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Abstract. Over the past few decades, the study and the use
of air quality sensors have significantly increased, leading
to a wealth of experience and a deeper understanding of
their strengths and limitations. This study aimed to develop
and evaluate a methodology for PM5 s and NO; sensors to
enhance sensor accuracy to a level suitable for epidemio-
logical studies, where ensuring data quality is paramount.
The performance evaluation of indoor and outdoor sensors
was carried out during the co-location phase with reference-
equivalent instruments (RIs), by calculating the relative ex-
panded uncertainties (REUs) stated in the EU Air Quality
Directive 2008/50/EC and the recently published EU Di-
rective 2024/2881, target diagrams and common error met-
rics, before the deployment of the air quality sensor systems
(AQSSs) in the houses of patients suffering from chronic ob-
structive pulmonary disease (COPD) or asthma, in Stuttgart
(Germany). Regression and machine learning (ML) mod-
els for sensor calibration were tested during the co-location.
Moreover, an original methodology was designed and evalu-
ated to validate the sensor data during the deployment in the
houses of the participants. The study found that indoor sen-
sor calibration using artificially generated NO; and aerosols
does not ensure model transferability, emphasizing the need
for training data that matches the intended deployment en-
vironment in terms of real patterns of concentration, particle
composition and environmental conditions. Moreover, the ef-
fect of the aggregation time (1, 5, 10, and 15 min) on the per-
formance of the calibration models was evaluated for NO,
sensors. Integrating metadata such as activity logs, window
status, and data from official monitoring stations, as well as
NO, measurements with diffusion tubes, proved to be help-

ful for data validation and interpretation during the sensor
deployment in the houses of the participants.

1 Introduction

The World Health Organization (WHO) updated its global
air quality guidelines in September 2021. The new air qual-
ity recommendations proposed by the WHO resulted from
the findings based on recent epidemiological studies. The in-
crease in evidence on the adverse health effects of air pol-
lution has been possible thanks to the advances in tech-
nology for air pollution monitoring and personal exposure
(WHO, 2021). A major air pollutant is particulate matter
(PM), especially the fine fraction PM3 5, which can cause res-
piratory and cardiovascular diseases, reproductive and cen-
tral nervous system dysfunctions, and cancer (Manisalidis
et al., 2020). In a meta-analysis, Braithwaite et al. (2019)
also found statistically significant associations between long-
term PM 5 exposure and mental illnesses such as depression
and anxiety. Another air pollutant of special interest is NO3,
which has been associated with higher morbidity for vulnera-
ble groups such as asthma and chronic obstructive pulmonary
disease (COPD) patients (Hoffmann et al., 2022). Moreover,
a recent review paper has shown that both short- and long-
term exposure to PM» 5 or NO; adjusted for NO; and PM3 5,
respectively, revealed a synergistic effect appearing as higher
mortality from respiratory diseases (Mainka and Zak, 2022).

Exposure measurements are carried out using direct or in-
direct approaches. The direct approaches measure the ex-
posure levels by using personal passive sampling devices
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(Piechocki-Minguy et al., 2006; Shirdel et al., 2019; Sa-
mon et al., 2022) or mobile monitors (Rea et al., 2001;
Koehler et al., 2019) that must be worn by the person dur-
ing the campaign. In recent years more studies have deployed
air quality sensors allowing multi-pollutant exposure assess-
ment (Piedrahita et al., 2014; Chatzidiakou et al., 2020; No-
vak et al., 2021). This methodology is considered the most
accurate estimate of a person’s “true” exposure. However,
this type of personal exposure assessment is only adequate
for short-term exposure (Steinle et al., 2013). The main chal-
lenges of these studies are the complexity of the data integra-
tion including the time-activity-location profiles (Chatzidi-
akou et al., 2022), and the measurement uncertainty due to
the position of the sampling inlet, which may be largely
affected by the perihuman/personal cloud effect (Licina et
al., 2017; Pantelic et al., 2020). In theory, the sampling in-
let should be placed close to the breathing zone, but this is
in reality not always feasible, especially for multi-pollutant
devices (Yun and Licina, 2023; Bendl et al., 2023). Addi-
tional factors, such as vibrations, static electricity (Shirdel
et al., 2019), and movement (e.g. isokinetic sampling of PM
cannot be guaranteed) also have an influence on the accuracy
of the measurement. Moreover, other external factors such as
the accuracy of the GPS signal, the accelerometer, etc., may
be crucial to characterize the true exposure.

The indirect approaches measure air quality at fixed
monitoring sites or are based on modelling (Goldman et
al., 2012; Beloconi and Vounatsou, 2020; Huang et al., 2021)
which can also integrate satellite data (Hang et al., 2022).
Among the indirect approaches, some studies rely on out-
door measurements at fixed-site monitoring stations (Harré
et al., 1997; Meng et al., 2013). This has been the cause of
exposure misclassification in the past (Shaw et al., 2018),
as outdoor monitoring stations fail to capture the real con-
centrations in the different microenvironments an individual
is exposed to (Krause, 2021). Moreover, strong correlations
among the ambient pollutants can lead to biased health effect
estimates due to confounding (Sarnat et al., 2001). Other in-
direct approaches are based on static measurements in the
most visited microenvironments of the participants (Scott
Downen et al., 2022). The main advantage of this methodol-
ogy is the lower effort required of the participant, which al-
lows longer measurement periods, making it the ideal candi-
date for long-term exposure assessment (Steinle et al., 2013).

In this context, some studies have evaluated the use of sta-
tionary air quality sensors for environmental epidemiology
(Morawska et al., 2018; Patton et al., 2022; Bi et al., 2024,
Zuidema et al., 2024). Zuidema et al. (2021) evaluated the
field calibration based on series of stepwise multiple linear
regression calibration models of a low-cost sensor network
for multiple gaseous pollutants. They reported the perfor-
mance achieved using cross-validated root-mean-squared er-
ror (CV-RMSE) and cross-validated coefficient of determi-
nation (CV-R?) as well as the limitations of the approach to,
for instance, detect the drift of the sensors during deploy-
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ment or the difficulty to measure low pollution levels. They
also discussed the competing interests forcing the compro-
mise between the duration of co-location in order to achieve
better calibration (training data) and the deployment for epi-
demiological purposes.

The use of air quality sensors for environmental epidemi-
ology has many advantages, for instance, the decrease in the
bias of exposure estimations when compared with fixed out-
door monitoring stations (Chatzidiakou et al., 2019). Another
benefit of using sensors is the possibility of increasing the
number of participants with the same fixed budget, which
helps to ensure adequate statistical power of the study. More-
over, sensors allow time resolutions in the order of seconds,
making possible the exposure assessment on movement and
the correlation of pollution patterns with personal behaviour
when this information also exists (Jerrett et al., 2017; Novak
et al., 2022). However, although the high temporal resolu-
tion offered by sensors is valuable for capturing dynamic ex-
posures, it also increases instrumental noise, which directly
affects measurement uncertainty (Schmitz et al., 2025).

On the other hand, some characteristics of the sensors have
kept them away from applications where high accuracy is re-
quired. One of them is the influence of meteorological con-
ditions such as temperature (7), relative humidity (RH), and
cross-sensitivities in the sensor signal (Samad et al., 2020;
Venkatraman Jagatha et al., 2021; Zamora et al., 2022). This
makes the calibration of the sensors more complex than tra-
ditional monitoring devices, as the calibration algorithms
should also account for those influences, but this limits the
transferability of the calibration models when moving the
sensor to a different location (Zauli-Sajani et al., 2021; Diez
et al., 2024). Another parameter that affects the sensor accu-
racy for long-term measurements is the signal drift caused by
the sensor degradation (Tancev, 2021; deSouza et al., 2023).
Last but not least, the unit-to-unit variability poses a chal-
lenge when it comes to calibrating many units at the same
time, as is the case for epidemiological studies (Gébel et
al., 2022).

Some recent studies have shown that the above-mentioned
concerns can be overcome and that getting highly personal-
ized air pollution exposure outweighs the measurement un-
certainty of the air quality sensors. The AIRLESS study (Ef-
fects of AIR pollution on cardiopuLmonary disEaSe in urban
and peri-urban reSidents in Beijing) demonstrated that sens-
ing technologies can revolutionize health studies and address
scientific, health, and policy questions in a way that has not
been possible before (Krause, 2021). The results of the AIR-
LESS project have been well documented (Chatzidiakou et
al., 2020; Krause, 2021) and are a proof of the potential use
of sensing technologies for epidemiological studies in very
different environments, i.e. high- and middle-income coun-
tries like London (Evangelopoulos et al., 2021) and Beijing
(Han et al., 2020, 2021) but also low-income countries like
Kenya (Krause, 2021).
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Recent literature demonstrates that stationary indoor air
quality measurements with low-cost sensors are widespread,
but calibration approaches and durations vary considerably
(Anastasiou et al., 2022; Soja et al., 2023; Tryner et al., 2021;
Rathbone et al., 2025). Rose et al. (2024) investigated and
apportioned the sources of indoor PM in school classrooms
using the OPC-N3 (Alphasense, UK). The calibration was
carried out using linear regression using data from the co-
location using an RI during the exposure to indoor air for
48h, using a time resolution of 1 min. Good agreement for
PM; 5 (r > 0.85) was reported, without the need of a further
correction to account for hygroscopic growth as the RH was
below 60 %.

