while ERA-5 and wetPrf/wetPf2 have more vari-
ation across different weather regimes. Of course all these
conclusions are limited by the small collocation samples (309
in total), and we for sure need more extensive evaluation for
this research product before mass production.

Another big advantage of the SNR-ML retrieval is its con-
sistently higher success rate in the MABL compared with
the wetPrf/wetPf2 product. This is clearly seen in Table 3,
where the percentage difference between the two is listed in
parentheses for each campaign at each pressure level. For the
stratocumulus region (MAGIC campaign), when ducting or
super-refraction happens frequently, the success rate of the
SNR-ML method can go up to 700 % more than using the
wetPrf product at the lowermost altitude. Although the supe-
riority of the success rate of the SNR-ML retrievals gradually
vanishes when getting closer to the MABL top, they are still
more across the board than wetPrf/wetPf2 products.

To summarize the major findings for comparisons against
the limited independent radiosonde/dropsonde datasets avail-
able over the open ocean, we can draw the following conclu-
sions. Firstly, the quality of the SNR-ML retrievals is compa-

rable to ERA-5 and the operational wetPrf/wetPf2 product.
In atmospheric river weather regime, the SNR-ML method
even outperforms the other two. The robustness and stable
performance of SNR-ML retrievals remain the best within
the MABL, although its advantage gradually vanishes with
increasing height. Secondly, compared to the operational re-
trievals, the SNR-ML method can achieve 10 %–700 % more
samples in the MABL, especially over stratocumulus re-
gions, where ducting and super-refraction frequently occur,
causing failure of operational retrievals. This suggests some
unique value that the SNR-ML method can bring to the sci-
ence community in facilitating understanding of the water
vapor–stratocumulus coupling mechanisms. Although some
of the “independent validation dataset” is not completely
independent as the data may have been assimilated in the
ERA-5, the fact that SNR-ML retrieval statistics outperform
ER-5 at all six pressure levels in diverse weather regimes
proves that real physical information from SNR observa-
tions is learned and kept by the ML model for prediction;
admittedly it is impossible to quantify how much the real
observed information contributes without accurate physics-
based model simulations.
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Figure 12. Monthly averages of 950 hPa specific humidity from
COSMIC-1 SNR retrieval (a, c) compared to MERRA-2 reanaly-
sis (b, d) for the Arctic during April (a, b) and November (c, d),
2012 and 2013.

4 Discussions

In this section, we present and discuss some use case ex-
amples in order to demonstrate how to use this SNR-ML
MPBL specific humidity product to identify and even quan-
tify model or reanalysis issues.

4.1 Climatology

Several previous studies suggest that MERRA-2 reanalysis
has larger dry biases in the polar regions compared to ERA-
5 (Johnston et al., 2021; Ganeshan and Yang, 2019), while
some other studies using in situ campaign data suggested
smaller dry bias in the MERRA-2 reanalysis (e.g., Seethala
et al., 2021). Here we map out the climatological distribution
of specific humidity retrieved using the SNR-ML method to
track down geographical discrepancies in the Arctic (Fig. 12)
and Antarctic (Fig. 13) with respect to MERRA-2. The cold-
est months were not selected because of the concern that the
sea-ice-induced reflectometry signal might contaminate our
SNR-ML retrieval results, but we did not exclude retrievals
over possible glaciers for which MERRA-2 does not produce
a valid value at 925 hPa because we used a fixed-terrain map.
Therefore, direct comparison should not be considered wher-
ever MERRA-2 value is blank.

Overall, again we can see the SNR-ML-method-retrieved
polar MABL is much more humid than that from MERRA-
2 in the Arctic during early spring and late fall seasons

Figure 13. Same as Fig. 12 except for the Antarctic/Southern
Ocean.

