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Abstract. Black Carbon (BC) is a carbonaceous aerosol that
strongly absorbs solar radiation. The high emissions of these
highly absorbent particles exacerbate regional air quality and
pose significant threats to global climate, both in the short
and long term. Therefore, accurately quantifying the spa-
tial distribution of BC is crucial for improving regional air
quality and mitigating the climate change impacts driven by
human activities. In this study, we developed a novel al-
gorithm for retrieving BC surface concentration jointly us-
ing MODIS and AERONET data. Firstly, the algorithm em-
ployed the K -means clustering method to determine seasonal
background aerosols model based on AERONET V3 daily
products. Then, the Maxwell-Garnett effective medium ap-
proximation model was utilized to calculate the complex re-
fractive index of the internally mixed aerosols. Subsequently,
the lookup tables were established using the 6SV2.1 ra-
diative transfer code to estimate optimal BC fraction and
column concentration. Next, the column concentration data
were converted to surface concentration using a conversion
coefficient derived from MERRA-2. Finally, the retrieved
MODIS BC surface concentration was validated with in-situ
Aethalometer measurements. The validation showed a cor-
relation coefficient (R) of 0.727, a root mean square error
(RMSE) of 0.353, a mean absolute error (MAE) of 0.211,
and a linear fit function of y = 0.718x 4+ 0.015. These statis-
tical parameters outperform those obtained from MERRA-2
BC data (R =0.655, RMSE =0.487, MAE=0.381,and y =
0.686x + 0.400), demonstrating the superior performance of
the proposed algorithm in this study area.

1 Introduction

Black carbon aerosol (BC) particles have important impacts
on the global climate, air pollution, and human health (Ra-
manathan and Carmichael, 2008). According to the latest
report of the Intergovernmental Panel on Climate Change
(IPCC) (Everett et al., 2022), the overall climate effect of
aerosols is cooling, but the BC particles therein have a sig-
nificant warming effect, and play an extremely important role
in promoting glacier melting in the Arctic region (Flanner,
2013). In addition, BC emitted from human activities also
significantly affects air quality (Cao et al., 2007). It is one of
the main components of fine particulate matters (PM> 5) (Cai
et al., 2020), which has a great impact on human health and
is considered an important factor leading to obesity (Guo et
al., 2022). Therefore, it is of great research significance to
obtain accurate and reliable BC spatiotemporal distribution,
especially BC surface concentration data that is extremely
relevant to human activities.

Currently, the most common method to obtain the chemi-
cal composition of BC relying on in-situ measurements, such
as Aethalometers (AE31/33) (Pavese et al., 2020), aerosol
mass spectrometer (Wang et al., 2018), scanning electron mi-
croscopy (Brodowski et al., 2005), etc. These methods are ac-
curate and reliable but can only obtain BC concentrations in
specific areas. In addition, using chemical transport models
to simulate BC concentrations is also an important method
(Xu et al., 2020). Still, the current assimilation products have
low spatial resolution and the results are highly uncertain due
to the deviation of model input data from actual atmospheric
conditions (Sato et al., 2003).
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Over the past 20 years, obtaining aerosol physical and
chemical properties based on ground-based remote sens-
ing and satellite remote sensing methods has been a hot
topic in atmospheric science research (Remer et al., 2024).
In ground-based remote sensing, some scholars used the
Aerosol Robotic Observation Network (AERONET) to invert
the BC-dominated absorption component based on the ob-
servation results of the complex refractive index (RI), com-
bined with the three aerosol characteristics of BC, ammo-
nium sulfate, and aerosol water (Sato et al., 2003; Schuster
et al., 2005). Later, the single scattering albedo (SSA) was
introduced based on the RI, and a five-component inversion
model was established (Wang et al., 2013). On this basis, Xie
et al. (2017) introduced the log-normal volume size distri-
bution, and then using fine mode volume concentration and
coarse mode volume concentration, combined with aerosol
optical depth (AOD) correction, successfully separated the
proportion of coarse and fine particles, and simulated the
concentration and volume distribution of seven different
aerosol types. Zhang et al. (2024) simultaneously obtained
the long-term series BC column concentration of global
AERONET stations based on the Generalized Retrieval of
Aerosol and Surface Properties (GRASP)/Component algo-
rithm (Dubovik et al., 2011). However, ground-based remote
sensing cannot accurately describe the spatial variation of
BC. Therefore, multi-temporal and wide-area observations
using satellite remote sensing have the potential to monitor
the large-scale spatiotemporal variation of BC. Some studies
have preliminarily proposed BC concentration inversion al-
gorithms based on satellite data, such as applying the GRASP
algorithm to polarized satellite data such as Polarization and
Directionality of the Earth’s Reflectances (POLDER) (Bao et
al., 2019; Li et al., 2019, 2020) and Directional Polarimetric
Camera (DPC) instruments (Li et al., 2022). Based on Mod-
erate Resolution Imaging Spectroradiometer (MODIS) data,
the BC column concentration was estimated in China using
the lookup table method (LUT) (Bao et al., 2020). Based on
the geostationary satellite Himawari-8 data, the hourly BC
surface concentration in North China was estimated using
the critical reflectance method (Bao et al., 2023). Choi et
al. (2024) used the inferred BC volume fraction and parti-
cle mass concentration using the Earth Polychromatic Imag-
ing Camera (EPIC) to infer the volume fraction and parti-
cle mass concentration of BC based on the spectral absorp-
tion provided by the Multi-Angle Implementation of Atmo-
spheric Correction (MAIAC) algorithm. In this paper, we
utilized MODIS data, long-term AERONET aerosol optical
property observation data, considering the seasonal differ-
ences of background aerosols (BAs) across the study area.
The K-means method was applied to categorize the optical
properties of BAs for different seasons, and multiple LUTs
were established with varying BC fraction. This enables the
development of a novel BC surface concentration inversion
algorithm tailored to the region. Given that MODIS has pro-
vided a substantial volume of long-term data, this new al-
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gorithm holds significant potential for investigating long-
term spatiotemporal changes in BC concentrations. Section 2
describes data source; Sect. 3 illustrates the methodology,
including forward model, calculation strategy for physical
properties of internal mixed aerosols, inverse method, and
sensitivity studies; Sect. 4 contains the retrieved MODIS
BC surface concentration results, validation, and uncertainty
analysis. Section 5 represents conclusion.