Suriano and Penza (2022) tested the performance of Al-
phasense series B4 sensors for CO, NO; and O3 during a
1-week co-location experiment in a living room using a sam-
pling rate of 2min. The models tested for calibration were
multiple linear regression (MLR), random forest regressor
(RFR), artificial neural networks (ANN) and support vec-
tor regressor (SVR), and the input parameters used were
the working electrode (WE), the auxiliary electrode (AE),
T and RH or also the net difference WE — AE, including
also T and RH. They proved that the NO, measurements
were in good agreement (R*> 0.7, 8.4 < MAE < 12 ppb,
10.6 < RMSE < 16.3 ppb) if calibrated through MLR, RF
and ANN, having the best results when using separately the
sensor electrode signals as inputs. Note that in both studies,
the co-location was short, as the pumps of the RI are too
noisy to keep the instrument for longer periods in such in-
door environments.

As shown in the aforementioned examples from the litera-
ture, it is common practice to report sensor accuracy primar-
ily through metrics such as R? or Pearson correlation coef-
ficient, with some studies including additional statistics like
mean absolute error (MAE) or RMSE. However, these sta-
tistical evaluations alone may not be sufficient for specific
purposes, as well as for stakeholders such as environmental
agencies, who work with expensive instrumentation that un-
dergo rigorous calibration and continuous performance as-
sessments throughout their operational lifespan (Flores et
al., 2012, 2013). Therefore, to build greater confidence in air
quality sensor data, more comprehensive validation protocols
and calibration procedures are essential.

Figure 1 shows the link between epidemiological studies,
the WHO, and the European Directives for air quality. The
epidemiological studies are the proof of causality between air
pollutant exposure and health effects, and they are reviewed
by the WHO to recommend the limit values, which are the
guidance to set the air quality regulations. In the European
Union, the EU Directive 2008/50/EC and the new Directive
2024/2881 specify the short- and long-term limit values, as
well as the data quality objectives (DQOs) that the measure-
ments must meet for ambient air quality assessment, depend-
ing on the type of measurement (fixed, indicative, or objec-
tive estimation). At this moment, there are no DQOs for in-
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Figure 1. Interconnection between epidemiological studies, the
WHO air quality guidelines, and the DQOs established in the EU
Air Quality Directives.

door air quality assessment. However, in this work, we have
evaluated the sensor data for the indicative and objective es-
timation DQOs set in the directives for both indoor and out-
door measurements.

This work aims to evaluate the performance of NO, and
PM, s sensors for their use in health research. We present
an approach to calibrate the sensors based on co-location
with RIs and assess the reliability of the calibration before
and during deployment. The sensors were deployed in the
houses of seven COPD and asthma patients. The measure-
ments were conducted in two microenvironments per partici-
pant, representing the outdoor and the indoor levels of expo-
sure for 1 month. The MLR and three machine learning (ML)
models (RFR, SVR, and ANN) have been evaluated for in-
door and outdoor calibration of NO, sensors and different
averaging times (1, 5, 10, and 15 min). A univariate linear
regression (ULR) calibration was investigated to correct the
PM, 5 sensor measurements. The outdoor PM; 5 sensor in-
cluded a thermal drying inlet. The performance evaluation
has been carried out using common error metrics, REUs ac-
cording to the European DQOs, and target diagrams. Finally,
we discuss the capabilities as well as the limitations of the
proposed methodology.

2 Methodology
2.1 Participant recruitment and study protocol

The participants consisted of seven patients suffering from
COPD or asthma. All the participants lived in Stuttgart (Ger-
many) (see Fig. S1 in the Supplement) and agreed to per-
form the measurements in their homes for 30 d. One partici-
pant agreed to install two outdoor air quality sensor systems
(AQSSs) instead of one, to compare street-side and garden-
side concentrations. For this participant, the measuring cam-
paign was reduced to 19d.

The study protocol was evaluated and approved by the
Ethics Committee of the Medical Association of the State of
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Baden-Wiirttemberg (reference number F-2019-105) and by
the data protection officer of the University of Stuttgart. Be-
fore the beginning of the measurements, participants were in-
formed about the study and requested to provide written con-
sent. The participants are referred to by a patient identifica-
tion number from P1 to P7. An environmental questionnaire
in the German language was designed to characterize the liv-
ing area, the house, and the habits, and was completed prior
to the measurements with the help of a worker of the Uni-
versity of Stuttgart. Participants also completed a spirometry
test, a health survey on their symptoms, a logbook document-
ing hourly indoor activities, window status, and presence at
home. This information collected from each participant has
been further analysed in Chacén-Mateos et al. (2024).

At the end of the measurements, we asked the partic-
ipants for written feedback. Participants who started the
study before March 2020 received the study instructions at
their homes. However, those who started the study after the
COVID-19 outbreak performed the interview by phone, and
the contact between the participants and the university staff
was kept to a minimum. A detailed description of the data
collected and the further analysis to determine the feasibil-
ity of using the developed AQSSs and methodology for ex-
posure assessment and indoor source apportionment can be
found in Chacén-Mateos et al. (2024).

2.2 Indoor and outdoor air quality sensor systems

Two different AQSSs for indoor and outdoor measurements
were designed for this study (see Fig. 2), each one contain-
ing one electrochemical sensor for NO, (Alphasense, UK,
model B43F), and one optical particle counter for PM> 5 (Al-
phasense, UK, model OPC-R1). The sensor selection was
based on our own tests of different sensors in the labora-
tory. Another important factor that was considered was the
price; EUR 150 being the maximum possible price per sen-
sor. In addition, a 7 and RH sensor was included (IST AG,
Switzerland, model HTY221). The microcontroller Arduino
UNO was used to control and save the data every 2s on an
SD card. Both AQSSs had a passive ventilation system. Dur-
ing the deployment, participants did not have access to the
data in order to avoid behavioural changes.

As an outdoor AQSS must be weather resistant, we se-
lected an enclosure made of glass fibre-reinforced polyester
with dimensions 200 x 300 x 150 mm. For the indoor AQSS,
a polypropylene box with dimensions 240 x 195 x 112 mm
was chosen. The cost of the materials totalled EUR 540
and 460 for the outdoor and indoor AQSSs, respectively.

To counteract the effect of the high RH in the PM sen-
sor readings, a low-cost dryer was designed for the outdoor
PM sensor. The main advantage of using a low-cost dryer
is that it allows the use of the same calibration models in-
dependently of the location of the PM sensor. Other tech-
niques based on the x-Kohler theory or ML have shown in-
correct results when moving the sensor to another location,
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as the particle composition may differ from the one in the co-
located site (Di Antonio et al., 2018; deSouza et al., 2022).
The dryer consists of a 50 cm brass tube with a resistive wire
wound around its surface. The wire is heated when the RH
is higher than 70 % using 12V and 10 W. The temperature
is controlled by using the internal temperature sensor of the
OPC-RI1. A detailed description and evaluation of the low-
cost dryer can be found in Chacén-Mateos et al. (2022).

The indoor AQSSs (BO1, BO2 and B04) were installed in
the participants’ living rooms, as this space was identified
as the primary area for their daily activities. The exact place-
ment within the living room was determined by the proximity
to a power outlet and the availability of suitable space, with
devices most commonly positioned on a table or TV stand.
Outdoor AQSSs (B03, B0O5, BO6 and B08) were installed
in a variety of locations, including hanging from balconies,
placed on window sills, or positioned on terrace floors, with
placement always dependent on the availability of a power
socket. A summary of the information collected in the envi-
ronmental questionnaire about the neighbourhood, the build-
ing, as well as the home environment, including the type of
windows, possible pollutant sources indoors and outdoors,
can be found in Chacén-Mateos et al. (2024).

2.3 Quality assurance

The measurements in the houses of the patients took place in
Stuttgart (Germany) between 20 December 2019 and 28 May
2020. Figure S1 shows the approximate locations of the par-
ticipants’ homes, the governmental outdoor air quality mon-
itoring stations in Stuttgart, and the monitoring stations of
the University of Stuttgart. The co-location of the indoor
and outdoor AQSSs took place discontinuously starting on
7 November 2019 and finishing on 5 June 2020, and was car-
ried out in the weeks before the individual deployment in the
patient’s houses or immediately after it. A general overview
of the measuring campaign showing the periods where the
co-location and deployment of the AQSSs took place can be
seen in Fig. S2. In the following subsections, a detailed de-
scription of the methodology used to verify and assess the
quality of the data before and after the deployment in the
homes of the patients as well as the calibration procedures is
described.

2.3.1 Sensor co-location before deployment

The co-location for both indoor and outdoor AQSSs was
conducted in distinct locations to replicate real-world envi-
ronmental conditions as closely as possible. Similarly, the
methodology was tailored to address the specific conditions
encountered in indoor as well as outdoor environments. The
main objective was to cover the maximum range of possi-
ble concentrations, 7', and RH that could be found later in
the indoor and outdoor locations. A summary of the different
procedures is listed in Table 1.
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Figure 2. Designed AQSSs for outdoor (left) and indoor (right) measurements (Chacén-Mateos et al., 2024).

Table 1. Co-location methodology of the NO, and PMj; 5 sensors.

Pollutant  Indoor AQSSs Outdoor AQSSs
NO, Co-location in the laboratory: Co-location at Hauptstitter
— Low concentrations (< 10 ppb): indoor air. Street monitoring station.
— High concentrations (up to 180 pug m~3): artificial generated NO;.
— Changes in T using an infrared lamp.
— Changes in the RH by manually opening and closing the windows
and using an air humidifier.
PMj; 5 Co-location: Co-location at Hauptstitter

— In the laboratory (real exposure to indoor air).

