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Abstract. A novel disaggregation algorithm for commercial
microwave links (CMLs), named CLEAR (CML Segments
with Equal Amounts of Rain), is proposed. CLEAR utilizes a
multiplicative random cascade generator to control the split-
ting of link segments, with the generator’s standard deviation
dependent on the rain rate and segment length. Spatial con-
sistency during the splitting process is maintained using rain
rate information from neighboring CMLs. CLEAR is evalu-
ated on a network of 77 CMLs in Prague. The performance
is assessed first using simulated rainfall fields and second
through a case study with real attenuation data from the net-
work to demonstrate its applicability in real-world scenarios.
Results from the virtual rainfall fields indicate good overall
performance, including the generation of realistic spatial pat-
terns and effective estimation of maximal and minimal rain
rates along CML paths. The stochastic nature of CLEAR al-
lows it to represent uncertainty as an ensemble of rain rate
distributions along CML paths. However, the generated en-
sembles significantly underestimate overall variability along
the paths. Additionally, the case study on real data highlights
challenges associated with uncertainties in CML quantitative
precipitation estimates, which are common across all meth-
ods. In conclusion, CLEAR contributes to generating more
representative rainfall distributions along CMLs, which is
critical for spatial reconstruction of rainfall fields from path-
integrated CML data. It also has the potential to reduce er-
rors in CML quantitative precipitation estimates caused by
assuming uniform rain rates along CML paths.

1 Introduction

Commercial microwave links (CMLs) are point-to-point ra-
dio connections in cellular networks. They typically operate
at frequencies in the order of 10–90 GHz (Chwala and Kunst-
mann, 2019; Fencl et al., 2020) where electromagnetic waves
are known to be attenuated by raindrops. This attenuation can
be measured and used to provide path-averaged rainfall esti-
mates (Leijnse et al., 2007; Messer et al., 2006).

CMLs are an appealing source of opportunistic rainfall
measurements. According to Ericsson (2019), there are about
5 million CMLs worldwide, including sparsely gauged re-
gions and developing countries. The large coverage, high
density in urban areas, and low costs of operation are clear
advantages over traditional rain gauge and radar networks.
However, the path-integrated nature of CML data also poses
some challenges. For example, if one wishes to retrieve spa-
tially representative rainfall estimates (e.g., 2D maps), the
path-integrated data from the CMLs first need to be trans-
formed to point data and interpolated to a regular two-
dimensional Cartesian grid. The most straightforward way
to obtain such a map is to reduce each CML observation
into a single-point measurement located at the center of the
CML path and subsequently interpolate these point data us-
ing kriging or inverse distance weighted (IDW) interpolation
(Graf et al., 2020; Overeem et al., 2013). Unfortunately, pre-
vious research has shown that due to the large spatial and
temporal variability of rain, such an approach can lead to
large biases and unrealistic rainfall distributions, especially
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for longer CMLs of several kilometers in length and during
heavy, localized rain showers.

Over time, several alternative solutions to the rainfall re-
construction problem from CML data have been proposed.
Tomographic reconstruction methods (Cuccoli et al., 2013;
Giuli et al., 1991; Zinevich et al., 2008) offer the advantage
of directly handling path-averaged rainfall data. Another ap-
proach, random mixing, achieves this by conditioning ran-
dom fields with a spatial dependence structure modelled by
copulas (Haese et al., 2017). However, in both cases optimal
performance requires a model of the underlying rainfall field,
which is often unavailable. Following a different approach,
Goldshtein et al. (2009) suggested an iterative reconstruction
algorithm based on IDW interpolation where each CML is
represented by a set of equally spaced points. The distribu-
tion of the rainfall rates along the control points is then it-
eratively estimated from observations of neighboring CMLs,
until some kind of convergence is reached. Both tomographic
and iterative IDW algorithms are computationally efficient,
with decent performances for slowly varying rainfall fields
and a more or less regular network of CMLs. However, their
performance strongly depends on CML topology (e.g., link
density, lengths, frequencies and orientations) and rainfall
variability. So far, no convincing solution has been proposed
to address the issue of rainfall intermittency (i.e., the fact that
it may not rain over the entire CML), which is a big problem
for longer CMLs and during heavy, localized rain showers.
In those cases, both tomographic and IDW-based algorithms
are likely to predict highly unrealistic spatial structures and
distributions with large outliers and uncertainties.

This paper addresses this issue by proposing a novel dis-
aggregation technique based on random cascades named
CLEAR (CML segments with equal amounts of rain).
CLEAR redistributes rainfall amounts along CML paths over
smaller and smaller scales by means of a discrete, conserva-
tive multiplicative random cascade. The approach is inspired
by the EVA (Equal-volume area) cascade by Schleiss (2020)
for disaggregating spatially intermittent rainfall fields. Dur-
ing the CLEAR cascade, each CML segment is split into two
new segments of different path-lengths but identical path-
integrated rainfall. Random cascades have been extensively
used to downscale time series and spatial fields of rain (Mol-
nar and Burlando, 2005). However, to our knowledge, this is
the first time that the formalism is applied to path-averaged
data from CMLs. Because CLEAR inherits the main features
of the EVA cascade model, it should be well suited to re-
produce the highly variable rainfall distributions seen along
CMLs, including its intermittency. Furthermore, the stochas-
tic nature of the cascade makes it possible to quantify the un-
certainty related to the spatial redistribution of rainfall rates
along CMLs.

As with any random cascade model, the performance of
CLEAR strongly depends on the characteristics of the un-
derlying cascade generator model. Hence, different ways
to model and estimate the generator model based on high-

Figure 1. Map of CMLs in Prague used for the analysis, together
with the rain gauges used for bias-correcting weather radar rainfall
estimates over the area. CML 9 and 63 are highlighted as exam-
ples discussed in the Result section. © OpenStreetMap contributors
2023. Distributed under the Open Data Commons Open Database
License (ODbL) v1.0.

resolution virtual rainfall fields are proposed and discussed.
In addition to the simulation experiments, we also report on
the results obtained for a case study in Prague (CZ), which
we use to highlight the strengths and weaknesses of CLEAR
compared with other approaches. For simplicity, the scope is
limited to the methodological development of CLEAR and
its evaluation on selected studies while other important is-
sues related to the spatial interpolation and final reconstruc-
tion of 2D rainfall fields from CML data are ignored. Broader
validation using larger and more diverse rainfall and CML
datasets as well as additional comparisons to other disaggre-
gation algorithms is also beyond the scope of this paper.