2 Data
2.1 MODIS data

MODIS has been recording data on the Aqua and Terra satel-
lites launched by NASA and has been providing a large
amount of observations since 1999 (Remer et al., 2005). This
study used MODIS data from November 2023 to June 2024
in the study area of 5-20° E, 30-50° N, including three types
of datasets: MO/YDO02 (L1B data), MO/YDO03 (Geolocation
data), and MO/YDO04 (AOD data based on Dark Target al-
gorithm (DT), 0.55 um). The DT used the linear relationship
between the surface reflectance of 0.47, 0.66 and 2.12 um to
retrieve AOD. This product has been widely used in atmo-
spheric remote sensing and climate change research due to its
reliable accuracy and long time series. The DT used the lin-
ear relationship between the surface reflectance of 0.47, 0.66
and 2.12 um to retrieve AOD (Levy et al., 2013). This prod-
uct has been widely used in atmospheric remote sensing and
climate change research due to its reliable accuracy and long
time series. These datasets can be obtained from this website
https://ladsweb.modaps.eosdis.nasa.gov/ (last access: 5 July
2025).

2.2 AERONET data

AERONET is the world’s most widely used ground-based
aerosol physical characteristics observation network, provid-
ing long-term aerosol optical and physical property obser-
vation data from thousands of stations for nearly 30 years
(Dubovik et al., 2000). This study used the AERONET V3
daily dataset of 32 stations in the study area to obtain BAs
characteristic data, which was used as aerosol model input
data in the atmospheric radiation transfer model. The loca-
tions of these sites are shown as red dots in Fig. 1, and the
detailed site information is shown in Table 1. This dataset can
be downloaded at https://aeronet.gsfc.nasa.gov/ (last access:
5 July 2025).

2.3 AE33data

AE33 aethalometer is based on the principle of light ab-
sorption and quantifies BC surface concentration by mea-
suring the light absorption characteristics of acrosol samples
at multiple wavelengths (Yus-Diez et al., 2021). The instru-
ment typically conducts real-time continuous light absorp-

https://doi.org/10.5194/amt-18-4559-2025


https://ladsweb.modaps.eosdis.nasa.gov/
https://aeronet.gsfc.nasa.gov/

X. Jiang et al.: Retrieval of black carbon aerosol surface concentration from MODIS 4561

Table 1. AE33 and AERONET ground observation stations parameters.

Station type  Station name Longitude (°)  Latitude (°)  Altitude (m)
AE33 Monte Cimone 10.70 44.19 2165
ISAC Bologna IT 11.34 44.52 54
Milano Pascal 9.23 45.48 118
Ziirich-Kaserne 8.53 47.38 409
Marseille Longchamp 5.39 43.31 73
Kosetice (NAOK) 15.08 49.57 538
AERONET AAOT 12.51 45.31 10
Bari_University 16.89 41.11 12
Ben_Salem 991 35.55 130
Bure_OPE 5.51 48.56 393
Carpentras 5.06 44.08 107
Ersa 9.36 43.00 80
ETNA 15.02 37.61 736
Gozo 14.26 36.03 111
IMAA _Potenza 15.72 40.60 770
IMC_Oristano 8.50 3991 10
ISDGM_CNR 12.33 45.44 20
Ispra 8.63 45.80 235
Karlsruhe 8.43 49.09 140
Lamezia_Terme 16.23 38.88 8
Lampedusa 12.63 35.52 45
LAQUILA_Coppito 13.35 42.37 656
Lecce_University 18.11 40.34 30
Mainz 8.30 50.00 150
Messina 15.57 38.20 15
Modena 10.95 44.63 56
Munich_University 11.57 48.15 533
Napoli_CeSMA 14.31 40.84 50
OHP_OBSERVATOIRE 5.71 43.94 680
Rome_La_Sapienza 12.52 41.90 75
Rome_Tor_Vergata 12.65 41.84 130
Sirmione_Museo_GC 10.61 45.50 86
Toulon 6.01 43.14 50
Tunis_Carthage 10.20 36.84 10
Venise 12.51 45.31 10
Vienna_ BOKU 16.33 48.24 266
Villefranche 7.33 43.68 130

tion measurements at seven wavelengths, ranging from ul-
traviolet to near-infrared, allowing it to distinguish between
different sources of BC and aerosol components, thus im-
proving data accuracy (Rajesh and Ramachandran, 2018). In
this study, we used the BC surface concentration data from
6 sites equipped with AE33 and located in the study area,
with the measurement wavelength at 637 nm. The locations
of the 6 AE33 sites are shown in Fig. 1, and the detailed
site information is shown in Table 1. The AE33 BC sur-
face concentration data can be obtained from this website
https://ebas.nilu.no/data-access/ (last access: 5 July 2025).
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2.4 MERRA-2 data

MERRA-2 is a global atmospheric reanalysis dataset devel-
oped by NASA. It is specifically designed to provide high-
quality historical datasets for the study of atmospheric and
climate processes (Gelaro et al., 2017). In this paper, we
used water vapor and ozone data to correct the absorption
of MODIS L1B data, and BC column concentration and sur-
face concentration data were used to obtain a priori ratio and
for comparison. The MERRA-2 datasets can be downloaded
from https://search.earthdata.nasa.gov/ (last access: 5 July
2025).
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Figure 1. Location distribution of AERONET and AE33 ground
observation stations. The small red dots, large green dots, and text
in the figure represent AERONET sites, AE33 sites, and AE33 site
names, respectively.

3 Methodology
3.1 Forward model

In this study, we used the 6SV2.1 model (Vermote et al.,
2016), which is widely used in current aerosol remote sens-
ing inversion. When the zenith angle does not exceed 75°,
the estimation error of top of atmosphere reflectance (TOA)
does not exceed 0.4 % (Jiang et al., 2022). The 6SV2.1 model
equation is as follows:

/OTOA (95’ QV’ wa ta fBC’ BAS) =
Patm (957 9Va (0, T, fBC7 BAS)
Tg +T1 (OSaTa fBCaBAS) T2 (GVaTa fBCaBAS)pS (1)
(l - pSS(Ts fBC’ BAS))

In the Eq. (1), 6, 6y, ¢, T and fpc denote solar zenith an-
gle, satellite zenith angle, relative azimuth angle, AOD, and
BC volume fraction, respectively. ptoa, Patm, Os» S, Tg, T1,
and 7T, represent TOA, atmospheric path reflectance, surface
reflectance, atmospheric spherical albedo, gaseous transmis-
sion, downward atmospheric transmission, and upward at-
mospheric transmission, respectively.

