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Abstract. Reducing methane emissions from human activ-
ities is essential to tackle climate change. To monitor these
emissions, we rely on satellite observations, which enable
regular, global-scale tracking. Methane emissions are typi-
cally quantified by their source rate — the mass of gas emit-
ted per unit of time. Our goal here is to estimate the emis-
sion source rate of methane plumes detected by hyperspec-
tral imagers such as PRISMA or EnMAP. For this task, we
generated a large synthetic dataset using large eddy simula-
tion (LES) to train a deep learning model. This dataset was
specifically designed to avoid network overfitting with care-
ful plume temporal sampling and plume scaling. Our deep
learning network, MetFluxNet, does not require any wind
information or a plume mask. Moreover, it accurately pre-
dicts the source rate even in the presence of false positives.
MetFluxNet performs well on our dataset with a mean abso-
lute percentage error (MAPE) of 8.3 % over a wide range of
source rates from 500 to 25000kgh~!. Notably, it remains
effective at lower source rates, where background noise is
typically high. To validate its real-world applicability, we
tested MetFluxNet on real plumes with known ground-truth
fluxes. The predicted source rates fell systematically within
the 95 % confidence intervals, demonstrating its reliabil-
ity for real-world plume estimation. Finally, in a compari-
son with recent state-of-the-art methods, MetFluxNet outper-
formed the deep learning-based S2MetNet and the physics-
based integrated mass enhancement (IME) method.

1 Introduction

The global warming potential of a methane (CH4) molecule
is 80 times larger than the global warming potential of car-
bon dioxide (CO,) over a 20-year period. Thus, reducing
methane emissions from human activities is an effective
strategy to curb climate change. About a third of CH4 emis-
sions related to human activities come from coal, oil, and
gas infrastructures (Jacob et al., 2016; Ozgen Karacan et al.,
2025). Hence, a substantial part of human CH4 emissions
could be controlled or reduced. Here, we focus on point
source methane emissions. This designates plumes contain-
ing a large amount of CHy but coming from a small ground
surface. To monitor methane emissions from anthropogenic
activities, multiple satellites have been launched into Earth’s
orbit over the past decades, enabling global-scale monitor-
ing.

Monitoring atmospheric methane concentrations with
satellite imagery started in the early 2000s with the SCIA-
MACHY instrument (Frankenberg et al., 2005) aboard EN-
VISAT. The low spatial resolution of 30 x 60 km? allowed
for a global scale analysis but not the detection of localized
emissions. The use of high-resolution hyperspectral satellites
to detect methane point source emissions began in 2016 with
the work of Thompson et al. (2016) on Hyperion, followed
by GHGsat (Jervis et al., 2021). Techniques for detecting
methane plumes were also developed in Airborne Visible/In-
frared Imaging Spectrometer (AVIRIS) campaigns. These
campaigns made it possible to continue to develop existing
atmospheric inversion methods (Thorpe et al., 2014), as well
as using new methods such as the matched filter (Thomp-
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son et al., 2015) and its variants (Funk et al., 2001; Theiler,
2021). The study of methane plumes has also been extended
to multispectral instruments such as Sentinel-2 (Ehret et al.,
2021) and WorldView-3 (Sanchez-Garcia et al., 2022). Re-
cently, a new generation of hyperspectral imagers, including
PRISMA (Cogliati et al., 2021) and EnMAP (Guanter et al.,
2015), have also proved their ability to monitor point source
emissions (Guanter et al., 2021; Roger et al., 2024).

Here, we address the task of estimating the emission
source rate for methane plumes detected by high-resolution
hyperspectral sensors such as PRISMA and EnMAP. Sev-
eral methods have been designed to estimate the emission
source rate from a single plume observation, such as the
cross-sectional flux (Varon et al., 2018; Jacob et al., 2022) or
the angular width method (Jongaramrungruang et al., 2019).
One of the most popular methods is integrated mass enhance-
ment (IME) (Frankenberg et al., 2016; Varon et al., 2018),
which is in particular used to estimate the methane source
rate of plumes in PRISMA and EnMAP images (Guanter
et al., 2021; Roger et al., 2024). However, these methods
often have a high error rate and rely on external data, such
as wind speed, which can introduce up to 50 % uncertainty
(Varon et al., 2018).

In recent years, methods using deep learning and in partic-
ular convolutional neural networks (CNNs) have been used
for source rate estimation (Jongaramrungruang, 2021). Con-
volutional neural networks capture the spatial features of the
plume and the amount of gas at the same time. The spa-
tial features of the plume are particularly relevant for this
problem, as they are correlated with the wind speed (Jon-
garamrungruang et al., 2019). Wind speed is a crucial com-
ponent for source rate estimation because it characterizes the
diffusion speed of the plume. The most common CNN ar-
chitectures for source rate estimation are the classic U-Net
(Bruno et al., 2024) or ResNet (Radman et al., 2023). This
allows for using pre-trained networks with weights learned
on other datasets which do not necessarily contain satel-
lite images. The weights learned from datasets such as Ima-
geNet have proven useful for satellite images (Radman et al.,
2023). All of these networks take as input a methane concen-
tration map retrieved from a hyperspectral or multispectral
image. Different methods are used to obtain this concentra-
tion map depending on the type of sensor. Some of the most
used retrieval techniques are the matched filter (Theiler and
Wohlberg, 2013) for hyperspectral images (Guanter et al.,
2021; Roger et al., 2024) and the multiband-multipass (Varon
et al., 2021) for multispectral images (Radman et al., 2023).
Training deep neural networks requires large datasets. How-
ever, real plume datasets with known source rates are ex-
tremely rare, limited to a few specific sensors, and typically
very small. Hence, it is common practice to train and test net-
works on simulated plumes produced with large eddy simu-
lation (LES) (Varon et al., 2021).

Here, we aim at developing a deep learning technique to
estimate the emission rate of point source methane plumes
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detected by PRISMA and EnMAP. Firstly, we present a new
dataset of simulated methane plumes produced with LES.
These plumes are then inserted into real EnNMAP images to
obtain a dataset with real background noise. Next, we de-
tail the procedure used to retrieve the methane concentra-
tion. Then, we present the different architectures we trained
and tested on different training and testing sets. Lastly, we
present experiments comparing our method with the state-
of-the-art IME and with other deep learning methods. The
experiments were performed not only on our simulated data,
but also on a dataset simulated by Varon et al. (2021) and fi-
nally on real plumes with ground truth obtained in controlled
methane release experiments (Sherwin et al., 2023, 2024).
This comparison allows us to verify the generalizability of
our model.

2 Materials
2.1 Hyperspectral data

The method presented here is designed for high-resolution
hyperspectral satellites. The images we work with are Level 1
(L1) images from PRISMA (Cogliati et al., 2021) and En-
MAP (Guanter et al., 2015). Both of these satellites pro-
vide hyperspectral images with a spatial resolution of 30 m.
The methane absorption bands are located inside the 1500-
2450 nm range, in the shortwave infrared (SWIR) range.
This range is covered by the spectral channels of both
PRISMA and EnMAP. In the SWIR, the spectral resolution
of PRISMA varies between 9 and 15nm, and the spectral
resolution of EnMAP is approximately 10 nm.