The rest of this paper is structured as follows: The Sect. 2
describes the rainfall and CML data used in this study, Sect. 3
describes the algorithm and explains how its performance
is evaluated. Section 4 compares the results obtained with
CLEAR to the benchmark by Goldshtein et al. (2009) and
discusses the strengths and weaknesses of the algorithm on
selected cases studies. Finally, the results and limitations of
the algorithm are critically reviewed and contextualized in
the discussion and conclusion sections.

2 Data

CLEAR is tested on a real-world topology of 77 CMLs form-
ing a telecommunication backhaul operated by T-Mobile, CZ
in Prague (Fig. 1). First, simulated rainfall fields are used to
derive rain rates along a CML path. Second, real attenuation
data from the same set of 77 CMLs are used as a case study
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to illustrate the strengths and weaknesses of the approach in
real-world applications. All essential data and codes under-
lying this publication are openly available on 4TU Research
data (Fencl and Schleiss, 2025).

2.1 Simulated rainfall fields

Virtual rainfall fields for three events with varying intensi-
ties, durations and spatial variability were generated follow-
ing the method proposed by Schleiss et al. (2012). In this
method, fields of drop size distribution (DSD) are generated
using a geostatistical method known as sequential Gaussian
(or indicator) simulation. The DSD at each location is mod-
elled using a Gamma distribution with stochastic parameters
µ (shape) and Nt (drop concentration). The scale parame-
ter 3 is derived from µ using a deterministic relationship.
The simulation involves transforming the DSD parameters
into Gaussian variables via anamorphosis, modelling their
space-time structure with variograms, and generating fields
using sequential indicator and Gaussian simulations. After
simulation, the fields are back-transformed to their original
scale and rainfall intensities are calculated based on the DSD.
The simulation parameters were inferred from disdrometer
time series and 2D radar rainfall data in the vicinity of Lau-
sanne, Switzerland. The synthetic rainfall fields cover an area
of 20× 20 km2 with a spatial resolution of 100× 100 m2.
They are advected and evolved over time and are “realistic”
in the sense that they reproduce the distribution and spatio-
temporal autocovariance structure of observed rainfall fields,
which makes them useful for testing rainfall estimation and
retrieval algorithms.

2.2 Virtual CML data

To calibrate the cascade generator, 6000 randomly placed
CMLs of various lengths between 0.5 and 6 km and orienta-
tions were simulated. The virtual rainfall fields from Sect. 2.1
were then used to calculate the theoretical path-averaged rain
rates along each of the CMLs. Similarly, the virtual CML
data can be used to study the spatial distribution of rainfall
rates along different CML segments, which can be used to
parameterize the cascade generator and compare the perfor-
mances of the different disaggregation methods.

2.3 CML and radar data for the case study

The CML dataset used in the case study was acquired from
Ericsson MINILINK CMLs during the month of Septem-
ber 2014 by an SNMP based application running at T-Mobile
network operation centre. The data consist of CML trans-
mit and received signal power levels with the quantization of
1/3 dB recorded at approximately 10 s intervals. The selected
CMLs operate at frequencies between 23 and 38 GHz, and
only those longer than 1.5 km were included in the analysis,
resulting in a total of 77 CMLs. Note that six CMLs experi-
enced outages during this day, which means that only 71 out

of the 77 CMLs were used. The 1.5 km length threshold was
chosen to align with the 1 km2 resolution of the weather radar
reference used in the case study. Additionally, shorter CMLs
can be affected by large errors related to wet antenna attenu-
ation and quantization effects, making them less suitable for
rainfall retrieval (Blettner et al., 2023).

In addition to the 77 CMLs, we also considered bias-
adjusted C-band weather radar rainfall estimates provided
by the Czech Meteorological Institute. The latter are used
as a reference when validating the results for the case study.
Specifically, we used the gridded product from the lowest
elevation layer (Cappi2000) which has a spatial resolution
of 1× 1 km2 and a temporal resolution of 5 min. The rain-
fall estimates were adjusted using the mean field bias correc-
tion method in wradlib, an Open Source Library for Weather
Radar Data Processing (Heistermann et al., 2013). Note that
the mean field bias was estimated using 23 tipping bucket
rain gauges of type MR3, METEOSERVIS v.o.s. (operated
by the city of Prague), with a catch area of 500 cm2 and a tip
resolution of 0.1 mm. The performance of the radar adjust-
ment has been evaluated by cross-validation against the rain
gauges during the summer season (April to October) of 2024.
While the adjusted rain rates are on average only slightly un-
derestimated (rel. error =−0.05), the root mean square er-
ror remains relatively high (RMSE= 3.5 mm h−1). The Pear-
son’s correlation coefficient between adjusted-radar and the
rain-gauge rain rates is 0.65. The full radar dataset is used
in a supporting analysis to investigate different formulations
of the standard deviation model in the CLEAR cascade gen-
erator. For illustration purposes, the performance of CLEAR
is evaluated on real CML data during single heavy-rainfall
event that begun on 21 September 2014 at 19:00 UTC, and
lasted approximately two hours. The average rainfall depth
over the area was 18 mm and the light rainfall rates after
21:00 UTC (approx. 0.5 mm h−1) were not included in the
evaluation because the rain rate was too low to be reliably
detected by the CMLs.

3 Methods

3.1 Rainfall estimation from commercial microwave
links

The basic quantity needed to estimate rainfall from CMLs is
the total loss (Lt) in power between the transmitted and re-
ceived signals. The total loss consists of various components,
including free space loss, losses in the medium (e.g. gaseous
attenuation and raindrop attenuation), losses at transmission
and reception, and antenna gains. Before the rainfall rate can
be estimated, different types of signal processing techniques
need to be applied to identify and separate the rainfall-related
specific attenuation k (dB km−1) from other sources of atten-
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Table 1. Characteristics of the virtual rainfall events. The metrics are calculated for a whole domain for each time step.