Street monitoring station.

— High concentrations (up to 150 ug m~3): calibration aerosol

in particle chamber.

Before deployment, the NO, sensors for indoor measure-
ments were co-located in the laboratory for a minimum of
7d and a maximum of 34d, depending on the availability
of the AQSSs. A chemiluminescence device (MLU, Austria,
model 200A) was used as RI for NO;. Due to the low NO,
concentrations measured in the laboratory, it was necessary
to generate higher concentrations using a gas phase titration
(GPT) system (Ecotech, Australia, model Serinus Cal 3000).
For this purpose, the indoor AQSSs were placed inside a
sealed box made of inert glass with gas supply connections.
The dimensions of the box were 310 x 525 x 375 mm. The
sensors were exposed to the following pyramid of NO; con-
centrations: 0-50-100-50-0 ppb. Each stage was maintained
for 3 h, and the pyramid was repeated at least twice on dif-
ferent days. The changes in 7 and RH were forced using an
infrared lamp close to the calibration box and an air humidi-
fier, respectively. Moreover, natural changes in the room con-
ditions were simulated by opening and closing the windows
of the laboratory.

The co-location of PM3 5 sensors was performed in a parti-
cle chamber. High particle concentrations (up to 150 uygm™3)
with a peak concentration at an aerodynamic diameter of less
than 3 um were dispersed using an aerosol generator and lig-
uid paraffin. To account for potential particle losses caused
by electrostatic forces from the plastic enclosure, the entire
indoor AQSS was placed inside the chamber. The RI was
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a light-scattering device (Grimm, Germany, model 1.108).
The experiments in the particle chamber took 1h and were
repeated twice. More information about this co-location set-
up can be found in Laquai and Saur (2017). After the co-
location in the particle chamber, the sensors were installed in
the laboratory for a minimum of 2 d and a maximum of 27 d
to expose the sensors to real PM indoors.

The outdoor AQSSs were co-located for 7 to 34d
in the hotspot monitoring station at Hauptstitter Street
(48°45'55.8936”" N, 9°10'12.9396” E) that belongs to the
University of Stuttgart. The average co-location time was
15d. The advantage of performing the co-location in a
hotspot station is that the maximum concentrations expected
in the city are covered. However, it is unusual for low con-
centrations to occur there, and that may cause a lack of low
concentrations in the training data. As RI for NO,, the model
405 nm from the company 2B Technologies (USA) was used.
An EDM 180 from the company Grimm GmbH (Germany)
was used as an RI for the PM measurements. The RI for NO,
was calibrated once a month and the measurements of the
Grimm EDM 180 were corrected against gravimetric mea-
surements at the beginning of the campaign.

During the measurement campaign and after having anal-
ysed the first results, we decided to experiment with a new
calibration strategy: for patient P7, an outdoor box (B03-P7)
calibrated with the data from the co-location in the Haupt-
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stitter Street monitoring station was used for indoor air qual-
ity measurements. The reason for that was high deviation of
the indoor NO; concentrations modelled by the SVR and
RFR models when compared to the results of the measure-
ments carried out with diffusion tubes located in the same
place during the deployment in the house of the patients (see
Sect. 3.2.1).

2.3.2 Data validation during deployment

Due to the data reliability problems that air sensors have,
it is vital to be able to identify if the AQSSs are working
properly during the deployment in the houses of the patients.
In an ideal case, having an RI co-located would be the best
option. However, this is usually not possible for epidemio-
logical studies with a lot of participants. For that reason, we
present here a methodology that can be used in epidemiologi-
cal studies having a high number of participants. A summary
of this approach is listed in Table 2.

To have a reference NO; concentration value in the
houses, NO, passive samplers (diffusion tubes) from the
company Passam (Switzerland) were attached to the in-
door and outdoor AQSSs to perform discontinuous measure-
ments. In this technique, NO; is absorbed in a metal mesh
that has been treated with triethanolamine (DIN EN 16339,
2025). After 14 d of exposure time, the diffusion tubes were
collected and analysed in the laboratory as described in
VDI 2453 Part 1 (1990). The agreement or disagreement of
the sensor data with the diffusion tubes was quantified by
comparing the values of NO, measured with the diffusion
tubes during 14 d to the average of the continuous sensor data
using different calibration models during those 14 d. For pa-
tients P2 and P4, only one period was collected for 14 and
19 d, respectively.

In addition, the data of the four outdoor air quality moni-
toring stations available in Stuttgart as well as the data of the
monitoring station of the University of Stuttgart in Haupt-
stitter Street were also collected to qualitatively compare
their NO, and the PM» 5 trends with the data of the outdoor
AQSSs during deployment in the houses of the patients. The
air distances between the closest and the furthest monitor-
ing station and the houses of the patients were 0.6 and 6 km,
respectively (see Fig. S1). Moreover, in order to ensure the
quality of the measurements carried out with the diffusion
tubes, we co-located three diffusion tubes (triple determina-
tion) in the monitoring station of the University of Stuttgart
and changed them every 14 d.

Due to the lack of passive samplers for PM3 5, the indoor
PM, 5 concentrations could only be validated using the ac-
tivity logbook, by checking whether peak concentrations co-
incided with activities likely to generate PM (e.g. cooking,
cleaning), or by analysing window status (open/closed) and
temperature variations.
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2.3.3 Calibration procedures

In this section, the calibration procedures used for PM; s and
NO; sensors are described. For PM sensors, the univariate
linear regression (ULR) shown in Eq. (1) was used,

PM2.5, corrected — ,80 + ,BIPMZ.S, raw » (1)

where B is the calibration constant and 8; the calibration
factor of the linear fitting between the PM> 5 concentrations
of the sensor and the RI. The use of a low-cost dryer pre-
vents the outdoor PM sensor readings from the influence of
hygroscopic growth of PM when the RH is higher than 70 %.
The indoor PM sensor was also calibrated using ULR and it
did not include the low-cost dryer as RH higher than 70 %
indoors was not expected. During the deployment, we mea-
sured indoor RH between 18 % and 58 %.

For NO, sensors, different parametric and non-parametric
models were investigated to take into account the influence
of RH and T in the sensor signal: MLR, RFR, SVR, and
ANN. These models have already been investigated to cor-
rect the data of air quality sensors with promising results
(Esposito et al., 2016; Topalovie et al., 2019; Zimmerman
et al., 2018; Bigi et al., 2018) but literature about how these
models perform when the sensor is transferred to a new loca-
tion is scarce.

The explanatory variables (also called features in ML
models) used for all the models were data of the WE and
AE, and T and RH of the HYT221 sensor. The MLR model
shown in Eq. (2) is applied to correct the NO» sensor data. In
Eq. (2), g is the intercept and «;, are the coefficients that are
applied to each explanatory variable.

NOy, corrected = ag + 1 WE + apAE+ a3T + a4RH. (2)

The RFR is a ML algorithm based on ensembles of deci-
sion trees (Breiman, 2001). The main characteristics are that
it randomizes both the selection of the data points used to
build the trees and the explanatory variables at each node to
determine the split. Thus, leading to each decision tree be-
ing built on a slightly different dataset with a different sub-
set of features (Miiller and Guido, 2017). During prediction,
the RFR calculates the average of the predicted values from
all the decision trees, resulting in a more accurate prediction
than a single decision tree. The RFR is known for its ability
to handle noisy and complex data while reducing overfitting
and improving model performance.

The SVR models come originally from support vector
machine algorithms, which are usually used for classifica-
tion purposes (Boser et al., 1992). In SVR, instead of trying
to minimize the residuals between the predicted values and
the actual values using the conventional sum of the squared
residuals of a linear fitting, the goal is to find a margin that
includes as many data points as possible within a certain
distance, also called epsilon (¢), from the predicted values.
To achieve this, a hyperplane in a high-dimensional feature
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Table 2. Validation of the NO, and PM, 5 sensors during deployment.

Pollutant  Indoor AQSSs Outdoor AQSSs
NO, Comparison with diffusion Comparison with diffusion tubes (quantitative).
tubes (quantitative). Comparison with outdoor air quality monitoring stations less than
6 km apart (qualitative).
PM; 5 Identification of possible sources of peak Comparison with outdoor air quality monitoring stations less than

concentrations using the activity log (qualitative).

6 km apart (qualitative).
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space, i.e. a function, must be found, so that the threshold dis-
tance of the e-tube between the hyperplane and the support
vectors is maximized while the errors of the predicted values
are minimized. The support vectors are the data points that
lie either on the edge of the e-tube or violate the margin con-
straints (Awad and Khanna, 2015). This model is very robust
in handling outliers.

The ANN is a ML algorithm inspired by the connections
among the cells of the nervous system (McCulloch and Pitts,
1943). In this model, the training data containing the ex-
planatory variables are inserted as input nodes in the net-
work. This input is used in the first step, called forward prop-
agation, to estimate the value of the parameters (biases and
weights). These parameters connect the neurons in the hid-
den layer/s using the selected nonlinear function (so-called
activation function) so that a first prediction of the output
node, which is in this case the NO, concentration, can be es-
timated. As the output from the forward propagation may not
be correct, in the second step, the so-called backpropagation,
the biases and weights are optimized to minimize the residual
sum of squares between the observed values (NO, concen-
tration of the RI) and the predicted values using gradient de-
scent. In order to avoid incorrect predictions caused by local
minimums, the parameter learning rate («), used in the train-
ing of the ANN, should be as small as possible. Note that
the smaller the learning rate, the longer the computational
time so an optimum must be found (Bishop, 2006; Awad and
Khanna, 2015).