The deep learning models presented here were trained on
simulated plumes. To train our networks, we inserted those
plumes in true EnMAP L1 images to reproduce plumes with
real background noise. The result of the LES procedure is
an enhancement map providing the enhancement in methane
concentration for each pixel. From this simulated enhance-
ment map, we compute the plume transmittance at each
wavelength by using a radiative transfer model and methane
absorption cross-sections from the HITRAN data base (Gor-
don et al., 2017). The plume transmittance is then convolved
with the instrument’s spectral response function to obtain a
spectrum for each pixel of the plume. The resulting spectrum
is then multiplied with the radiance spectrum from the L1
data to obtain the simulated plume.

We used 48 background samples from different locations
in North America, the Middle East, and northern of Africa.
Those three areas are places where methane plumes are fre-
quently detected with PRISMA and EnMAP (Guanter et al.,
2021; Roger et al., 2024) and will therefore allow us to recre-
ate real conditions. The different locations from which the
background samples were taken are summarized in Table 1.

These areas allow us to have homogeneous and hetero-
geneous backgrounds in our dataset. We compare three of
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Figure 1. Comparison between different background samples and their corresponding distributions in terms of AXCH,4. The methane en-

hancement maps are estimated with the matched filter.

Table 1. List of the locations used to extract background samples
for our synthetic dataset.

Location Latitude  Longitude
Algeria 30.29 7.65
Iraq 30.48 47.38
Kazakhstan 45.15 52.77
Saudi Arabia 20.87 41.66
Oklahoma (USA) 3542 —-99.03
Kansas (USA) 38.40 —101.53
Utah (USA) 38.24 —109.38
Uzbekistan 38.55 65.99

these background samples in Fig. 1, where methane enhance-
ment maps are computed using the matched filter technique
(Guanter et al., 2021). The enhancement maps show mainly
noise but also retrieval artifacts associated with elements of
the original scene, such as a road for the Uzbekistan image.
By comparing the distributions in AXCH4 between the three
scenes, we can observe three Gaussian distributions with a
mean close to zero but with very different standard devia-
tions. This is caused by the different types of surface be-
tween the scenes. In particular, a very heterogeneous scene
can lead to a noisy enhancement map. Source rate estimation
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will be harder on those backgrounds as the signal-to-noise ra-
tio between the plume and the background will be lower. This
means that we will have fewer spatial features of the plume
available in those cases. Including different background dis-
tributions in the dataset will help the network to be robust to
different noise levels.

2.2 Large eddy simulations

Training a deep learning model requires a large amount of
data. One of the main constraints in source rate estimation
from satellite imagery is the lack of ground truth, which pre-
vents us from using a dataset of real images. Therefore, we
used our real plume images for testing purposes only. To train
the model, we built a dataset of simulated plumes. To com-
plete this dataset, we used the plume dataset generated by
Varon et al. (2021) as a testing only dataset.

We created a dataset of simulated methane plumes with
large eddy simulation (LES). The LES procedure allows one
to simulate realistic plumes exposed to wind turbulence. We
used the MicroHH model (van Heerwaarden et al., 2017),
which has already been used for methane plume simulations
(Raznjevic¢ et al., 2022). We simulated at a spatial resolu-
tion of 30m in a 6 x 6km? domain. We used 61 different
wind speeds between 0.5 and 6.5 ms~!, and for each wind
speed we conducted four simulations with different tempera-
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ture profiles, resulting in 244 different simulations. Each sim-
ulation lasted 3 h, with the first hour being used as spin-up. In
the remaining 2 h, we sampled one plume every 2 min. Our
dataset thus contains 14 640 methane plumes, and we used
12444 of them for training and 2196 for validation. Split-
ting the dataset before data augmentation ensured that the
network would not see a plume with exactly the same shape
during training as during testing. The dataset was randomly
split from the combined 14 640 plumes and not from the 244
simulations. This ensures that for each wind speed we have
plumes simulated with different temperature profiles in the
training set. During the simulation process, all plumes were
generated with the same constant emission source rate.

As mentioned above, to verify that our model can general-
ize to a diversity of plumes, we also tested it on the simula-
tions performed in Varon et al. (2021). The dataset of Varon
et al. (2021), originally designed for Sentinel-2, was gener-
ated with WRF-LES (Skamarock et al., 2008). It contains
1200 methane plumes simulated at various wind speeds rang-
ing between 1.5 and 5ms~! and at a 25m horizontal and
15 m vertical resolution over a 9 x 9 x 2.4 km?® domain. The
simulations were obtained from five different wind speeds
and sampled with a 30 s time gap. Before testing, the plumes
were resampled at a resolution of 30 m with cubic spline in-
terpolation. We will refer to this dataset as S2Test.

2.3 Source rate scaling

To study the performance of our model with a wide range of
source rates, we performed data augmentation by randomly
scaling all the plumes in the dataset. The plumes in the train-
ing set were generated from the result of the LES by ran-
domly scaling each plume 10 times to obtain source rates
between 50 and 33000kgh~!. It is very difficult to detect
emissions at a source rate of 50kgh~! with satellites such
as PRISMA or EnMAP (Jacob et al., 2022; Cusworth et al.,
2019).

However, neural networks usually suffer from a threshold
effect associated with the training range that prevents them
from predicting values outside said range. This leads to a
bias in the predictions near the limits of the training range.
Therefore, we propose to train the network on emission rates
as low as possible. If we only considered source rates start-
ing at 1000kgh~!, it would not be possible to know if a
plume for which we estimate 1000kgh~! is not actually at
a lower source rate. Training from 50kgh™! up ensures that
the plumes that can actually be detected will not suffer from
the threshold effect, with the detection threshold for EnMAP
being between 100 and 500kgh~! depending on the back-
ground (Cusworth et al., 2019).

The plumes in the testing set were scaled between 100 and
25000kg h~!. Due to the threshold effect described above,
the range of source rates for the testing set needs to be
smaller than the range of source rates for the training set.
Otherwise, the network would underestimate the source rate
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close to 33 000kgh~! and overestimate the source rate close
to 50 kgh~!. This would introduce a bias in the evaluation,
which is avoided by evaluating on a, more realistic, narrower
range.

2.4 Simulation temporal sampling

To generate our dataset, we used a time gap of 120 s between
two plumes from the simulation, while in the dataset of Varon
et al. (2021) the time gap is only 30s. Datasets can even
be found with shorter time gaps, such as the one used by
Radman et al. (2023), which has a time gap of only 10s. In-
creasing the time gap between simulated plumes in a dataset
reduces their correlation and therefore increases the diver-
sity of the dataset. If we consider plumes taken with a small
time gap (less than 30s), we can observe the same turbulence
patterns; thus, they can hardly be considered different sam-
ples in the dataset. We can observe this redundancy in Fig. 2,
where we show the same plume at different time steps and
for different wind speeds. We can easily notice that after 10s
and for any wind speed the plume is almost identical to the
initial image, whether it is in terms of shape or concentration.
After 30s, the shape is still quite similar, but there are some
changes in the distribution of the concentration. This obser-
vation is mostly true around the source of the plume. In 30,
the new concentration distribution has not yet spread to the
tail of the plume. After 60s, the changes in the distribution
of the concentration have increased, and we start to see some
noticeable changes at the beginning of the plume tail. This is
visible for the plumes at 1 and 3m s~1. After 120's, most of
the plumes are globally different from their original image.
However, we still see residuals from the turbulence that were
occurring in the initial image. For example, for the plume at
2ms~!, even if the concentration distribution is different; the
overall shape of the plume after 120 s looks similar to the one
in the initial image.