(> 100 % in most areas). If we neglect sampling-induced ge-
ographical inhomogeneities in the SNR-ML retrievals, we
can actually see in Fig. 12 that the geographic distribution
of highs and lows and their gradients are in general agree-
able. The largest difference is that the wet intrusion along
the Bering Strait seems to be too weak during both April
and November in MERRA-2, which could account for the
dry bias in the deep Arctic Ocean. Meanwhile, the wet intru-
sion associated with the North Atlantic overturning circula-
tion seems to be too strong during November in MERRA-2.
These discrepancies connect possible root causes down to the
ocean circulation, and up to the Arctic front, and should be
further investigated from a whole Earth system point of view.

Although the Southern Ocean and South Pole seem lack-
ing in geographical variations (Fig. 13), we can actually ob-
serve some interesting potential issues related to topogra-
phies. For example, the tip of the Andes mountains effec-
tively blocks MABL water transport across the mountains,
but such a local effect on humidity appears further down-
stream in MERRA-2. The gradient of water vapor amount
from north to south is apparently much weaker compared to
MERRA-2, which impacts the latent heat and sensible heat
flux quantification when considering global energy transport.

4.2 Diurnal variation

It is well known that global climate models (GCMs)
have serious issues in reproducing cloud, precipitation,
and convection diurnal cycles (e.g., Tian et al., 2004;
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Yin and Porporato, 2017). Although such a problem is
mostly attributed to the issues with cumulus parameterization
schemes, we argue that the diurnal cycle of MABL water va-
por also plays a nontrivial role as it ties closely to the shallow
cumulus and stratocumulus; the latter, for example, is also
closely related to the MABL height diurnal variation (e.g.,
Liu and Liang, 2010; Chepfer et al., 2019; Teixeira et al.,
2021). Ground truth of the diurnal variation of MABL water
vapor structures is extremely rare, probably because of the
high cost associated with long-duration shipborne campaigns
that often only launch radiosondes twice daily and hence can-
not capture the diurnal variabilities. Therefore, here we only
aim to show the discrepancies between ERA-5 and our SNR-
ML-retrieval-generated diurnal cycle rather than determine
which is right or which is wrong (Fig. 14).

In addition to the Southern Ocean MARCUS campaign
and the atmospheric river regime ARRecon campaign that we
have ground truths to compare with, several additional cam-
paign regions and corresponding months are selected moti-
vated by the observed diurnal variations of the MABL height
established in Liu and Liang (2010). These two additional re-
gions include the South Indian Ocean (INDOEX campaign,
representing deep tropics) and the Arctic open ocean, repre-
senting polar winter conditions. The last one was added for
the sole interest of checking if there is any diurnal cycle in
the coldest season.

The averaged specific humidity at 875 hPa agrees well be-
tween the two datasets in the MARCUS and ARRecon cam-
paigns, but the diurnal cycles in ERA-5 are too weak com-
pared to the ground truths (red asterisks), while the diurnal
cycles in the SNR-ML method are stronger. It is worth not-
ing that neither SNR-ML nor ERA-5 reproduced a strong
peak below 900 hPa around 10:00 am local time that both
MARCUS and SOCRATES campaigns observed. The latter
is another research campaign in the vicinity of MARCUS
ship routes and season (Vömel and Brown, 2018) but was
not employed for independent validation because of a lack
of collocations with GNSS observations. This peak is prob-
ably associated with the shallow mixed-phase cloud pocket
precipitation that is spatially so small and inhomogeneous
in scale (D’Alessandro et al., 2021) that neither GNSS nor
ERA-5 is able to capture or reproduce. The underestimation
of the diurnal variability in the ARRecon campaign region is
probably associated with the sampling bias because the cam-
paign “truth” was sampled only during Atmospheric River
(AR) events, while SNR-ML and ERA-5 sample the clima-
tology background.

