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Abstract. In this work, we present the results of an observ-
ing system simulation experiment (OSSE) in which we in-
vestigate the emergence of a surface-reflectance-dependent
bias in retrieved column-averaged dry-air mole fractions of
methane (XCH4). Our focus is on single-band retrievals in
the shortwave infrared (SWIR) at 2.3 µm. This particular bias
manifests as artificial gradients in XCH4 fields that relate to
surface features on the ground and can, for example, cause
erroneous estimates of methane source emission rates.

We find that even for near-ideal conditions (that being a
perfectly calibrated instrument, perfect knowledge of mete-
orology and trace gas vertical distributions, and an absence
of clouds and aerosols) a surface-reflectance-related bias ap-
pears in the retrieved XCH4. While the magnitude of the bias
is much lower than is observed in, for example, real data from
the TROPOspheric Monitoring Instrument (TROPOMI), the
overall qualitative shape is strikingly similar. When we study
a more realistic scenario by considering synthetic measure-
ments that are affected by aerosols, the surface bias increases
in magnitude roughly by a factor of 10. We hold all other
properties of the synthetic measurements fixed and thus can
make the following statements about these surface biases
from the 2.3 µm absorption band. First, the bias already ap-

pears in the near-perfect scenario, meaning that its origin
is likely fundamental to XCH4 retrievals from this particu-
lar absorption band and using an optimal-estimation-type re-
trieval approach. Second, the magnitude of the bias increases
significantly when aerosols are encountered. As aerosols give
rise to a magnification of the bias, we have implemented a re-
trieval configuration in which the retrieval algorithm knows
the true aerosol abundance profiles along with their optical
properties. With this configuration, the surface bias returns
mostly to the level first seen when synthetic measurements
were not affected by aerosols.

The results we present in this work should be considered
for new missions where XCH4 is a target quantity and the de-
sign relies on the 2.3 µm absorption band. Since the surface
bias will likely emerge, it is crucial that a validation approach
is planned which sufficiently samples the needed range of
surface reflectance in areas of near-uniform methane concen-
trations in order to capture the bias and thus correct for it.
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1 Introduction

The wealth of data obtained by the TROPOspheric Monitor-
ing Instrument (TROPOMI) very quickly revealed biases in
the retrieved trace gases that were hidden until then, since
no other trace gas instrument had both spatially dense cover-
age and footprint sizes on the order of a few square kilome-
ters. Arguably, the most striking one is a bias that strongly
correlates with surface reflectance features. Figure 1 shows
one example over northeast Africa, in which the described
bias is apparent; certain scenes with lower apparent sur-
face reflectance are accompanied by lower values of column-
averaged dry-air methane mole fractions (XCH4). This clear
imprint of surface features onto the XCH4 fields, driven here
mostly by the contrast between rocky and sandy surfaces, is
unphysical but routinely dealt with through a post-retrieval
bias correction procedure (Hasekamp et al., 2019; Lorente
et al., 2021; Schneising et al., 2023).

Aerosols have been identified as a cause for systematic bi-
ases in retrievals since the early days of space-based mis-
sions that allowed for the estimation of greenhouse gas
total columns. While not exclusively dedicated to green-
house gases, the SCanning Imaging Absorption spectroM-
eter for Atmospheric CHartographY (SCIAMACHY) instru-
ment (Bovensmann et al., 1999) was used to retrieve both
CO2 and CH4 from the near-infrared (NIR) or shortwave in-
frared (SWIR) part of backscattered spectra. Biases related to
aerosols have been observed over the Sahara by Houweling
et al. (2005) and were further studied by Aben et al. (2007)
in a more comprehensive simulation exercise. Their conclu-
sions are highly relevant to our study, as they also investigate
a single-band retrieval configuration and observe the inter-
action between aerosol loading and surface reflectivity. We
will contextualize our results in that regard in the discus-
sion section later on (Sect. 5). For the first dedicated CO2
and CH4 mission, the Greenhouse gases Observing SATellite
(GOSAT) (Kuze et al., 2009), aerosols were also understood
as a cause of bias in the retrieved total columns (Wunch et al.,
2011; Uchino et al., 2012; Cogan et al., 2012). However, the
way aerosols interact with the various retrieved quantities is
different for retrievals from GOSAT compared to those of
SCIAMACHY. GOSAT provides measurements of two sepa-
rate absorption bands of CO2, at 1.6 and 2.06 µm (in addition
to thermal bands which are not relevant here), which provides
effective decoupling of the surface from the CO2 concentra-
tion. As such, significant surface-related biases have not been
observed in GOSAT retrievals for CO2. The Orbiting Car-
bon Observatory (OCO) missions (Crisp et al., 2004; Crisp,
2015; Eldering et al., 2019) use roughly the same configu-
ration in terms of observed spectral windows as the GOSAT
mission, and retrieval algorithms used for either instrument
are mostly interchangeable. Kulawik et al. (2019) found us-
ing another simulation study that the retrieved aerosol opti-
cal depth and retrieved surface albedos were indeed corre-
lated when they inspected the posterior covariance matrices.

In most related studies (e.g., O’Dell et al., 2018), the major
drivers of biases are identified as retrieved surface pressure as
well as the retrieved CO2 profile shape. The retrieved aerosol
optical depth and surface albedo contribute much less to the
total bias correction (OCO-2 Science Team, 2023). It seems
plausible that surface–aerosol interactions manifest as a dif-
ferent type of bias, e.g., through interference of surface pres-
sure and aerosol optical depth retrieval. Regardless of the ac-
tual mechanism, the utilization of three-band retrievals from
GOSAT, OCO-2 and OCO-3 have made surface–aerosol bi-
ases less apparent, and the surface bias is no longer a domi-
nant contribution to the total observer errors.

As part of the algorithm development efforts for the Geo-
Carb mission (Polonsky et al., 2014; Moore III et al., 2018;
Nivitanont et al., 2019; Somkuti et al., 2021; McGarragh
et al., 2024), we investigated the emergence of a surface
reflectance bias through a simulation study. We aim to an-
swer questions related to this bias, namely, (1) whether we
can reproduce the bias seen in TROPOMI retrievals through
simulation-driven retrieval experiments, (2) whether we can
determine what drives the emergence of the bias and (3) if
any mitigation strategy can be employed to reduce it.

The paper is structured in the following way. Section 2
describes the simulation setup to produce synthetic observa-
tions. Section 3 then follows with the description of the re-
trieval algorithm used to derive the XCH4 from the simulated
radiances. Results are shown and discussed in Sect. 4, start-
ing with retrievals from aerosol-free simulations (Sect. 4.1)
and then moving on to one with realistic tropospheric aerosol
abundances (Sect. 4.2), where the surface bias is first ob-
served in our study. In Sect. 4.3, we then augment the re-
trieval algorithm forward model by including the true aerosol
information and analyze its impact on the surface bias. We
summarize our results in Sect. 5 and discuss the relevance of
our study to the real-world biases seen in XCH4 derived from
TROPOMI measurements, and we mention topics for future
investigations.