3.2 Estimation of optical properties of mixture aerosol

Maxwell—Garnett effective medium approximation model
(MG-MEA) is used to estimate the Maxwell-Garnett dielec-
tric function of aerosol mixtures (Schuster et al., 2005). In
this paper, the schematic diagram of the mixture including
BC surrounded by BAs is shown in Fig. 2. The MG-EMA
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equation is as follows:
3 C( (eBC—€BAs) )

BC \ (epc+2eBas)

_ (BC—EBAs)
(1 fsc (SBC+283A5)>
where emg, €BAs, fBc and epc indicate mixture aerosol di-
electric function, BAs complex dielectric function, BC vol-

ume fraction and BC complex dielectric function, respec-
tively. For egas and epc values can be obtained through RI:

2

emGg = | 1+

ej =R[ (3)

where j = BC, BAs, represents different component.
After obtaining epmg, the mixture aerosol RI can be calcu-
lated by Egs. (4) and (5):

(,/83—}—8?—}—&)

n:\—z “4)
(,/£f+8i2—sr)
kz\f )

where ¢ and ¢; are real part and imaginary part of evg, n
and k are real part and imaginary part of the mixture aerosol
RIL

We used the RIgc = 1.95 —0.79i (Bond and Bergstrom,
2006). As regards Rlgag, we obtained them from AERONET
based on K-means cluster method (Russell et al., 2014). In
AERONET V3 daily product, we used the following criteria
to remove strong absorbing fine aerosol particles data before
clustering: (1) at a wavelength of 440 nm, many aerosol par-
ticles exhibit strong absorption, making it challenging to sep-
arate strongly absorbing BC particles. However, BC still ex-
hibits strong absorption in the 675-1020 nm range, and this
characteristic can be leveraged to effectively isolate strongly
absorbing fine particles (Bond et al., 2013), so we choose
to remove the data with SSA (675-1020nm) < 0.85 and
Fine mode fraction (FMF) > 0.4; (2) in some biomass com-
bustion and industrial cases, SSA values range from 0.85
to 0.95 (Dubovik et al., 2002). In order to reduce the im-
pact of BC aerosols on classification, fine particles whose
SSA decreases with wavelength climbing (Angstrém Expo-
nent, AE > 1.5) are also removed. Figure 3 shows the par-
ticle volume size distribution and SSA of BAs at different
times. It can be observed that during spring and summer,
the volume concentration of coarse-mode particles is higher
in BAs, which is associated with the frequent occurrence of
dust aerosols from North Africa during from March to June
every year (Meloni et al., 2008). Moreover, the changes in
SSA across different seasons are quite pronounced, with the
absorption of fine aerosol particles being higher in winter.
Using data from all seasons for clustering could introduce
significant errors in the estimation of BAs. Therefore, this

https://doi.org/10.5194/amt-18-4559-2025
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Figure 3. BAs particle optical properties in different seasons. Panels (a) and (b) denote particle volume size distribution and SSA, respec-
tively. DJF represents winter (December—January—February); MAM represents spring (March—April-May); JJA represents summer (June—
July—August); SON represents autumn (September—October—November).

study clustered the AERONET data by season to obtain ac-
curate seasonal variations in the physical properties of BAs.
Tables 2 and 3 show RI clustering results and particle vol-
ume size distribution parameters clustering results of BAs in
different seasons.

In the 6SV2.1 model, we need to input aerosol mixture
RI and particle volume size distribution. The particle volume
size distribution equation is as follows (Dubovik and King,
2000):

2
1 -1 m,i
dnr Z(Flmy)exp —O.5((nrln;r )) (6)

i=1

In Eq. (6), i represents components, including BC, fine BAs,
and Coarse BAs; r represents particle radius; C;, 0;, and rpy_
represent particles volume concentration, standard deviation,
and volume median radius of different components, respec-
tively. Particles volume size distribution parameters for BAs
have been shown in Table 3. For BC, r, pc = 0.095 um and
opc = 1.80 um (Ganguly et al., 2009). Because the Cigg iS
normalization parameter, C; is equal to the volume fraction
of each component.
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3.3 Inverse method

After geometric correction of the MODIS L1B data, the wa-
ter vapor and ozone data of MERRA-2 were used to correct
the gas absorption of the band (Xie et al., 2020). Considering
that at 0.47 um, there is strong absorption by other particles
(like BrC et al.) besides BC absorption (Chung et al., 2012),
this study used the band of 0.66 and 2.12 um for inversion.
The cloud mask algorithm used multiple wavelengths from
visible to near-infrared for cloud identification (Xue et al.,
2014). Then we used the 6SV2.1 to build LUT based on mix-
ture aerosol optical properties. Since the fraction of BC in
mixture aerosol particles generally does not exceed 6 % (Bao
et al., 2020), when generating the LUT, the value of fgc is
from 0 to 0.06, and the step size is 0.01. In the retrieval pro-
cess, we used DT AOD to input for finding optimal results,
the cost function is as follows:

X = mmZ (,oscaj1 — g j> (N

Where j represents 2 band (0.66 and 2.12um), o and
oPT are calculated surface reflectance and surface reflectance
generated by DT algorithm, respectively.

Atmos. Meas. Tech., 18, 4559-4571, 2025
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Table 2. RI clustering results of BAs in different seasons.