Although we have no ground truth to assess the diurnal
cycles of MABL humidity in other two regions, we can tell
that ERA-5 is wetter in the South Indian Ocean and signifi-
cantly drier in the Arctic Ocean. Compared to the SNR-ML-
method-retrieved diurnal cycle, the MABL water vapor di-
urnal cycle in ERA-5 is too weak in three areas but not the
INDOEX campaign region. To put this in the context of the
diurnal cycle of PBL height (Liu and Liang, 2010), in the

INDOEX campaign region, the diurnal cycle from ERA-5
and the SNR-ML method agrees reasonably well; both are
anti-correlated with the diurnal cycle of PBL height change
observed during that campaign. In the Arctic Ocean, ERA-5
has apparently set some arbitrary threshold to keep the wa-
ter vapor at a constant low level, while SNR-ML retrievals
suggest a weak diurnal variation.

Overall, we can see that the diurnal coupling between
MABL water vapor, PBL height, and clouds is vastly dif-
ferent from area to area. However, ERA-5 likely under-
produces the diurnal cycle amplitude of MABL water va-
por globally. For SNR-ML retrievals, day-to-day variability
often overwhelms the signal of diurnal cycle, yet the am-
plitude of diurnal cycle is still stronger and matches better
with the limited ground truth. Ultimately, the lack of MABL
water vapor ground “truth” measurements will continuously
make observing and verifying the true diurnal cycle difficult.
Other shipborne measurements, e.g., from upward pointing
radiometers, might be helpful to disentangle this mystery in
the future.

5 Conclusions

Marine planetary boundary layer (MABL) water vapor
amount and vertical gradient are among the key factors to
couple the ocean and atmosphere cloud, precipitation, and
convection together, but meanwhile it is also among the
hardest objects to retrieve from satellite remote sensing per-
spective. Given the penetration capability of GNSS signal
through clouds, we proposed a novel way in Wu et al. (2022)
to utilize the GNSS signal-to-noise ratio (SNR) in the deep
HSL to retrieve MABL water vapor profiles. In this paper,
we demonstrated it is workable at a profile-by-profile level,
leveraging the power of machine learning (ML) in capturing
weak and non-linear signals. The surprising and novel find-
ings in this paper are that the ML-trained model can make
better predictions and outperform the training dataset (i.e.,
ERA-5) in some places, which demonstrates that real infor-
mation content in the SNR signal is learned that would oth-
erwise not be harnessed using traditional statistical methods.
The new SNR-ML retrieval has a more stable performance
compared to the operational wetPrf/wetPf2 GNSS-RO re-
trievals, and it can produce 20 %–700 % more successful re-
trievals in the lowest 1 km, where observations are critical to
understand ocean–atmosphere exchange.

We then showed two use cases to demonstrate possible
ways to use this dataset. There are no conclusive results be-
cause of lack of ground “truth” to validate, but we do find
both reanalyses tend to systematically produce dry biases
at high latitudes and diurnal cycles that are too weak over
global oceans. This SNR-ML retrieval dataset also has its
own caveats. Whenever the “ducting” condition is violated
(e.g., coastal topography, convective tower, mixing, and tur-
bulence in the MABL), the fundamental assumption breaks
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Figure 14. Multi-year mean diurnal variation of 875 hPa specific humidity retrieved from all four missions (black with error bars in gray) and
from ERA-5 hourly reanalysis (dash-dotted blue) during November–March for (a) the MARCUS campaign region, 60–150° E, 60–40° S;
(b) the Arctic Ocean, 180° W–180° E, 70–90° N; (c) the ARRecon campaign region, 160–120° W, 20–50° N; and (d) the INDOEX campaign
region, 55–75° E, 25–15° S. The MARCUS radiosonde and ARRecon dropsonde “truths” are overlaid in panels (a) and (c) as asterisks with
standard deviations shown in pink vertical bars.

down, resulting in poor performance. More extensive com-
parisons and validations against other high-quality ground
measurements are needed in the future.