Duration (min) Max. rain rates (mm h−1) Mean rain rates (mm h−1) Intermittency (%) Advection direction

Event 1 30 41.8–51.3 6.6–9.2 0.1–6.7 NW→ SE
Event 2 120 18.4–32.1 1.9–9.7 0.0–19.5 W→ E
Event 3 60 0.3–30.5 0.1–1.9 35.2–99.5 NW→ SE

uation. We write:

k =max
(
Lt−B −Aw

l
,0
)
, (1)

where l (km) is the length of the CML path, B (dB) is
the baseline attenuation (i.e., all losses that are not due to
rain) and Aw (dB) the wet antenna attenuation due to water
on the antenna radomes. For an overview of different base-
line and wet antenna attenuation estimation techniques, the
reader is referred to Chwala and Kunstmann (2019); Pastorek
et al. (2022a). Once the specific rainfall-induced attenuation
has been retrieved, a power-law model can be used to esti-
mate the path-averaged rainfall rate R (mm h−1) along the
link (Atlas and Ulbrich, 1977):

R = αkβ , (2)

where α (mm h−1 dB−β kmβ ) and β (–) are empirical param-
eters dependent on CML frequency, polarization, and rain-
drop size distribution (ITU-R, 2005).

For the case study, the original 10 s CML attenuation data
were averaged over 5 min to match the temporal resolution of
the weather radar data. The averaged CML attenuation data
were then processed with a standard baseline and wet an-
tenna identification methodology (see e.g. Chwala and Kun-
stmann, 2019). More specifically, the rainfall-induced at-
tenuation along each CML was calculated by subtracting
a constant baseline attenuation equal to the median of the
total losses during September 2014. The wet antenna at-
tenuation correction is a modified version of the Kharadly
model (Kharadly and Ross, 2001) proposed by Pastorek et
al. (2022b) with a single set of model parameters for all the
CMLs. The parameters of the wet antenna model were opti-
mized by minimizing the average squared difference between
the path-averaged rain rates from the CMLs and the refer-
ence path-averaged rain rates obtained from gauge-adjusted
weather radar. Rainfall-related path attenuation is converted
to rain-rate using a standard power law model (2) with ITU
parameters (ITU-R, 2005).

3.2 The CLEAR algorithm

The CLEAR algorithm redistributes the path-integrated rain-
fall amount along a CML over smaller and smaller scales
by means of discrete multiplicative random cascade. At each
cascade level the CML segments are split into two smaller
segments of variable lengths, containing half of the original

rainfall amount (mm h−1 km). The ratio between the parent
length L0 (km) and resulting segment lengths L1 (km) and
L2 (km) is determined by drawing random weights W from
a cascade generator model with logit normal probability dis-
tribution:

ln
(

W

1−W

)
∼N (µ= 0,σ ) , (3)

where µ is the mean and σ the standard deviation of an un-
derlying Gaussian random variable. The mean µ is forced to
zero, to ensure W is centered around 0.5. The path-averaged
rain rates R1 (mm h−1) and R2 (mm h−1) along the two split
segments satisfy the following relations:

L0W1R1 = L0W2R2 =
1
2
L0R0, (4)

where R0 (mm h−1) is the path-averaged rain rate of the par-
ent CML segment and W1 and W2 = 1−W1 are the random
cascade weights.

The splitting can be controlled by changing the standard
deviation of the generator (3). For small standard deviation
values, the random weights tend to be closer to 0.5, which
leads to a more homogeneous redistribution of the rainfall
rates along the path of the link. For larger values of stan-
dard deviation, the weights cluster around 0 and 1, which
translates into more uneven splits and more intermittency
(Schleiss, 2020).

During the splitting process, a spatial coherence (SC) rule
inspired by Schleiss (2020) is applied to determine which
link segment receives the shortest length and, therefore, the
highest rainfall intensity along its path. According to this
rule, the smaller of the two weights (W1, W2) is always as-
signed to the link segment experiencing the highest rainfall
rate in its vicinity, based on neighboring segments that have
already been split. This approach works under the assump-
tion that all CML segments are split only once at the first
cascade level before progressing to the next level.

To estimate the rainfall rate in the vicinity, the SC rule
involves an intermediate step: a partial spatial reconstruction
of the rainfall field over a regular Cartesian grid. For further
details on this process, readers are referred to Appendix A.

The splitting process concludes when the rainfall amount
along a CML segment falls below a predefined threshold.
CML segments with very small rainfall amounts are no
longer split but continue to be considered when applying the
SC rule to the remaining CML segments. In this analysis, the

Atmos. Meas. Tech., 18, 4467–4482, 2025 https://doi.org/10.5194/amt-18-4467-2025



M. Fencl and M. Schleiss: CLEAR: a new discrete multiplicative random cascade model 4471

threshold is set to 1 mm h−1 km, which corresponds approxi-
mately to the attenuation of 1/3 dB by the 23–38 GHz CMLs,
i.e. the value matching the quantization of CMLs employed
in the case study. The cascade terminates when all CML seg-
ments have stopped splitting or when a fixed number of cas-
cade levels (nine in our case) has been reached. Since the
cascade weights are drawn at random, the CLEAR algorithm
produces a different output each time it is run. By compar-
ing the different realizations to each other, one can quantify
the uncertainty (in point rainfall estimates) due to the random
redistribution of the rainfall rates along the CMLs. For more
technical details of the CLEAR implementation, readers are
referred to scripts published along with the dataset (Fencl and
Schleiss, 2025).

3.3 Sample estimation of the cascade generator model

Similarly to the original EVA cascade in Schleiss (2020), the
standard deviation (SD) of the cascade generator is assumed
to depend on the length L0 (km) of the parent CML segment
and rain rate R0 (mm h−1) according to the following power-
law model:

SD= aLb0R
c
0, (5)

where, a (km−b mm−c hc), b (–), and c (–) are empirical pa-
rameters that need to be estimated from the data or prescribed
by the user.

