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Abstract. Quantifying facility-level methane emission rates
using satellites with fine spatial resolution has recently
gained significant attention. However, the prevailing quan-
tification algorithms usually require the methane column
plume from a solitary point source as input. Such approaches
are challenged with overlapping plumes from multiple point
sources. To address these challenges, we propose a sepa-
ration approach based on a heuristic optimization and the
multi-source Gaussian plume model to separate the over-
lapping plumes. Subsequently, the integrated mass enhance-
ment (IME) model is applied to accurately quantify emis-
sion rates. To validate the proposed method, observation sys-
tem simulation experiments (OSSEs) of various scenarios are
performed. The result shows that plume overlapping exacer-
bates the quantifying error of the IME method when applied
without such a separation approach, where the quantification
mean absolute percentage error (MAPE) increased from 0.15
to 0.83, and it is affected by factors such as source intervals,
wind direction, and interference emission rates. By contrast,
the application of the proposed separation method together
with the IME quantification approach mitigates this interfer-
ence, reducing the quantification MAPE from 0.83 to 0.38.
Moreover, the proposed method also outperforms the direct
use of multi-source Gaussian plume fitting for the quantifi-
cation, with a MAPE of 0.45. Our separation method sep-
arates overlapping plumes from multiple sources into dis-
tinct, single-source observations, enabling the IME algorithm
– a high-precision quantification approach for fine-spatial-
resolution plume images – to handle multi-source scenarios
effectively. This method can help future spaceborne carbon
inventory activities for spatially clustering carbon-emitting
facilities.

1 Introduction

Since the Industrial Revolution, the increasing anthropogenic
emissions of greenhouse gases (GHGs) have emerged as the
foremost contributor to global warming and climate change,
obstructing global sustainable development (IPCC, 2023). To
tackle this challenge, the global community has united and
expressed a strong will to limit long-term warming below
1.5 °C above the pre-industrial level, as stipulated in the Paris
Agreement under the United Nations Framework Convention
on Climate Change (UNFCCC). Comprehensive monitoring
of global GHGs is vital for verifying human activities’ im-
pacts on climate change, observing climate change trends,
formulating solutions to address climate change, and evalu-
ating the efficacy of climate policies. The conventional way
to estimate GHG emissions is to multiply the elements of
human activities by emission factors using statistical meth-
ods (Calvo Buendia et al., 2019). Yet, owing to the sub-
stantial uncertainty of emission factors and source coverage
(Zhao et al., 2017; Suarez et al., 2019), the performance of
this bottom-up method is limited. In this regard, spaceborne
GHG monitoring capabilities, e.g., OCO-2/3 (Nassar et al.,
2017), TROPOMI (Zhang et al., 2020), and TanSat (Yang
et al., 2023), have demonstrated their ability to quantify
anthropogenic GHG emissions from large sources, such as
cities and large thermal power plants, which are considered
point sources. Spaceborne GHG monitoring is capable of un-
dertaking independent, objective, and high-spatiotemporal-
coverage measurements and is thus considered important to
verify the accuracy of bottom-up GHG emission inventories
(Calvo Buendia et al., 2019; Liu et al., 2022).
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Methane (CH4) is a greenhouse gas second only to car-
bon dioxide(CO2) in terms of radiative forcing, with a global
warming potential (GWP-100) of about 27–29 times that
of CO2 per unit emission and a life span of only about
11.8 years (IPCC, 2023). As a result, taking proactive mea-
sures to reduce anthropogenic methane emissions can help
alleviate global warming in the short term. Numerous studies
indicate that anthropogenic methane emissions are primar-
ily concentrated at a number of high-emission point sources
(Nisbet et al., 2020; Cusworth et al., 2020; Duren et al.,
2019; Frankenberg et al., 2016). Furthermore, a detected
methane plume typically shows a higher signal-to-noise ratio
(SNR) than CO2 due to the significantly lower background
concentration of methane (around 1.8 ppm) compared to
CO2 (approximately 420 ppm), as well as the stronger ab-
sorption cross-section of methane. These features provide
convenience for spaceborne monitoring of anthropogenic
methane emissions. A recent trend is monitoring methane
point sources using orbital instruments with fine spatial res-
olution, as smaller pixels are more sensitive to column en-
hancement of point sources with relatively lower emissions
rates (Jervis et al., 2021). For instance, GHGSat is a dedi-
cated commercial constellation for GHG point source moni-
toring, with a resolution of 25–50 m (Jervis et al., 2021). Its
supper fine spectral resolution endows it with a low retrieval
uncertainty of 1 %–5 % (Varon et al., 2018). Guanter et al.
(2021) describe detecting methane plumes with PRISMA, a
versatile hyperspectral satellite. Sánchez-García et al. (2022)
elucidate the detection of methane plumes with WorldView-
3, a commercial multispectral satellite with a spatial resolu-
tion of 3.5 m.

One of the primary purposes of spaceborne methane point
source monitoring is to quantify the emission rates. To do
so, a widely used method is spaceborne measurements of
backscattered solar radiation in the visible and shortwave in-
frared (VSWIR). The methane concentration (or its enhance-
ment) is then retrieved using inversion algorithms, such as
optimal-estimation-based methods (Rodgers, 2000; Franken-
berg et al., 2005; Jervis et al., 2021), data-driven methods
such as a matched filter (Thorpe et al., 2014), and deep learn-
ing methods (Özdemir and Koz, 2023). The emission rates
of methane point sources are then estimated using quantifi-
cation methods, which can be broadly divided into two cat-
egories. The first category generally allows for direct quan-
tification, such as Gaussian plume fitting (Bovensmann et al.,
2010; Nassar et al., 2017, 2021). The second category often
requires clear detection of plume pixels from the observation,
such as the integrated mass enhancement (IME; Franken-
berg et al., 2016; Varon et al., 2018) method. To detect the
plume pixels, Nassar et al. (2017) distinguish the plume and
backgrounds with a 1 % density cutoff criterion, Kuhlmann
et al. (2019) propose a Z-test-based plume detection algo-
rithm to mask pixels with statistically higher values, Varon
et al. (2018) combine Student’s t test with computer-vision-

based (CV-based) methods to detect plume pixels, and Joyce
et al. (2023) use a deep learning method for the detection.