The hyperparameter tuning for the ML models was carried
out in Python using the RandomizedGridSearchCV optimizer
provided by the Scikit-learn library. In addition, Keras and
TensorFlow libraries for ANN models were used. In order to
avoid overfitting, a 5-fold cross-validation was used. Some
of the preliminary hyperparameter values were based on the
literature (Wei et al., 2020; Spinelle et al., 2015; Pedregosa
et al., 2011) whereas others were manually tested by means
of observing how the learning curves react (Géron, 2019).
The grid of parameters for each model is listed in Tables S1—
S3 in the Supplement. Among the whole calibration dataset,
75 % of the data was used for training and the other 25 %
for testing. Both datasets were randomly selected. The hy-
perparameters were tuned for each sensor individually. All
the ML models were built using the Scikit-learn library in
Python. A total of 217 simulations were run, 96 % of which
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were completed in less than 15 min on a single 2.50 GHz In-
tel i7-6500U CPU.

2.3.4 Data processing

First, in order to identify and remove outliers, data cleaning
was carried out using an unsupervised learning algorithm, the
Density-Based Spatial Clustering of Applications and Noise
(DBSCAN) (Ester et al., 1996), prior to the training of the
calibration models. The warm-up period of NO, sensors was
observed to range from 4 h up to 3d and was manually re-
moved after visual inspection of the data.

For PM; 5 sensors, the data for calibration of the indoor
sensors were averaged every 1 min, whereas the data of out-
door sensors were averaged every 30 min. In the case of the
calibration of the NO; sensors, we evaluated the effect of the
averaging time on the model performance by using 1, 5, 10,
and 15 min averages for both training and testing datasets.
Note that the NO, sensor signal exhibited significant noise,
making it necessary to balance the number of training data
points with effective noise reduction in order to optimize
model performance. During the deployment in the houses of
the patients, hourly and daily averages were used for the anal-
ysis.

For the ANN and SVR models, the data of the explanatory
variables were normalized from O to 1 using Eq. (3),

XN = u , (3)
Xmax — Xmin

where XY is the normalized value, X; is the feature value (i)

to be normalized, and X in and Xax are the minimum and

maximum values of the feature, respectively. After the pre-

diction, the results were transformed back to the real values.

2.3.5 Performance evaluation

Following the recommendation of the CEN/TS 17660-
1:2021 and the CEN/TS 17660-2:2024, the REU has been
calculated to determine whether the sensor data fulfils
the DQOs as defined in the Directive 2008/50/EC. On
24 November 2024, the EU Directive 2024/2881 was pub-
lished, establishing stricter limit values to be achieved by
January 2030. The new directive also specifies in Annex V
new DQOs for indicative measurements (I.M.) and objective
estimation (O.E.) that the Member States shall comply by
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11 December 2026. Therefore, the inclusion of new DQOs is
intended as a forward-looking exercise.

The CEN/TS 17660-1 (2021) and CEN/TS 17660-2
(2024) provides a classification that is consistent with the re-
quirements of DQOs defined in the Directive 2008/50/EC.
Sensors fulfilling the DQO required for indicative measure-
ments belong to class 1, whereas sensors in class 2 fulfil the
DQO for objective estimations. A third class, which is less
strict and is not formally associated with the Directive, has
also been defined. Class 3 is not object of study of this work,
as it is not formally linked to a binding DQO.

In Table 3, the DQOs of short-term NO; and PM, s
measurements for both directives, the 2008/50/EC and
2024/2881 are presented. More information about how to cal-
culate the REU can be found in the Supplement. As shown
in Table 3, the DQO of the objective estimation for hourly
NO; values has changed from 75 % in Directive 2008/50/EC
to 80 % in Directive 2024/2881 whereas the DQO for daily
PM3 5 mean concentrations has changed from 100 % in Di-
rective 2008/50/EC to 85 % in Directive 2024/2881. For in-
dicative measurements, only the DQO of daily mean concen-
trations of PM> 5 has been redefined from 50 % to 35 %.

Another aspect that should be noted is the average time.
The short-term DQOs were conceived for hourly and daily
averages for NO; and PM; s, respectively. For epidemiolog-
ical studies, however, especially those using portable mon-
itors, a 24 h average or even a 1 h average may be insuffi-
cient, as detecting short-term pollution peaks requires higher
temporal resolutions. Moreover, longer co-location periods
are not always possible during the exposure assessment cam-
paigns and consequently, the use of a 1h average can de-
crease considerably the available data to train the calibration
models and reduce the range of 7 and RH, as well as the pol-
lution concentration range used. Therefore, in this work, we
present the REUs of the NO;, models for different averaging
times, that is, 1, 5, 10, and 15 min and thus, an evaluation of
the REUs at the limit value is not applicable. Similarly, co-
location measurements of indoor PM> 5 sensors in a particle
chamber with high particle concentrations lasted an average
of 2 to 3 h. Therefore, the uncertainties were calculated for a
1 min average. For outdoor PM» 5 sensors where more data
points are available, a 30 min average was used so that nei-
ther REU for PM; 5 measurements for indoor or outdoor are
applicable in the region of the limit values.

The results of the PMj; 5 and NO, sensors were also eval-
uated using target diagrams. A target diagram is built us-
ing centred root-mean-squared error (CRMSE) and the mean
bias error (MBE) of the testing set as the x and y axis, re-
spectively, both normalized by the standard deviations of the
RI (oref). As the values of CRMSE are always positive, the
model predictions are plotted in the left quadrants if their
standard deviation is lower than the standard deviation of
the RI (Zimmerman et al., 2018). The outermost circle of
the diagram corresponds to the performance criteria, set as
1, whereas the inner circle represents the performance goal
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which has been defined for this study as 0.5, that is, 50 %
more stringent (Jolliff et al., 2009; Bagkis et al., 2021). This
threshold is an exploratory criterion adopted specifically for
the purposes of this study. The performance of the model is
better the closer the attained performance score is to the tar-
get diagram’s origin (Thunis et al., 2012).

Finally, various goodness-of-fit indexes were used to
assess the performance of the models including RMSE,
CRMSE, MBE, MAE, the coefficient of determination (Rz),
Pearson correlation coefficient (r), model efficiency (MEF),
and fractional bias (FB). The respective formulas and ideal
values are listed in Table S4. By presenting both conven-
tional performance metrics and more robust diagnostic tools,
we aim to enable a broader comparison with other studies,
as the REUs and target diagram are still scarcely used in the
performance evaluation of AQSSs.

3 Results
3.1 Sensor data validation before deployment
3.1.1 Relative expanded uncertainty (REU)

The REU of the testing data for the indoor and outdoor
PM, s sensors before the deployment in the houses of the
patients can be seen in Fig. 3. The DQOs of the EU Directive
2008/50/EC and the new EU Directive 2024/2881 for both
objective estimation and indicative measurements of PM 5
are also indicated. As shown in Fig. 3a, the unit-to-unit vari-
ability of indoor PM; 5 sensors is significant. Specifically, the
PM; 5 sensor in B04-P3 meets the DQO for indicative mea-
surements up to 2 and 3 ug m~> under Directives 2008/50/EC
and 2024/2881, respectively. In contrast, the PMj; 5 sensor
in BO1-P4 meets the DQO for objective estimation only for
the Directive 2008/50/EC and concentrations higher than ap-
proximately 36 ugm™>. Three out of six indoor sensors ful-
fil the DQO for objective estimation set in the Directives
2008/50/EC and 2024/2881 at 12 and 14 pgm™3, respec-
tively, and meet the DQO for indicative measurements for
PM, 5 concentration higher than 24 and 35ugm™ for the
same directives, respectively.

As can be observed in Fig. 3b, the unit-to-unit variabil-
ity of outdoor calibrated sensors is less pronounced, with
some sensors reaching the DQO for indicative measurements
for concentrations higher than 5 to 6 uygm—> (B06-P4, B06-
P7_end) for both directives. Four out of nine calibrated sen-
sors fail to fulfil the DQO for indicative measurements of the
new Directive 2024/2881, in contrast to only two that do not
achieve the DQO for indicative measurements contemplated
in the Directive 2008/50/EC. For the latter directive, most
sensors reach the mentioned DQO at concentrations higher
than 16 ugm=3.

Similar to the indoor AQSSs, the results for outdoor sen-
sors present data from different testing datasets for the same
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Table 3. DQOs specified as the largest REU for short-term concentrations (Directive 2024/2881, 2024; Directive 2008/50/EC, 2008).
Air pollutant DQO M. \ DQO OE.
2008/50/EC  2024/2881 ‘ 2008/50/EC  2024/2881
NO; (1h) 25 % 25 % 75 % 80 %*
PM, 5 (24hY)  50% 35% 100 % 85 %°
4 Calculated as the maximum ratio (3.2) over the uncertainty of indicative measurements (see
Annex V of EU Directive 2024/2881).
b The EU Directives do not include uncertainty for PM» 5 hourly values.
€ According to Annex V of EU Directive 2024/2881: “The uncertainty of objective estimation
shall not exceed the uncertainty for indicative measurements by more than the applicable
maximum ratio and shall not exceed 85 %”.
(a) (b)
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Figure 3. (a) REU for indoor and (b) outdoor PM; 5 sensors against reference concentration. The coloured symbols are different AQSSs
which were deployed in the houses of different patients (BOX-PX), and therefore some AQSSs were through more than one calibration phase.
B03 was calibrated before the deployment in the house of patient P7 (B03-P7-start) and after the deployment (B03-P7-end). The dashed lines
indicate the DQOs for indicative measurements, while the dash-dot lines represent the DQOs for objective estimation (black for EU Directive

2008/50/EC and red for EU Directive 2024/2881).