Thus, using small time gaps leads to a low plume vari-
ety in the dataset. This can lead to severe network overfit.
In addition, the training set and testing set will be strongly
correlated; thus, overfitting will be more difficult to no-
tice. To show the overfitting effect caused by small time
gaps, we generated a second dataset following the method-
ology of Radman et al. (2023): we performed one simu-
lation per wind speed and used a time gap of 10s. We
will refer to the dataset with a large time gap as MicroLL
(for MicroHH-Large) and to the dataset with a short time
gap as MicroS (for MicroHH-Short). The dataset of Varon
et al. (2021) referred to as S2Test will be used only for
testing. The parameters for each dataset are summarized in
Table 2. Note that MicroL does not result from subsam-
pling MicroS. Otherwise, we would not be able to show the
overfitting when working with MicroS, as performing well
on MicroS would also lead to performing well on MicroL.
Therefore, there is no plume in common between MicroL
and MicroS, and the plumes come from different simula-
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Figure 2. For different wind speeds, a methane plume is displayed at different time steps. The plumes come from the proposed MicroS
dataset. The images correspond to the result of the LES, before it is included in a real EnMAP image.

Table 2. Different testing sets of simulated data. The number of training samples and testing samples are the numbers before data augmen-
tation. There is no training sample for S2Test as we use it only for testing.

Datasets ~ Wind range Temporal Number of different Number of Number of

sampling simulations  training samples  testing samples
MicroL  0.5-6.5ms~!  120s 244 12444 2196
MicroS  0.5-6.5ms~! 105 61 37332 6588
S2Test  1-6ms™! 30s 30 0 1200

tions. The MicroL dataset is publicly available for download 3 Methods

at https://doi.org/10.5281/zenodo.15618044 (Ouerghi et al.,
2025). 3.1 Methane concentration retrieval

In hyperspectral imaging, any object in a scene can be as-
signed a spectral signature. In the case of methane, this spec-
tral signature is the absorption spectrum of the gas. To deter-
mine whether an observation contains an excess of methane,
it is therefore natural to look for a deviation in the observa-
tion spectrum in the direction of the methane spectral signa-
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ture. The amplitude of the observed deviation then provides
a measure of the gas concentration. This idea sums up how
the matched filter retrieval works for methane concentration.
It is used on many hyperspectral instruments such as AVIRIS
(Foote et al., 2020) and PRISMA (Guanter et al., 2021).

A standard hypothesis for hyperspectral images is that
background pixels follow a Gaussian multivariate distribu-
tion (Theiler and Wohlberg, 2013). With this assumption, the
maximum likelihood estimator of the methane mixing ratio
is given by the matched filter (Huang et al., 2020).

Let us denote by Kcp, the diagonal matrix whose diagonal
components are the methane absorption coefficient values,
and let u and X be, respectively, the mean vector and the
background covariance matrix. We define the target vector
by

t=_KCH4'”“ (1)

With this notation, the excess methane concentration o
corresponding to an observed pixel x is given by the matched
filter formula:

tTx 1 x —p

oaxX) =
) Ty

©))

Parameters g and X are computed with their empirical
unbiased estimates. They are calculated across-track, which
means that we compute a different set of parameters for each
detector element in the sensor. This applies for both PRISMA
and EnMAP images.

The matched filter is the optimal detector for an additive
target in a Gaussian background. This assumption on the
background is not necessarily true in methane plume detec-
tion. Several variations of the matched filter are designed
to improve the quantification provided. Here, we use the
MAG1C method proposed by Foote et al. (2020) for retriev-
ing methane concentration. The MAG1C method introduces
two improvements to the matched filter formulation. The first
is a spatial L regularization to take into account the fact
that most observations are not part of a plume. The second is
the estimation of a different albedo coefficient for each pixel.
The latter is defined by

T
re) =E. 3)
e
This albedo coefficient is used to scale the target spectrum.
Thus, the target spectrum used in the matched filter for pixel
x becomes r(x)t instead of ¢.

The MAGI1C method can be applied to images from both
PRISMA and EnMAP. The main difference when applying it
to those instruments is the target spectrum. To calculate the
target spectrum, we need to compute a unit methane absorp-
tion spectrum through radiative transfer simulation (Guanter
et al., 2021; Roger et al., 2024). This requires us to compute
convolutions with the spectral response function of the in-
strument, which is not the same for PRISMA and EnMAP.
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However, we obtain similar enhancement maps when apply-
ing MAGI1C to images from both satellites.

3.2 Integrated mass enhancement

The classical method for estimating point source methane
emissions is integrated mass enhancement (IME) (Franken-
berg et al., 2016). This method is already widely used for
EnMAP and PRISMA images (Roger et al., 2024; Guanter
et al., 2021). The source rate Q is calculated as

_ Uesr - IME 3600’ @
L
where IME is the total mass of excess methane (in kg) con-
tained in the plume, L is the plume length (in m), and Uegr
(in ms~!) is the effective wind speed. The factor 3600 re-
sults from the conversion from kgs~! to kgh™!. The effec-
tive wind speed Uer is usually estimated from the wind speed
at 10 m altitude Ujg. The relationship between Uegr and Uy is
obtained by fitting a regression model on simulated data with
large eddy simulations (Guanter et al., 2021; Varon et al.,
2018). Several expressions exist for Uegr with linear or log-
arithmic models (Guanter et al., 2021; Varon et al., 2018).
A model suited for source rate estimation with PRISMA or
EnMAP is (Guanter et al., 2021; Roger et al., 2024)

Uett = 0.34 - Uyo + 0.44. ®))

In Eq. (4), the IME is obtained from the estimated CHy
concentration in the plume. The length of the plume is usu-
ally calculated by taking the square root of the plume area
(Varon et al., 2018). This allows one to deal with the fact that
the length of the plume is not always properly defined. In-
deed, because of turbulence and wind variations, the plume
does not necessarily follow a straight path. However, this im-
plies using a plume mask to compute L. Therefore, the qual-
ity of the estimation of Q will depend on the quality of the
mask. A good mask (one that provides a good estimate of
Q) is difficult to obtain. The varying plume shapes and the
amount of noise in the images make it difficult to distinguish
the contours of the plumes. This means that two different
human operators can label the same plume in very different
ways. This can affect not only the quality of the estimation
of Q, but also the reproducibility of the method.