2 Simulation setup

We use the same tested simulator framework, developed at
Colorado State University (O’Brien et al., 2009; Polonsky
et al., 2014), that has been successfully applied in other stud-
ies, such as Frankenberg et al. (2014), Eldering et al. (2019),
Somkuti et al. (2021) and McGarragh et al. (2024). Details
on the inner workings of this orbit simulator can be found
within these mentioned publications; we cover here only a
short summary and focus on the aspects that are relevant to
our study.

2.1 Sampling

Our full simulation set contains scenes derived from real
OCO-2 (Crisp et al., 2004; Crisp, 2015) geolocation data
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Figure 1. Surface reflectance bias example over northeast Africa. Shown are individual TROPOMI footprints, colored by either raw (without
bias correction) retrieved XCH4 (left) and apparent retrieved surface albedo (right). Only scenes with albedo larger than 0.2 are shown
here. Several surface features (right) are clearly seen to have corresponding gradients in retrieved XCH4 (left). Color-bar ranges have been
adjusted to exaggerate the effect by more strongly pronouncing the image contrast in both panels. No quality filters were applied; this figure
is intended to show the raw retrieved methane column before any bias correction. This figure was produced from TROPOMI orbit 27865,
processor version 2.4.0 (Copernicus Sentinel-5P, 2021).

within the period of January 2016 until March 2017. Due
to the large number of OCO-2 footprints, which is on the
order of 1 million per day, the geolocation data were down-
selected such that only one regular measurement every 10 s
is retained, ignoring special measurement modes such as tar-
get mode. This corresponds to a scaling factor of 240, since
OCO-2 measures eight footprints roughly three times per
second. At a global perspective, the general geographical
coverage does not change with this down-selection and re-
mains similar to that of the OCO-2 instrument. We retain
only nadir-looking (down-looking at the sub-satellite point)
scenes and drop any sunglint following (pointed at the spec-
ular reflection of the direct solar beam) viewing modes. For
this study, we only consider land surfaces and leave out
Antarctica. The coverage of scenes is shown in Fig. 2.

As Fig. 2 illustrates, our set of scenes contains locations
from all land masses with the exception of Antarctica. Since
we are sampling MODIS bidirectional reflectance distribu-
tion function (BRDF) coefficients (Schaaf and Wang, 2015)
at every individual scene location, we obtain surface prop-
erties in the proper geographical context for each scene, as
captured by the 500 m resolution MCD43A1 product. The
surface for the CH4 band is spectrally flat since the MODIS
instruments do not cover the shortwave-infrared region be-
yond ≈ 2.15 µm. Thus, we take the BRDF coefficients from
band 7 and use them for all wavelengths within the CH4 win-
dow, without any spectral variation.

Figure 2. Spatial distribution density of the simulated scenes. Since
the simulation locations are based on real OCO-2 locations, the
sampling shows the expected striping pattern generated by the or-
bital movement of the spacecraft. Overall coverage is mostly the
same, apart from eastern Siberia and Alaska where OCO-2 mea-
sures mostly in glint mode, which we have excluded from our study.
Note that for this and all other global-scale maps, features smaller
than 10 000 km2 in area are not drawn.

2.2 Clouds

We add cloud information from the International Satellite
Cloud Climatology Project (ISCCP) by sampling the H-
series dataset (Young et al., 2018) at the scene locations and
extract cloud flag, cloud type (liquid or ice), cloud path for
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optical density and cloud top pressure for the vertical loca-
tion of the cloud layer. Our measurement simulations fully
account for clouds as part of the radiative transfer scheme.
For the analysis of the post-retrieval quantities; however,
we remove all scenes from the final analysis that contain
any ice or liquid clouds. Our reason behind this choice is
that we do not want to exercise cloud flagging algorithms
for this work. We show in the following sections that tro-
pospheric aerosols enhance the surface reflectance bias. As
such, the scene sampling thus becomes representative of a
mostly globally distributed set of locations, weighted by the
probability of obtaining a cloud-free measurement at those
locations and times.

2.3 Aerosols

As in Somkuti et al. (2021), we are utilizing reanaly-
sis data (0.75° spatial and 3-hourly temporal resolutions)
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Copernicus Atmosphere Monitoring Sys-
tem (CAMS) to assign realistic aerosol abundance profiles
to each scene (Bozzo et al., 2020). With the CAMS aerosol
component, there are in total 11 aerosol mixtures: hydropho-
bic and hydrophilic organic matter, hydrophobic and hy-
drophilic black carbon, three sea salt mixtures, three min-
eral dust mixtures, and sulfate. The sea salt and mineral dust
mixtures are separated into three spherical radius size bins
each: 0.03–0.5, 0.5–5.0 and 5.0–20.0 µm for sea salt and
0.03–0.55, 0.55–0.9 and 0.9–20.0 µm for mineral dust. The
sea salt, sulfate and hydrophilic organic matter mixtures are
hygroscopic, meaning that the optical properties and the to-
tal aerosol particle counts for a given mass mixing ratio are
dependent on the humidity. There is no humidity dependence
for the mineral dust, hydrophobic organic matter or black car-
bon mixtures.

The process of integrating the CAMS model aerosol data
into our orbit simulator and then applying the radiative trans-
fer (RT) module is done as follows. In a pre-processing step,
a library of aerosol mixture optical properties is generated ac-
cording to the microphysical parameters laid out in Appendix
A2 of Bozzo et al. (2020). This step leverages a code for far-
field scattering calculations involving polydisperse mixtures
of spherical particles based on Mishchenko et al. (2002). We
calculate required optical properties (mass extinction coef-
ficients, extinction cross sections, single-scattering albedo,
phase function expansion coefficients) for each of the 11
mixtures at two wavelengths at both ends of the considered
spectral range and for 12 different relative humidity values if
that mixture has a humidity dependence.

Then, vertically resolved aerosol (dry) mass mixing ratio
profiles for distinct aerosol mixtures, as provided by CAMS,
are sampled at the specific locations and times for each scene.
For each vertical layer l, the extinction optical depth τa,l for

an aerosol mixture “a” is given by

τa,l = αa,l,ρ ·MMRa,l ·
1pl

gl
, (1)

where αa,l,ρ is the aerosol mass extinction coefficient for
mixture “a” (m2 kg−1) at specific humidity ρ, MMRa is the
mass mixing ratio (kg kg−1) for mixture “a”, and finally1pl
is the pressure interval (Pa) for the given pressure layer l and
gl is the acceleration of gravity (m s−2) at the center of the
pressure interval. This extinction optical depth is calculated
for each layer in the model atmosphere at the wavelengths at
the edges of the wavelength window. Extinction and scatter-
ing profiles for each wavelength in between those edges are
then interpolated through an Ångstrom exponent ansatz.