AQSS. For instance, the AQSS B05 was used by two pa-
tients (P2 and P4) and therefore calibrated twice before each
deployment. The AQSS B03 was used in the houses of three
patients but calibrated four times, including an additional co-
location period after the deployment in the house of patient
P7. In contrast to indoor calibrated sensors, outdoor sensors
exhibit generally consistent REU across different deploy-
ments, as observed by the overlapping points. This consis-
tency suggests that the calibration method may influence the
REU, possibly because the aerosol (liquid paraffin) used in
the particle chamber for calibration does not have the same
composition as the urban dust. The OPC-R1 sensor has been
designed for ambient aerosol monitoring, assuming a refrac-
tive index of 1.5 4i0, and a density of 1.65gmL~! for the
calculation of the PM mass concentration. Additional details
regarding the calibration conditions, the PM; 5 concentration
range, and the calibration coefficients are listed in Table S5.

Examples to illustrate the REUs of indoor and outdoor
NO, sensors are shown in Fig. 4, which contains the re-
sults of the tested calibration models (MLR, SVR, RFR, and
ANN) as well as the influence of the averaging time of the
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training dataset, for 1, 5, 10, and 15 min on the REU. The
DQOs of both Directives 2008/50/EC and 2024/2881 for ob-
jective estimation and indicative measurements of NO, are
also indicated. Note that both directives have the same DQO
for indicative measurements (25 %). The y axis has been lim-
ited to 110 % so that the difference among the models can be
distinguished. In Figs. S3 and S4 the diagrams for all the
other indoor and outdoor AQSSs are shown, respectively.
In addition, Tables 4 and 5 list the concentration in ppb at
which the DQO for indicative measurements (25 %) is ac-
complished for the outdoor and indoor sensors, respectively.

In general, the coarser the averaging time used for train-
ing the data, the lower the REU. However, the longer the
averaging time, the smaller the dynamic range of the input
variables, which can lead to higher uncertainties due to data
extrapolation. Thus, an optimum averaging time should be
used. In our study, we found a 10 min averaging time to be a
good compromise between training the models with enough
data points and reaching the DQO for indicative measure-
ments at an average of 23 ppb for the outdoor NO; sensors. In
Fig. S5, the number of data points for the training of the NO;
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Figure 4. Example of REU for (a) indoor and (b) outdoor NO, sensors for the tested models (in different colours MLR, SVR, RFR and
ANN) at different averaging times (in different symbols 1, 5, 10 and 15 min) against reference concentrations. The dashed line indicates the
DQO for indicative measurements, while the dash-dot lines represent the DQOs for objective estimation (black for EU Directive 2008/50/EC
and red for EU Directive 2024/2881). The DQO for short-term indicative measurements is the same in both Directives.

Table 4. Concentration in ppb at which the DQO for indicative measurements (25 %) is accomplished for the outdoor calibration.

Averaging time  Model B03-P1  B03-P3 B03-P7* BO05-P4 B06-P4 B06-P7 BO03-P6
1 min MLR N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SVR N.A. N.A. N.A. N.A. N.A. N.A. N.A.
RFR N.A. N.A. N.A. N.A. N.A. N.A. N.A.
ANN N.A. N.A. N.A. N.A. N.A. N.A. N.A.
5 min MLR 26 N.A. 7 N.A. 39 N.A. N.A.
SVR 23 27 N.A. N.A. 34 23 21
RFR 22 28 21 N.A. 33 20 21
ANN 24 40 38 N.A. 39 N.A. 28
10 min MLR 17 N.A. N.A. N.A. 29 N.A. 28
SVR 17 23 19 N.A. 29 N.A. 14
RFR 17 22 19 N.A. 24 33 17
ANN 17 25 32 N.A. 28 38 19
15 min MLR 18 N.A. N.A. N.A. 19 N.A. 24
SVR 18 N.A. 26 35 19 21 11
RFR 17 29 N.A. 30 20 N.A. 13
ANN 18 44 N.A. N.A. 18 N.A. 19

N.A.: not accomplished.

*B03-P7 is an outdoor AQSS used for indoor measurements as part of an experiment to test the outdoor calibration methodology for

indoor measurements.

calibration models for the different time resolutions is shown
for the indoor and outdoor sensors. A detailed study about
the effect of 11 temporal resolutions (between 10s and 6 h)
in the performance of NO; sensors can be found in Schmitz
et al. (2025).

For the sensors calibrated in indoor conditions, SVR and
RFR seem to perform better than ANN and MLR. The MLR
trained using data averaged for 1 min performs in most cases
the worst. This could be due to the signal noise, not only
from the sensor but also from the data of the RI used for the
training. Results show that the DQO for indicative measure-
ments (25 %) is achieved with a 10 or 15 min average and
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NO; concentrations larger than approximately 5-22 ppb for
indoor and 10-25 ppb for outdoor AQSSs. The lower REUs
that are achieved during the calibration of AQSSs in indoor
conditions may be due to the controlled conditions, as the
NO; gas was given stepwise and kept constant for 3.5h, as
well as the controlled changes of 7 and RH. This lack of
variability in the calibration data resulted in a low residual
sum of squares (RSS) triggered by model overfitting. Other
authors have also observed better results when the sensors
are calibrated in control conditions as compared to outdoor
calibrations, but they fail later during the field deployment
(Castell et al., 2017). This creates the challenge of calibrat-
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Table 5. Concentration in ppb at which the DQO for indicative measurements (25 %) is accomplished for the indoor calibration.

Averaging time Model BO1-P4 BO1-P5 BO02-P1 B02-P6 B04-P2 BO04-P3
1 min MLR 8 11 N.A. 42 9 11
SVR 3 2 N.A. 15 2 8
RFR 1 - 40 7 - 3
ANN 5 5 N.A. 31 5 7
5 min MLR 7 10 N.A. 27 8 9
SVR 1 14 N.A. 15 - 6
RFR 1 - 60 21 - 2
ANN 4 4 N.A. 22 4 5
10 min MLR 6 10 N.A. 26 8 8
SVR 1 1 N.A. 11 1 3
RFR 1 - 39 25 - 1
ANN 3 4 N.A. 21 4 5
15 min MLR 7 9 N.A. 22 7 7
SVR 1 4 N.A. 4 3 3
RFR 1 - N.A. 20 - 3
ANN 3 4 N.A. 19 4 4

N.A.: not accomplished.

The cells marked with (=) do not have a value for the REU as Ugelq (y,-) cannot be calculated with Eq. (S6) in the

Supplement due to the negative value of u2 (i) (Eq. S1). This is caused due to the extremely low RSS. Near-zero RSS
are an indicator of the overfitting of the RFR in the indoor calibration models.

ing indoor AQSSs for a wide range of NO, concentrations
and meteorological parameters without causing model over-
fitting.

3.1.2 Target diagrams

The target diagrams for the testing data of the indoor and
outdoor PM3 5 sensors are shown in Fig. 5. Two main results
can be inferred from these diagrams: (i) different outcomes
are obtained with the same sensor for each calibration period,
as indicated by the symbols with the same form and colour
and (ii) the results of indoor PM, 5 sensors remain within
the unit circumference, being most of them even within the
inner circle, which is 50 % more stringent. In contrast, four
out of seven outdoor PMj; 5 sensors do not perform well
enough to reach the inner circle, and most of them remain
outside the unit circumference. The differences between the
indoor and the outdoor sensors’ performances can be at-
tributed to the same factors discussed in Sect. 3.1.1. Other
researchers have obtained similar results, with PM; 5 sen-
sors falling within and outside the target circle without spe-
cific patterns (Borrego et al., 2016). The question of whether
the prototype of the dryer unit helped to improve the perfor-
mance of the PM 5 sensors of the outdoor AQSSs may arise
after analysing this outcome. In Chacén-Mateos et al. (2022),
the weaknesses and strengths of the thermal dryer used for
this study were discussed in detail. In that study, it was con-
cluded that the dryer was causing an excess of heating and
therefore an underestimation of PM; 5 concentrations com-
pared to the RI. In this regard, we have developed a new pro-
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totype to keep the air temperature inside the dryer at less than
40°C.

Figure 6 illustrates two examples of target diagrams for
the tested models for indoor and outdoor NO, sensors. The
remaining results for indoor and outdoor NO; sensors are
available in Figs. S6 and S7, respectively. All the indoor
NO; sensors fall within the performance goal (£0.5) inde-
pendently of the average time and the model used, indicating
high accuracy (low mean bias or systematic error) and high
precision (low CRMSE or random error) for all the models.

The models for correcting NO; sensor readings outdoors
show more discrepancies among the models and averaging
times. Models trained using 1 min averaging time show the
worst performance, followed by the 5 min average. For most
of the models, the results of the target diagrams for 1 and
5 min averages do not reach the performance target (£0.5).
Higher averaging periods like 10 or 15 min usually reach the
inner circle. In terms of models, SVR and RFR tend to out-
perform MLR and ANN achieving higher accuracy and pre-
cision. In all the cases, the results are situated on the left
side, indicating that the standard deviation of the sensors was
lower than the standard deviation of the RI. This may indi-
cate a systematic underestimation of the actual variability by
the calibration models.