Time  0.440 um 0.675 um 0.870 um 1.020 um

DJF 1.429 —0.005i 1.434—0.004i 1.433—-0.004; 1.428 —0.004i
MAM 1.448—-0.004i 1.453—0.003; 1.453—0.003i 1.448—0.003i
JJA 1.443 —0.004i 1.455—-0.003; 1.455—0.003; 1.452—0.003;
SON 1.430—0.004; 1.434—0.003; 1.435—0.004i 1.432—0.004i

X. Jiang et al.: Retrieval of black carbon aerosol surface concentration from MODIS

Table 3. Particle volume size distribution parameters clustering results of BAs in different seasons. Vol-m, VMR-m, and SD-m (m =F, C;
F =Fine mode, C = Coarse mode) represent particle volume concentration, volume median radius, and standard deviation, respectively.

Time Vol-F Vol-C  VMR-F VMR-C SD-F SD-C FMF

DIJF 0.077 0.071 0.224 2.925 0544 0.611 0.520

MAM 0.061 0.122 0.192 2.545 0539 0.624 0.333

JJA 0.057 0.129 0.164 2.535 0505 0.614 0.306

SON 0.070  0.081 0.214 2.894 0508 0.603 0.464
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Figure 4. BC surface concentration retrieval algorithm workflow chart.
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Figure 5. Sensitivity analysis of BC inversion based on 6SV2.1 model. Panels (a)-(d) represent the ps at 0.66 pm variation step sizes, which
are 0.02, 0.10, 0.20, and 0.30, respectively. Panel (e) represents SSA and Standard deviation of TOA changes in different fgc.

Once the fpc is obtained, the BC column concentration
can be calculated according to the following equation:

BCeolumn = fBc X Ciotal X PBC (8)
Cpas (T)

C = —— 9

total (1 — fBC) ( )

In Eq. (8), ppc = 1.0gcm™3 (Ganguly et al., 2009), repre-
sents mass density of BC particles. Cpag is the integral of the
volume size distribution of BAs obtained from AERONET
clustering.

Since AE33 measures BC surface concentration
(BCsurface), the inverted BCcoumn needs to be converted.
Previous studies assumed that BC was continuous uniform
distribution below the atmospheric boundary layer, and
directly divided BC¢olymn by the boundary layer height to
obtain BCyyface (Li et al., 2020; Bao et al., 2019). However,
it is well known that the vertical distribution of BC is not
uniform (Yuan et al., 2022), so this study used MERRA-2

https://doi.org/10.5194/amt-18-4559-2025

data to obtain the ratio K at each pixel to improve the
accuracy of the conversion. The conversion equation is as
follows:

BCsurtace = K X BCeolumn (10)
The overall inversion process is shown in Fig. 4.
3.4 Model sensitivity analysis

Based on the aerosol model physical properties obtained
above, we took the aerosol model in the DJF period as an
example to conduct sensitivity analysis on 6SV2.1. The solar
zenith angle, satellite zenith angle and relative azimuth angle
are 30, 30 and 12° respectively, and the surface reflectance
of 0.66 um change steps are 0.02, 0.10, 0.20, and 0.30. The
relevant results are shown in Fig. 5.

As shown in Fig. 5a—d, the sensitivity analysis results in-
dicate that as AOD increases, the estimated TOA standard

Atmos. Meas. Tech., 18, 4559-4571, 2025
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Figure 6. Maps of monthly BC surface concentration distribution. Panels (a)—(h) respectively represent from November 2023 to June 2024.

deviation under different surface conditions gradually in- sion levels significantly higher than in other areas. This trend
creases, suggesting that the theoretical inversion accuracy is likely related to the region’s high population density, devel-
is higher under high aerosol loading conditions. However, oped industry, and low temperatures, which hinder the timely
when ps = 0.10 and the aerosol loading is high (AOD > 1.0), dispersion of emitted BC. Additionally, the presence of the
if the BC fraction is high (fgc > 0.04), the TOA will basi- northern and western Alps as well as the southern Apennine
cally not change with the increase of AOD, which will lead Mountains determines weak wind conditions and frequent
to an unsatisfactory inversion effect under such conditions. In temperature retrogrades, which hinder atmospheric diffusion
Fig. Se, as the BC fraction increases, the SSA, which is in- and trap pollution on the ground (Renna et al., 2024). From
dependent of aerosol load, decreases notably, suggesting that April to June, the overall BC concentration in the study area
BC content has a substantial impact on the overall aerosol ab- remains at a relatively low level.

sorption properties. Additionally, under low fgc conditions,
the standard deviation of the estimated TOA for dark surfaces
is higher, while under high fgc conditions, the standard devi-
ation of the estimated TOA for bright surfaces is higher. This

4.2 Validation

indicates that bright surfaces are more sensitive to absorb- To specifically compare the differences b"ftween MODIS BC
ing aerosols and are more conducive to estimating strongly and AE33 BC, this study employed a spatio-temporal match-
absorbing BC particles. ing method. For MODIS, the average value of valid pixel data

within a 50 km radius centered on the location of the ground
station was used. For AE33, the average value was calculated

4 Results and discussion from the data within 1 h before and after the satellite’s tran-
sit time (Remer et al., 2005). Figure 7 presents a comparison
4.1 Inverse results of the trend changes in the observed valid values of MODIS

BC and AE33 BC from November 2023 to June 2024 at three
Figure 6 shows the monthly variations in MODIS BC sur- AE33 stations (ISAC Bologna II, Marseille Longchamp, and

face concentration from November 2023 to June 2024. It is Milano Pascal) located in high BC emission areas. It is evi-
evident that in the regions surrounding northern Italy, the BC dent that the fluctuation trends of MODIS BC and AE33 BC
concentration exhibits a pattern of first increasing and then are generally consistent, although MODIS BC tends to be
decreasing from November 2023 to March 2024, with emis- lower than AE33 BC most of the time. Therefore, the inver-
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Figure 7. Comparison of consistency changes between MODIS BC
and AE33 BC. Panels (a), (b), and (c) represent ISAC Bologna II,
Marseille Longchamp, and Milano Pascal, respectively.

sion results based on this algorithm can accurately capture
the spatiotemporal variations of BC in high-emission areas.
Figure 8a presents a scatter plot of all valid values between
MODIS BC and the six AE33 BC sites located in the study
area from November 2023 to June 2024, used to quantita-
tively evaluate the accuracy of the algorithm. Additionally,
Fig. 8b shows the BC surface concentration verification ac-
curacy of MERRA-2 for comparison. Statistical parameters
include the total number of matching points (N), correla-
tion coefficient (R), root mean square error (RMSE), mean
absolute error (MAE), and linear fitting function (Jiang et
al., 2024). The corresponding accuracy validation results are
summarized in Table 4. The correlation coefficient (R) for
MODIS BC is 0.727, while for MERRA-2 BC it is 0.655,
indicating that our algorithm performs better in terms of rel-
evance. The RMSE for MODIS BC is 0.353, compared to
0.487 for MERRA-2 BC, and the MAE for MODIS BC is
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Table 4. Summary of statistical parameter results from Fig. 8.