The radiative transfer scheme (Heidinger et al., 2006;
O’Dell et al., 2006; Natraj and Spurr, 2007; O’Dell, 2010)
finally ingests the total scene information, including the scat-
tering properties for each mixture, to produce top-of-the-
atmosphere (TOA) radiances, which are then fed into the
instrument model which then results in a synthetic measure-
ment. We do not apply instrument noise to the synthetic TOA
radiances since we are interested in systematic errors. In the
generation of the synthetic TOA radiances, we ultimately use
high-accuracy calculations corresponding to 24 streams.

A pivotal aspect of our aerosol scheme is the complexity of
the ingested aerosol information. Assuming there are contri-
butions from all five hygroscopic (with 12 different humidity
values) and all six non-hygroscopic aerosol mixtures, there
is a total of 66 different aerosol components. The geographic
distribution of total-column aerosol extinction is shown in
Fig. 3.

We ingest the full aerosol profiles as prescribed by CAMS
rather than representing the vertical distribution as a simpler
parameterized shape, which is done in various retrieval al-
gorithms (O’Dell et al., 2018; Lorente et al., 2021). Some
examples of the vertical distribution of the aerosol mixtures
are shown in Fig. 4.

The radiative transfer portion of the simulator can be run in
a so-called “clear-sky” mode, in which absorption and scat-
tering due to clouds and aerosols is ignored, resulting in a
Rayleigh-only atmosphere. This mode allows us to produce
two sets synthetic top-of-the-atmosphere measurements, one
in which clouds and aerosols are present and one without.
Every other scene quantity is treated the same.

2.4 Data source summary

In Table 1 we summarize the various datasets that feed into
our simulations and also note the spatial resolution at which
those datasets are provided.

3 Retrieval algorithm setup

We use a single-band algorithm which has been developed
for the GeoCarb mission and was demonstrated in an ear-
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Table 1. Source and spatial resolution for the key datasets used in the simulations

Data Source Spatial resolution

Surface BRDF parameters MODIS MCD43A1 (Schaaf and Wang, 2015) ≈ 500 m
CO2, CH4 and CO profiles custom GEOS-5∗(Molod et al., 2015) 0.625°× 0.50°
Aerosol profiles CAMS reanalysis (Bozzo et al., 2020) 0.75°× 0.75°
Cloud parameters ISCCP (Young et al., 2018) 0.1°× 0.1°
Meteorology ECMWF ERA5 (Hersbach et al., 2020) ≈ 31 km

∗ Trace gas profiles were sampled from a custom GEOS-5 run at 50 km spatial resolution, written out to 0.625°× 0.50°.

Figure 3. A map showing the geographical distribution of total-
column aerosol extinction optical depth, gridded to 2°× 2° grid
cells.

lier study (Somkuti et al., 2021). The main retrieval window
stretches from 2.324 to 2.338 µm, which contains absorption
lines from CH4, CO and H2O. This retrieval window is sim-
ilar to what Schneising et al. (2019) used and does not cover
the entire available range of the spectrometer. An example is
shown in Fig. 5.

The forward model of the retrieval algorithm is conceptu-
ally equal to that of the simulator. Each scene comprises a
layered atmosphere in which each layer is considered hori-
zontally homogeneous in terms of its physical properties. At
the layer boundaries, we set gas mixing ratios, pressure, tem-
perature and specific humidity. Optical properties of gases
(CH4, CO and H2O) are calculated via pre-calculated spec-
troscopy tables derived from HITRAN2016 (Gordon et al.,
2017) that are sampled accordingly in the wavelength, tem-
perature, pressure and humidity dimensions. More details on
the calculation of those quantities can be found in, for exam-
ple, Cogan et al. (2012), Wu et al. (2018) and OCO-2 Science
Team (2019).

In our retrieval algorithm, we can switch freely between
two major modes to perform the radiative transfer cal-
culations. The first one employs the non-scattering Beer–
Lambert–Bouguer law, in which we only account for extinc-
tion from gases and Rayleigh scattering in an absorption-only
atmosphere. The second mode invokes the XRTM radiative
transfer library (McGarragh, 2020), which itself allows us

to effortlessly switch between various numerical solvers, in-
cluding different multiple-scattering ones. We use both ra-
diative transfer modes as a means of understanding the ro-
bustness of our experiment. Here we want to emphasize that
the non-scattering RT model will account for extinction due
to Rayleigh scattering, as it is calculated as part of the layer-
resolved total optical depths. Using the XRTM library, how-
ever, the retrieval algorithm forward model will include the
contributions from Rayleigh scattering in addition to the ex-
tinction.

Within the forward model of the retrieval algorithm, we
are generally free to choose an arbitrary vertical layering
scheme; however for this exercise, we choose the same exact
pressure layers (and layer boundaries) as the simulator for-
ward model, 40 layers in total, in order to minimize the im-
pact of simulation–retrieval mismatch. Additionally, we can
ingest the same compound aerosol information as is used in
the simulator forward model to obtain the same aerosol pro-
files and the corresponding scattering properties.

The inverse method is based on Rodgers (2000) and is an
iterative Bayesian scheme that maximizes the a posteriori
probability density function. Given an iteration i, the state
vector for the next iteration i+ 1 is calculated as

xi+1 = xa+
(
S−1

a +KTS−1
ε K

)−1KTS−1
ε ×[

y−F(xi)+K(xi − xa)
]
,

(2)

where xa is the a priori state vector, Sa is the associated a pri-
ori covariance matrix, Sε is the diagonal instrument noise co-
variance matrix and K is the forward model Jacobian matrix
evaluated at iteration i. We mentioned earlier (Sect. 2) that
the synthetic observations do not contain instrument noise;
however, we do use the GeoCarb noise model (Somkuti et al.,
2021) for the calculation of a realistic Sε.

Our state vector contains the following elements: two
polynomial coefficients to represent the spectrally varying
Lambertian surface albedo; two polynomial coefficients to
represent the assignment between spectral sample and wave-
length (also referred to as dispersion); one scale factor for
each of the considered trace gas profiles of CH4, CO, and
H2O; a temperature offset common to all vertical levels; and
finally one value to adjust the spectral shift of the solar spec-
trum only. Values for the prior state vector xa are obtained as
follows: gas scale factors are set to 1.0, instrument dispersion
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Figure 4. Two examples of the CAMS-derived aerosol profiles used in the generation of synthetic radiances. For this figure, we aggregated all
species into their respective type and size bins, regardless of their specific value of relative humidity. The example in (a) shows a scene with
low aerosol loading with contributions mostly from sulfates (SU) and hydrophilic organic matter (OM_phil). The example in (b), however,
is dominated by all three size bins of mineral dust (DD1, DD2, DD3). Hydrophobic organic matter (OM_phob), sea salt (SS1, SS2, SS3)
and both types of black carbon (BC_phob, BC_phil) do not contribute significantly in these two examples. Note the complex shape of the
vertical distributions in (a), which would be very difficult to capture via a parametric description.