There are two ways to estimate the cascade generator
model: (1) using real data, and (2) using simulated rainfall
fields. The first approach is purely data-driven. Given a set of
CMLs with varying lengths, orientations, and path-integrated
rainfall intensities, the key question is: how should a CML be
split to ensure that the resulting segments have the same path-
integrated rainfall attenuation (or, equivalently, the same total
rainfall amount)? The answer depends on many factors such
as the link’s length, position, orientation, and the character-
istics of the rainfall field. This is why multiple CMLs and
rainfall fields are needed to estimate a robust, climatological
cascade generator.

However, estimating empirical cascade weights using real
CML networks and gridded weather radar data has draw-
backs. Radar products often lack the spatial resolution
needed to accurately capture rainfall variability along CMLs,
particularly for shorter links. Additionally, results may be
highly specific to the particular CML network or character-
istics of rainfall field, such as spatial anisotropy, especially if
not all the possible link lengths and orientations are equally
represented in the network. Furthermore, measurement noise
in both radar and CML data complicates the estimation pro-
cess, making it challenging to obtain precise estimates of em-
pirical cascade weights. The simulation approach addresses
these issues. By using large synthetic CML networks with
diverse lengths and orientations, along with high-resolution
simulated rainfall fields that realistically represent the local

Figure 2. Empirical breakdown coefficient determined by a cumu-
lative sum of rain rates along a CML path using linear interpolation.

climatology, one can more accurately estimate the empirical
cascade generator model.

For an arbitrary CML of length l and rainfall field R(x),
the empirical breakdown coefficients w can be calculated by
splitting the CML such that:

1
2

l∫
0

R(x)dx =

wl∫
0

R(x)dx, (6)

Simulated rainfall fields have much higher spatial resolu-
tions than radar. Nevertheless, there will always be some dis-
cretization level, which means that in practice, the integral
in Eq. (6) has to be replaced by a cumulative sum. The ex-
act position of the breakpoint W is thus determined by lin-
ear interpolation (Fig. 2). The breakdown coefficients W are
then transformed using the left-hand side of Eq. (3) to fol-
low Gaussian distribution and grouped according to the path
lengths and path-averaged rain rates of the parent links that
generated them. The sample SD is then calculated for each
group which allows us to empirically relate SD with rain-rate
and path-length (Fig. 3, left). In the final step, the SD model
(5) is then optimized to fit empirically estimated SD values
(Fig. 3, middle, right). The optimal parameters for our case
are a = 0.65, b = 0.33, and c =−0.28. With these parame-
ters, the SD values tend to be high for very low rain rates
and/or long CML, leading to a high probability of unequal
splits. Conversely, at higher rain rates and for shorter CMLs,
the splits are more likely to be even. More details on how to
calculate the sample SD and fit the SD model are given in
Appendix B.
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Figure 3. (a) Standard deviation calculated for all samples larger than 50 members. (b) Fitted SD model. (c) Comparison of empirical and
modeled standard deviations with rain rates indicated by point shapes. Path lengths of parent CMLs are distinguished by color.

3.4 Benchmarking and performance evaluation

Path-averaged rain rates without disaggregation are used as
a zero benchmark algorithm. The disaggregation procedure
implemented in the Goldshtein-Messer-Zinevich (GMZ) al-
gorithm (Goldshtein et al., 2009) is used as a more complex
benchmark: Each CML is divided into segments of equal
length such that the length is close to some predefined thresh-
old (100 m in our case) but does not exceed it. This threshold
is the same for all the CMLs in the domain and determines
the final resolution of the disaggregation. The resulting CML
segments have lengths between 94 and 100 m. Initial path-
averaged rain rates are iteratively redistributed along CML
segments to match rain rates interpolated from neighboring
CMLs with inverse-distance-weighted mean.

The performance of CLEAR is assessed in detail using
synthetic experiments with virtual rainfall fields (described
in Sect. 2.1). High-resolution rainfall fields placed over the
network of CMLs enables us to extract reference distributed
rain rates and path-averaged rain rates along the path of each
CML. Path-averaged rain rates are in each time step disag-
gregated with CLEAR algorithm and compared to the refer-
ence rainfall. Furthermore, the disaggregation performance is
benchmarked against the GMZ algorithm. To enable bench-
marking, the reference and CLEAR-disaggregated rain rates
are resampled using weighted average to match the segments
defined by the GMZ algorithm. In the case study with real
data, reference and CLEAR-disaggregated rain rates are re-
sampled in the same manner, except that the maximal seg-
ment length in the GMZ algorithm is set to 1 km to match
the resolution of the reference weather radar product.

Three different features of disaggregation algorithms are
evaluated:

1. The ability to reproduce rainfall patterns and extremes
along a CML path is evaluated by quantifying the stan-
dard deviation of rain rates, their maxima, and their min-
ima along each CML path during each time step. In ad-
dition, we quantify the variance conditional to rain rate
and CML length.

2. The distribution and location of disaggregated rain rates
along the CMLs compared to the reference.

3. An ensemble of CLEAR rain rates (50 runs) is gener-
ated and evaluated in terms of its variance.

R-squared (R2), root mean square error (RMSE), and rel-
ative error (RE) are used as performance metrics in the first
and second analysis. Containing ratio (CR) and average band
width (ABW) are used as performance metrics in the third
analysis. CR is defined as the ratio of observations lying
within confidence bands defined by 5 % a 95 % quantile of
the whole ensemble and ABW as an average difference be-
tween 5 % a 95 % quantile of the whole ensemble.

CR and ABW is evaluated for different classes of rain
rate and CML length. The same classes are used when
quantifying conditional variance in the first analysis. Five
equidistant CML length classes are defined covering lengths
between 1–6 km. Rain rate classes are defined by non-
equidistant binning along the range of rain rates available
in the dataset (0–52 mm h−1): Rain rates 0–10 mm h−1 are
binned by 1 mm h−1, binning by 2 mm h−1 is applied up to
rain rate of 20 mm h−1, binning by 5 up to 30 mm h−1, and
final two classes are 30–40 and 40–52 mm h−1. The relatively
large size of bins for high rain rates reflects their low number
in the dataset.