Statistical MODIS MERRA-2
parameter BC BC
N 426 426
R 0.727 0.655
RMSE 0.353 0.487
MAE 0.211 0.381
Slope 0.718 0.686
Offset 0.015 0.400

0.211, whereas for MERRA-2 BC it is 0.381. These results
suggest that the numerical difference between MODIS BC
and AE33 is smaller, indicating better accuracy for MODIS
BC. From the perspective of linear regression and scatter
point density, MERRA-2 tends to overestimate the surface
concentration of BC, while MODIS BC shows the opposite
trend. This may be related to the MG-EMA model only con-
siders BC internal mixing state, but there may still be a small
amount of fresh and exposed BC externally mixed in the at-
mosphere (China et al., 2013), which may result in an under-
estimate of BC.

4.3 Uncertainty analysis

Figure 9 analyzes the influence of AOD and surface re-
flectance on the Bias (MODIS—-AE33) of the retrieved BC
surface concentration. The results reveal that the BC bias ex-
hibits different patterns of change. As shown in Fig. 9a, when
AOD is low, the uncertainty of the bias is high, but as AOD
increases, the bias decreases. When AOD > 0.75, the over-
all bias approaches zero, and the uncertainty becomes very
low. This trend aligns with the conclusion in Sect. 3.4, where
the retrieval accuracy improves under high AOD conditions
due to the stronger aerosol signal. In Fig. 9b, the uncertainty
of the bias gradually increases as surface reflectance rises.
When pg > 0.08, the uncertainty of the bias increases signif-
icantly, suggesting that the algorithm’s applicability in rela-
tively high surface reflectance areas still needs improvement.
However, it is worth noting that due to the lack of data from
AE33 stations in high brightness areas (pg > 0.2), the sur-
face reflectance of the AE33 stations in this study is below
0.12, and when pg > 0.1, the data also is insufficient. There-
fore, uncertainty analysis confirms that this retrieval algo-
rithm has better performance under high AOD conditions.
However, due to the lack of ground-based AE33 observation
data in high-brightness surface areas, the accuracy under this
surface condition still lacks effective validation.

5 Conclusion

In this paper, we proposed a new algorithm for retriev-
ing BC surface concentrations based on joint MODIS and

Atmos. Meas. Tech., 18, 4559-4571, 2025
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AERONET data. First, the algorithm derived the optical
properties of internally mixed BAs for each season from
the AERONET V3 daily product. It used the particle vol-
ume size distribution and MG-MEA approximation equation
to calculate the RI and volume concentration of the inter-
nal mixed aerosol, which were the 6SV2.1 input data of the
aerosol model. Then, the sensitivity analysis was conducted
for AOD, surface reflectance, and BC fraction. During the

Atmos. Meas. Tech., 18, 4559-4571, 2025

inversion process, multiple LUTs were established based on
different BC fraction, and DT AOD values were inputted
to iteratively find the optimal fgc. Next, the BC column
concentration and surface concentration values generated by
MERRA-2 were used to convert the inverted BC column
concentration to surface concentration. Finally, the retrieved
BC surface concentrations were validated against AE33 ob-
servation data. The BC surface concentrations obtained by
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this algorithm show relatively high reliability and accuracy
(R=0.727, RMSE =0.353, MAE =0.211), though there is
a slight overall underestimation compared to high-precision
ground-based in-situ measurements. This might be due to a
small number of BC particles being exposed on the outside
of the shell, which led to the failure to estimate the rele-
vant aspect. Additionally, uncertainty analysis of the inver-
sion results indicates that the algorithm is more suitable for
high AOD conditions. However, since there is no AE33 site
data in the bright surface area, the performance of the in-
version results on the bright surface still needs further veri-
fication. Therefore, future work will focus on improving the
algorithm’s performance low aerosol loading conditions and
evaluating inversion results accuracy in bright surface.

Data availability. All the research data used in this paper are open
access data, and can be freely downloaded from the websites listed
in the Sect. 2. For BC retrieval results, please contact the corre-
sponding author (yxue@cumt.edu.cn) at the China University of
Mining and Technology.

Author contributions. XJ, SW, and PL downloaded the research
data; XJ and YX provided retrieval method; XJ wrote the code and
manuscript draft; YX and MC reviewed and edited the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors. Also, please note that this paper has not re-
ceived English language copy-editing. Views expressed in the text
are those of the authors and do not necessarily reflect the views of
the publisher.

Acknowledgements. The authors gratefully acknowledge the
NASA teams for providing MODIS, AERONET, and MERRA-2
data, and the EBAS group in the Norwegian Institute for Air Re-
search for delivering an open-access AE33 BC surface concentra-
tion database.

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China, General Program
(grant no. 42275147) and the China Scholarship Council, Chinese
Government Scholarship (grant no. 202306420061).

https://doi.org/10.5194/amt-18-4559-2025

4569

Review statement. This paper was edited by Omar Torres and re-
viewed by two anonymous referees.

References

Bao, F, Cheng, T., Li, Y., Gu, X., Guo, H., Wu, Y., Wang, Y., and
Gao, J.: Retrieval of black carbon aerosol surface concentration
using satellite remote sensing observations, Remote Sens. En-
viron., 226, 93-108, https://doi.org/10.1016/j.rse.2019.03.036,
2019.

Bao, F, Li, Y., Cheng, T., Gao, J., and Yuan, S.: Estimating the
Columnar Concentrations of Black Carbon Aerosols in China
Using MODIS Products, Environ. Sci. Technol., 54, 11025—
11036, https://doi.org/10.1021/acs.est.0c00816, 2020.