3.1.3 Performance metrics
Figure 7 presents the statistical results for various metrics

(orthogonal slope and intercept, model efficiency, MAE, and
Pearson correlation coefficient) of the models tested for in-
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Figure 5. Target diagrams for (a) indoor and (b) outdoor PM, 5 sensors. The coloured symbols are different AQSSs which were later
deployed in the houses of different patients (BOX-PX), and therefore some AQSSs were through more than one calibration phase. BO3 was
calibrated before the deployment in the house of patient P7 (B03-P7-start) and after the deployment (B03-P7-end).
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Figure 6. Example of target diagrams for (a) indoor and (b) outdoor NO, sensors for the tested models (in different colours MLR, SVR,
RFR and ANN) and different averaging times (in different symbols 1, 5, 10 and 15 min).
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door and outdoor NO; sensors at different averaging times.
Consistent with previous findings, the indoor models out-
perform the outdoor models, probably due to the more con-
trolled laboratory conditions. Notably, the model efficiency
for all indoor models is nearly 1, indicating an almost perfect
match to the RI data. When comparing different time aggre-
gations, it is evident that higher aggregation intervals result in
the orthogonal slope approaching 1 and the orthogonal inter-
cept approaching O for all the tested models. This is attributed
to the reduction in sensor noise and increased data stability
with higher time aggregation. However, when comparing the
MEEF for 10 to 15 min time aggregations, no improvement is
observed; instead, there is a decrease in performance across
all models. This decline is probably due to the excessive re-
duction in the number of training data points, with approxi-
mately 35 % fewer data points (see Fig. S5). This trend is also
observed in the MAE, which decreases from an average of
10 ppb across all models with 1 min averaging time to S ppb
using 10 and 15 min averaging times for outdoor NO; sen-
sors. The improvement in the indoor NO; sensors is less no-
table. The Pearson correlation coefficient shows an improve-
ment between 1 and 5 min averaging time but remains stable
thereafter for both indoor and outdoor sensors. In general,
MLR shows the worst performance across the tested models.
SVR and RFR exhibit the best performance, closely followed
by ANN.

Figure 8 presents the performance evaluation metrics for
the indoor and outdoor PM; 5 sensors. The calibration fac-
tor (B1) and calibration constant (By) for the indoor sensors
are closer to 1 and 0, respectively, compared to the outdoor
sensors. Notably, almost all the sensors exhibit a calibra-
tion constant greater than zero (Bp > 0). This constant de-
viation, or displacement error, may be attributed to the dif-
ferent limits of detection of the OPC-R1 (0.35 um) compared
to 0.30 um of the RI. As mentioned in Sect. 2.3.1, the indoor
sensors were calibrated using an aerosol generator and lig-
uid paraffin. However, these particles do not accurately rep-
resent the heterogeneity of the particles present in the indoor
air. This discrepancy probably explains why the indoor sen-
sors perform better across most metrics except for the MAE,
as higher concentrations (median 124 uygm™>) were gener-
ated during the calibration. In contrast, the highest median
PMj; 5 concentration measured during the outdoor calibration
is 35 ugm™3. Overall, the calibrated indoor and outdoor sen-
sors exhibit a median FB of less than 0.3, which is within
the acceptable limits, and Pearson correlation coefficients of
more than 0.75.

3.2 Sensor data validation during deployment

3.2.1 Comparison with the NO, measurements of the
diffusion tubes

Figure 9 presents the results of the discontinuous NO, mea-
surements using diffusion tubes for the indoor and outdoor
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microenvironments during the deployment in the houses of
the patients, compared to the results of the tested sensor cal-
ibration models. Each sampling period spans 14 or 15d, ex-
cept for patient P4, whose period extended to 19d. No dif-
fusion tubes could be installed in the house of patient P1
due to a delay in the delivery. No outdoor data in the house
of patient P2 are shown as they were lost due to a storm.
Considering the measurements of the diffusion tubes as the
“true value”, it is evident from Fig. 9 that the SVR model
predicts indoor NO; poorly, with concentrations higher than
18 ugm~3 in all the cases. This occurs despite achieving sim-
ilar levels of uncertainty and better performance metrics than
other models for the same averaging time during the test-
ing period (see Sect. 3.1). RFR tends to overestimate the re-
sults, particularly for the indoor concentration measured in
the house of patient P6 (average of both periods 35 uygm=3 of
NO; compared to 8 uygm ™3 measured with diffusion tubes).
These discrepancies suggest that SVR and RFR overfitted
the training data. The negative average values of the MLR
model deployed in the house of patient P6 indicate a sig-
nal drift. Both SVR and RFR also tend to overestimate out-
door NO» concentrations, although this tendency is less pro-
nounced compared to indoor predictions. The MLR model
sometimes overestimates and sometimes underestimates the
concentrations. ANN appears to be the most robust model for
both indoor and outdoor sensors, even though it occasionally
overestimates the actual NO, concentrations (up to 5 ugm™3
more than the diffusion tubes).

Figure 9a also shows the results of the AQSS calibrated
outdoors but used indoors in the house of patient P7. When
analysing closely the outcomes, we can observe that the ML
models overestimate the results compared to the results of
the diffusion tubes but for SVR and RFR less than the indoor
results of the other patients, as the data is, in this case, not
overfitted. The ANN is the model that best agrees with the
results, showing 2 and 3 uygm™> more than the NO, results
of the diffusion tubes for the first and the second period, re-
spectively. The MLR underestimates the NO, concentration
in the first period in the house of patient P7 and overesti-
mates in the second period. Note that the warm-up period of
the NO» sensor was, in this case, 3 d longer than usual.

Overall, this comparison underscores the importance of
not relying solely on pre-deployment performance evalua-
tions. Reference values during deployment are crucial for
verifying sensor performance. In this context, diffusion tubes
have proven to be a simple and effective tool to verify cali-
brated sensor data.

3.2.2 Comparison of outdoor sensors with air quality
monitoring stations

As part of the data validation process, the measurements
from the outdoor AQSSs were compared with NO, and
PM; 5 data from the governmental air quality monitoring sta-
tions in the city and our measurement station at Hauptstitter
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Figure 7. Boxplots of various performance evaluation metrics: (a) ortho

gonal slope, (b) orthogonal intercept (in ppb), (¢) model efficiency

(MEF), (d) MAE (in ppb) and (e) Pearson correlation coefficient, for different tested models (ANN, MLR, RFR and SVR) for the different
time aggregations (1, 5, 10 and 15 min) applied to the testing data for indoor and outdoor NO; sensors.

Street. Figure 10 presents the results of the deployment of
the AQSS placed outside the window of patient P1 and the
nearest monitoring station. Additional results are provided in
the Supplement (Figs. S8-S13). The calibration models for
NO; sensors were trained with 10 min time aggregations.
The data of the monitoring station shown in Fig. 10 are
located at Arnulf-Klett-Platz, 1.1km from the AQSS loca-
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tion, near a busy road. In contrast, the outdoor AQSS was
installed at the window of a second-floor apartment adjacent
to a secondary road. Due to the different locations, compar-
isons should be approached with caution, although similar
temporal patterns in the pollution concentration are expected
due to the shared urban and rural background concentrations.
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uncertainty of the diffusion tubes (18.4 %).

Different trends in the NO, concentrations of the tested
models are shown in Fig. 10a. Notably, the RFR model
underperforms, exhibiting excessively constant NO; lev-
els over extended periods. This suggests that RFR is not
a suitable calibration model for our study. Conversely,
the SVR model fails to detect NO, concentrations below
20 ugm—3, probably due to its limited extrapolation capa-
bility. The ANN model generally demonstrates satisfactory
performance. Both the ANN and MLR models display trends
that closely match the expected concentration trends. How-
ever, for other patients, MLR prediction reaches negative
peaks up to —100 ugm~> (see Fig. S11). The negative peaks
occurred when T was above 25 °C. The calibration period
covered a T and a RH range of 2-25 °C and 40.8 %—77.4 %,
respectively. However, during the measurement campaign in
the house of patient P6, the NO; sensor was exposed to T’
up to 31 °C and RH as low as 8 %, which were far beyond
the ranges covered during the calibration period. The MLR
model must be used cautiously for 7" above 25 °C, as the in-
fluence of T and RH on the sensor signal is not linear (Samad
et al., 2020).
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Figure 10b shows that the PM; 5 sensor equipped with
a low-cost dryer and calibrated using ULR closely follows
the trend of the nearby reference station. A detailed exam-
ination reveals that the PM; 5 readings were more accurate
at the beginning of the deployment period compared to the
end, when the calibrated sensor reported higher concentra-
tions than those from the reference station. Although initially
unexpected, this discrepancy could be attributed to the highly
localized nature of PM concentrations. The placement of the
AQSS in a building corner, which disrupts airflow, and its
proximity to a tram line and the entrance of a hospital park-
ing, might result in higher concentrations. If there is one field
where sensors have proven valuable, that is in identifying
new pollution hotspots (deSouza et al., 2022).

A highlight from Figs. 10b and S13 is that all the PM 5
sensors show similar trends compared to the monitoring sta-
tion at Hauptstitter Street (0.40 < R? <0.93), even during
the hours when RH is higher than 70 %. The overestimation
of the PM concentration by the sensors at high RH due to
the hygroscopic growth of particles is avoided thanks to the
thermal dryer.
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3.2.3 Metadata for qualitative sensor data validation

In this section, we present an example of how the use of
metadata, specifically the activity and window status logs,
can be used as a complementary tool to validate and un-
derstand sensor data in places without RI. Figure 11 shows
the indoor NO; and PM> 5 concentrations during the second
week of deployment in the house of patient P2. In addition,
the different activities on an hourly basis and the status of the
windows in the living room where the AQSS was located are
shown. The NO; sensor readings have been corrected using
the ANN model based on 10 min aggregation time.