4 Results

The results in the following four subsections (Sect. 4.1–4.4)
are obtained from the experiment with simulated rainfall
fields. Section 4.5 presents results from the case study with
real CML observations. The spatial resolution of disaggre-
gated and reference rain rates is 100 m for the experiments
with simulated rainfall fields and 1 km for the case study.

4.1 Features of CLEAR disaggregation

Figure 4 shows two examples of rainfall rates disaggregated
with the CLEAR algorithm. In the first case (Fig. 4, left),
CLEAR nicely reproduces the actual distribution of rain rates
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along the CML. The location of the min/max values are es-
timated correctly, the estimated ensemble mean is moder-
ately correlated with the reference rain rates (r = 0.55), and
the variance over the ensemble members nicely captures the
overall variability of the rainfall rate along the link (i.e., 89 %
of the reference observations lie within the 90 % confidence
bands). Moreover, the ensemble spread tends to increase with
growing rain rates (r = 0.51), reflecting higher uncertainty
due to disaggregation during heavy rainfall. In the second
case (Fig. 4, right), while the overall variability in rainfall
rates along the link is accurately captured, the locations of
the predicted minima and maxima are incorrect, and the 90 %
confidence bands do not align with the actual observations.
This highlights an important point: in CLEAR, the position
of peak rainfall intensity along a CML is heavily influenced
by the spatial distribution of rainfall in the surrounding area.
When no nearby CMLs are available, the spatial consistency
rule relies almost entirely on smooth spatial interpolation of
the rainfall field at coarser levels (see Appendix A). As a re-
sult, for isolated CMLs, CLEAR tends to systematically as-
sign peak rainfall intensity to the same side of the link.

The better performance observed for CML 63 can likely
be attributed to the presence of nearby CMLs, which pro-
vide valuable information to the spatial consistency rule and
significantly influence the splitting process and the location
of the peak intensity. In contrast, CML 9 is near the border
of the domain, with only one end point having independent
CML observations in its vicinity, which limits the accuracy
of the prediction.

4.2 Evaluation of rainfall patterns along CMLs

The ability of disaggregation algorithms to realistically re-
produce rainfall patterns is evaluated in each time step by
quantifying rain-rate maximum, minimum, and standard de-
viation along a path of each CML. Figure 5 compares the
statistics for the reference rain-rates with the ones obtained
using CLEAR disaggregation and the two benchmarks. The
ensemble of 50 CLEAR realizations is treated in two dif-
ferent ways: (a) the statistics are evaluated for a single real-
ization and (b) the statistics are evaluated for each realiza-
tion and afterwards averaged. The CLEAR algorithm clearly
outperforms the benchmarks in all three statistics. It is bet-
ter at reproducing the min/max values (overall, across all
ensemble members as well as for individual realizations).
The ensemble mean of the statistics leads to even more ro-
bust results. The relative error for the ensembles is simi-
lar to the one for single realization. However, the RMSE is
markedly lower and R2 higher. Figure 5 also clearly shows
how the naive approach of taking path-averaged rain rates
(zero benchmark) systematically underestimates local max-
ima and overestimates minima.

CLEAR also reliably accounts for the effect of rain rate
averaging along a CML path. Figure 6a shows how the vari-
ance of reference rain rates along a CML on average in-

creases with increasing rain rate. In addition, for low and
moderate rain rates, the variance tends to be higher for longer
CMLs. CLEAR is able reproduce the dependence of variance
on both rain rate and CML length very well up to rain rates
about 15 mm h−1. For higher rain rates, the variance tends to
be overestimated. This is probably due to systematic overes-
timation of the SD model (5) during higher rain rates (Fig. 3).
The GMZ algorithm tends to overestimate variance and fails
to accurately capture the relationship between variance and
CML path length. Specifically, it does not reflect the fact that
variance increases with longer CML path.

Compared with GMZ, CLEAR also has a more stable per-
formance: Fig. 7 shows R-squared between reference and
disaggregated rain rates along each CML evaluated over all
time steps. R-squared values for the CLEAR ensemble mean
range between 0.69 and 0.93 with a median value of 0.80,
while for GMZ the values are between 0.3 and 0.94 with a
median of 0.68. For comparison, theR-squared values for the
zero benchmark (path-averaged rain rates) are between 0.63
and 0.94 with a median of 0.83. Using CLEAR, 18 CMLs
(23 %) perform better than the zero benchmark, whereas by
using GMZ, only 6 CMLs (8 %) perform better. It is inter-
esting, that none of the CMLs performing better with GMZ
match with those performing better under CLEAR disaggre-
gation, which shows how CLEAR can help overcome the
weaknesses of GMZ.

4.3 Segment-by-segment evaluation

The experiments performed on the simulated rainfall fields
show that CLEAR produces roughly unbiased estimates
on average. However, a more detailed segment-by-segment
comparison between the ensemble mean of CLEAR (Fig. 8,
left) and the actual rainfall values shows a clear conditional
bias as a function of rainfall intensity.

Figure 8 shows that CLEAR systematically overestimates
low rainfall rates and underestimates higher ones. This con-
ditional bias can be attributed to errors in location with re-
spect to the min/max rainfall rates along the link segments,
as demonstrated in the right panel of Fig. 4, as well as the
way the link segments are split during the cascade. How-
ever, it should be noted that the GMZ benchmark suffers
from the same conditional bias. Moreover, GMZ also pro-
duces more outliers, even during relatively low rainfall rates.
CLEAR does not have this issue because the disaggrega-
tion is controlled by a rain-rate dependent generator model,
which means that link segments with higher intensities are
split more homogeneously on average. Interestingly, Fig. 8
also shows that the simple strategy of distributing the rain-
fall rates homogeneously along the path of the links results
in slightly better performance than the ensemble average of
CLEAR. Nevertheless, they also systematically overestimate
light rainfalls and underestimate heavy ones. This behavior
is caused by averaging of extremes as indicated in Fig. 5.
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Figure 4. 50 realizations of CLEAR rain-rate disaggregation along two links (CML 63 and CML 9) of similar path length (i.e., 3.5 km)
during the time step 11 of event 1. Ninety-percent confidence bands are calculated as 5 % and 95 % quantiles of all realizations over each
CML segment. Reference rain rates are from simulated rainfall fields.