Bao, F, Li, Y., and Gao, J.: Carbonaceous aerosols remote sensing
from geostationary satellite observation, Part I: Algorithm devel-
opment using critical reflectance, Remote Sens. Environ., 287,
113459, https://doi.org/10.1016/j.rse.2023.113459, 2023.

Bond, T. C. and Bergstrom, R. W.: Light absorption by carbona-
ceous particles: An investigative review, Aerosol Sci. Technol.,
40, 27-67, https://doi.org/10.1080/02786820500421521, 2006.

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen,
T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kircher, B., and
Koch, D.: Bounding the role of black carbon in the climate
system: A scientific assessment, J. Geophys. Res.-Atmos., 118,
5380-5552, https://doi.org/10.1002/jgrd.50171, 2013.

Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., and Zech,
W.: Morphological and chemical properties of black carbon in
physical soil fractions as revealed by scanning electron mi-
croscopy and energy-dispersive X-ray spectroscopy, Geoderma,
128, 116-129, https://doi.org/10.1016/j.geoderma.2004.12.019,
2005.

Cai, J., Ge, Y., Li, H., Yang, C., Liu, C., Meng, X., Wang, W.,
Niu, C., Kan, L., and Schikowski, T.: Application of land use
regression to assess exposure and identify potential sources in
PMj, 5, BC, NO, concentrations, Atmos. Environ., 223, 117267,
https://doi.org/10.1016/j.atmosenv.2020.117267, 2020.

Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F,
Zhang, R. J., Jin, Z. D., Shen, Z. X., Chen, G. C., Kang,
Y. M., Zou, S. C., Zhang, L. Z., Qi, S. H., Dai, M. H,,
Cheng, Y., and Hu, K.: Spatial and seasonal distributions of car-
bonaceous aerosols over China, J. Geophys. Res.-Atmos., 112,
https://doi.org/10.1029/2006JD008205, 2007.

China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey,
M. K.: Morphology and mixing state of individual freshly emit-
ted wildfire carbonaceous particles, Nat. Commun., 4, 2122,
https://doi.org/10.1038/ncomms3122, 2013.

Choi, M., Lyapustin, A., Schuster, G. L., Go, S., Wang, Y., Korkin,
S., Kahn, R., Reid, J. S., Hyer, E. J., Eck, T. F.,, Chin, M., Diner,
D. J., Kalashnikova, O., Dubovik, O., Kim, J., and Moosmiiller,
H.: Light-absorbing black carbon and brown carbon components
of smoke aerosol from DSCOVR EPIC measurements over North
America and central Africa, Atmos. Chem. Phys., 24, 10543—
10565, https://doi.org/10.5194/acp-24-10543-2024, 2024.

Chung, C. E., Ramanathan, V., and Decremer, D.: Observa-
tionally constrained estimates of carbonaceous aerosol radia-
tive forcing, Proc. Natl. Acad. Sci. USA, 109, 11624-11629,
https://doi.org/10.1073/pnas.1203707109, 2012.

Atmos. Meas. Tech., 18, 4559-4571, 2025


https://doi.org/10.1016/j.rse.2019.03.036
https://doi.org/10.1021/acs.est.0c00816
https://doi.org/10.1016/j.rse.2023.113459
https://doi.org/10.1080/02786820500421521
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.1016/j.geoderma.2004.12.019
https://doi.org/10.1016/j.atmosenv.2020.117267
https://doi.org/10.1029/2006JD008205
https://doi.org/10.1038/ncomms3122
https://doi.org/10.5194/acp-24-10543-2024
https://doi.org/10.1073/pnas.1203707109

4570

Dubovik, O. and King, M. D.: A flexible inversion algorithm for re-
trieval of aerosol optical properties from Sun and sky radiance
measurements, J. Geophys. Res.-Atmos., 105, 20673-20696,
https://doi.org/10.1029/2000jd900282, 2000.

Dubovik, O., Smirnov, A., Holben, B. N., King, M. D.,
Kaufman, Y. J., Eck, T. F, and Slutsker, L.: Accuracy
assessments of aerosol optical properties retrieved from
Aerosol Robotic Network (AERONET) Sun and sky radi-
ance measurements, J. Geophys. Res.-Atmos., 105, 9791-9806,
https://doi.org/10.1029/2000jd900040, 2000.

Dubovik, O., Holben, B., Eck, T. F, Smirnov, A., Kauf-
man, Y. J., King, M. D., Tanré, D., and Slutsker, I.:
Variability of absorption and optical properties of key
aerosol types observed in worldwide locations, J. At-
mos. Sci., 59, 590-608, https://doi.org/10.1175/1520-
0469(2002)059<0590: Voaaop>2.0.Co;2, 2002.

Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré,
D., Deuzé, J. L., Ducos, F, Sinyuk, A., and Lopatin, A.:
Statistically optimized inversion algorithm for enhanced re-
trieval of aerosol properties from spectral multi-angle polari-
metric satellite observations, Atmos. Meas. Tech., 4, 975-1018,
https://doi.org/10.5194/amt-4-975-2011, 2011.

Everett, J. T., Newton, E. N., and Odum, M. M.: A re-
view of progress in constraining global black car-
bon climate effects, Earth Syst. Environ., 6, 771-785,
https://doi.org/10.1007/s41748-022-00313-1, 2022.

Flanner, M. G.: Arctic climate sensitivity to local black
carbon, J. Geophys. Res.-Atmos., 118, 1840-1851,
https://doi.org/10.1002/jgrd.50176, 2013.

Ganguly, D., Ginoux, P., Ramaswamy, V., Dubovik, O., Wel-
ton, J., Reid, E., and Holben, B.: Inferring the composition
and concentration of aerosols by combining AERONET and
MPLNET data: Comparison with other measurements and uti-
lization to evaluate GCM output, J. Geophys. Res.-Atmos., 114,
https://doi.org/10.1029/2009JD011895, 2009.

Gelaro, R., McCarty, W., Sudrez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G.,
and Reichle, R.: The modern-era retrospective analysis for re-
search and applications, version 2 (MERRA-2), J. Clim., 30,
5419-5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.