As illustrated in Fig. 11, pollution peaks can be correlated
with specific activities at home. The information collected in
the logbook is invaluable for interpreting sensor data. It al-
lows for the detection of anomalies and helps in understand-
ing the source of pollution peaks. For instance, in Fig. 11c,
there is a noticeable decrease in PM> 5 concentration during
sleeping hours and an increase during activities like exercis-
ing (on 24 January 2020) and cooking (on 24 and 27 January
2020). For NO3,, the activity log is especially useful when
considering window status, as NO» typically originates from
outdoor sources in houses with electric stoves. This is ev-
ident in Fig. 11b, where some peaks occur when the win-
dow is open or tilted. A deeper analysis of the information
acquired in the log books and the relationship with the in-
door air quality in the houses of the patients can be found in
Chacén-Mateos et al. (2024). Other studies, such as that by
Novak et al. (2024, 2023a, b) have proposed methodologi-
cal frameworks that more systematically integrate metadata
from activity logs with air quality sensor data.

4 Discussion
4.1 Evaluation of the NO, sensors

4.1.1 Indoor NO; sensors

The results of this study indicate that using indoor co-
location and artificially generated NO, to correct the signal
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of electrochemical sensors for NO, may not be effective for
the tested models as it can cause model overfitting. Calibrat-
ing indoor sensors presents particular challenges due to two
main factors: the low concentrations and the need to train
models across different spans of concentrations, 7', and RH.
Although the testing data showed nearly perfect results after
training the sensor data with artificially generated NO; and
controlled changes of 7 and RH, applying the model to the
sensor data deployed in the patients’ homes yielded signifi-
cantly different outcomes. Some models, like SVR and RFR,
struggled to accurately predict the NO; concentrations in the
new indoor environment as they overfitted the training data.

We conducted an experiment to test whether an AQSS for
indoor use could be calibrated in outdoor co-location to bet-
ter learn real NO, concentration and meteorology patterns.
Although the calibration models tended to overestimate con-
centrations compared to the diffusion tubes, the SVR and
RFR models did not exhibit overfitting, unlike what was ob-
served with the indoor calibration. Note that in Stuttgart, out-
door NO; concentrations are generally higher than indoor
concentrations, and the models are not adept at extrapolat-
ing to lower concentrations. That represents a challenge for
using an outdoor co-location to calibrate a NO;, sensor for
indoor measurements.

Other solutions for indoor sensor calibration could be a
hybrid calibration, like the Enhanced Ambient Sensing En-
vironment (EASE), which combines the advantages of lab-
oratory calibration with the increased accuracy of field cali-
bration (Russell et al., 2022). To date, this approach has only
been tested with multilinear regression models and in out-
door environments. Further research is needed to determine
whether it is suitable for indoor environments and the train-
ing of ML algorithms. Another possible solution is the cali-
bration of the sensors in occupied homes (Suriano and Penza,
2022) or exposing the sensors to cooking events (Tryner et
al., 2021). However, these studies did not deal with the re-
colocation of the monitors after the calibration in a new envi-
ronment. Therefore, further research is needed to expand our
knowledge of calibration transfer in indoor environments for
electrochemical sensors.

https://doi.org/10.5194/amt-18-4061-2025



M. Chacén-Mateos et al.: Calibration and performance evaluation of air sensors

4077

NO, (Mg m™)

Activity

. Cleaning
. Cooking
Eating
D Exercising
_ Garden or Balcony
l: Not Home
E Reading
. Sleeping
. TV or Radio
. Unknown
D Visitor

24-01-20 25-01-20 26-01-20
00:00 00:00 00:00

27-01-20
00:00

28-01-20
00:00

Date (dd-mm-yy hh:mm)

29-01-20 30-01-20
00:00

31-01-20
00:00 00:00

o

NO, (ug m™)
B

Window Status
Window Closed
Window Open

Window Tilted

%

% =
P 20, i
2
%0

o,
%
0,0

—_
(3
~

°
20
2,72
0

2, I,
O

LA
00 0

Date (dd-mm-yy hh:mm)

N 2
3 3

PMys (ug m™)

N
S

24-01-20 25-01-20 26-01-20 27-01-20
00:00 00:00 00:00 00:00

(d)

28-01-20
00:00

Date (dd-mm-yy hh:mm)

Activity

. Cleaning

.] Cooking

. Eating

D Exercising

. Garden or Balcony
7 Not Home

[ Reading
Sleeping
. TV or Radio
. Unknown
D Visitor

31-01-20
00:00

5 @
3 3

PMs (ug m™)

»
S

Window Status
Window Closed
Window Open

Window Tilted

%,

0,
%8
2,2 o
.000 2

>,
2,2
Q0

%
o,
Q.
2,
200

Date (dd-mm-yy hh:mm)

3

S
2050

2,2
90

Figure 11. Hourly time series of (a) indoor NO, concentration and activities, (b) indoor NO, concentration and window status, (c) indoor
PM, 5 concentration and activities and (d) indoor PM» 5 concentration and window status during 1 week in the house of patient P2.

4.1.2 Outdoor NO; sensors

The calibration of NO; sensors through a co-location with
RI outdoors is currently a common procedure (Karagulian
et al., 2019). Many studies have tested different regression
and ML models (Spinelle et al., 2015; Cordero et al., 2018;
Zimmerman et al., 2018; Malings et al., 2019). Our results
on the performance evaluation for the outdoor NO; sensors
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are similar to the outcomes from Bigi et al. (2018) obtained
using 10 min averages for MLR, SVR and RFR and to those
from Apostolopoulos et al. (2023) for the ANN model (note
that their results are based on hourly values).

One limitation of our study was the lack of ozone data.
It has been demonstrated that the sensor B43F has cross-
sensitivity to ozone despite having an ozone filter and that
the influence of ozone increases as the filter saturates (Li
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et al., 2021). Knowing this, we experimented with adding
ozone data from the air quality monitoring station located
at Marienplatz (Stuttgart) to train the calibration models of
BO03-P1 and BO05-P7, representing the cold and the warm
months, respectively. The results of the error metrics are
shown in Fig. S14. Even though the results of the R? and
RMSE seem to improve in most cases adding ozone data,
the results of the MAE show the opposite trend in the cold
months (P1). Moreover, the difference in the RMSE results
during the warm month (P7) is minimal for most of the mod-
els except for MLR. Therefore, we did not further investi-
gate the addition of ozone data for the rest of the data. Fur-
thermore, ozone concentrations are higher in summer months
and our measurement campaign ran from December to May,
i.e. mainly in winter months when ozone concentrations are
lower. In addition, studies have shown that the performance
degradation of the ozone filter starts 200d after sensor un-
packing (Li et al., 2021), which is approximately the num-
ber of days that our campaign lasted. Nevertheless, for future
studies, we recommend adding an ozone sensor so the cross-
sensitivity can be corrected for all seasons.

Moreover, we would like to highlight that incorporating
data from a neighbouring station as an input feature for train-
ing the calibration models was identified as a “questionable
parameter” by Hagler et al. (2018), as it may compromise
data integrity, blurring the line between an actual measure-
ment and a model prediction (Hayward et al., 2024).

4.1.3 Evaluating averaging times

The choice of the temporal resolution significantly affects the
quality of training data for NO; sensor calibration models.
Even if the number of data points using a temporal resolu-
tion of 1 min was between 28 000 and 5100 for indoor cal-
ibrations and between 14 400 and 5500 for outdoor calibra-
tions (see Fig. S5), these high-resolution data contained more
noise, which negatively affected the training quality. Con-
versely, using coarser resolutions (e.g. hourly averages) may
excessively reduce the number of training data points avail-
able and the concentration range covered in the calibration.
Our study found that using a 10 min averaging period over a
2 week calibration phase (comprising between 400 and 2500
data points) resulted in a lower MAE for NO; sensors. How-
ever, the difference compared to a 15 min averaging period
was small across most metrics, including target diagrams,
REUs and the comparison with the NO, concentrations mea-
sured by the diffusion tubes. Although some researchers have
employed hourly averages (Cai et al., 2009; Wei et al., 2020;
Goulier et al., 2020), others have also identified a 10 min av-
erage as the optimal (Paas et al., 2017; Bigi et al., 2018).
In contrast, Sahu et al. (2021), in their analysis of the effect
of temporal data averaging, found that data averaged every
S min provided better results. All in all, the selection of an
appropriate averaging time depends largely on the quantity
of available training data and must be carefully selected.
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4.1.4 Evaluating calibration models for NO, sensors

The results of our study show that ANN is the most robust
model for transferring the calibration parameters of the sen-
sors to be used in another place, either indoors or outdoors,
using the proposed calibration methodology. Even though
RFR and SVR show better results for the metrics RMSE,
MAE, and Pearson correlation coefficient and similar REU
and target diagram results to ANN and MLR during the
calibration phase prior to deployment, the comparison with
the diffusion tubes during the measurement campaign in the
houses of the patients showed that SVR and RFR overes-
timated in most cases the NO;, concentrations. The MLR
showed the worst performance among the tested models.