However, limited research has specifically addressed
the quantification of methane emissions originating from
overlapping plumes emitted by multiple spatially adjacent
sources. Plume overlapping is not uncommon. Based on the
analysis of the VISTA-CA inventory (Hopkins et al., 2019)
of potential methane sources in California, US, it is found
that > 90 % of the intervals of a source to its neighbor are
less than 200 m. Upon excluding the “oil and gas well”,
constituting 96.5 % of the total, the median and mean in-
tervals become 496 and 1247 m, respectively, indicating a
spatial clustering distribution trend, potentially resulting in
overlapping plumes. Plume overlapping poses a challenge to
quantification as it breaks the one-to-one correspondence be-
tween a plume pixel and a source, which means the mass
in each detected plume pixel may originate from multiple
sources, introducing additional errors into the quantification
when the mass in a conjoint pixel is attributed to any sin-
gle source. Several studies have encountered the challenge
of plume overlapping, which significantly complicates the
quantification process (Kuhlmann et al., 2019) and, in ex-
treme cases, makes quantification impossible (Duren et al.,
2019; Kuhlmann et al., 2020; Sánchez-García et al., 2022).
Therefore, it is necessary to separate the overlapping plumes
and to establish one-to-one correspondences between plume
pixels and emission sources, thus enabling accurate invento-
rying of emission rates for each individual source.

There have been several studies using Gaussian plume fit-
ting to solve plume overlapping problems for spaceborne
GHG monitoring. For example, Krings et al. (2011) em-
ployed a Gauss–Newton iteration-based optimal estimation
approach to infer the emission rates of sources with over-
lapping plumes, and Nassar et al. (2017, 2021) employed a
method of Gaussian plume combinations, where the inter-
ference sources are fixed, reducing the multi-source estima-
tion problem into a single-source estimation problem. These
methods can handle plume overlapping on a large scale.
However, these methods are challenging for facility-level
monitoring, where the auxiliary information is inaccurate or
even unknown. Moreover, the Gaussian plume demonstrates
uncertainty with small-scale plumes (Varon et al., 2018).

To address these challenges, we propose an approach to
derive emission rates from overlapping plumes through sep-
aration and quantification. This approach is composed of
a Gaussian plume weighting separation method (shown in
Fig. 1) for plume separation and the traditional IME method
for quantification. Firstly, the Gaussian plume weighting is
based on parameter estimation for the multi-source Gaussian
plume model. To mitigate the effects of inaccurate or miss-
ing auxiliary data, we introduce the optimization algorithm
to perform parameter estimation. This approach is inspired
by Allen et al. (2007) and Haupt et al. (2007), who utilize
the genetic algorithm, a subclass of heuristic optimization
algorithms, to infer pollutant emission rates by estimating
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Gaussian plume parameters, such as source emission rate,
source location, and surface wind direction, using ground-
based sensors. Secondly, to address the limited performance
of direct quantification from Gaussian plume fitting at fine
resolution, we employ the IME method for more precise
quantification after the separation.

To study the impact of overlapping and the performance
of various quantification methods, we simulate plumes using
large eddy simulations conducted by the Weather and Re-
search Forecasting Model (WRF-LES; https://www.mmm.
ucar.edu/models/wrf, last access: 3 March 2023). Subse-
quently, we synthesize observations of various sources, mete-
orological conditions, and observation characteristics based
on these simulated plumes. The synthesized observations
comprised three scenarios of observation system simulation
experiments (OSSEs), including single-source, dual-source,
and real scenarios. Within these experiments, we compare
the performance of the proposed method in quantification er-
rors against conventional methods (shown in Table 1), in-
cluding the single-source Gaussian plume method, multi-
source Gaussian plume method, and IME method without
separation. Furthermore, we validate our method by applying
it to a genuine satellite-observed case featuring overlapping
plumes.

2 Methods

2.1 Separation and quantification method for
overlapping plumes with multiple sources

In this section, a separation and quantification approach is
proposed to quantify facility-level methane emissions with
overlapping plumes. As shown in Table 1, the proposed
method is composed of a Gaussian plume weighting separa-
tion process, the plume detection process, and the IME quan-
tification process. Section 2.1.1 describes the formulation of
the Gaussian plume models. Section 2.1.2 describes parame-
ter estimation for the Gaussian plume models using a heuris-
tic optimization algorithm. Section 2.1.3 describes the Gaus-
sian plume weighting separation. Section 2.1.4 describes the
detection method and the IME quantification method.

Section 2.1.4 describes the combination of the separation
method and the IME method for the quantification.

2.1.1 2-D Gaussian plume model

The transport mechanism of methane from point sources in
the atmospheric boundary layer (ABL) can be very com-
plicated, as it is affected by multiple factors such as at-
mospheric turbulence, chemical reactions, and terrain ef-
fects. From the perspective of mass conservation, consid-
ering wind transport, gradient diffusion, and source–sink
terms, the convection–diffusion equation can be obtained to
represent this mechanism, which can be written as (Stockie,

2011)

∂C

∂t
+∇ · (Cu)=∇ · (K∇C)+ S, (1)

where C represents the methane column mass concentration
at a certain moment; t represents time; u represents the 2-
D field of wind velocity vectors; matrix K is diagonal, with
its elements representing diffusion coefficients for each wind
velocity direction; and S represents the source item.

One way to solve this partial differential equation (PDE)
is the numerical method (e.g., Hosseini and Stockie, 2017).
However, the computational cost can be enormous. Analyti-
cal methods, on the other hand, simplify the problem by mak-
ing assumptions, allowing for the derivation of analytical so-
lutions to the PDE. For instance, the Gaussian plume expres-
sion of a point source can be obtained from the convection–
diffusion equation by assuming that the wind speed is con-
stant and uniform, the emission rate is time-invariant, and
the turbulence is negligible (Sutton, 1932; Ermak, 1977;
Stockie, 2011). The Gaussian plume model is widely applied
to describe the pollutants, as well as the GHG dispersion in
ABL, particularly in spaceborne GHG monitoring research
(Bovensmann et al., 2010; Nassar et al., 2021; Jacob et al.,
2022). As a result, we model the column mass concentration
(kgm−2) at the location (x,y) using a 2-D Gaussian plume
model for a ground-level point source, which can be written
as (Sutton, 1932; Bovensmann et al., 2010)

CSGP(x,y;Q,u)=

Q
√

2πσy(x)u
exp

(
−

1
2

(
y

σy(x)