Guo, Q., Zhang, K., Wang, B., Cao, S., Xue, T., Zhang,
Q., Tian, H., Fu, P, Zhang, J. J., and Duan, X.: Chem-
ical constituents of ambient fine particulate matter and
obesity among school-aged children: A representative na-
tional study in China, Sci. Total Environ., 849, 157742,
https://doi.org/10.1016/j.scitotenv.2022.157742, 2022.

Jiang, X., Xue, Y., Jin, C., Bai, R, Sun, Y, and Whu,
S.: A Simple Band Ratio Library (BRL) Algorithm for
Retrieval of Hourly Aerosol Optical Depth Using FY-4A
AGRI Geostationary Satellite Data, Remote Sens., 14, 4861,
https://doi.org/10.3390/rs14194861, 2022.

Jiang, X., Xue, Y., Calvello, M., Pavese, G., Esposito, F,
Pan, Y, Li, Y, Lu, X, Jin, C, and Wu, S.: Geograph-
ical coverage analysis and usage suggestions of tempo-
ral averaged aerosol optical depth product from GOES-
R satellite data, Int. J. Remote Sens., 45, 2407-2423,
https://doi.org/10.1080/01431161.2024.2331978, 2024.

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A.
M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol

Atmos. Meas. Tech., 18, 4559-4571, 2025

X. Jiang et al.: Retrieval of black carbon aerosol surface concentration from MODIS

products over land and ocean, Atmos. Meas. Tech., 6, 2989—
3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.

Li, L., Dubovik, O., Derimian, Y., Schuster, G. L., Lapyonok, T.,
Litvinov, P., Ducos, F., Fuertes, D., Chen, C., Li, Z., Lopatin, A.,
Torres, B., and Che, H.: Retrieval of aerosol components directly
from satellite and ground-based measurements, Atmos. Chem.
Phys., 19, 13409-13443, https://doi.org/10.5194/acp-19-13409-
2019, 2019.

Li, L., Che, H., Derimian, Y., Dubovik, O., Schuster, G.
L., Chen, C., Li, Q., Wang, Y., Guo, B., and Zhang,
X.: Retrievals of fine mode light-absorbing carbonaceous
aerosols from POLDER/PARASOL observations over East
and South Asia, Remote Sens. Environ., 247, 111913,
https://doi.org/10.1016/j.rse.2020.111913, 2020.

Li, L., Che, H., Zhang, X., Chen, C., Chen, X., Gui, K., Liang,
Y., Wang, F., Derimian, Y., Fuertes, D., Dubovik, O., Zheng,
Y., Zhang, L., Guo, B., Wang, Y., and Zhang, X.: A satellite-
measured view of aerosol component content and optical prop-
erty in a haze-polluted case over North China Plain, Atmos. Res.,
266, 105958, https://doi.org/10.1016/j.atmosres.2021.105958,
2022.

Meloni, D., Di Sarra, A., Monteleone, F., Pace, G., Pia-
centino, S., and Sferlazzo, D.: Seasonal transport pat-
terns of intense Saharan dust events at the Mediter-
ranean island of Lampedusa, Atmos. Res., 88, 134-148,
https://doi.org/10.1016/j.atmosres.2007.10.007, 2008.

Pavese, G., Calvello, M., Castagna, J., and Esposito, F.: Black car-
bon and its impact on air quality in two semi-rural sites in South-
ern Italy near an oil pre-treatment plant, Atmos. Environ., 233,
117532, https://doi.org/10.1016/j.atmosenv.2020.117532, 2020.

Rajesh, T. and Ramachandran, S.: Black carbon aerosol mass con-
centration, absorption and single scattering albedo from single
and dual spot aethalometers: Radiative implications, J. Atmos.
Sci., 119, 77-90, https://doi.org/10.1016/j.jaerosci.2018.02.001,
2018.

Ramanathan, V. and Carmichael, G.: Global and regional cli-
mate changes due to black carbon, Nat. Geosci., 1, 221-227,
https://doi.org/10.1038/ngeo156, 2008.

Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., Kleidman, R. G.,
Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS aerosol
algorithm, products, and validation, J. Atmos. Sci., 62, 947-973,
https://doi.org/10.1175/jas3385.1, 2005.

Remer, L. A., Levy, R. C., and Martins, J. V.: Opinion: Aerosol
remote sensing over the next 20 years, Atmos. Chem. Phys., 24,
2113-2127, https://doi.org/10.5194/acp-24-2113-2024, 2024.

Renna, S., Lunghi, J., Granella, F., Malpede, M., and Di Simine, D.:
Impacts of agriculture on PM10 pollution and human health in
the Lombardy region in Italy, Front. Environ. Sci., 12, 1369678,
https://doi.org/10.3389/fenvs.2024.1369678, 2024.

Russell, P. B., Kacenelenbogen, M., Livingston, J. M., Hasekamp,
O. P, Burton, S. P, Schuster, G. L., Johnson, M. S., Knobel-
spiesse, K. D., Redemann, J., and Ramachandran, S.: A multi-
parameter aerosol classification method and its application to re-
trievals from spaceborne polarimetry, J. Geophys. Res.-Atmos.,
119, 9838-9863, https://doi.org/10.1002/2013JD021411, 2014.

Sato, M., Hansen, J., Koch, D., Lacis, A., Ruedy, R., Dubovik, O.,
Holben, B., Chin, M., and Novakov, T.: Global atmospheric black
carbon inferred from AERONET, Proc. Natl. Acad. Sci. USA,

https://doi.org/10.5194/amt-18-4559-2025


https://doi.org/10.1029/2000jd900282
https://doi.org/10.1029/2000jd900040
https://doi.org/10.1175/1520-0469(2002)059<0590:Voaaop>2.0.Co;2
https://doi.org/10.1175/1520-0469(2002)059<0590:Voaaop>2.0.Co;2
https://doi.org/10.5194/amt-4-975-2011
https://doi.org/10.1007/s41748-022-00313-1
https://doi.org/10.1002/jgrd.50176
https://doi.org/10.1029/2009JD011895
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1016/j.scitotenv.2022.157742
https://doi.org/10.3390/rs14194861
https://doi.org/10.1080/01431161.2024.2331978
https://doi.org/10.5194/amt-6-2989-2013
https://doi.org/10.5194/acp-19-13409-2019
https://doi.org/10.5194/acp-19-13409-2019
https://doi.org/10.1016/j.rse.2020.111913
https://doi.org/10.1016/j.atmosres.2021.105958
https://doi.org/10.1016/j.atmosres.2007.10.007
https://doi.org/10.1016/j.atmosenv.2020.117532
https://doi.org/10.1016/j.jaerosci.2018.02.001
https://doi.org/10.1038/ngeo156
https://doi.org/10.1175/jas3385.1
https://doi.org/10.5194/acp-24-2113-2024
https://doi.org/10.3389/fenvs.2024.1369678
https://doi.org/10.1002/2013JD021411

X. Jiang et al.: Retrieval of black carbon aerosol surface concentration from MODIS 4571

100, 6319-6324,
2003.