Figure 5. Statistics of reference rain rate (Rref) along a CML path quantified for each time step compared to the statistics of estimated rain
rates (Rest) when using CLEAR algorithm (a–b), benchmark GMZ algorithm (c), or path-averaged rain rates without disaggregation (d).
Red lines depict median and 10 % and 90 % quantiles.
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Figure 6. Variance along a CML path conditional to rain rate and CML length.

Figure 7. R-squared between reference and disaggregated rain rates evaluated over all time steps separately for each CML. (a) CLEAR
ensemble mean. (b) GMZ. (c) Path-averaged rain rates.

4.4 CLEAR ensemble variance

The stochastic nature of CLEAR means that it can be used
to generate ensembles of cascade realizations to assess the
effect of model uncertainty on disaggregated rain rates. Fig-
ure 9 shows the containing ratio (CR) and average band width
(ABW) conditional to the rain rate and CML length. Both
metrics were evaluated over all 210 time steps. ABW in-
creases with rain rate and CML length. This reflects what
we expect, i.e., that the uncertainty of the disaggregation
increases with increasing rain rates and CML path length.
However, the CR values below 90 % indicate that the en-
semble variance and hence the uncertainty represented by
the band width are underestimated. The underestimation is
the largest for light rainfall with rain rates below 1 mm h−1

(CR = 0.18–0.47). The best performance, although not op-
timal, is achieved for rain rates between 2–10 mm h−1 (CR
= 0.60–0.80). On average, shorter CMLs tend to have lower
CR than longer CMLs. Higher CR for longer CMLs is prob-
ably related to wider bands (higher ABW) of longer CMLs
caused by the systematic overestimation of modelled SD (5)
when compared to empirical SD (Fig. 3).

4.5 CLEAR performance for the case study

In this section, the strengths and weaknesses of CLEAR are
demonstrated on real CML data during single heavy-rainfall

event on 21 September 2014. The performance of CLEAR is
first demonstrated on the same set of CMLs as in Sect. 4.1.
Figure 10 shows disaggregated rain rates obtained using
CLEAR at 19:45 UTC, which is the time when maximum
rain rate occurred on CML 63. It shows that the CML path-
averaged rain rates are systematically underestimated com-
pared to the reference. Consequently, CLEAR also shows a
systematic underestimation of the rain rates. However, this
is not a shortcoming of the method but more an issue of the
CML data themselves. For CML 63, CLEAR accurately re-
produces the distribution of higher rain rates at the end nodes
and lower ones in the middle. In contrast, for CML 9, it does
not adequately capture the peak located in the middle section
of the path. Overall, CLEAR reproduces the min/max more
reliably than GMZ (Fig. 11). However, the results are signif-
icantly affected by the uncertainties in CML rain rate esti-
mates. Also, and although they are bias-corrected, the radar
rainfall estimates are likely to be affected by local biases as
well. The minima, maxima, and standard deviations are sim-
ilar to the values obtained on the simulated data and most
reliably estimated by averaging the statistics over the ensem-
ble. CLEAR has a slightly better performance than GMZ
when evaluating segment-by-segment matches between ref-
erence and disaggregated CML rain rates: The RMSE values
are 3.00 and 3.43 mm h−1 for CLEAR and GMZ respectively
and the R2 is 0.38 and 0.30 respectively.
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Figure 8. Segment-by-segment comparison of disaggregated (a, b, c) and path-averaged (d) rain rates to the reference with lines depicting
median and 10 % and 90 % quantiles.

Figure 9. Containing ratio (a) and average bandwidth (b) conditional to rain rate and CML length.

The results of the case study are strongly affected by a
large discrepancy between the CML path-averaged rain rates
and the reference. First, a rainfall amount along CML path
which is being disaggregated is determined by the estimated
rain rate. Second, the under- or overestimation of initial rain
rate affects the cascade generator model and estimated break-
down coefficients. Despite large uncertainties, CLEAR is
still able to reproduce variability and extremes along a CML
path more reliably than GMZ benchmark.

The discrepancy between reference and estimated rain
rates is partly caused by inaccurate path-averaged CML rain-
fall estimates, nevertheless, it is also related to the limited
reliability of the radar rainfall product used at the 5 min tem-
poral resolution. In general, a radar adjustment at high reso-
lution is highly challenging e.g. due to the scale discrepancy
of a radar pixel and a rain gauge catch area, possible dis-
placement of rainfall field due to rainfall advection, etc. (see
e.g. Ochoa-Rodriguez et al., 2019; Schleiss et al., 2020).

The case study is limited to illustrating CLEAR perfor-
mance during a single event. A more comprehensive evalua-
tion using a substantially larger dataset with more CMLs and
wider variety of rainfall types is needed to properly assess
CLEAR performance on real data. The evaluation should fo-
cus on data aggregated over longer time intervals (e.g. 30 min
or hourly data) for which adjusted radar quantitative pre-
cipitation estimates are more accurate. As rain rate aggre-
gation over longer intervals leads to the smoothing of local

extremes, the effect of any disaggregation will be less pro-
nounced. Next case study evaluating CLEAR on aggregated
data should thus focus on a network outside of a city which
is commonly characterized by longer CMLs.

5 Discussion

In this section we discuss results obtained from the experi-
ments with simulated rainfall fields and identify factors in-
fluencing the performance of CLEAR. We also highlight ad-
vantages and limitations of CLEAR compared to the bench-
mark algorithm and explore potential research directions to
address some of these limitations.