4.2 Evaluation of the PM; 5 sensors
4.2.1 Indoor PM; 5 sensors

Validating PM, 5 sensor measurements indoors presents sig-
nificant challenges. While activity logs provide invaluable in-
formation regarding events that might cause elevated PM3 5
concentrations, it remains unclear without having a RI in the
houses, whether sensors can accurately quantify these peaks.
This uncertainty may be particularly problematic in short-
term exposure studies, where precise measurement of peaks
is critical. However, in long-term studies, short-duration
peaks contribute less to the overall concentration average,
thus presenting a lesser concern.

The results of this study suggest that using test aerosols
like liquid paraffin in a particle chamber may not be an op-
timal technique for PM sensor calibration. This is probably
due to discrepancies between the density assumed in the sen-
sor’s internal algorithm and the actual density of the gener-
ated particles.

Our study also explored the use of an outdoor calibrated
AQSS intended for indoor deployment. However, due to the
lack of an RI indoors during deployment, we cannot conclu-
sively determine if this method outperformed indoor calibra-
tions carried out in the laboratory. Previous research, such as
the study by Koehler et al. (2023), suggests that calibrations
using ambient outdoor air data can enhance the data quality
of indoor sensors compared to using manufacturer-provided
calibrations. Nonetheless, the composition and concentration
ranges of PM indoors can significantly differ from those of
outdoor air, which may affect the correct performance of the
sensor calibration. Further research is necessary to evaluate
various calibration methods for indoor sensors and to under-
stand how different PM compositions influence sensor per-
formance.

4.2.2 Outdoor PM; 5 sensors

One of the biggest concerns about PM sensor measurements
outdoors is the effect of hygroscopic growth or fog. The use
of either physical air preconditioning or data post-processing

https://doi.org/10.5194/amt-18-4061-2025



M. Chacén-Mateos et al.: Calibration and performance evaluation of air sensors

considering the RH is a must in regions where high rela-
tive humidity and hygroscopic aerosols are expected, as it
is the case in Stuttgart. For this project, a low-cost dryer unit
was designed to avoid the overestimation of PMj; 5 concen-
trations.

The results of the comparison of sensor data with data
from local monitoring stations in Stuttgart in the vicinity of
the houses of the patients indicated that the PM; 5 sensors
showed a similar trend even when RH was higher than 70 %.
Given the fact that a simple linear regression applied to the
outdoor PMj 5 sensors with a dryer shows plausible results
when compared to the nearest measurement stations, this
method can be used to simplify the models for PM calibra-
tion. However, it is important to control the drying tempera-
ture as temperatures higher than 40 °C could evaporate semi-
volatile organic compounds and trigger the underestimation
of the PM mass concentration (Chacon-Mateos et al., 2022).

4.3 Do the sensors fulfil the data quality objectives?

Previous studies have indicated that while commercially
available AQSSs often meet the criteria for indicative mea-
surements of PM» 5, NO; sensors frequently struggle to ful-
fil the DQO (Castell et al., 2017). This challenge prompted
the design and evaluation of our own AQSSs. However, the
rapid advancement in sensor technology outpaces scientific
literature, making it difficult to keep up with the latest devel-
opments.

Regarding NO, sensor units, many researchers have ap-
plied calibration models that account for parameters such as
RH, T, and ozone data. These models have demonstrated
that the DQO for indicative measurements can be achieved
for NO, concentrations above 20 ppb (Spinelle et al., 2015;
Bigi et al., 2018; D’Elia et al., 2024). Our findings align with
these results, showing that outdoor NO; sensors meet the
DQOs of both EU Directive 2008/50/EC and 2024/2881 for
indicative measurements between 10 and 25 ppb, depending
on the specific sensor unit and the averaging time used. Sen-
sors calibrated in indoor conditions performed even better,
achieving the DQOs at even lower concentrations. However,
we have also argued that the use of a GPT system to gen-
erate controlled NO; concentrations may not be appropriate
for training ML models intended for deployment in indoor
environments.

It is evident that even after calibration, the “hardware”
of electrochemical sensors has not reached enough maturity
yet for applications requiring low measurement uncertainty,
especially for low concentrations, making the measurement
very dependent on the “software” used to correct the data (re-
gression models, ML, etc.). Recent advancements in sensor
units include onboard temperature monitoring near the elec-
trical cell, which appears highly promising to improve the
accuracy of the calibration models.

Our research also highlights the effect of the averaging
time on the REUs of calibrated sensors. Generally, coarser
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averaging times improve the likelihood of meeting the DQO
at lower concentrations, though this often reduces the con-
centration range covered during calibration. Moreover, ML
models may not predict accurately outside the concentration
range for which they were trained.

For PM; 5 measurements, both DQOs are stricter in the
new EU Directive 2024/2881, from 50 % to 35 % for in-
dicative measurements and from 100 % to 85 % for objec-
tive estimation. Considering that, the DQO for indicative
measurements after an indoor sensor calibration is typically
achieved at concentrations above 23 and 35ugm™ for the
Directives 2008/50/EC and 2024/2881, respectively. After
field calibration of the outdoor units, the DQO for indica-
tive measurements is achieved at concentrations higher than
16 ugm~2 under EU Directive 2008/50/EC. However, four
out of nine sensors fail to meet the DQO criteria of EU Direc-
tive 2024/2881. Moreover, a significant unit-to-unit variabil-
ity exists. This variability has been noted in previous studies,
such as those on the SDS011 sensor (Liu et al., 2019).

In summary, while the tested sensor units generally fulfil
the DQOs for higher concentrations, the higher REU of the
sensors at lower concentrations may hinder their application
in epidemiological studies. Despite limitations at low pollu-
tant levels, calibrated AQSSs are a promising tool to increase
the ubiquity of epidemiological studies for low- and middle-
income countries or regions where higher air pollutant con-
centrations are expected, where more epidemiological stud-
ies are needed (Amegah, 2018). Nevertheless, it is important
to acknowledge that even RI are not free from uncertainties
(Diez et al., 2024). Regular quality control is essential for all
air quality monitoring devices, whether they are gold stan-
dard, reference-equivalent, or sensor-based.

4.4 The real cost of “low-cost” sensors

In this study, we designed two AQSSs costing approximately
EUR 400 for indoor and EUR 500 for outdoor measurements,
excluding labour costs. Despite the relatively low acquisition
cost compared to a RI, the implementation and maintenance
of the AQSSs are not necessarily low-cost. Moreover, the use
of AQSSs in health studies requires the acquisition of RI for
their calibration, as well as additional time for co-location,
which must be accounted during the planning phase.

Note that the term “low-cost” varies significantly by re-
gion, and we have intentionally avoided its use in this
manuscript. Even though we acknowledge that the term low-
cost or the abbreviation “LCS” has helped to differentiate
them from traditional air monitors and form a recognizable
community, we recommend that future publications also re-
frain from using low-cost or LCS and instead use “air quality
sensors” or “AQS”.
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5 Conclusion

In this study, we evaluated the performance of the OPC-
R1 and the B43F sensor models for measuring PM> 5 and
NO,, respectively, for their use in health studies across both
indoor and outdoor microenvironments. For that purpose,
we used REUs, target diagrams, and common error met-
rics. A central research question concerned whether cali-
brated sensors could meet the DQOs defined in the EU Direc-
tive 2008/50/EC and in the recently published EU Directive
2024/2881, and if so, at which concentration levels.

The co-location phase was conducted 2 weeks before the
deployment, where the data from RI was used to calibrate the
PM, 5 sensors with ULR and test regression (MLR) and ML
models (RFR, SVR and ANN) to calibrate the NO, sensors.
The results show that the REUs depend on the temporal aver-
age (i.e. the number of data points) used during the training.
Generally, coarser averaging times (10 and 15 min) improved
the likelihood of meeting the DQO at lower concentrations,
while high resolutions (1 and 5 min) led to higher REUs due
to the effect of the sensor noise in the training data.

The validation of the sensor data during deployment in the
houses of the patients was performed using NO, diffusion
tubes, patient logbooks with activity information and win-
dow status, as well as data from the monitoring stations in
Stuttgart. Even though ML seems a promising tool in the
field of AQS, the training data acquired by exposing the sen-
sor and the co-located RI to artificially generated NO, for
indoor calibration did not yield realistic results (compared to
the NO; measurements of the diffusion tubes) for some of
the ML models (RFR and SVR). Furthermore, performance
evaluation revealed that calibrating PM sensors using liquid
paraffin as a test aerosol is problematic, owing to mismatches
between the assumed particle density in the sensor’s internal
algorithm and the actual density of the generated aerosol.

Our results highlight that the environmental conditions
(e.g. temperature and relative humidity ranges) and concen-
tration levels present in the training phase are critical for en-
suring reliable data when sensors are relocated. The choice of
temporal averaging used to train the models directly affects
the range of concentrations, temperatures, and RH covered
and, consequently, it has a direct effect on the performance of
the calibration model. Moreover, the integration of metadata,
such as activity logs, window status, data from official moni-
toring stations, and diffusive samples, was proved a good tool
for validating and interpreting sensor data.

There remains a need for more comprehensive sensor eval-
uations that extend beyond basic statistical metrics such as
R? and MAE. Tools like REUs and target diagrams add sig-
nificant value by enhancing trust and transparency in sensor
data. Future work should also prioritize assessing the trans-
ferability of calibration models, particularly those developed
in indoor co-location settings, to enable the integration of re-
liable and traceable air quality sensor data in future health
studies.
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