Schuster, G. L., Dubovik, O., Holben, B. N., and Cloth-
iaux, E. E.: Inferring black carbon content and specific
absorption from Aerosol Robotic Network (AERONET)
aerosol  retrievals, J.  Geophys. Res.-Atmos., 110,
https://doi.org/10.1029/2004JD004548, 2005.

Vermote, E., Justice, C., Claverie, M., and Franch, B.: Prelimi-
nary analysis of the performance of the Landsat 8/OLI land sur-
face reflectance product, Remote Sens. Environ., 185, 46-56,
https://doi.org/10.1016/j.rse.2016.04.008, 2016.

Wang, J., Wu, Y., Ge, X., Shen, Y, Ge, S., and Chen,
M.: Characteristics and sources of ambient refractory
black carbon aerosols: Insights from soot particle aerosol
mass spectrometer, Atmos. Environ., 185, 147-152,
https://doi.org/10.1016/j.atmosenv.2018.05.011, 2018.

Wang, L., Li, Z., Tian, Q., Ma, Y., Zhang, F., Zhang, Y., Li, D.,
Li, K., and Li, L.: Estimate of aerosol absorbing components of
black carbon, brown carbon, and dust from ground-based remote
sensing data of sun-sky radiometers, J. Geophys. Res.-Atmos.,
118, 6534-6543, https://doi.org/10.1002/jgrd.50356, 2013.

Xie, Y., Li, Z., Zhang, Y., Zhang, Y., Li, D., Li, K., Xu, H., Zhang,
Y., Wang, Y., and Chen, X.: Estimation of atmospheric aerosol
composition from ground-based remote sensing measurements
of Sun-sky radiometer, J. Geophys. Res.-Atmos., 122, 498-518,
https://doi.org/10.1002/2016JD025839, 2017.

Xie, Y., Xue, Y., Guang, J., Mei, L., She, L., Li, Y., Che,
Y., and Fan, C.: Deriving a Global and Hourly Data Set
of Aerosol Optical Depth Over Land Using Data From
Four Geostationary Satellites: GOES-16, MSG-1, MSG-4, and
Himawari-8, IEEE Trans. Geosci. Remote Sens., 58, 1538-1549,
https://doi.org/10.1109/tgrs.2019.2944949, 2020.

https://doi.org/10.1073/pnas.0731897100,

https://doi.org/10.5194/amt-18-4559-2025

Xu, X., Yang, X., Zhu, B., Tang, Z., Wu, H., and Xie, L.
Characteristics of MERRA-2 black carbon variation in east
China during 2000-2016, Atmos. Environ., 222, 117140,
https://doi.org/10.1016/j.atmosenv.2019.117140, 2020.

Xue, Y., He, X., Xu, H., Guang, J., Guo, J., and Mei, L.: China Col-
lection 2.0: The aerosol optical depth dataset from the synergetic
retrieval of aerosol properties algorithm, Atmos. Environ., 95,
45-58, https://doi.org/10.1016/j.atmosenv.2014.06.019, 2014.

Yuan, L., Zhang, X., Che, Y., Liu, X., Zhao, T., and Song, M.: Ver-
tical profile and radiative forcing of black carbon in a winter pol-
lution period over Chengdu, China, Atmos. Res., 265, 105896,
https://doi.org/10.1016/j.atmosres.2021.105896, 2022.

Yus-Diez, J., Bernardoni, V., Mo¢nik, G., Alastuey, A., Ciniglia, D.,
Ivancic, M., Querol, X., Perez, N., Reche, C., Rigler, M., Vecchi,
R., Valentini, S., and Pandolfi, M.: Determination of the multiple-
scattering correction factor and its cross-sensitivity to scattering
and wavelength dependence for different AE33 Aethalometer fil-
ter tapes: a multi-instrumental approach, Atmos. Meas. Tech., 14,
6335-6355, https://doi.org/10.5194/amt-14-6335-2021, 2021.

Zhang, X., Li, L., Che, H., Dubovik, O., Derimian, Y., Hol-
ben, B., Gupta, P, Eck, T. F, Lind, E. S., Toledano, C., Xia,
X., Zheng, Y., Gui, K., and Zhang, X.: Aerosol components
derived from global AERONET measurements by GRASP:
A new value-added aerosol component global dataset and its
application, Bull. Amer. Meteorol. Soc., 105, E1822-E1848,
https://doi.org/10.1175/bams-d-23-0260.1, 2024.

Atmos. Meas. Tech., 18, 4559-4571, 2025


https://doi.org/10.1073/pnas.0731897100
https://doi.org/10.1029/2004JD004548
https://doi.org/10.1016/j.rse.2016.04.008
https://doi.org/10.1016/j.atmosenv.2018.05.011
https://doi.org/10.1002/jgrd.50356
https://doi.org/10.1002/2016JD025839
https://doi.org/10.1109/tgrs.2019.2944949
https://doi.org/10.1016/j.atmosenv.2019.117140
https://doi.org/10.1016/j.atmosenv.2014.06.019
https://doi.org/10.1016/j.atmosres.2021.105896
https://doi.org/10.5194/amt-14-6335-2021
https://doi.org/10.1175/bams-d-23-0260.1

	Abstract
	Introduction
	Data
	MODIS data
	AERONET data
	AE33 data
	MERRA-2 data

	Methodology
	Forward model
	Estimation of optical properties of mixture aerosol
	Inverse method
	Model sensitivity analysis

	Results and discussion
	Inverse results
	Validation
	Uncertainty analysis

	Conclusion
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