To obtain Uy, a standard practice is to calculate it with an
external measurement coming from a dataset of wind data at
a global scale such as GEOS-FP (Molod et al., 2012) or the
ECMWF-ERAS5 dataset (Hersbach et al., 2020). However,
these datasets provide wind data with a low spatial resolu-
tion (around 25 x 25 km? for GEOS-FP and 30 x 30 km? for
ERAS) and a low temporal sampling (hourly data). Hence,
these datasets are not ideal as wind data sources to character-
ize CHy emissions: the temporal gap between the emission
and the wind data point can be up to 30 min and most plumes
studied with PRISMA or EnMAP will not exceed 5 or 6 km.
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To compare our method with the IME, we considered two
cases. In the first case, we estimate the source rate by using
the effective wind given by Eq. (5) obtained by Guanter et al.
(2021) with LES. In the second case, we fit our own effective
wind model using the MicroL dataset. We obtain the follow-
ing equation for Ueg:

Ueit = 0.17 - Uy + 0.49. (©6)

To fit our effective wind model, we use a different mask-
ing procedure than Guanter et al. (2021). We first apply a
threshold to the plume image, corresponding to the quantile
at 85 %. Then, we apply a 4 x 4 mean filtering and a thresh-
olding to the resulting image. To remove remaining potential
false positives, we finally apply a 3 x 3 mean filtering fol-
lowed by another thresholding. Once the set of plume masks
is calculated, the wind model is obtained by performing a lin-
ear regression. Using different masking procedures explains
why our model is different from the one used by Guanter
et al. (2021). We will refer to our version of the IME as IME-
MicroL.

3.3 Deep learning

To estimate the emission source rate from the methane con-
centration retrieval image, we used a deep neural network.
The use of a neural network enables the estimation of the
source rate without relying on an external data source for the
wind speed. It also removes the variability associated with
the manual labeling of the plume that is needed when using
methods such as integrated mass enhancement (Frankenberg
et al., 2016). The different steps of the source rate estimation
pipeline are summarized by the diagram presented in Fig. 3.

3.3.1 Models and training

We compared two architectures. Firstly, the EfficientNetV2-
BO (Tan and Le, 2021) model was tested. This is the light-
est version of the EfficientNet models in terms of number
of parameters with 7.2 million parameters. Those models
have already proven their efficiency for source rate estima-
tion (Radman et al., 2023). The use of the lightest version
allows for a fast training, even on a CPU. The second ar-
chitecture tested was the ConvNeXt-Tiny (Liu et al., 2022)
model. This is the lightest version of the ConvNext (Liu et al.,
2022) models, but it has four times more parameters than
EfficientNetV2-B0 with 28.6 million parameters. For both
models, we changed the last layer for a fully connected layer
with one unit to perform the source rate estimation. Those
models expect an input with three channels. To satisfy this
condition, we converted the methane enhancement map into
a three-channel image by copying it in each new channel. For
the training, we fine-tuned the model weights that had been
trained on ImageNet. We compared the mean square error
(MSE) loss and the mean absolute percentage error (MAPE)
loss. During training, 15 % of the training set was used for
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validation. The validation set is a subset of the training set
which is used to check that the network improves its predic-
tions and does not overfit during the training. The network
was not trained on the samples belonging to the validation
set.

3.3.2 Dataset pre-processing

We used the two architectures described above to train sev-
eral networks. These networks will allow us to compare dif-
ferent pre-processing steps for our plume images such as ro-
tations and shifts of the plumes.

The most common pre-processing consists of augmenting
the dataset with random rotations of the plumes and random
shifts of the source (from O to 3 pixels) in any direction, as
in Radman et al. (2023). This creates datasets as diverse as
possible and helps reproduce real plume images.

This pre-processing artificially increases the difficulty of
the task. Applying random rotations to the plumes means
that pixels forming the plume can be found everywhere in
the image, and the network will have to find them to extract
meaningful information.

Otherwise, the network might just use noisy pixels to com-
pute its prediction, particularly in the case of plumes with
a low source rate. This is likely to affect the quality of the
source rate estimate.

However, in the context of plume quantification, we al-
ready know that our image contains a methane plume, and
we know its position. By leveraging this knowledge, we aim
to simplify the neural network’s task. Since the plume loca-
tions are known, our pre-processing involves aligning all the
plumes with the x axis so that they propagate from left to
right in the image. We then crop the rotated images to en-
sure that the source of the plume is located at the same fixed
position for all the images.

In real-case scenarios, precisely locating the sources and
perfectly rotating the plumes can be challenging. In order to
process images containing a plume, we first apply a rotation
corresponding to the opposite of the apparent angle of the
plume, which does not necessarily match with the wind an-
gle. Then, to find the source of the plume, we look for the
apparent vertex of the conical shape that describes the shape
of the plume. This process is done manually for real plumes
and does not require knowledge of the actual plume source
or wind angle.

When rotating and cropping the plume image, there are
uncertainties associated with both operations. Hence, the pre-
processing will not always be perfect. To account for this
uncertainty, in the training set, we add random shifts to the
plume source (from O to 3 pixels) in any direction. This en-
sures that the network will be robust to an inaccurate crop-
ping of the image.

The other source of uncertainty arises from the alignment
of the plumes with the x axis, which can be imprecise. Con-
sequently, the training set must include examples of plumes
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Figure 3. Diagram summarizing the different steps of our source rate estimation method with plume alignment.

that have a non-zero angle relative to the x axis. During
the LES procedure, eddies naturally cause direction changes,
meaning that plumes do not always spread in the direction
of the wind and may have a non-zero angle with the x axis.
This phenomenon is visible in Fig. 2, where plumes in the
last two columns are visibly misaligned with the x axis. The
training set includes plumes with angles ranging from —70
to —70° relative to the x axis, ensuring that the network re-
mains robust against inaccurate image rotations. Therefore,
we do not artificially rotate simulated plumes to achieve this
augmentation.

Thus, for the dataset with aligned plumes, we have uncer-
tainties on both source location and plume alignment. The
size of each image is 100 x 100 pixels, covering an area of
3 x 3km?. Because all of the plumes are now aligned, the
source is placed on the left of the image.

We will compare this dataset with a dataset containing ran-
dom rotations of plumes with angles between 0 and 360°. For
this dataset, the rotated plume is located at the center of the
image. Like for the dataset with alignment, we apply ran-
dom shifts (after the rotation) of the source. The size of each
image is 130 x 130, covering an area of 3.9 x 3.9 km?. This
area is large enough to contain most of the plumes that are
usually detected with PRISMA and EnMAP. If the plume is
larger than the cropped image, the part outside of the frame
corresponds to the end of the plume tail. For that part of the
plume, the magnitude of the retrieved values is usually at the
background level, so very little to no exploitable information
can be obtained from this area.

4 Experiments and results

To evaluate the results, we use two standard metrics: the root
mean square error (RMSE) and the mean absolute percent-
age error (MAPE). We are going to compare the method pre-
sented here with different source rate estimation techniques
but also with the different datasets MicroL, MicroS, and
S2Test. The testing sets in these datasets contain plumes with
source rates starting at 100 kg h~!. However, in real-life con-
ditions, it is highly unlikely that plumes with such low source
rates will be detected, as they are below the detection thresh-
old of PRISMA and EnMAP (Jacob et al., 2022; Cusworth
et al., 2019). To calculate MAPE and RMSE, we will there-
fore only use plumes with source rates above 500kgh~!.
Plumes with source rates below this threshold will still be
used for visualization purposes to observe the networks’ be-
havior at very low source rates.
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Table 3. Result comparison of four networks tested on MicroL. The
metrics are computed with the plumes in the testing set belonging to
the 500-25 000 kg h~! range. Bold values correspond to the method
obtaining the best score for each metric (lower is better).