Figure 5. Illustrative example of the used retrieval window between
2.324 and 2.338 µm. Panel (a) shows both the synthetic TOA spec-
trum (“observation”) along with the fitted spectrum produced by the
retrieval algorithm (“model”), and the spectral residual is shown in
(b). Both are in units of ph s−1 m−2 sr−1 µm−1. This particular ex-
ample has a relative residual RMSE of 0.03 %.

coefficients are taken straight from the instrument model, the
solar shift is set to 0.0 µm, and the prior (and first guess) sur-
face albedo is estimated from the radiances themselves via

ρ0 =
π ·max(I )

max(L0) · cosθ0
, (3)

where I is the measured TOA radiance, L0 is the solar irradi-
ance for the same retrieval window and θ0 is the solar zenith
angle. Note that we use all points from the measurement that
fall inside the retrieval band to calculate max(I ). The prior

value for the albedo slope coefficient (ρ1) is 0.0 µm−1 for
every scene. We make the choice to set the zeroth iteration
to be equal to the prior state vector (x0 = xa). As this is a
so-called “scaling retrieval” in which the trace gas profiles
are not changed within the iterative scheme, we must pick
a profile shape to be scaled by the retrieval algorithm. We
choose to use the true shape as this is used in the simulation
forward model.

Iterations are halted as soon as one of these three crite-
ria are met: the number of allowed iterations is reached; the
change in the reduced χ2 statistic (modeled versus observed
radiance) is smaller than 1 %; or the value of dσ 2 is less than
the number of state vector elements, where

dσ 2
= (xi+1− xi)Ŝ−1(xi+1− xi), (4)

with Ŝ being the a posteriori covariance matrix defined as

Ŝ=
(

S−1
a +KTSεK

)−1
. (5)

4 Results and analysis

The simulation experiments and subsequent analyses are or-
ganized in the following manner. First, we present a base-
line scenario in which aerosols were ignored during the RT
simulations and the retrieval forward model. Already in this
baseline scenario, we see a surface-dependent XCH4 bias ap-
pearing. This is a key finding, as it establishes the fact that an
interplay between apparent surface reflectance and retrieved
XCH4 is already present in an absorption-only atmosphere as
a consequence of the retrieval forward model error. Then we
introduce aerosols into the RT simulations and keep every-
thing else exactly the same, i.e., not accounting for aerosols
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in the retrieval. This is where we observe a strong enhance-
ment of the surface bias. Finally, we add the aerosol truth to
the retrieval algorithm and observe a significant mitigation of
the enhanced surface bias.

For the first two scenarios, we use two different RT
schemes – a non-scattering one and a single-scattering model
from the dedicated XRTM code. The non-scattering RT
scheme is referred to as “non-sc” in various figures, and the
single-scattering one is labeled as “SS”. In a model atmo-
sphere without scattering, the two approaches should yield
the same result. However, due to the numerical nature of RT
codes and the whole algorithm itself, small differences are
to be expected, and we utilize the two RT models as a form
of validation. Ideally, we should observe biases and regional
patterns thereof in the same places with both non-scattering
and single-scattering models.

The experiments are laid out in a flowchart in Fig. 6 to al-
low the reader to quickly inspect the relationship between
simulator forward model setup and the corresponding re-
trieval algorithm setup.

4.1 Baseline – the clear-sky case

We first analyze the retrieval results based on simulations in
which scattering from aerosols and clouds was ignored. This
clear-sky case is considered the baseline scenario, labeled
CS1 and CS2 in the flowchart shown in Fig. 6.

Here we would like to remind the reader again that the
forward model of the retrieval algorithm and the forward
model of the simulator (which generates the synthetic mea-
surements) are different. Since we force several aspects of the
simulator and retrieval forward models to be the same, such
as vertical layering, meteorological inputs, trace gas profile
shapes and spectroscopy tables, this constitutes a best-case
scenario. However, we must emphasize that while many of
the key ingredients in the simulator and retrieval forward
models are the same, they do not produce numerically the
same TOA radiances for the same set of atmospheric and sur-
face properties. Thus, even for a clear-sky setup for both sim-
ulator and retrieval forward model, there are forward model
errors which cause retrieval errors.

Scenes from the clear-sky case are then run through the re-
trieval algorithm twice, with two different approaches for the
radiative transfer calculations: once with the non-scattering
model (non-sc) and once with the single-scattering model
(SS). To remind the reader, Rayleigh scattering is present in
the simulated radiances, as well as in the retrieval forward
model – the non-scattering RT mode, however, does not pro-
duce contributions due to scattering at all. We chose to per-
form retrievals with the two mentioned RT schemes to pro-
vide robustness to the results.

For selecting the final subset of scenes to be analyzed, we
apply very basic quality filtering criteria to remove retrievals
that did not converge within the maximally allowed number
of iterations (Nitermax = 3), have a solar zenith angle θ0 above

the threshold of 75° or have a spectral residual reduced χ2

larger than 0.1. Note that the χ2 values here are low due to
the fact that we did not add instrument noise to the synthetic
measurements; however, we still use χ2 as a measure of fit
quality.

As for bias correction, we only remove a single offset term
which is the median of the ensemble difference between re-
trieved and true XCH4. This correction brings the overall
bias, as per design, to 0.0 ppb, such that the error maps high-
light regional-scale differences.

The maps in Fig. 7 show the XCH4 errors for the two sets
of retrievals (non-scattering, single scattering). Errors, mean-
ing the difference between retrieved (and bias-corrected) and
the truth, were calculated using the retrieval averaging ker-
nels for each individual scene, as well as accounting for the
prior methane profiles according to Wunch et al. (2011).
Non-sc and SS configurations produce offsets of −6 and
≤ 2 ppb, respectively, and a small overall scatter. Errors show
a geographic pattern with error enhancements in the tropics,
and we find these errors to be statistically significant, but they
have weak linear functions of surface reflectance and solar
angles. The underlying cause for the difference between the
results of experiments CS1 and CS2 is the correct account-
ing for Rayleigh scattering in the retrieval forward model.
The non-sc configuration does not produce scattered con-
tributions to the TOA radiance; thus, it shows larger errors
overall, which can be observed by the scatter of the data in
Fig. 7 (SS: σ = 1.2 ppb vs. non-sc: σ = 2.0 ppb). We have
confirmed the impact of Rayleigh scattering by performing
a retrieval experiment CS2 with a modified setup in which
the optical depth due to Rayleigh scattering was forced to
be zero; details on that modified experiment can be found in
Appendix A.

The spatial distribution of errors shown in Fig. 7 provides
some geographical context to the biases mentioned above.
We see a contrast between areas with predominantly dark
surfaces at 2.3 µm, such as the central African and South
American tropical rainforests, and regions with much higher
surface reflectance, such as the deserts. Note, however, that
the overall magnitude of these systematic errors is small.
Noise-driven errors for the GeoCarb instrument, for exam-
ple, would be expected to be 1 order of magnitude larger.