)2)
,

(2)

where the x axis is aligned with the direction of wind speed;
Q represents the emission rate (kgs−1); u represents the hor-
izontal wind speed (ms−1) at the plume height; and σy repre-
sents the diffusion coefficient across-wind, which is a func-
tion of downwind distance x and is decided by wind speed,
underlying condition, and sunlight (Briggs, 1973). Equa-
tion (2) can then be extended to multiple-source scenarios
of N sources, and the corresponding concentration is given
by

CMGP(x,y)=

N∑
n=1

CSGP
(
x′n,y

′
n;Qn,un

)
, (3)

where[
x′n
y′n

]
=

[
cosθn sinθn
−sinθn cosθn

][
x− xn
y− yn

]
. (4)

Here Qn and un denote the emission rate and wind speed
of point source n at coordinates (xn,yn), respectively, and θn
represents the wind speed angle of source n in an easting/nor-
thing Cartesian coordinate system, where 0 and 90° repre-
sent the eastward and northward winds, respectively. We pre-
sume uniform wind conditions for the modeled plumes (i.e.,
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Figure 1. The proposed methodology for separating overlapping plumes. A heuristic-optimization-based method is proposed to estimate the
Gaussian plume parameters for each source to separate the overlapping plumes. This method utilizes observed methane column enhancement
and auxiliary data with uncertainty as inputs, yielding enhancements of separated plumes. The separated plumes are then quantified with the
more precise IME method.

Table 1. Comparison of methods evaluated in this work.

Method Separation Detection Quantification

Single-source Gaussian plume – Single-source Gaussian plume fitting
Multi-source Gaussian plume Multi-source Gaussian plume fitting
UNSEP – Student’s t test and connectivity filtering IME method
SEP (ours) Gaussian plume weighting separation Student’s t test and connectivity filtering IME method

un = u, θn = θ,∀n ∈ 1,2, . . .,N ) in this work, given the spa-
tially limited extent of facility-level plumes. This method
simplifies subsequent parameter estimation to improve the
convergence.

2.1.2 Gaussian plume fitting using the heuristic
optimization algorithm

A heuristic optimization algorithm is introduced for param-
eter estimation of the Gaussian plume model discussed in
Sect. 2.1.1. Heuristic optimization algorithms are capable of
global searching in optimization and are thus widely used
for solving optimization problems. Heuristic optimization al-
gorithms have been widely used in parameter estimation of
point source dispersion models (Hutchinson et al., 2017),
e.g., Allen et al. (2007), Haupt et al. (2007), and Cervone
et al. (2010), showing more robust performance compared
to other optimization methods such as Bayesian inference
(Platt and DeRiggi, 2012). The differential evolution algo-
rithm (Storn and Price, 1997) is a heuristic optimization algo-
rithm inspired by the evolution theory of biological species.

In this study, the differential evolution algorithm is se-
lected as the estimation algorithm to iteratively minimize the
metrics between the modeled concentration image by Eq. (3)

and the observed concentration image to estimate the param-
eters of the dispersion model.

Here, the estimating parameters consist of source locations
(xi,yi) and emission ratesQi of source i, the global wind an-
gle θ , and wind velocity u. For the application of the differ-
ential evolution algorithm in this paper, the searching spaces
for the estimating parameters are set as follows: ±100 m for
source locations (xi,yi) from their true values; ±50 % for
the wind velocity from its true value, which is higher than
the average errors of the widely used reanalysis meteorolog-
ical database analyzed by Varon et al. (2018) and Duren et
al. (2019);±45° for the wind angle θ from its true value; and
0–5000 kgh−1 for emission rates Qi , covering all methane
point sources in Duren et al. (2019).

The minimization objective is also important to apply the
optimization algorithm. The most widely used minimization
objective is to minimize the root mean square (rms) metrics
between modeled and observed concentration images. The
rms metric is given as

Lrms =

√∑
i,j

(
Imodel(i,j)− Iobs(i,j)

)2
, (5)
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where Imodel(i,j) and Iobs(i,j) represent the modeled and
observed concentration images, respectively, and i and j rep-
resent the pixel indexes in row and column, respectively.

In the application of the differential evolution algorithm,
the mutation strategy is set as a best-guided mutation, i.e.,
DE2 in Storn and Price (1997); the population (NP) is set as
10×(N×3+2), where N represents the number of sources.
There are three and two parameters to be estimated for each
source and all observations, respectively. The mutation con-
stant (F ) is set as 1 and the cross-over constant (CR) is set as
0.9 according to Storn and Price (1997). The relative conver-
gence criterion is set as 10−3.

2.1.3 Gaussian plume weighting separation

Figure 1 illustrates the framework to separate an image of
overlapping plumes into distinct images, each with a soli-
tary plume. The parameters of the Gaussian plume model
are estimated iteratively using the heuristic optimization al-
gorithm described in Sect. 2.1.2, generating a series of im-
ages each with its corresponding modeled Gaussian plume.
These Gaussian plumes are then utilized as weights to allo-
cate the original observation image pixel by pixel. However,
due to the stochastic nature of the transient plume at such
small scales, there can be slight misalignments between the
modeled Gaussian plume and the transient plume, particu-
larly near the source, which brings obstacles to the following
allocation. To address this misalignment issue, we employ
Gaussian blur (i.e., convolution with a 2-D Gaussian kernel)
to smooth the modeled plumes, thereby increasing robust-
ness against the deviations of the transient plume. Formally,
an image with separated plume Îobs,n of source n from ob-
servation Iobs is given by

Îobs,n = Iobs ·
〈CSGP,n〉∑N
p=1〈CSGP,p〉

, (6)

where CSGP,n and CSGP,p represent the modeled Gaussian
plume image of sources n and p, respectively, and 〈·〉 repre-
sents the Gaussian blur operation.

2.1.4 Plume detection and IME quantification

A transient plume may exhibit significant deviations from the
Gaussian plume at small scales, leading to unstable quantifi-
cation with Gaussian plume fitting. In contrast, the integrated
mass enhancement (IME) method demonstrates better accu-
racy in quantifying small-scale transient plumes (Varon et al.,
2018; Jongaramrungruang et al., 2019). Therefore, we em-
ploy the IME method for more precise quantification of the
separated plumes.