5.1 Modeling the cascade generator

The logit-normal cascade generator model behind the
CLEAR algorithm assumes a simple power-law relation be-
tween the standard deviation (SD) of the cascade weights,
the path-averaged rainfall intensity and link length (Eq. 5).
Using the simulated rainfall fields, we can study the actual
standard deviation of the empirical breakdown coefficients
for a large number of CMLs links and compare them to the
modeled ones to see how well the generator fits the data.
Figure 12 shows the empirical breakdown coefficients when
evaluated for each of the three simulated rain events, together
with the global, fitted power-law model for the standard de-
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Figure 10. CLEAR disaggregation of rain rates during one time step at 19:45 UTC demonstrated on real data from two CMLs of similar path
length.

viation (SD). It shows that the global SD model obtained by
combining all the events together and imposing a power-law
model significantly differs from the actual SD values for a
given event. For starters, there are clear differences in the
magnitude of the SD (for a given rainfall intensity and link
length) from one event to another. Also, the patterns can be
quite different. For example in event 1, the SD tends to in-
crease for rainfall intensities between 1–5 mm, which is very
different from the gradual decrease with intensity predicted
by the model. The same ups and downs can be observed for
event 2 and may be the consequence of the non-stationarity
of the generator model in space and time. The fact that our
simple cascade generator model cannot accommodate such
patterns could explain the conditional bias with rain rates
as well as the inability to adequately capture the location of
min/max rainfall intensities along the link (Figs. 4 and 10).

To investigate this issue in more depth, we analyzed the
empirical breakdown coefficients of the CML network in
Prague using full dataset of bias-adjusted radar rainfall cover-
ing many different rain events. We found that the magnitude
of the SD also seems to be related the maximum rainfall rate
in the domain, however, the incorporation of this behavior
through an additional parameter created more problems than
it solved and often led to overfitting. We also tested how the
SD model calibrated on the radar data performs. Although
the model parameters substantially differed (a = 0.36, b =
0.52, and c =−0.09), the performance of the CLEAR al-
gorithm, when applied to the virtual CML observations, re-
mained virtually unchanged. This highlights strong robust-
ness of CLEAR to the choice of SD model. This property was
also noted by Schleiss (2020) for the EVA cascade model.
The explanation lies in the nature of the cascade process and
functional form for the cascade generator model: although
long CML segments may split quite differently at the initial
levels, where SD values are higher, these differences quickly
reduce in the later stages of the cascade. As the SD values de-
crease rapidly with each iteration, the resulting subdivisions
become increasingly uniform, making the final disaggrega-
tion less sensitive to the specific SD model used.

Finally, the logit-normal cascade model itself may not
work for all types of rainfall fields. In particular, the assump-
tion of logit normal variability may not be valid for strongly
skewed rainfall such as those associated with extreme con-
vective events. In such cases, other more flexible models,
e.g. the beta distribution, might perform better. Moreover, the
spatial non-stationarity of rainfall features over the domain
and the superposition of different generator models inside the
domain was not explored, and further research is needed to
understand how it could be detected and taken into account.

5.2 Sensitivity of CLEAR disaggregation to the spatial
coherence rule

CLEAR is efficient in estimating rainfall extremes and vari-
ability along CML path (Figs. 5 and 6) and, in this respect,
clearly outperforms the GMZ algorithm and path-averaged
rain rates. However, it also struggles to reliably predict the
position of the smallest/largest rainfall rates along the link,
as clearly demonstrated by the results of the segment-by-
segment evaluation (Sect. 4.3). To better understand where
the errors in CLEAR originate from, we took a closer look
at the performance of the SC rule itself. Specifically, we per-
formed two additional analyses with the high-resolution sim-
ulated reference rainfall fields. In this simulation setting we
could study how well the empirical splits based on interpo-
lated rainfall rates from coarser scales actually are.

In the first analysis, we evaluated the precision of the em-
pirical SC rule, i.e. the ratio of splits where a link segment
correctly received the shortest length and, therefore, the high-
est rainfall intensity along its path. On average, about 1/3
of the splits performed using the empirical rule were wrong
leading to displacement of rainfall peaks and minima. In the
second analysis, we applied CLEAR using an optimal SC
rule based on the true rain rate along a CML path. We found
that using an optimal SC rule significantly improves the per-
formance of CLEAR on a segment-by-segment basis: For ex-
ample, the RMSE decreased from 2.95 to 2.15 mm h−1 and
R2 increased from 0.75 to 0.86. However, the optimal SC rule
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Figure 11. Statistics of reference (radar) rain rate along a CML path for each time step and CML compared to the statistics when disaggre-
gating real CML observations with: (a) CLEAR algorithm and calculating ensemble mean of each metric, (b) benchmark GMZ algorithm,
or (c) using path-averaged rain rates without any disaggregation. Red lines depict median and 10 % and 90 % quantiles.

had almost no effect on the average performance statistics
for the min/max and standard deviation of rain rates along a
CML. The shortcomings of the empirical SC rule are thus not
critical for applications where statistical distribution of rain
rates is more important than their exact positioning. For ex-
ample, for improving rainfall estimation from CMLs at lower
(X, Ku band) or higher frequencies (E-band, W-band), where
attenuation-rainfall relations can be significantly nonlinear
and thus a commonly used assumption of uniform rain rate
along a CML path potentially leads to higher errors.

5.3 Ensemble variance

Ensemble variance arises from a stochastic nature of the cas-
cade generator (Eq. 3), however, the relation between the two
is not straightforward. For example, the ensemble variance
in CLEAR may be strongly affected by the SC rule used to
split the segments. Our analyses show that different realiza-
tions of CLEAR disaggregation preserve similar rainfall pat-
tern along a CML path, R-squared between the realizations
is 0.84–0.86. In general, the uncertainty estimates derived
from the CLEAR ensembles tend to be underestimated; the
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Figure 12. Empirical (a–c) and modeled SD (d). SD of empirical breakdown coefficients is shown separately for three events evaluated in
this study.

mismatch is highest during light rainfall (0–1 mm h−1) and
heavy rainfall (R > 30 mm h−1) (Fig. 9). Additional analy-
ses (not shown) suggest that for light rainfalls, the underes-
timation may be due to the difficulty in reproducing rainfall
intermittency and reparameterization of SD model discussed
in Sect. 5.1 could help in this regard. For heavy rainfall, the
estimated variability and position of rainfall peaks along the
CMLs tend to be incorrectly estimated (Fig. 4, right). To im-
prove, it might be necessary to design better, more elaborate
and spatially variable coherence rules (e.g., as a function of
CML density) to account for the uncertainty related to spa-
tial coherence. Alternatively, some randomness could be in-
troduced in the splitting rule. For example, by randomly re-
assigning the peak rainfall rate to the other side of the CML
with a frequency of about 1/3 or less (especially at the first
cascade levels). More realistic ensemble spread might also be
achieved by improving the cascade generator model. For ex-
ample, by locally adapting the spread of the cascade weights
to account for the spatial correlation structure of the rain and
other non-stationarities (e.g., proximity to dry areas).