We assume the surface-dependent errors to emerge due to
an inherent link between the retrieved XCH4 and the appar-
ent surface reflectance. This can be easily observed by ana-
lyzing the relevant entries in the Jacobian matrix of our for-
ward model. By overlaying the Jacobians for the Lambertian
surface albedo polynomial order 0 and the CH4 profile scale
factor, as we did in Fig. 8, we see that they match to some
extent in their shapes, and their similarity can be stated with
an overall correlation coefficient of R = 0.91 for an example
case with surface albedo of ≈ 0.1. A more appropriate quan-
tification of the similarity of those two state vector elements
would be the construction of a correlation via the posterior
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Figure 6. A flowchart illustrating the retrieval experiment setups. We generate two sets of synthetic measurements with the simulator forward
model: one accounting for clouds and aerosols (left path) and one where clouds and aerosols are ignored (right path, clear-sky). The first two
experiments enter both Figs. 7 and 10, labeled as CS1 and CS2: they represent the clear-sky retrievals from clear-sky simulations using two
different RT model codes on the retrieval side. In bias plots (e.g., Fig. 10), they correspond to the blue circles. The second set of retrieval
experiments, (AER1) and (AER2), follow the left path, where clouds and aerosols were present in the simulator forward model RT, however
the retrieval RT still does not include aerosols. The results from AER1 and AER2 are shown in Figs. 9, 10 and 11, and they are always shown
as orange triangles in the bias plots. Finally, the retrieval experiment denoted as AER-TR is based on the same synthetic measurements as
AER1 and AER2; however, the retrieval forward model now includes the true aerosol profiles, along with an appropriate multiple-scattering
RT solver. In the final bias plot, Fig. 12, these results are shown as green squares.

Figure 7. Maps of mean-removed retrieval errors for the clear-sky scenario in which no aerosols nor clouds were used during the forward
radiative transfer simulations. Single-scattering radiative transfer in (a), absorption-only radiative transfer in (b) – experiments CS1 and CS2,
respectively (Fig. 6). The strongest regional highlights are seen in tropical forests where the surface reflectance at 2.4 µm is low. The total
number of scenes for a given map is shown, since each set is quality-filtered separately, which can lead to a slightly different number of
retrievals plotted.

covariance matrix Ŝ: Cij = Ŝij/
√
Ŝii · Ŝjj . This quantity C

does not just represent the similarity of two entries of the Ja-
cobian matrix i and j but also accounts for the instrument
noise. Again, for this particular example displayed in Fig. 8,
the relevant entry in C is approximately 0.51. The correlation

is strong for this retrieval setup since the absorption features
of methane in this wavelength range do not show a distinct
continuum. In plain terms, if such a correlation is seen in a re-
trieval forward model, the inversion will generally produce a
weighted adjustment between the two offending state vector
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Figure 8. An illustration of the similarity between two Jacobians:
Lambertian surface albedo polynomial order 0 (blue, solid, left axis)
and CH4 scale factor (orange, dashed, right axis). Both are shown
normalized but on separate ordinate axes to show the strong simi-
larity of their shapes. The Pearson correlation coefficient of these
two Jacobians is R = 0.91.

elements in order to minimize the cost function and minimize
the mismatch between modeled and measured radiances. It is
important to note that the strength of a correlation is not in-
dicative of the magnitude of the effect on the retrieved quan-
tities. So despite observing such a high correlation between
retrieved surface reflectance and CH4 scale factor, the overall
impact is shown to be only a few parts per billion or a few
tenths of a percent in relative terms.

4.2 Inclusion of aerosols in the simulations

Building on the results presented in Sect. 4.1, we now in-
troduce a single change. In the forward RT simulations,
which produce the synthetic measured radiances, we switch
on aerosols and clouds but leave the retrieval setup the same.
In the flowchart (Fig. 6), these experiments are labeled as
AER1 and AER2. The retrieval algorithms are ignorant to
the fact that the synthetic measurements now reflect a more
realistic atmosphere in which multiple scattering via tropo-
spheric aerosols has taken place. To remind readers, while
the full produced dataset includes scenes with thick water
and ice clouds, we omit those scenes for this study.

We repeat the procedure from above and subtract the over-
all median error before producing the maps in Fig. 9. When
compared to Fig. 7 (note the differently scaled color bars),
we observe a much stronger contrast between central tropi-
cal Africa and the surrounding regions with brighter surfaces,
and we similarly see such a contrast between the scenes over
the Tibetan Plateau and surrounding areas. More importantly,
the magnitude of the bias increased by a factor of roughly 4.

The change in the retrieved XCH4 is purely driven by in-
troducing aerosols into the forward model. We can represent
this surface reflectance bias by grouping scenes into discrete
bins of retrieved (or apparent) surface albedo and then calcu-

lating, for each scene, the ratio of true to retrieved XCH4.
This is shown in Fig. 10. For darker surfaces with appar-
ent albedo less than 0.2, there is a clear low bias, whereas
a high bias is observed for brighter surfaces with apparent
albedo larger than 0.5. This observed bias is quantitatively
comparable to that seen in TROPOMI-derived XCH4, as first
introduced in Lorente et al. (2021) and further elaborated in
Lorente et al. (2023).

We make the following important observations. The sur-
face reflectance bias already appears in clear-sky simulations
and shows the underestimation of XCH4 for dark surfaces in
a very similar qualitative manner. Once the apparent surface
albedo is larger than roughly 0.3, however, there is no signif-
icant bias seen for clear-sky scenes. The retrievals from the
aerosol-laden scenes, however, show further dependence on
the apparent surface albedo. Such a bias would imprint sur-
face features on, for example, desert scenes like those shown
in Fig. 1.

A phenomenological explanation for the shape of the bias
curves in Fig. 10 has been stated in Aben et al. (2007).
When aerosols are present, some fraction of the incident
light is scattered into the field of view of the instrument.
For scenes with low surface reflectivity, there is a relatively
larger amount of light that has a shorter total light path from
contributions which are scattered towards the instrument be-
fore reaching the surface. A retrieval algorithm that does
not account for aerosols can thus only reduce the methane
abundance to match the observed radiances. In Fig. 10, an
underestimation of XCH4 is equal to a ratio of true to re-
trieved XCH4 larger than 1. On the other extreme, for very
bright surfaces, the fraction of light that travels the full path
through the atmosphere twice is comparatively larger. In ad-
dition, contributions from multiple scattering due to tropo-
spheric aerosols further increase the effective light path of
photons. Without accounting for aerosols, the retrieval algo-
rithm can only increase amount of CH4 in the atmosphere
to match the observed absorption lines, causing an overes-
timation. This overestimation shows up as a ratio of true to
retrieved XCH4 smaller than 1. We further note that this ex-
planation should hold true for an aerosol-free atmosphere
in which Rayleigh scattering occurs. Despite the fact that
the total-column optical depth due to Rayleigh scattering at
2.3 µm amounts to only ≈ 10−4 (Tomasi et al., 2005), the
impact is significant and can be observed in these bias curves
(see also Appendix A).