The emission rates estimated by the IME method are given
by Varon et al. (2018):

Q=
Ueff · IME

L
=
Ueff ·

∑
(x,y)∈I1�(x,y)A(x,y)√∑

(x,y)∈IA(x,y)
, (7)

where I represents the set of pixels identified as a plume, and
1�(x,y) represents the mass enhancement of pixel (x,y),
A(x,y) represents the area of pixel (x,y). The effective wind
speed is a logarithmic function with linear variations to 10 m
wind speed U10, where the parameters are fitted using the
WRF-LES simulations (Varon et al., 2018). Since the IME/L
value may vary with the plume pixel detection method, we fit
theUeff for two methods in Table 1, UNSEP and SEP, respec-
tively. We generate a large set of plumes with different emis-
sion rates, wind speeds, and mixing heights to fit the Ueff in
linear relation to logU10. The result is Ueff = 0.55logU10+

0.62 ms−1 for UNSEP and Ueff = 0.64logU10+ 0.94 ms−1

for SEP.
The IME method requires the specification of plume pix-

els I within the observation. Similar to Varon et al. (2018),
we utilize a combination of Student’s t test and 2-D fil-
ters to detect plume pixels in the observation. However, this
single-source approach tends to introduce excessive estima-
tion when there is more than one source, thereby hindering
comparative analyses between the direct application of IME
without separation (denoted as UNSEP) and the proposed
separation and quantification approach (denoted as SEP). To
mitigate this issue, we propose a straightforward pixel de-
tection process to make the results of UNSEP comparable
to SEP. This process, named connectivity filtering, is based
on pixel connectivity analysis, a morphological image pro-
cessing technique. For a source of interest, the pixels in its
nearest connected structures are attributed to the source, des-
ignated as I, while the remaining detected plume pixels are
disregarded.

2.2 Synthesized observation

2.2.1 Methane plume simulation

We perform large eddy simulations using WRF-LES to syn-
thesize observations for the evaluation. The large eddy sim-
ulation (LES) is a promising methodology for solving the
Navier–Stokes equation and is widely employed to simulate
dispersion in the ABL (Stoll et al., 2020). The WRF-LES
can perform simulations that show good agreement with ob-
servations (Brunner et al., 2023) and is thus widely applied in
the field of spaceborne GHG monitoring (Varon et al., 2018;
Cusworth et al., 2019; Brunner et al., 2023).

WRF-LES is utilized to simulate 3-D volume concentra-
tion of methane (in kgm−3) from a point source, where the
methane is modeled as a passive tracer (Nottrott et al., 2014).
We add a trace gas dispersion function with open bound-
ary conditions by modifying the source code of the WRF
4.4 ideal LES experiment. Similar to Varon et al. (2018),
methane plumes are simulated with a mean geostrophic wind
of 1, 3, 5, 7, or 9 ms−1; an inversion height of 500, 800,
or 1100 m; and a simulation region of 3.5km× 6km (across
and along wind) with horizontal and vertical resolutions of
20 and 10 m, respectively. The initial temperature is set as
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293 K in the mixed layer, with a lapse rate of 0.12 Km−1

above the inversion height. The surface sensible heat flux is
set as 100 Wm−2. The model is run for 3 h for spin-up and
2 h for registration with 30 s intervals. The trace gas emission
rate is set as 1 kgs−1. The simulated concentration is scalable
with source emission rates, as simulated by passive trace gas
dispersion.

The simulated 3-D volume concentration snapshots are
then integrated by weighting each column by a column av-
eraging kernel (Bovensmann et al., 2010; Jongaramrungru-
ang et al., 2019). The column averaging kernel is a vector
representing the vertical sensitivity distribution of the instru-
ment and retrieval algorithm, and here it is considered to be
vertically uniform. The resulting 2-D column mass enhance-
ments are then subjected to additive Gaussian noise, con-
sidering instrumental and retrieval uncertainty. The noise is
given as a percentage of methane’s mean dry column concen-
tration, which is considered to be 1.8 ppm (i.e.,≈ 10.3 gm−2

at 1 atm, dry air). The influence of the methane background
is not considered, and the synthesized enhancements are only
attributed to plume and noise in this work.

2.2.2 Synthetic observations

To evaluate the possible impact of plume overlapping on
quantification and the performance of the proposed sepa-
ration method, we performed observation system simula-
tion experiments (OSSEs) with simulated mass columns by
WRF-LES. OSSEs are widely applied to evaluate spaceborne
GHG source detection and quantification abilities by simulat-
ing observed spectral radiations or retrieved concentrations
(Bovensmann et al., 2010; Kuhlmann et al., 2019; Varon et
al., 2018). OSSEs with realistic LESs, accounting for actual
surface topography and meteorological conditions (Stoll et
al., 2020), are preferable for specific source targets; however,
the computational cost can be expensive, considering mas-
sive point source targets with highly heterogeneous spatial
and emission conditions, e.g., targets in Duren et al. (2019).
One feasible approach is to sum multiple simulated column
mass images after rotations, shifting, and concentration scal-
ings while assuming the turbulence variations among mul-
tiple images are negligible. This approach allows for simu-
lating sources with arbitrary emission rates as well as spa-
tial and meteorological conditions, allowing a much lower
computational cost and thus reducing linear time complexity
(O(N)) to nearly constant (O(1)) for simulating N sources
when N is large enough.

To synthesize an image of concentration enhancement ob-
servation with multiple sources, we first establish an east-
ing/northing Cartesian system where the x axis points east
and the y axis points north. The field of view (FoV) is square
with sides of length 6 km and parallel to the axes, centered
at (0,0) of the Cartesian system. Then, the 2-D column mass
snapshots are randomly selected with the given wind speed
and mixing depth. These snapshots are then scaled according

to the emission rate of each source. Then, to rotate and shift
the snapshots for an observation, we traverse all the pixels in
the observation and accumulate their mapping pixels in each
snapshot. For a given pixel of the observation at (x,y), the
mapping pixel indexing in the nth snapshot is given by[
i′n
j ′n

]
=

[
cosθ sinθ
−sinθ cosθ

][
x− xn
y− yn

]
·

[
1
1x
1
1y

]

+

[
Isource
Jsource

]
,

(8)

where θ represents the wind angle to the x axis, (xn,yn) rep-
resents the location of source n, 1x and 1y represent the
horizontal resolutions in WRF-LES, and (Isource,Jsource) rep-
resents the location of the source pixel in WRF-LES. The in-
dices (i′n,j

′
n) are then rounded, thus completing the nearest-

neighbor interpolation. Here, considering the small size of
the plume and the domain, we adopt a unified wind velocity
across the domain.