Based on results from this work, one can see that deep
SNR can complement the current GNSS-RO operational
bending angle product for retrieving PBL information for
different PBL conditions. A merged product is certainly of
interest to future investigations, but fully understanding the
physical mechanisms behind the reemerged deep SNR sig-
nal is the foundation for other downstream applications (e.g.,
data assimilation). Right now this can be considered a stand-
alone observational product for independent comparison or
validation against model simulations or other observations.
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Appendix A

Table A1. Summary of GNSS-RO instrument noise (σ ) used in this work, separated by rising and setting modes.

Instrument Orbit Noise
name (σ )

COSMIC-1/C1 Rising 10.1
Setting 10.9

COSMIC-1/C2 Rising 10.2
Setting 10.9

COSMIC-1/C3 Rising 9.6
Setting 10.4

COSMIC-1/C4 Rising 10.6
Setting 11.2

COSMIC-1/C5 Rising 10.1
Setting 11.1

COSMIC-1/C6 Rising 9.2
Setting 10.7

COSMIC-2/E1 Rising 17.0
Setting 17.5

COSMIC-2/E2 Rising 17.5
Setting 17.8

COSMIC-2/E3 Rising 17.2
Setting 17.9

COSMIC-2/E4 Rising 17.5
Setting 17.7

COSMIC-2/E5 Rising 17.4
Setting 17.8

COSMIC-2/E6 Rising 17.5
Setting 17.8

Table A2. Excess phase L1 grid for this work.

Parameter Grid values

Log10(φL1) 1.26245, 1.33846, 1.41162, 1.48144, 1.54777, 1.62428, 1.69679, 1.76530, 1.82995, 1.89098,
1.94866, 1.97000, 2.00325, 2.02000, 2.05500, 2.08000, 2.10415, 2.13000, 2.15091, 2.17000,
2.19548, 2.23805, 2.27875, 2.30103, 2.32222, 2.37000, 2.41497, 2.44000, 2.55630, 2.59000,
2.63000, 2.69020, 2.75000, 2.81291, 2.86000, 2.92428, 2.95000, 3.02531, 3.10000, 3.11727,
3.15000, 3.20140, 3.22000, 3.25000, 3.27875, 3.30000, 3.32000, 3.35025, 3.41664, 3.47857,
3.53656, 3.59106

Rough corresponding
HSL [km]

19, 17, 15, 13, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, −1, −2, −3, −5, −7, −9, −11, −13, −15, −17,
−19, −20, −23, −26, −30, −33, −37, −40, −50, −60, −70, −80, −90, −92, −94, −96,
−98, −100, −102, −104, −106, −108, −110, −120, −130, −140, −150
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Figure A1. Same as Fig. 2 except for the Metop-A training dataset.

Figure A2. Same as Fig. 2 except for the Metop-B training dataset.

Data availability. The Level 2 SNR-ML retrieval product for the
prediction period (see Table 1) has been published on Zenodo
(https://doi.org/10.5281/zenodo.13946112; Gong and Dong, 2024).
We welcome use and feedback.

COSMIC-1 and COSMIC-2 Level-1 and Level 2 data are
downloaded from https://doi.org/10.5065/8r12-hs65 (Sokolovskiy,
2020). Metop-A and Metop-B data are downloaded from
https://gpsmet.umd.edu/gnssro/download.php (last access: 21 Au-
gust 2025). ATOMIC data are downloaded from https://psl.
noaa.gov/atomic/data/ (last access: 21 August 2025). EU-
REC4A data are downloaded from https://doi.org/10.25326/137
(Stephan et al., 2025). SOCRATES data are downloaded from
https://doi.org/10.5065/D69P30HG (NCAR, 2025). MARCUS data
and MAGIC data are downloaded from the ARM data request
portal (https://adc.arm.gov/discovery/#/, last access: 21 August
2025). ARRecon data are downloaded from https://cw3e.ucsd.edu/
arrecon_data/ (last access: 21 August 2025) and specially processed
to fit the needs of this research. Interested users are encouraged to
contact the last author for assistance of post-processed data.
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