We note that the surface reflectance bias discussed in
Lorente et al. (2021, 2023) is larger in magnitude but shows
the same general shape as our result in qualitative terms. The
observed surface reflectance bias as shown in Fig. 10 is the
result of a global aggregate. When the same figure is pro-
duced for various subsets, separately, however, we see that
the strength of the bias changes as a result of the amount of
aerosols within that subset. In Fig. 11, we group the global
set of scenes into two subsets of different total aerosol ex-
tinction optical depths τaer. Through this figure, we can ob-
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Figure 9. Error maps, similar to Fig. 7, but for model atmospheres in which aerosols and clouds are present. The regional contrasts between
densely vegetated areas with low surface reflectance (tropical rainforests) and their surrounding areas (e.g. the Sahara desert) appear brighter
in the 2.3 µm wavelength range. These are the results of experiments AER1 and AER2 when comparing to the flowchart in Fig. 6.

Figure 10. Curves that show surface reflectance bias: the ratio of true and retrieved XCH4 as a function of the apparent surface albedo. For
this figure, we first assign each retrieval scene to a bin according to the retrieved surface albedo. The circles (clear-sky) and triangles (with
aerosols) then represent the median of all values within the bin, and the error bars are the robust standard deviation of the bin, calculated
as the inter-quartile range divided by 1.349. This statistic is used for all other error bars in this paper. Note that the clear-sky observations
(circles, y axis in a) and the ones with aerosols (triangles, y axis in b) are plotted on separate ordinates to make a qualitative comparison of
the shape easier. The scale of the bias in the “cloudy & aerosols” scenario is roughly an order of magnitude larger. Blue circles represent the
results of experiments CS1 and CS2; orange triangles represent the results of AER1 and AER2 when comparing to the flowchart in Fig. 6.

serve that the underestimation of XCH4 for darker surfaces
becomes larger with increasing aerosol loadings. Notice the
kink near an albedo value of ≈ 0.4 in Fig. 10 that is seen for
the simulation set that includes clouds and aerosols (orange,
triangles), which is absent in any of the curves in Fig. 11.
Since the total aerosol extinction per scene is not equally dis-
tributed amongst the bins of apparent surface reflectance, we
suspect the observed kink in the bias curve to be a result of
a sampling bias which blends together the various curves of
different τaer regimes. This is investigated in Fig. 11 in which
we produce bias curves for different bins of aerosol loadings.

We do not find any significant impact of the aerosol single
scattering albedo on the bias, suggesting that the total aerosol
extinction is the main driver in the case of single-band re-
trievals of this type.

4.3 Mitigation by accounting for true aerosol profiles
in the retrieval

In Sect. 4.1 and 4.2, we have observed that the surface re-
flectance bias is already present in clear-sky conditions but

is strongly enhanced when aerosols are introduced in the RT
simulations that produce the synthetic measurements. Con-
sistent with that notion is the fact the dependency of the error
grows with larger aerosol abundances, as shown in Fig. 11.

An obvious way to mitigate the surface reflectance bias is
to inform the retrieval algorithm about the aerosol scatter-
ing profile that is present in the scene. We implement this
straightforwardly by adding the layer-resolved aerosol ex-
tinction and scattering optical depths to the (forward) model
used during the retrieval, appropriately adding the phase
function expansion coefficients with their correct relative
weights to obtain a match of the total optical properties used
by the simulator (see Sect. 2). Then, we also switch the RT
model in the retrieval algorithm to use multiple scattering
via a discrete ordinate solver with 16 streams (8 per hemi-
sphere). This is necessary since using a single-scattering RT
model, while also incorporating the true aerosol profiles in
the retrieval forward model, does not result in a mitigation
of the observed bias. In the flowchart (Fig. 6), this setup is
labeled as experiment AER-TR.

Atmos. Meas. Tech., 18, 4647–4663, 2025 https://doi.org/10.5194/amt-18-4647-2025



P. Somkuti et al.: XCH4 surface biases enhanced by aerosols 4657

Figure 11. Bias curves, similar to Fig. 10, but without clear-sky
simulations. The results of experiment AER1 are shown. Retrieval
results are split into subsets of different regimes of total aerosol ex-
tinction optical depth τaer (at a reference wavelength of 755 nm).
This figure shows that the underestimation of XCH4 for dark sur-
faces with albedo less than 0.1 is mainly driven by scenes with
larger aerosol loadings.

Figure 12. Surface reflectance bias similar to Fig. 10. In this figure,
however, the third curve (squares, green) is derived from retrievals
for which the true aerosol profiles were ingested as part of the re-
trieval algorithm forward model. This is experiment AER-TR in the
flowchart (Fig. 6). We observe that, when comparing to the unmit-
igated runs (triangles, orange) of experiment AER1 no significant
bias remains. This suggests that better constraining aerosols is key
to mitigating these types of retrieval biases.

The result is shown in Fig. 12, in which we overlay the
described approach with an earlier result that used a single-
scattering RT model without any knowledge of the aerosol
profiles. For nadir-viewing geometry, the bias curve exhibits
much smaller dependency on the surface albedo when com-
pared to the original approach. This result shows that the mit-
igation strategy is successful in reducing the surface bias and
almost brings it to the same level as observed for the clear-
sky scenario.

5 Discussion & Conclusions

In this study, we analyzed the impact of tropospheric aerosols
on biases of XCH4 obtained from single-band retrievals from
the 2.3 µm absorption window. We were able to demon-
strate that a weak surface-dependent bias is present already
in clear-sky conditions; however, aerosols can amplify those
retrieval biases, and the effect grows with aerosol abundance
as shown in Fig. 10.

The significance of our result is related to actual findings
from the TROPOMI instrument, which have been discussed
by Lorente et al. (2021, 2023). Surface reflectance biases
in retrieved XCH4 are a troublesome feature, since surface
patterns on the ground will manifest as gradients of total-
column methane which can lead to wrong estimates of, for
example, emission rates or the emergence of artificial fea-
tures (Froitzheim et al., 2021; Schneising et al., 2023). In the
past, studies have required an ad hoc correction to remove the
surface reflectance bias in the XCH4 fields (Liu et al., 2021)
or remove scenes entirely which show a large correlation be-
tween XCH4 and surface albedo (Sadavarte et al., 2021).

While the bias that we observe in our study is qualitatively
similar to that seen in Lorente et al. (2021, 2023), we want
to highlight that there are several differences in our instru-
ment model and that of the TROPOMI instrument, as well
as some key differences in our retrieval approach. First, the
spectral resolution of the TROPOMI spectrometer for the
SWIR band is ≈ 0.25 nm, whereas our instrument model,
derived for the GeoCarb instrument, is closer to ≈ 0.12 nm.
Further, we utilize a single-band retrieval, whereas Lorente
et al. (2021, 2023) co-retrieve the oxygen A-band at 0.76 µm,
which, in general, should allow for better constraining of
the retrieved aerosol abundance. Lastly, in our simulations
(Sect. 2), we do not introduce any instrument or calibration
artifacts such as, but not limited to, remaining stray light, im-
perfect radiometric calibration or imperfect knowledge of de-
tector (non)linearity. This, in turn, also supports the argument
that the biases observed in TROPOMI data are not caused by
any instrument-related issues or calibration deficiencies but
are intrinsic to the retrieval approach from the 2.3 µm band.