2.2.3 Observation scenarios

We test our separation method under three different scenar-
ios, namely Exp1–3, each consisting of trials with various
experiment settings. Examples of each scenario are shown
in Fig. 2. Exp1, the single-source scenario, comprises a full
factorial experiment of environmental factors, source factors,
and observation factors to evaluate the performance of quan-
tifying methods. Exp2, the dual-source scenario, comprises
a full factorial experiment with several overlapping-related
factors to analyze the impact of plume overlapping, as well
as to evaluate the performance of separation and quantifica-
tion methods. Exp3, the random source scenario, comprises a
Monte Carlo test to further evaluate the separation and quan-
tification methods.

In Exp1, a single source is placed in the center of the
simulation domain and a full factorial experiment is con-
ducted to test the performance of the quantifying method
under all combinations of multiple-factor levels. These fac-
tors include environmental factors (mixing depth at 500, 800,
and 1100 m; wind speed at 1, 3, 5, 7, and 9 ms−1; wind di-
rection at 0 and 45°), source factors (emission rates ranging
from 100 to 2000 kgh−1), and observation factors (ground
pixel size ranging from 25 to 200 m; retrieval uncertainty
at 1 %, 3 %, and 5 %). It is noteworthy that for observa-
tion factors, ground pixel size is determined by typical point
source monitoring satellites, while retrieval uncertainty is es-
tablished by satellites with ultrafine spectral resolution, such
as GHGSat (Varon et al., 2018). The wind direction is de-
fined in the Cartesian coordinate system, and the retrieval
uncertainty is considered a 0-biased additive noise with the
standard deviation as a percentage of methane’s mean dry
column mass. Each combination is repeated 10 times. The
quantification performance of the Gaussian plume fitting, un-
separated IME (UNSEP), and separated IME (SEP) methods
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Figure 2. Examples for each experiment scenario of synthesized observations. The plots represent the synthesized methane column enhance-
ments. Each semi-transparent polygon patch covers a plume, where the concentration is larger than the uncertainty. The dashed box in (c)
encloses the area where random sources are generated. The emission rates vary between 200 and 2000 kgh−1. In these examples, the ground
pixel size is fixed at 25 m, while the retrieval uncertainty is set at 1 %.

is evaluated. The results are elaborated in Sect. 3.1. Exam-
ples of the plume image under various conditions are shown
in the Supplement.

In Exp2, a secondary source is introduced as an inter-
ference source to produce overlapping in order to evaluate
the impact on quantification and separation. Exp2 is also a
full factorial experiment, where we fix the mixing depth at
800 m, the emission rates at 200 kgh−1, the ground pixel size
at 25 m, and the retrieval uncertainty at 1 %. The rest of the
factors include wind speed at 1, 3, 5, 7, and 9 ms−1; wind di-
rection ranging from −90 to 90°; distance ranging from 100
to 900 m; and the emission rate ratio between the secondary
and original source (Q2/Q1) ranging from 0 to 5. Each com-
bination of trials is repeated 10 times. The quantification per-
formance of the single-source Gaussian plume fitting, multi-
source Gaussian plume fitting, unseparated IME, and sepa-
rated IME methods is evaluated. The results are elaborated
in Sect. 3.2. Comparable results with different ground pixel
size and noise settings are shown in the Supplement.

In Exp3, a Monte Carlo experiment is conducted to fur-
ther assess the performance of the unseparated IME and sep-
arated IME methods. For each trial, one source is randomly
sampled from the AVRIS-NG observed methane source list
(Duren et al., 2019), and its geolocation and emission rate
are thus specified. Likewise, additional neighboring sources
within the 6km×6 km domain are then included in the simu-
lation. For simplicity, sources with emission rates lower than
25 kgh−1 (accounting for about 5 % of the summation) are
excluded from the list as they are considered too small to
be accurately measured by spaceborne measurements, and
their interference as background is also neglected. Addition-
ally, we assume all the sources on the list exhibit persis-
tence. This assumption is supported by the average confi-
dence for persistence on the original list being 0.83. Addi-
tionally, it compensates for the manual removal of overlap-
ping sources during the quality control phase conducted by

the list maker. The winds to load the plumes are then obtained
from the 10 m wind of the fifth generation of atmospheric re-
analysis of the European Centre for Medium-Range Weather
Forecasts (ECMWF ERA5; Hersbach et al., 2020). We then
match geostrophic wind using the 10 m wind (shown in the
Supplement). A random plume with the matched geostrophic
wind is then added to the domain. The sampling time range
for loading wind velocity covers local noon in 2022. The
wind velocity is considered uniform across the domain and
is interpolated to the observation center using five-point in-
verse distance weighting such as in Xu et al. (2022). To en-
sure that all generated sources inside the domain are quan-
tifiable, each side of the simulation frame is extended out-
ward 2 km for a 10km×10km domain. The plumes originat-
ing from outside the domain are considered well mixed and
their interferences with the synthesized enhancements are not
considered. This random experiment is repeated 2000 times.
The quantification performances of the unseparated IME and
separated IME methods are then evaluated and elaborated in
Sect. 3.3.

2.3 EMIT observation

We also test our separation method on methane plumes re-
trieved by the Earth Surface Mineral Dust Source Investiga-
tion (EMIT) instrument installed on the International Space
Station (ISS). EMIT is a hyperspectral instrument capa-
ble of imaging spectroscopy in the visible to short wave-
length infrared, with a nadir ground sampling distance of
30–80 m (Green et al., 2020). The methane column enhance-
ment data (EMITL2BCH4ENHv001) are expressed in units
of parts per million meters (ppm m) and are retrieved using
an adaptive matched filter technique (Green et al., 2023b).
Green et al. (2023a) also provide the corresponding identi-
fied plume complexes (EMITL2BCH4PLM v001), where the
plumes sometimes overlap and thus form these clusters.
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For the quantification, we first converted the concentration
map from ppm m to kgm−2 (Sánchez-García et al., 2022).
Then, we applied the separation method to extract plumes
from each source, and the extracted plumes were then quan-
tified by the IME method, as described in Sect. 2.1. The wind
velocity for separation and quantification is interpolated from
ERA5 as described in Sect. 2.2.3. The source locations are
identified through visual inspection and cross-verified with
local ground facilities using a high-resolution satellite map
from Google Earth. Monte Carlo propagation is introduced
to evaluate the uncertainty of the quantification, and the sys-
tematic uncertainty of the IME method is not considered
(Sánchez-García et al., 2022). For the Monte Carlo propaga-
tion, the input uncertainties include observation uncertainty
from the corresponding EMITL2BCH4PLM data and wind
speed uncertainty estimated as the standard deviation of the
five points nearest ERA5.