Name RMSE MAPE

EffNet+rotation 1736 12.8

EffNet+align 1421 10.2
CNext+rotation 1551 10.3
CNext+align 1437 9.5

4.1 Architecture and plume orientation

We start by studying the influence of the network architec-
ture and of the plume orientation. To do so, we compare dif-
ferent networks for which we select an architecture between
EfficientNetV2-B0 and ConvNeXt-Tiny and a plume orienta-
tion between random rotations and alignment with the x axis
as described in the previous section. This leads to four net-
works: EffNet+rotation, EffNet+align, CNext+rotation, and
CNext+align. These four networks are trained with MSE
loss, on the dataset MicroL.

In Table 3, we compare the results of EffNet+rotation,
EffNet+align, CNext+rotation, and CNext+align in terms of
RMSE and MAPE. Overall, the methods with plume align-
ment outperform the other networks both in RMSE and in
MAPE. We can also observe that, for a fixed pre-processing,
the networks based on ConvNeXt seem to perform better
than those based on EfficientNet. Whereas it is clear that
CNext+rotation outperforms EffNet+rotation, CNext+align
outperforms EffNet+align only in MAPE. The networks with
plume alignment have a very close RMSE with a gap of only
16kgh™!, which is not statistically significant. However, a
gap of 0.7 in MAPE shows a real difference in performance.
Indeed, the low source rates have very little impact on the
RMSE but can have a high impact on the MAPE. A lower
value in MAPE but not in RMSE therefore means that the
estimation is improved for low source rates.

We can observe the evolution of the MAPE with respect to
the source rate in Fig. 4. We see that the four tested networks
have very similar performance levels for high source rates,
from 4000 kgh~! upwards. Above 4000kgh~!, the MAPE
hardly decreases at all, remaining around 10 % for all net-
works. Indeed, at high source rates, the methane concentra-
tion looks like the ground-truth image (the output of LES),
meaning that the noise is negligible with respect to the plume
concentration. Therefore, for the network, there is no dif-
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Figure 4. Evolution of the MAPE with respect to the source rate
for different architectures and plume orientations. The networks are
trained and tested on the MicroL dataset.

ference (in terms of additional information) between an im-
age with a plume at 10000kgh~! or at 20000 kg h~!. Thus,
the networks differ only in their performance at medium-
and low-source rates, with the gaps between them narrow-
ing as the source rate increases. In particular, we can see
that CNext+align is outperforming EffNet+align for low
source rates. Between 100 and 200kg h~—!, the MAPE of
CNext+align is at least half the MAPE of any other network.
However, even if we dismiss the case of source rates below
500kgh~!, CNext+align still outperforms the other meth-
ods. Since MAPE is a better representation of the networks
performance over the entire range of source rates, from now
on we will focus only on the ConvNeXt-Tiny architecture.

4.2 Loss

As we saw in Fig. 4, the differences in performance be-
tween the methods lie in the 0-4000 kg h~! range. However,
when training with MSE loss, this is the range that has the
least weight in the loss. To improve performance in the 0-
4000 kg h~! range, we train the network directly with MAPE
loss, which gives more weight to low source rates than MSE
loss. This is also possible because performance in the 4000—
25000kgh~! range is stable for all the networks used, so
we can expect the same result when changing the loss. In
Fig. 5, we observe the influence of the loss. We compared
a network, CNext+RMSE, trained with the RMSE loss on
aligned plumes with CNext+MAPE, the same network but
trained with the MAPE loss.

As expected, CNext+MAPE outperforms CNext+RMSE
in terms of MAPE. We can see a significant improve-
ment in the 0-10000kgh~! range. Note that changing the
loss affects not only plumes with small source rates but
also those with higher rates. Moreover, it also outperforms
CNext+RMSE in terms of RMSE with a lower RMSE in the
0-10000kgh~! range. Beyond 10000kgh~!, the two net-
works have similar performance.
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The network CNext+MAPE trained with aligned plume on
MicroL is the best version of our different networks and we
name it MetFluxNet.

4.3 Uncertainty estimation

The simplest way to estimate the uncertainty on the source
rate estimate provided by the neural network is to compute
the empirical standard deviation of the estimation. To com-
pute it for a given prediction, we consider a sample of the
true source rate distribution corresponding to this prediction,
and we compute the standard deviation of this distribution
with its usual non biased empirical estimate. The sample of
the true source rate distribution is obtained from the MicroL
testing set. Under the assumption that the source rate distri-
bution corresponding to a prediction made by the network
locally follows a Gaussian distribution, we can then obtain a
confidence interval on the prediction.

Under the same assumption, another way to obtain a con-
fidence interval is to train the network for a probabilistic re-
gression (Nix and Weigend, 1994). For a given plume P, let
us denote by Q its emission source rate. Then, the predic-
tion made by the network for P follows a Gaussian distribu-
tion N(Q, o), where Q is an estimator of Q. When using a
probabilistic regression, we want to estimate both Q, which
will be the predicted source rate, and o, which will be the
standard deviation of the estimation. This standard deviation
yields confidence intervals.

Predicting the standard deviation requires a small change
in the network architecture. The previous networks used a
fully connected layer with one unit as the last layer to per-
form the source rate estimation. To output both the predicted
source rate and the standard deviation, we add in parallel of
this last layer a fully connected layer with one unit set to the
power of two. Squaring the layer ensures that the output is
positive. Therefore, we consider that the output of this sec-
ond layer will be the variance of the distribution, that is, o2,

To ensure that o is an estimate of the standard deviation,
we use the negative log likelihood (NLL) as loss. Indeed, if
(Q o) minimizes the NLL, then (Q o) is the maximum like-
lihood estimator for the parameters of the output distribution
of the network. The NLL is defined by

NLL(Q, 0,0) = = 7

We obtain a similar performance for the predicted source
rate when comparing CNext+MAPE with CNext+NLL. The
CNext+MAPE has a RMSE of 1388kgh~! and a MAPE of
8.3 %, whereas CNext+NLL has a RMSE of 1369 kg h~! and
a MAPE of 8.3 %.

In Fig. 6, we compare the empirical standard deviation
computed with the CNext+MAPE output, denoted by emp,
with the network estimated standard deviation computed
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Figure 5. Evolution of the MAPE and the RMSE with respect to the source rate for networks trained with the MAPE loss and the RMSE
loss. The networks are trained and tested on the MicroL dataset with aligned plumes.

Oemp from CNext+MAPE

f“ 2500 o from CNext+NLL
< A

2 A

é 2000 - A

c

Rl P

= J

© 1500 A \/ W

3 A

3 A

o
1000 4 /\\I X \/

-E ,\JJN

@© N

g -

© 500 4

v}

2]

0
0 5000 10000 15000 20000 25000

Predicted source rate Q (kg h™?)

Figure 6. Evolution of the standard deviation computed empiri-
cally or with a probabilistic regression with respect to the predicted
source rate. The networks are trained and tested on the MicroL
dataset with aligned plumes.

with CNext+NLL, denoted by onp L. Note that the plot de-
pends on the predicted source rate and not on the true source
rate, because we look at the distribution of the network out-
put. We can notice that onrL. and oemp have the same behav-
ior. The proximity between the values of oemp and onLL is
due to the fact that the empirical standard deviation is the
maximum likelihood estimator of the standard deviation for
a Gaussian distribution. Since onr [, is an approximation of
the maximum likelihood estimator of the standard deviation,
we deduce that onp L should be close to oemp. From now on,
we name ProbMetFluxNet the CNext+NLL network.