In Lorente et al. (2023), the bias takes on a slightly differ-
ent shape when the spectral dependence of the retrieved Lam-
bertian surface albedo is changed from a second- to a third-
order polynomial. This is not a feature that we can investigate
with our simulations since the surface model in our simula-
tions, which produce the synthetic observations, is spectrally
flat. This is solely a constraint of the underlying observation-
based dataset (Schaaf and Wang, 2015), which does not pro-
vide measurements beyond ≈ 2.15 µm. Therefore, we also
cannot investigate the impact of adjusting the order of the
retrieved Lambertian surface albedo polynomial.
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Figure 13. A re-ordered view of the results from Fig. 10. Each
curve represents a subset of scenes whose retrieved, apparent sur-
face albedo (ρ) falls into some bin. This way of ordering the re-
sults mimics Fig. 3 from Aben et al. (2007) and shows a qualita-
tive match. The order of the legend items is the same as they ap-
pear in the figure: the lowest curve (pink, solid) contains scenes
with ρ < 0.1, the curve above (brown, dashed) contains scenes with
0.1< ρ < 0.2, and so forth. Further, the quantity plotted is not the
ratio of true over retrieved XCH4 but the difference of retrieved mi-
nus true XCH4.

These types of aerosol-driven biases in retrieved trace gas
columns have been studied in the past and are not exclusive
to TROPOMI. We return to the notable studies of high rel-
evance to ours by Houweling et al. (2005) and Aben et al.
(2007), which both explored the topic in the context of the
SCIAMACHY instrument. In Houweling et al. (2005), they
find significant XCO2 biases in the Sahara region due to high
aerosol loadings, which Aben et al. (2007) further elabo-
rated on via a sensitivity study with retrievals from simu-
lated observations. By re-ordering our results in a different
manner in Fig. 13, we can reproduce their findings quali-
tatively, specifically Fig. 4 in Houweling et al. (2005) and
Fig. 3 in Aben et al. (2007). One can consider our results to
be an extension of their studies to XCH4 in the 2.3 µm ab-
sorption band (rather than XCO2 from the 1.6 µm band). The
stark difference in magnitude of the effect is likely due to
the instrument characteristics. For example, SCIAMACHY’s
spectral resolution (≈ 1.35 nm) is over 5 times lower than
that of TROPOMI (≈ 0.25 nm). The deciding common as-
pects of our study and those of Aben et al. (2007) are the
following: (1) both studies use a single spectral window to
retrieve a trace gas, (2) the absorption features within the
chosen retrieval window are such that there is no clear con-
tinuum to sufficiently decouple surface reflectance from gas
concentration and (3) the studied atmospheric states contain
weakly scattering aerosols up to total optical depths of ≈ 1.
Our study does not, however, include thin high-altitude cirrus
clouds.

In Sect. 4.3, we demonstrate the impact of perfect knowl-
edge of the tropospheric aerosol profiles. Once the retrieval
algorithm is aided by inserting the true aerosol distributions
into each scene, most of the surface reflectance bias is miti-

gated, as shown in Fig. 12, where we obtain results that are
similar to those for the clear-sky scenario. This result shows
the importance of better constraining the overall aerosol in-
formation for use in retrieval algorithms, as has been pre-
viously stated in different contexts (Bell et al., 2023; Rusli
et al., 2021). Aerosol-driven biases are of such concern, that
for the upcoming Copernicus CO2M mission, developed by
the European Space Agency to monitor anthropogenic car-
bon dioxide emissions, a dedicated aerosol instrument will
be part of the payload in order to improve the quality of the
XCO2 retrievals (Sierk et al., 2021). While our study does not
allow for any conclusions to be drawn for the CO2M mission
regarding possible surface biases and their enhancement due
to aerosols, the specific instrument could be investigated us-
ing our observing system simulation experiment setup.

We have shown that incorporating the true aerosol infor-
mation mostly removes the surface reflectance bias for nadir-
viewing observations; however, implementing this approach
in a real science-data-processing scenario might not be fea-
sible. It needs to be shown yet if globally covering aerosol
forecasts, e.g. CAMS (Copernicus, 2023) or GEOS-5 (Molod
et al., 2015), are close enough to the truth to be treated as
such in the retrieval forward model for the purpose of mit-
igating the discussed bias. In general, limitations on data
processing resources might ultimately necessitate the usage
of faster forward models that could introduce biases similar
as shown here. We have observed that the bias seems to be
driven by the total aerosol extinction optical depths in the
scene rather than the vertical distribution or how absorbing
the aerosols are. A future study could examine whether a
simpler aerosol profile than those shown in Fig. 4, while con-
serving the total aerosol extinction optical depth, would be
just as effective in mitigating the surface reflectance bias.

Another important aspect of our study is the chosen ab-
sorption window. We investigated the 2.3 µm window as both
the TROPOMI and the GeoCarb instruments are equipped
with corresponding spectrometers.

One can expect that the same behavior arises with re-
trievals from the 1.65 µm window since the fundamental
mechanism that drives the bias is the same, despite the spec-
troscopic features having different characteristics. The often-
used “proxy method” (Frankenberg et al., 2005) provides a
solution for some spectral regions, in which a ratio to some
reference trace gas is retrieved, thus canceling out any biases
from unaccounted light path modification due to aerosols.
This is the retrieval strategy of choice for the MethaneSAT
(Chan Miller et al., 2023) mission. In fact, Chan Miller et al.
(2023) present first results from the airborne MethaneAir in-
strument and do not observe any strong surface-related bi-
ases.

For point-source-related applications, such as emission
rate quantification, our results remain transferable only in a
limited sense. In a clear-sky environment, the surface vari-
ation will already imprint onto the retrieved XCH4 field,
which can impact the estimation of emission rates. This has
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been studied to some extent by Jongaramrungruang et al.
(2021) for various instrument configurations, focused on
spectral windows much wider than that used in our study,
and more realistic surfaces. They find, in general, lower pre-
cision errors when retrieving from the 2.3 µm band compared
to the 1.6 µm one; however, they do not account for scattering
from either Rayleigh scattering or aerosols. In scenarios with
substantial background aerosols, the surface imprint onto the
retrieved XCH4 would show a higher magnitude (compared
to the same scene on a day without aerosols). A more diffi-
cult scenario would be the co-emission of aerosols from the
methane point source, as an empirical correction using re-
trievals outside of the main plume might not fully capture
the bias inside the plume.