2.4 Evaluation indicators

2.4.1 Overlapping indicator

To assess the degree of plume overlapping, a mass overlap-
ping index is proposed, defined as the ratio of the mass in-
tegration of the interference sources to that of the primary
source. The mass overlapping index for source i ofN sources
is given by

OImassi =∑
(x,y)∈I

[(∑N
n=11�n(x,y)−1�i(x,y)

)
·A(x,y)

]∑
(x,y)∈I1�i(x,y)A(x,y)

,
(9)

where I denotes the plume pixel of source i. Higher OImassi
means that the plume of source i is subject to more severe
interference.

2.4.2 Emission rates estimation indicators

The quantification of a methane source is considered equiva-
lent to solving a parameter estimation problem. We introduce
R2, the coefficient of determination, to indicate the overall
prediction accuracy. Furthermore, as R2 has a relatively poor
ability to explain samples with small true values, absolute
percentage error (APE) is introduced to indicate the estima-
tion error of a single sample, and mean absolute percentage
error (MAPE) is introduced to indicate the overall estimation
error. The definitions of R2, APE, and MAPE are given by

R2
= 1−

∑N
n=1

(
Q̂n−Qn

)2∑N
n=1

(
Q−Qn

)2 , (10)

APEn =
∣∣∣∣Q̂n−Qn

Qn

∣∣∣∣, (11)

MAPE=
1
N

N∑
n=1

∣∣∣∣Q̂n−Qn

Qn

∣∣∣∣, (12)

respectively, where Qn and Q̂n represent the true emission
rate and predicted emission rate, respectively, of source n;Q
is the average of true emission rates; and N represents the
number of sources in the experiments.

3 Results

3.1 Quantification results for a single source

In Exp1, we evaluate the baseline performance of various
quantification methods, including the emission rates derived
directly from the Gaussian plume fitting, unseparated and di-
rect IME quantification (denoted as UNSEP), and quantifica-
tion after applying the separation method (denoted as SEP)
using a full factorial experiment. The overall quantification
errors (MAPE) for the three quantification methods are 0.89,
0.30, and 0.40, respectively. The distributions of quantifica-
tion errors, in terms of absolute percentage error (APE), with
respect to different simulation factors in Exp1 are shown in
Fig. 3.

As shown in Fig. 3a, the APE of all three methods exhibits
nearly linear increasing trends with respect to pixel size, with
Pearson’s correlation coefficients (R) of 0.24, 0.18, and 0.21,
and all p values are less than 0.01. Similar trends are also
shown in Fig. 3b, where the APE of three methods increases
slightly with respect to uncertainty (R = 0.16,0.13,0.14;
p < 0.01). As shown in Fig. 3c and d, the variance of APE
with respect to mixed depth and wind direction is minor. As
shown in Fig. 3e, the APE of the Gaussian plume and UN-
SEP increases with respect to the wind speed. However, the
APE of the SEP reaches the maximum at the wind speed
of 3 ms−1. With increasing wind speed, SEP exhibits lower
quantification error than UNSEP of 9 ms−1. As shown in
Fig. 3f, the quantification error of all three methods decreases
with the emission rates and shows a sublinear trend.

3.2 Quantification results for dual sources

In Exp2, we introduce an interference source to create over-
lapping for the full factorial experiment. After introducing
an interference source, the MAPE of single-source Gaus-
sian plume fitting increases from 0.45 to 1.23, while the in-
creases in the multi-source Gaussian plume model are neg-
ligible, which remain 0.45. Similarly, the UNSEP increases
from 0.15 to 0.83, while the SEP only increases from 0.30 to
0.38.

As demonstrated in Fig. 4, the SEP shows the best quantifi-
cation performance in most cases, followed by multi-source
Gaussian plume fitting, UNSEP, and single-source Gaus-
sian plume fitting in terms of MAPE. With decreasing wind
speed, the errors of quantification results by multi-source
Gaussian plume fitting become comparable to that of SEP.
When the wind speed is 1 ms−1, the quantification results of
multi-source Gaussian plume fitting are slightly better than
SEP. As distance increases or interference strength (Q2/Q1)
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Figure 3. Distribution of quantification APE under various experimental parameters in Exp1. The orange dashes denote the medians of
APE, the boxes denote the range between the lower and upper quartiles (Q1 and Q3), and ⊥ and > extend from the box by 1.5 times the
interquartile range (IQR). The quantification errors in APE of Gaussian plume fitting, unseparated IME (UNSEP), and separated IME (SEP)
methods are represented in the legend.

decreases, plumes are less likely to overlap, leading to UN-
SEP outperforming SEP. At 900 m distance or interference
strength decreasing to 0.5, UNSEP achieves the best quan-
tification performance.

The multiple-source Gaussian plume and SEP exhibit bet-
ter quantification performance on overlapping plumes as in-
terference strength intensifies. Also, both multi-source Gaus-
sian plume fitting and SEP show minor variations in fac-
tors including wind direction, wind speed, distance between
two sources, and interference strength. In contrast, single-
source Gaussian plume fitting and UNSEP are more sus-
ceptible to these factors, with their performances deterio-
rating as wind direction increasingly aligns with the line
connecting the sources, wind speed decreases (for UNSEP),
wind speed increases (for single-source Gaussian plume fit-
ting), distance decreases, and interference intensifies. Similar
trends are observed with varying observation pixel sizes and
retrieval noise, as demonstrated in our further experiments
(shown in the Supplement).