The standard deviations computed for our networks in
Fig. 6 are way lower than those provided by the IME for the
same source rates (Guanter et al., 2021). This is mainly due to
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the fact that our neural networks do not rely on external data.
With IME, a large part of the uncertainties comes from the
wind speed. It is common to assume that there is around 50 %
of error on the wind speed (Guanter et al., 2021). Hence, re-
moving the wind speed from the estimation pipeline allows
us to significantly reduce the standard deviation on the es-
timation and therefore the size of the associated confidence
interval.

4.4 Influence of the background

All the presented networks estimate the emission source rate
using all the information in the image, including background
data. However, the background can contain false positives,
typically pixels not belonging to the plume that could be con-
sidered plume pixels because of their high retrieved concen-
tration. When estimating the source rate, we first want to re-
move those false positives before giving the image to the net-
work. Removing a part of the background pixels will change
the overall distribution of the background. In particular, the
resulting distribution will be different from the ones the net-
work has seen in training. This might lead to errors in the
source rate estimation.

In Fig. 7, we observe two images of the same simu-
lated plume. The source rate corresponding to this plume is
2192kgh~!. In the left image, we have the original methane
retrieval image. In the right image, we removed the top
and bottom edges, which contained only background pixels.
Even if these images do not include false positives, this ex-
ample shows how a change in the background far from the
plume can impact the source estimation.

We can see that although the two plumes are identical, we
have two significantly different source rate predictions with
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Figure 7. Two images of the same simulated plume. Panel (a) is the result of the methane concentration retrieval. In panel (b), we removed
background pixels at the top and bottom of the image. The true source rate corresponding to those plumes is 2192 kg h~L. The scale is in

parts per million (ppm).

an increase of almost 10 % in the predicted source rate when
removing a part of the background pixels. Moreover, this in-
crease in the predicted source rate widens the gap between
the prediction and the ground truth.

To reduce the impact of the background distribution, we
trained a version of our network while removing different
parts of the background. This aims at reproducing the back-
ground distribution we would obtain when removing false
positives in real plume images. To create those sparse images
to train the network, we draw random bounding boxes that in-
clude the entire plume, and we remove the pixels outside of
it. This avoids mistakenly removing plume pixels. The ran-
dom bounding boxes are used during training to be robust to
different bounding box sizes and therefore different levels of
sparsity in the background distribution. The idea behind the
use of bounding boxes is that it is easier to draw a bounding
box than a fine mask of the plume. This comes with an im-
portant drawback: if a false positive is close to the plume, it
might not be possible to remove it with a rectangular bound-
ing box. However, this limit also exists for fine plume masks
when the plume intersects a false positive.

In Fig. 7, the right-hand image corresponds to the bound-
ing box applied to the left-hand plume. We name MicroL-
sparse the MicroL dataset with the partial background re-
moval. In the same way, we name MetFluxNet-sparse the
version of MetFluxNet trained on MicroL-sparse.

In Table 4, we compare MetFluxNet and MetFluxNet-
sparse on MicroL and MicroL-sparse. As could be ex-
pected, MetFluxNet has the best performance on MicroL and
MetFluxNet-sparse obtains the best performance on MicroL-
sparse. In particular, the performance of MetFluxNet on Mi-
croL is similar to the performance of MetFluxNet-sparse on
MicroL-sparse. Hence, removing background pixels when
there is no false positive to remove does not improve the re-
sults, but it does not decrease them either (the gap between
a RMSE of 1388 and 1374kgh~! is not statistically signif-
icant). However, the results of MetFluxNet-sparse are much
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better on MicroL than the results of MetFluxNet on MicroL-
sparse. This is because MetFluxNet-sparse is trained on im-
ages with various degrees of sparsity; therefore, it generalizes
better when there is no added sparsity in the images. How-
ever, MetFluxNet has the advantage of being able to be used
without any manual intervention on the background.

Since MetFluxNet-sparse requires additional pre-
processing to create bounding boxes and because those
bounding boxes do not necessarily allow us to remove all the
false positives, our main focus in the following sections will
be on the standard MetFluxNet method.

Another way to look at the influence of the background
is to compare the network performance on several different
backgrounds. In Table 5, we compare the MetFluxNet results
in three locations: North America, the Middle East and north-
ern Africa. We obtain very similar results for the three loca-
tions, in terms of both RMSE and MAPE. We note that the
RMSE and MAPE are slightly higher for North America than
for the other two areas. This might be due to the more deser-
tic background we can have in the Middle East and northern
Africa, which usually are less noisy. Moreover, the heteroge-
neous backgrounds we can find in North America make the
estimation more difficult (Roger et al., 2024). The increase
in RMSE between North America and the other locations is
about 35kgh~!, which represents only a 2.5 % increase com-
pared to the results in the Middle East and northern Africa.

4.5 Tests on real data

To validate predictions of our networks, we want to test it on
images of real plumes. However, without ground truth, which
is generally not available, it is difficult to measure the qual-
ity of our prediction. Therefore, we will work with methane
plumes observed after the controlled methane releases car-
ried out by Sherwin et al. (2023, 2024). In Sherwin et al.
(2023, 2024), researchers conducted single-blind controlled
methane release experiments to evaluate the performance of
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Table 4. Result comparison for MetFluxNet and MetFluxNet-sparse. The networks are trained, respectively, on MicroL and MicroL-sparse.
They are both trained with the MAPE loss. Bold values correspond to the method obtaining the best score for each metric (lower is better).

Network RMSE RMSE MAPE MAPE

(MicroL)  (MicroL-sparse) (MicroL)  (MicroL-sparse)
MetFluxNet 1388 1728 8.3 10.3
MetFluxNet-sparse 1445 1374 8.9 8.3

Table 5. Result of MetFluxNet on different backgrounds. The
RMSE values are in kg h—L.

Area RMSE MAPE
North America 1411 8.5
The Middle East 1372 8.3
Northern Africa 1382 8.1

satellite-based methane detection and quantification meth-
ods. They released methane plumes in Arizona between Oc-
tober and November 2021 and October and November 2022.
These releases occurred during overpasses of several satel-
lites with methane detection capabilities, including PRISMA
and EnMAP. In 2021, three methane plumes were released
during PRISMA overpasses. In 2022, one methane plume
was released during EnMAP overpasses and three plumes
were released during PRISMA overpasses. The plume re-
leased on 27 October 2022, during a PRISMA overpass, is
not visible in our methane enhancement retrieval image, as
the order of magnitude of retrieved concentrations is lower
than the background noise level. Hence, we will test our net-
works on the six remaining plumes for which we have a
ground truth.

In Fig. 8, we can observe four of the plumes detected by
PRISMA or EnMAP. The plumes have been rotated to be
aligned with the x axis to comply with the alignment pre-
processing required for the different versions of MetFluxNet.
The red bounding boxes are used for the sparse versions of
the networks, and the non-sparse networks used the whole
image. In Fig. 8d, no pixels needed to be removed; therefore,
the bounding box includes the whole image.