6 Conclusions

A new disaggregation algorithm for CMLs named CLEAR
(CML segments with equal amounts of rain) has been pro-
posed. Within CLEAR, the splitting of link segments is con-
trolled by a multiplicative random cascade generator, whose
standard deviation depends on the rain rate along the CML
segment and the length of the segment. Rain rate informa-
tion from neighbouring CMLs is used to estimate the areas
of largest/smallest rainfall intensities and thus preserve spa-
tial consistency during the splitting. The stochastic character
of CLEAR makes it possible to represent uncertainty as an
ensemble of rain rate distributions along a CML.

Evaluation of the CLEAR algorithm on virtual rainfall
fields shows good overall performance and realistic spatial
patterns. CLEAR outperformed the GMZ benchmark both in
the simulations and on real data. The case study, however,
revealed challenges related to uncertainties in CML quanti-

tative precipitation estimates, which are common to all meth-
ods. Despite the encouraging results, lots of potential for im-
provement remains. For example, the ensembles generated
by CLEAR still significantly underestimates overall variabil-
ity along a CML path. The segment-by-segment evaluation
also shows that performance is negatively affected by errors
in positioning of rainfall extremes along the CML. A better
SC rule, accounting for rainfall advection and the introduc-
tion of more randomness into the splitting rule could help in
this regard.

In conclusion, CLEAR can help in generating more repre-
sentative rainfall distributions along CMLs, which is impor-
tant for the spatial reconstruction of rainfall fields from path-
integrated CML data. However, further research is needed
to improve the SC rule and cascade generator model. More-
over, future evaluation studies using larger and more diverse
datasets both in terms of rainfall and network topology may
provide deeper insights into limitations and advantages of
CLEAR compared to the other state-of-the-art disaggrega-
tion algorithms. CLEAR might also help to model rainfall
intermittency along a CML path, albeit, this feature needs to
be investigated in more detail first. Future work could also
investigate how to deal with non-stationarity of the rainfall
field and the cascade generator model, and how to incorpo-
rate data from previous time steps. It might also be interesting
to investigate the performance of CLEAR when applied to
CMLs at lower (X, Ku band) or higher frequencies (E-band,
W-band), where attenuation-rainfall relations can be signifi-
cantly nonlinear and thus an assumption of uniform rain rate
along a CML path potentially leads to higher errors.

Appendix A

The SC rule is evaluated using gridded rainfall fields, which
are reconstructed from CML data at each cascade level: ini-
tially from the original path-averaged rain rates and at further
cascade levels from disaggregated rain rates along disaggre-
gated CML segments. The initial resolution is 4×4 km2 and
this resolution is refined after each cascade level such that
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Figure A1. (a) Reference rainfall field and CMLs with color-coded
path-averaged rain rates. The positioning of the points used to sam-
ple rain rates for SC rule is illustrated for CML 33 and marked with
crosses. (b–d) Gridded rainfall used to evaluate spatial coherence
rule when splitting CML segments at successive levels (1st, 2nd,
3rd) of the cascade. Grey color is used to indicate cells with not
available rain rate values.

the new grid size resolution is the original size divided by
2i , where i is the order of the cascade level. The initial and
refined resolution approximately correspond to the length
scales of the longest CMLs resp. their segments evolving as
the result of the disaggregation.

Rainfall fields are constructed as follows: First CML seg-
ments are assigned to the grid cells by evaluating the overlap
between the cells and the midpoints of the segments. Then,
the cell rain rate is estimated as the average rain rate of the
CML segments belonging to the cell. The cells that do not
containing any segment are marked as cells with not avail-
able rain rate and are omitted from the evaluation of the SC
rule.

Rain rates for evaluating the spatial consistency rule are
sampled from the CML-derived rainfall field, with resolution
matching the current cascade level. Sampling is performed
using a 4×6 matrix of 24 regularly spaced points positioned
near each end node of a CML segment. The spacing between
these positions is set to one-third of the grid size of the rain-
fall field, meaning it is progressively refined alongside the
field resolution at each cascade level. The splitting example
is shown in Fig. A1. Figure A1a illustrates the placement of
the SC rule sampling matrix for CML 33.

Appendix B: Fitting of SD model

The SD model is fitted to sample SD estimates of empiri-
cal breakdown coefficientsW0 obtained from synthetic CML
networks (Sect. 2.2). To ensure zero mean, the original break-

down coefficient W0 and the difference 1–W0 are merged to
one population: W =W0 _ (1−W0). The breakdown coef-
ficients W are then transformed to a Gaussian distribution
using the left-hand side of Eq. (3) and grouped according to
path lengths and path-averaged rain rates of the parent links
that generated them. The length classes are equidistantly
spaced with a bin size of 500 m between 500 and 6500 m.
The rain rate bin sizes are 1 mm h−1 between 0–10 mm h−1,
2 mm h−1 between 10–20 mm h−1, and 5 mm h−1 between
20–55 mm h−1. The decreasing size of the bins with growing
rain rates reflect naturally lower representation of higher rain
rates in the population of CML rain rates. Sample SD values
are calculated for each group having at least 50 samples in
them.

SD model (5) is optimized using the simplex method
for function minimization (Nelder and Mead, 1965) imple-
mented in the optim function available within the statistical
computing language R (R Core Team, 2023). A following
objective function is minimized:

L=
∑

log
(∣∣(SDsample−SDmodel

)∣∣) , (B1)

where SDsample is sample SD and SDmodel is modelled SD.
The optimization is performed for sample SD obtained for
breakdown coefficients of all synthetic CMLs during all three
virtual rainfall events.
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