3.3 Quantification results for random sources

In Exp3, we focus on comparing the UNSEP and SEP in
a more realistic Monte Carlo simulation. Factors including
source locations, emission rates, and wind velocities are ran-
domly selected from real distributions. The sampled factors
demonstrate good agreement in terms of source emission
rates (Fig. 5a) and wind speed (Fig. 5b) with the real distri-
butions of the entire source list. The sampled emission rates
follow a lognormal distribution, with a mean of 172.2 kgh−1

and standard deviation of 340.8 kgh−1. As shown in Fig. 5c,
53.7 % of the frames cover one source, 24.6 % of the frames
cover two sources, and 21.7 % of the frames cover more than
two sources. On average, there are 2.33 sources per frame
(6km× 6km).

Figure 6 shows the quantification results of unseparated
and separated IME quantifications. The results of SEP
demonstrate improvements in R2 from 0.71 to 0.83 com-
pared to UNSEP and a decrease in the quantification error
(MAPE) from 1.46 to 0.44. We also find that SEP is notably
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Figure 4. Distribution of quantification APE with respect to various experimental factors in Exp2.

Figure 5. Statistical description of the factors in the Monte Carlo experiment (Exp3). The red bins denote the distribution of all sources from
the AVIRIS-NG methane source inventory and the corresponding local noon wind speed distribution in the entire year of 2022. The blue bins
denote the distribution of the selected sources in Exp3.
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Figure 6. Comparison between quantification results of (a) unseparated quantification and (b) separated quantification in Exp3.

more accurate in estimating low-emission sources compared
to UNSEP.

To further investigate the distribution of overlapping and
the performance of UNSEP and SEP in handling overlap-
ping, we demonstrate quantification error over the source
overlapping index (shown in Fig. 7). The overlapping in-
dex OImass ranges from 0 to 6.09. Only 36.0 % of sources
are completely isolated from other sources, and their over-
lapping index OImass is 0; half of the sources have OImass >

0.02, and 4.3 % of sources are subjected to overlapping with
OImass ≥ 1. We observe a nearly linear relation relationship
between APE of UNSEP and OImass (Pearson’s R = 0.45,
p < 0.01), and the regression result can be expressed as
APEUNSEP = 2.76 ·OImass+1.34. We define severe overlap-
ping as occurring when the APE exceeds twice the intercept.
Then, this results in an OImass threshold of 0.41, indicating
that 28.9 % of the sources experience severe overlapping.
In comparison, the corresponding OImass threshold of SEP
is 3.00 (APESEP = 0.15 ·OImass+ 0.45; Pearson’s R = 0.13,
p < 0.01), which only accounts for 0.5 % of all sources. This
indicates that the effect of overlapping is largely suppressed
by SEP and thus results in robust quantification.

3.4 Quantification on EMIT observation

In this section, we evaluate our separation and quantification
method using real satellite observations of EMIT. We focus
on a specified cluster of plumes observed by EMIT on 15 Au-
gust 2022 at 04:28 UTC in Turkmenistan, near the Goturdepe
oil and gas production field. The sources in this location are
spatially aggregated and create significant plume overlapping
(see Fig. 8). Through manual inspection and high-resolution
satellite imagery verification, we identify six sources within
the cluster. The emission rates of each source are quanti-
fied using our separated quantification method. Additionally,
we quantify the entire cluster as a whole using the conven-

Figure 7. Comparison between quantification results and the source
overlapping index (OImass). The dashed line represents the linear
fitted quantification error of UNSEP with respect to OImass. The
solid red line represents the cumulative distribution function of
OImass.

tional IME method (UNSEP without connectivity filtering in
Sect. 2.1.4).

The quantification results are shown in Table 2. The es-
timated emission rates for each source range from 1.64 to
5.20 th−1. We compare our estimated emission rates with
previous research. We find that source Q3 has also been
quantified by Irakulis-Loitxate et al. (2022) and Sánchez-
García et al. (2022), and their estimations for Q3 are
1.4± 0.4 and 5.0± 2.2 th−1, respectively. There is a gap of
more than 2 years between these two estimations, and their
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Figure 8. Overlapping plumes observed by EMIT on 15 August 2022 at 04:28 UTC. This image is from the dataset EMITL2BCH4ENH
v001, which is publicly available at https://lpdaac.usgs.gov/products/emitl2bch4enhv001/ (last access: 3 July 2024).

estimations demonstrate significant differences. Our estima-
tion for Q3 on 15 August 2022 is 3.34± 0.90 th−1, which
is comparable to the previous estimations. The summation
of separated quantification results for the six sources is
16.77± 4.65 th−1. In comparison, the quantification result of
the whole cluster is 21.06± 5.51 th−1, which is higher than
the summation, but their differences are consistent within
margins of error. This is reasonable as pixels in separated
quantification may not be attributed to any source and thus
excluded in the final quantification, leading to underestima-
tions.

4 Discussion and conclusions

In this study, we compared the baseline quantification per-
formance of the Gaussian plume model with two IME-based
methods (UNSEP and SEP) for spaceborne methane point
source monitoring in Exp1 (see Sect. 3.1). Our findings in-
dicate that the IME methods outperform the Gaussian plume
model on small scales with ground pixel sizes up to 200 m.
Additionally, we observed weak positive linear relationships
of the quantification error of all three methods with respect
to both ground pixel size and retrieval uncertainty.

Then we investigated the impact of plume overlapping
on the quantification. We found that plume overlapping in-
creases quantification errors in Exp2. Specifically, the MAPE
for the UNSEP method increased from 0.15 to 0.83, and for
single-source Gaussian plume fitting, it increased from 0.45
to 1.23 when compared to cases with no interference (see
Sect. 3.2). Factors such as closer source intervals and dis-
proportion emission rates will enlarge these defects. Over-
lapping plumes can produce connective pixels that cover
multiple sources, which are ambiguous to attribute. Simply
eliminating these pixels will result in increasing missed de-
tections and quantification errors. In addition, the relatively
sparse spatial resolution of spaceborne methane monitoring
techniques compared to airborne techniques can increase the
proportion of these ambiguous pixels. The findings from the

Monte Carlo experiment in Exp3 indicate that plume over-
lapping can affect up to 18 % of the sources, resulting in a
doubling of errors for unseparated IME quantification (see
Sect. 3.3). As a result, it is essential to find and attribute pix-
els in overlapping plumes correctly for spaceborne quantifi-
cation.