In Table 6, we compare the predictions made by Met-
FluxNet, ProbMetFluxNet, and their sparse versions with
state-of-the-art methods. Those predictions are provided with
95 % confidence intervals. The confidence interval is em-
pirically computed for MetFluxNet and MetFluxNet-sparse.
For ProbMetFluxNet and ProbMetFluxNet-sparse, it is com-
puted with the standard deviation estimated by the network.
We reproduced the results of S2MetNet (Radman et al.,
2023) by training a version of the network on MicroL; the
corresponding confidence interval is computed empirically.
The work of Sherwin et al. (2023, 2024) does not introduce
any new methods but gathers the results of different research
teams. Therefore, for each plume, we selected the best result
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obtained among all different teams. To select the best result
for a given plume, we considered all the proposed 95 % confi-
dence intervals that contain the true source rate and selected
the one for which the prediction is closest to the true flux
rate. For the four plumes considered here, the best results
have been produced with the integrated mass enhancement
method (Varon et al., 2018). The 95 % confidence intervals
were calculated by Sherwin et al. (2023, 2024), and the cor-
responding data and code are publicly available.

For the MetFluxNet network, the ground truth is within
the 95 % confidence interval for the six plumes. In particular,
MetFluxNet makes the best prediction in three cases out of
six with predictions very close to the exact value. This shows
that false positives, such as the ones we can see in Fig. 8b
and c, do not prevent a good source rate estimation. A possi-
ble explanation is the plume alignment: as the position of the
plume is fixed in the image, pixels far from it should have a
small weight in the final source rate computation. We show in
Fig. 7 that variations in the background could lead to signif-
icant prediction changes. However, when applying bounding
boxes, we modify the value of a high number of pixels, but
the brightest false positives visible in Fig. 8 represent only a
few dozen pixels.

It should be noted that even if MetFluxNet can correctly
estimate the source rate in the presence of a false positive in
the image, it might not be the case if the plume intersects
the false positive. Indeed, here the false positive is outside
the plume and does not match the plume alignment criterion.
However, if the false positive intersects the plume, it might
be interpreted as a local methane concentration maximum
which are commonly observed due to eddies. In this case, it
can lead to an overestimation of the source rate, as the false
positive would increase the apparent total mass of methane.

Overall, the results of MetFluxNet are closer to ground
truth than those presented in Sherwin et al. (2023, 2024) for
the PRISMA and EnMAP plumes. Even though IME gives
the best result for two of the plumes, the ground truth is
within the confidence interval produced by MetFluxNet for
those cases. Moreover, most of our confidence intervals are
also smaller than those of Sherwin et al. (2023, 2024). This
shows that MetFluxNet works not only on simulations, but
also for real plumes.
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Figure 8. Retrieved methane concentration for four methane plumes detected by PRISMA and EnMAP in the controlled methane release
experiment of Sherwin et al. (2023, 2024). Pixels outside of the red bounding boxes are removed when using the sparse versions of the
networks. The bounding boxes are manually drawn to exclude pixels with high values which do not belong in the plume. The scale is in
particles per million (ppm).

Table 6. Source rate estimation for plumes detected by PRISMA and EnMAP in the controlled release experiments of Sherwin et al.
(2023, 2024). The source rate values are in kg h=L. All the images are from PRISMA, except for the image on 16 November 2022 that
is from EnMAP. Bold values correspond to the method obtaining the best score for each metric (lower is better).

Network 16 October 21 October 27 October 7 November 16 November 30 November
2021 2021 2021 2022 2022 2022
Best from Sherwin et al. (2023, 2024) (IME) 3379 +1860 478141854 505142749 388+ 686 1818 £1023 1150 +427
S2MetNet (Radman et al., 2023) 3304 £990 5945+ 1416 4666+ 1211 1329 £476 1582 + 659 1916 £ 523
MetFluxNet (ours) 2735+ 798 4695 £+ 985 3512+855 355+287 1130459 1407 £ 489
ProbMetFluxNet (ours) 2888 £ 547 4994 4961 4175+ 812 633+ 166 1255 £270 2355 +486
MetFluxNet-sparse (ours) 2569728 5134+1026 3691+ 1048 665 +281 1245 £493 1492 £430
ProbMetFluxNet-sparse (ours) 3281 +£576 5337 +£932 4406 + 781 689 £+ 165 1241 £242 2038 + 398
Ground truth 2355 4473 3433 414 1096 998
4.6 Comparison with state-of-the-art methods 2023). S2MetNet is a deep learning model based on the
EfficientNetV2-L architecture which is then fine-tuned on
To show the improvement brought about by MetFluxNet, a simulated dataset generated with LES. Here, we repro-

we compare it with popular methods to estimate the source duce a version of S2MetNet on MicroL to compare it with
rate of point source methane emissions detected with satel-
lite imagery such as IME and S2MetNet (Radman et al.,
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MetFluxNet. The methods described here are tested on the
datasets MicroL and S2Test.

The results of the above methods are presented in Table 7.
The standard IME version presented here is computed with
the effective wind model of Guanter et al. (2021) and the
corresponding masking procedure. The IME-MicroL version
is computed with our effective wind model and our mask-
ing procedure. IME and IME-MicroL give similar results on
S2Test but not on MicroL. This is due to the effective wind
model of IME-MicroL being fitted on a dataset closer to the
testing set of MicroL than IME. With the same methodology
for IME and an effective model fitted on the training set of
MicroL, the standard IME could obtain better results.

We can also observe that both versions of the IME are
widely outperformed by deep learning methods. When com-
paring the deep learning methods, MetFluxNet has a lower
RMSE and MAPE than S2MetNet on both datasets. On Mi-
croL, the RMSE of MetFluxNet is about 150kgh™! lower,
and the MAPE is more than 1% lower. On S2Test, the
RMSE of MetFluxNet and S2MetNet are very close to each
other, but in terms of MAPE the gap is the same as for
MicroL. This means that MetFluxNet significantly outper-
forms S2MetNet for the low source rates. Moreover, Met-
FluxNet relies on a much lighter model than S2MetNet. The
ConvNeXt-Tiny architecture has only 28.6 million parame-
ters, whereas EfficientNetV2L has 119 million parameters.
Hence, MetFluxNet is easier to train than S2MetNet and also
performs better.

When comparing the results of MetFluxNet on MicroLL
and S2Test, we see that MetFluxNet performances are worse
on S2Test than on MicroL. The RMSE is about 850 kgh~!
higher, and the MAPE is 4.4 % higher. This can be explained
by the fact that the dataset of Varon et al. (2021) comes from
a different simulation setup and is therefore farther from the
training set than the data from our simulations. This differ-
ence in RMSE and MAPE does not mean that MetFluxNet
cannot generalize to different plumes. As we saw in the pre-
vious section, it accurately estimated the source rates for the
real plumes we tested. Moreover, our method performs bet-
ter on S2Test than S2MetNet or the IME; this makes Met-
FluxNet a method well suited for real applications.