In our analysis we found scenes measured in sunglint-
following viewing geometry to behave distinctly different
from nadir-viewing ones. The surface bias shows a qualita-
tively different shape and the mitigation effort through im-
plementing aerosol truth information did not work as well as
with nadir-viewing scenes. Efforts to understand the cause of
this discrepancy did not yield any satisfying answers. Given
the small absolute magnitude of the effect; however, we hy-
pothesize that some inconsistency in the setup of the retrieval
RT and the simulation RT codes is the main cause.

Finally, we want to again highlight the results of the clear-
sky baseline scenario presented in Sect. 4.1. Even in al-
most ideal circumstances where meteorology, spectroscopy
and trace gas profiles are known perfectly, an optimal-
estimation based retrieval exhibits a small but significant
surface-dependent XCH4 bias. We suspect that this is an in-
herent consequence of the 2.3 µm band, which does not have
a clear continuum portion via which surface reflectance and
methane abundance can be sufficiently disentangled. Thus,
a mission designed for the remote sensing of methane from
the 2.3 µm absorption band will likely require a surface bias
correction procedure as a core part of its operations concept.
As long as the surface bias is sufficiently characterized, an
appropriate correction can effectively mitigate the impact on
the retrieved XCH4 field.

Appendix A: The impact of Rayleigh scattering on the
clear-sky experiments

In this appendix section, we are clarifying the impact of
Rayleigh scattering on the clear-sky experiments, as men-
tioned in Sect. 4.1.

Observing again Fig. 10, we notice that the magnitude of
the bias seen in the two experiments (CS1 and CS2) (see
Fig. 6 for the meaning of those labels) is different. The
only change between experiments CS1 and CS2 is the used
RT scheme in the retrieval: CS1 uses the Beer–Lambert–
Bouguer law for an absorption-only atmosphere, CS2 uses
the single-scattering solver through the XRTM library (Mc-
Garragh, 2020). In both experiments, the retrieval forward

Figure A1. This figure (similar to Fig. 10) shows the impact of
Rayleigh scattering on the surface bias. The clear-sky experiments
CS1 and CS2 are shown in red (circle markers) and purple (trian-
gle markers). The modified experiment is shown in brown (square
markers), which almost fully overlap the round markers of experi-
ment CS1, therefore showing the impact of Rayleigh scattering on
the surface bias. Note the difference in colors and markers when
comparing to Fig. 10.

model computes all necessary contributions from Rayleigh
scattering and produces the same total optical parameters:
optical depth, single-scattering albedo, and the appropriate
phase function. In experiment CS1, however, only the opti-
cal depth is passed on to the RT routine which computes the
TOA radiances. Rayleigh scattering contributions are always
present in the synthetic observations (the simulation forward
model).

It can be shown that the difference in magnitude of the bias
can be fully attributed to Rayleigh scattering. We perform a
control experiment, which is a modified run of experiment
CS2. We then manually set the optical depth due to Rayleigh
scattering to zero everywhere, which automatically leads to
the single-scattering albedos being zero everywhere as well.
Therefore, we have a retrieval forward model that is does not
account for Rayleigh scattering at all.

After performing the same actions on the resulting dataset
as before (basic quality screening and bias correction), we
compare the results of this modified run with the results of
experiments CS1 and CS2. In Fig. A1, we can now observe
that the modified run is near-identical to experiment CS1. We
note that this is a surprising result, as Rayleigh scattering of-
ten is ignored in studies when wavelengths > 1 µm are con-
cerned (e.g., Jongaramrungruang et al., 2021). Our control
experiment shows that the inclusion of Rayleigh scattering
can make a significant difference and warrants consideration.

Code and data availability. The results of the study, i.e., the re-
sults of retrievals and the truth values, as well as a Python note-
book that produces the figures used in this paper, can be down-
loaded from Zenodo at (https://doi.org/10.5281/zenodo.13285730,
Somkuti, 2024).
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E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J.,
Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E. A., Harris, C. R., Archibald, A. M., Ribeiro, Antônio H., Pe-
dregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors : SciPy
1.0: fundamental algorithms for scientific computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-
0686-2, 2020.

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F.,
Smith, W. H. F., and Tian, D.: The Generic Mapping Tools
Version 6, Geochem. Geophys. Geosyst., 20, 5556–5564,
https://doi.org/10.1029/2019GC008515, 2019.

Wu, L., Hasekamp, O., Hu, H., Landgraf, J., Butz, A., aan de
Brugh, J., Aben, I., Pollard, D. F., Griffith, D. W. T., Feist, D.
G., Koshelev, D., Hase, F., Toon, G. C., Ohyama, H., Morino,
I., Notholt, J., Shiomi, K., Iraci, L., Schneider, M., de Maz-
ière, M., Sussmann, R., Kivi, R., Warneke, T., Goo, T.-Y.,
and Té, Y.: Carbon dioxide retrieval from OCO-2 satellite ob-
servations using the RemoTeC algorithm and validation with
TCCON measurements, Atmos. Meas. Tech., 11, 3111–3130,
https://doi.org/10.5194/amt-11-3111-2018, 2018.

Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher,
B., Osterman, G. B., Frankenberg, C., Mandrake, L., O’Dell,
C., Ahonen, P., Biraud, S. C., Castano, R., Cressie, N., Crisp,
D., Deutscher, N. M., Eldering, A., Fisher, M. L., Griffith, D.
W. T., Gunson, M., Heikkinen, P., Keppel-Aleks, G., Kyrö,
E., Lindenmaier, R., Macatangay, R., Mendonca, J., Messer-
schmidt, J., Miller, C. E., Morino, I., Notholt, J., Oyafuso, F.
A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, R.
J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thomp-
son, D. R., Uchino, O., Warneke, T., and Wofsy, S. C.: A
method for evaluating bias in global measurements of CO2 to-
tal columns from space, Atmos. Chem. Phys., 11, 12317–12337,
https://doi.org/10.5194/acp-11-12317-2011, 2011.

Young, A. H., Knapp, K. R., Inamdar, A., Hankins, W., and Rossow,
W. B.: The International Satellite Cloud Climatology Project H-
Series climate data record product, Earth Syst. Sci. Data, 10,
583–593, https://doi.org/10.5194/essd-10-583-2018, 2018.

https://doi.org/10.5194/amt-18-4647-2025 Atmos. Meas. Tech., 18, 4647–4663, 2025

https://doi.org/10.5281/zenodo.7772533
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1029/2019GC008515
https://doi.org/10.5194/amt-11-3111-2018
https://doi.org/10.5194/acp-11-12317-2011
https://doi.org/10.5194/essd-10-583-2018

	Abstract
	Introduction
	Simulation setup
	Sampling
	Clouds
	Aerosols
	Data source summary

	Retrieval algorithm setup
	Results and analysis
	Baseline – the clear-sky case
	Inclusion of aerosols in the simulations
	Mitigation by accounting for true aerosol profiles in the retrieval

	Discussion & Conclusions
	Appendix A: The impact of Rayleigh scattering on the clear-sky experiments
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