To tackle this issue, we introduced a heuristic optimiza-
tion algorithm to perform parameter estimations for the 2-D
multi-source Gaussian plume model. Based on the outputs of
this model with the estimated parameters, we assigned the
mass to sources according to the modeled concentrations by
each pixel. In this way, we separated an overlapping plume
image into several single-plume images. This “soft segmen-
tation” shows better performance in plume pixel detection for
overlapping plumes than “hard segmentation” methods, e.g.,
the plume detection method by Varon et al. (2018), which as-
signs all the mass in a pixel to a single source while the mass
may originate from multiple sources. Results in the Monte
Carlo experiment (Exp3) show that the application of sepa-
ration is effective in quantification, where MAPE decreases
from 1.46 to 0.45, and R2 increases from 0.71 to 0.84, com-
pared to quantification without separation (see Sect. 3.3).

Additionally, our separation model can perform indepen-
dent estimation for attributes such as wind speed and direc-
tion, as well as source locations, which makes the separa-
tion robust to the uncertainty in auxiliary data. Although the
emission rates as parameters of the 2-D multi-source Gaus-
sian plume model are estimated, they are only used for sepa-
ration instead of quantification. As our experiment results in
Exp1 and Exp2 show, Gaussian plume fitting exhibits higher
systematical uncertainty than the IME method in quantify-
ing fine-scale methane plumes. It needs to be noted that,
in our experiment, the quantification error of the Gaussian
plume increases with pixel size and is constantly higher than
the IME methods as shown in Exp1. This is slightly dif-
ferent from Varon et al. (2018) and Jongaramrungruang et
al. (2019), who demonstrate that the plume shows a better
approximation of Gaussian form with increasing pixel size
above 300 m. One explanation for the inability to pinpoint
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Table 2. Quantification results from EMIT observations. Six sources are manually identified and quantified. The quantification result sum-
mation for the separated IME method over each source separately (summation) is compared to the results for the unseparated IME method
over the whole methane plume cluster (whole).

Source ID Source location Estimated emission Reference emission
rates [t h−1] rates [t h−1]

Q1 39.4436° N, 53.8176° E 1.64± 0.49
Q2 39.4490° N, 53.7929° E 1.35± 0.42
Q3 39.4620° N, 53.7753° E 3.34± 0.90 1.4± 0.4a

5.0± 2.2b

Q4 39.4687° N, 53.6428° E 5.20± 1.38
Q5 39.4762° N, 53.6602° E 1.69± 0.50
Q6 39.4781° N, 53.7276° E 3.55± 0.95
Summation 16.77± 4.65
Whole 21.06± 5.51

a Observed by PRISMA on 27 March 2020 (Irakulis-Loitxate et al., 2022). b Observed by WorldView-3 on
10 April 2022 (Sánchez-García et al., 2022).

the turning point of performance enhancement in Gaussian
plume fitting is the limited size of our simulation domain. As
we increase the pixel size, the number of pixel samples de-
creases, which counteracts the advantages of averaging ed-
dies using larger pixels, thereby impeding the performance
improvement of the Gaussian plume fitting. A comprehen-
sive exploration of the trade-offs between Gaussian plume
and IME methods may require large-scale, high-resolution
LESs and is beyond the scope of this paper.

In the experiment with real satellite observations (see
Sect. 3.4), firstly, we notice that identifying source loca-
tions correctly is crucial for separation and quantification.
Although we verified the source with satellite imagery, it still
appears less precise. Utilizing detailed facility-level inven-
tories, such as VISTA-CA, could greatly help source detec-
tion, separation, and quantification. Additionally, for previ-
ously unknown emission sources, integrating multimodal in-
formation, including pipeline maps, and using simultaneous
facility flare observations can also be introduced for accurate
identification (Irakulis-Loitxate et al., 2022). Secondly, we
also notice that there are unignorable differences in source
quantification results across research, as shown in Sect. 3.4.
The temporal variability in source emissions and the associ-
ated uncertainty in quantification are coupled, posing chal-
lenges to cross-verification among observations. This sug-
gests the need for further verification with ground-truth data.
Thirdly, we find that in some cases the plumes exhibit a large
deviation from the WRF-LES simulation, especially in com-
plex terrains, such as valleys. In this case, using uniform
wind assumptions may also lead to the overestimation of the
performance of the IME quantification method as well as the
separation method.

In this study, we proposed a separation and quantifica-
tion approach, which combines the Gaussian plume and
IME method, to quantify overlapping plumes from multiple
facility-level point sources in spaceborne methane observa-

tions. As implied by the VISTA-CA inventory and AVIRIS-
NG observed methane source list, the methane point sources
can be spatially aggregated in some places, meaning that the
plume overlapping may be non-negligible. This deficiency
will constrain the quantification scope of spaceborne GHG
monitoring techniques. As a result, our separation method
can be important to spaceborne methane monitoring for con-
structing or verifying facility-level emission inventories (e.g.,
Duren et al., 2019), as well as environmental administration
departments. For future research, a dispersion model, which
is more representative of real transient plumes, can be in-
troduced to improve the separation performance. The inter-
ferences of background methane are not considered in this
work, and future work may consider using realistic back-
grounds to account for irregular noise, such as Jongaramrun-
gruang et al. (2022) and Gorroño et al. (2023). A series of
tests on more realistic simulations, as well as real observa-
tions, should also be performed for further validation.

Code availability. The original version of the WRF source code is
publicly available at https://www.mmm.ucar.edu/models/wrf (Ska-
marock et al., 2019); the source code of the proposed separation
method in Sect. 2.1 is available upon request.

Data availability. The VISTA-CA inventory is publicly available
at https://doi.org/10.3334/ORNLDAAC/1726 (Hopkins et al.,
2019). The AVIRIS-NG observed methane source list is publicly
available in its supplement at https://doi.org/10.1038/s41586-
019-1720-3 (Duren et al., 2019). The ECMWF ERA5 reanalysis
meteorological data are publicly available at https://www.ecmwf.
int/en/forecasts/dataset/ecmwf-reanalysis-v5 (Hersbach et al.,
2023). The EMIT methane enhancement data are publicly avail-
able at https://doi.org/10.5067/EMIT/EMITL2BCH4ENH.001
(Green et al., 2023b). The EMIT estimated
methane plume complexes are publicly available at
https://doi.org/10.5067/EMIT/EMITL2BCH4PLM.001 (Green
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et al., 2023a). The LES-simulated 2-D plume snapshots are
available upon request.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-18-455-2025-supplement.
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