4.7 Robustness to angle variations

The main reason why MetFluxNet outperforms S2MetNet is
the plume alignment, which simplifies the source rate esti-
mation problem. S2MetNet is trained to estimate the source
rate of a plume in any direction. This can be useful because it
can be difficult to perfectly align plumes. In Fig. 9, we com-
pare the RMSE and MAPE of MetFluxNet and S2MetNet
with respect to the angle between the shape of the plume and
the x axis. We consider angles between —45 and 45° as this
range represents a reasonable error range for the plume align-
ment.
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We can observe that MetFluxNet outperforms S2MetNet
for all angles tested. In particular, MetFluxNet gives the best
results even when there is a large angle between the plume
and the x axis. This is due to the fact that the training set nat-
urally contains examples with a non-zero angle between the
plume and the x axis, as explained in Sect. 3.3.2. Moreover,
it is still easier for MetFluxNet to learn to predict in a range
of 140° (which is the range of angles in MicroL) than for
S2MetNet to learn to predict for any possible angle. Hence,
even without perfect alignment, it is preferable to restrain the
plume to a cone rather than allowing unrestricted rotations;
the restriction to a cone being easier to satisfy than an exact
plume alignment.

We also notice that the MetFluxNet estimation error is
rather stable in the range —45 to 45°. The order of magni-
tude of the MAPE variation is 0.5 %. Thus, the prediction
quality is the same with an angle of 0 and 45°. There was no
overfit of the network around 0°. Therefore, MetFluxNet is
robust to a misalignment of the plumes.

4.8 Overfitting when training on MicroS

To show that training with MicroS necessarily leads to over-
fitting, we compare a network trained on MicroS to a network
trained on MicroL. We name MicroSnet and MicroLnet the
networks trained on MicroS and MicroL, respectively. Both
networks are trained without any plume mask, on aligned
plumes, and with MSE loss.

In Fig. 10, we can compare the results of MicroLnet and
MicroSnet to MicroL, MicroS, and S2Test. The RMSE and
MAPE values are also summarized in Table 8. MicroLnet
gives results of the same order of magnitude as MicroL
and MicroS. MicroSnet outperforms MicroLnet on MicroS,
which was to be expected, but has a higher RMSE and MAPE
than MicroLnet on MicroL. In particular, the RMSE of Mi-
croSnet almost triples between MicroS and MicroL.

MicroSnet performs well on MicroS because the training
set and the testing set are too similar. As we saw in Fig. 2,
with a 10s time step, the testing set contains plumes that
are practically identical to those found in the training set.
Even if MicroSnet is trained on more samples than MicroS-
net (according to Table 2), it generalizes poorly on MicroLL
because the training samples are too similar. On the other
hand, MicroLnet has RMSE and MAPE of the same order
of magnitude on MicroL and MicroS, which shows that the
network did not overfit. On S2Test, MicroSnet slightly out-
performs MicroLnet, but the performance of both networks
is way lower than those trained on their respective testing set.

Thus, MicroSnet clearly overfits the MicroS dataset. It per-
forms very well on the testing set of MicroS, but the perfor-
mance for this dataset does not correctly represent the abil-
ity to quantify source rate under real conditions. Even if the
RMSE and MAPE of MicroSnet are of the same order of
magnitude as those of MicroLnet when tested on MicroL
and S2Test, it is necessary to have a dataset additional to
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Table 7. Comparison of different source rate estimation methods. The results are in kg h~! for the RMSE and in percent for the MAPE. Bold

values correspond to the method obtaining the best score for each metric (lower is better).

Method RMSE RMSE MAPE MAPE
(MicroL)  (S2Test) (MicroL) (S2Test)
IME (Guanter et al., 2021) 4019 3175 33.4 22.6
IME-MicroL 1821 3339 14.2 19.5
S2MetNet (Radman et al., 2023) 1533 2280 9.7 14.0
MetFluxNet (ours) 1388 2255 8.3 12.7
ProbMetFluxNet (ours) 1369 2377 8.3 134
] = e
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Figure 9. Comparison of S2MetNet and MetFluxNet in terms of MAPE and RMSE with respect to the plume angle.

MicroS, to be able to properly evaluate the results of MicroS-
net. Therefore, we can simply work with MicroL, as working
with MicroS would require using another dataset anyway.

5 Conclusions

We introduced MetFluxNet, a new deep learning network for
source rate estimation of point source methane emissions de-
tected with the PRISMA and EnMAP satellites. MetFluxNet
was trained on MicrolL, which is a new synthetic plume
dataset we generated to train deep learning methods. The use
of two different source rate ranges for the training set and the
testing set of MicroL prevents border effects in the extremes
of the testing range. Moreover, the large time gaps chosen
for the temporal sampling of the simulated plumes prevents
overfitting during training.

MetFluxNet can detect a wide range of emissions from
500 to 25000kgh~! and without any wind information or
plume labeling. It is based on a ConvNeXt-Tiny architec-
ture and on an alignment of the plume as pre-processing. We
showed that this pre-processing improves the quality of the
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estimation, in particular in the case of low source rates. The
plume alignment also helps to obtain good results even with
small network architectures. We showed that MetFluxNet
outperforms larger architectures such as EfficientNetV2L
thanks to the plume alignment. MetFluxNet achieved a 8.3 %
MAPE on our simulated dataset MicroL. It outperforms pre-
existing methods such as the IME or S2MetNet. We also val-
idated MetFluxNet predictions on real plumes observed in
the context of controlled methane release experiments. Met-
FluxNet successfully provided 95 % confidence intervals for
the real plumes we tested.

We also tested variations of MetFluxNet. We tested Prob-
MetFluxNet which was designed to provide accurate stan-
dard deviation estimations for our predictions. It allowed
us to validate the empirical standard deviation estimates
computed with the results of MetFluxNet. We also created
MetFluxNet-sparse; the purpose of this network was to es-
timate the source rate after manual false positive removal.
MetFluxNet-sparse obtained performances similar to Met-
FluxNet, which shows that a manual intervention is not
needed when working with MetFluxNet. The method pre-
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Figure 10. Results of the networks MicroLnet and MicroSnet on MicroL, MicroS, and S2Test. Each line corresponds to a dataset and each

column to a network.

Table 8. Comparison between MicroLnet and MicroSnet over three different datasets: MicroL, MicroS, and S2Test. The results are in kg h!
for the RMSE and in percent for the MAPE. Bold values correspond to the method obtaining the best score for each metric (lower is better).

Method RMSE- RMSE- RMSE- MAPE- MAPE- MAPE-
MicroLL MicroS S2Test MicroLL MicroS S2Test

MicroLnet 1437 1698 2492 9.5 11.3 15
MicroSnet 1677 610 2367 10.1 5 14.3
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sented here was designed for methane plumes, but we aim at
generalizing it for other gas or aerosol plumes.

MetFluxNet can be applied to images from other instru-
ments as long as the spatial resolution of the input image is
30 m. This is because, at other spatial resolutions, the visible
spatial features of the plumes are not the same. To apply the
network to Earth Surface Mineral Dust Source Investigation
(EMIT) images, for example, one possible solution would be
to apply a super-resolution algorithm to bring the resolution
of the EMIT image to 30 m. Another option would be to train
a network with images at a spatial resolution of 60 m with the
same methodology as described here. However, such a proce-
dure would not guarantee the same results, because the lower
the spatial resolution, the fewer the spatial features available
for making the source rate estimation.

Data availability. EnMAP data are available through the
EnMAP planning portal at https://planning.enmap.org/ (last
access: 5 September 2024). PRISMA data are available
at http://prisma.asi.it/missionselect/ (last access: 5 Septem-
ber 2024). The Microl dataset is publicly available at
https://doi.org/10.5281/zenodo.15618044 (Ouerghi et al., 2025).
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