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Abstract. Two retrieval methods for the determination of
Arctic surface skin temperature and surface type based on ra-
diance measurements from the thermal infrared (TIR) imager
VELOX (Video airbornE Longwave Observations within siX
channels) were developed. VELOX captured TIR radiances
in terms of brightness temperatures for wavelengths from
7.7 to 12 µm in six spectral channels. The imager was de-
ployed on the High Altitude and LOng Range research air-
craft (HALO) during the HALO–(AC)3 aircraft field cam-
paign conducted in the framework of the Arctic Amplifica-
tion: Climate Relevant Atmospheric and SurfaCe Processes
and Feedback Mechanisms (AC)3 research programme. The
measurements were taken over the Fram Strait and the
central Arctic in March and April 2022. Radiative trans-
fer simulations assuming cloud-free atmospheric conditions
were performed showing that the influence of water vapour
on the measured brightness temperature can be neglected.
Therefore it was possible to apply a single-channel retrieval
technique to obtain the surface skin temperature from the
VELOX data. The retrieval results were compared with data
from the MODerate-resolution Imaging Spectroradiometer
(MODIS) showing an agreement within 2.0 K. Secondly, a
pixel-by-pixel surface classification retrieval was developed
using a random forest algorithm. It classifies surfaces into
types of open water, sea-ice–water mixture, thin sea ice, and
snow-covered sea ice. The resulting sea-ice concentrations
were compared with satellite data, yielding a mean abso-
lute difference (MAD) of 5 %. In addition, the classified pix-
els were aggregated into segments of the same surface type,
providing different segment size distributions for all surface
types. When grouped by the distance to the sea-ice edge, the

segment size distribution showed a shift to fewer but larger
floes in the direction of the pack ice.

1 Introduction

Arctic amplification comprises Arctic-specific processes and
feedback mechanisms that cause a number of obvious
changes of the Arctic climate system, such as accelerated
warming of the Arctic region as compared to the rest of the
globe (Wendisch et al., 2023a). Another signature of Arc-
tic amplification involves the transition to fewer, thinner, and
more dynamic sea ice within the last decades (Kwok, 2018;
Meier and Stroeve, 2022; Budikova, 2009; Notz and Com-
munity, 2020). Therefore, observations of the current state
and the changes of the Arctic sea ice are critical. Further-
more, the Arctic sea ice serves as a thermal insulator, regu-
lating heat and moisture exchange between the ocean and at-
mosphere (Maykut and Untersteiner, 1971; Qu et al., 2019).
To quantify these exchange processes, measurements of sea-
ice surface skin temperature (IST) and open-ocean sea sur-
face temperature (SST) are crucial. In situ measurements
from buoys or ship-borne instruments are sparse in the Arc-
tic due to harsh conditions and logistical challenges in this
area (Smith et al., 2019). As a consequence, remote sens-
ing techniques are used to determine IST and SST (Hall
et al., 2004; Li et al., 2022; Nielsen-Englyst et al., 2023).
To retrieve these properties, established approaches use in-
formation supplied by observations in the wavelength range
of the atmospheric window (7–14 µm), where atmospheric
absorption can mostly be neglected (McMillin and Crosby,
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1984; Liu et al., 2006). Specifically, wavelength bands cen-
tred around 11 and 12 µm are commonly used to retrieve the
temperature of prevailing surface features (Hall et al., 2004).
However, in the Arctic, these surface features partly repre-
sent small-scale phenomena, such as leads, which are narrow
openings in sea ice with spatial extents ranging from metres
to kilometres. Leads may account for a significant amount of
net heat energy fluxes in the Arctic (Qu et al., 2019; Gryschka
et al., 2023). Additionally, melt ponds, which form on sea
ice due to melting processes, reduce the surface albedo by
up to 45 % (Tao et al., 2024), thereby affecting the solar at-
mospheric radiative energy budget significantly close to the
ground (Anhaus et al., 2021; Niehaus et al., 2023). Com-
mon satellite retrievals often lack the horizontal resolution
needed to discriminate the majority of narrow leads and small
melt ponds. For example, the horizontal resolution of the
MODerate resolution Imaging Spectroradiometer (Willmes
and Heinemann, 2015, MODIS) restricts its observations to
features larger than 500 m (Hall et al., 2004). The heteroge-
neous spatial distribution of typical Arctic surface types, e.g.
open water, thin sea ice, snow-covered sea ice, melt ponds,
and transitional types plays an important role in the determi-
nation of the Arctic Radiative Energy Budget (REB) (Di Bia-
gio et al., 2021; Anhaus et al., 2021; Wendisch et al., 2023b).

To quantify spatial heterogeneity, surface classification al-
gorithms have been developed, using empirically determined
thresholds (Massom and Comiso, 1994; Jäkel et al., 2019b;
Thielke et al., 2023), including supervised (Wright and Po-
lashenski, 2018) and unsupervised statistical learning ap-
proaches (Paul and Huntemann, 2021). Massom and Comiso
(1994) used measurements at wavelengths in the thermal in-
frared (TIR) from the Advanced Very High Resolution Ra-
diometer (Cracknell, 1997, AVHRR) to classify the surface
into open water, new ice, young ice, and thick ice with a snow
cover with a resolution of 1.1 km at nadir. The scene classifi-
cation by Paul and Huntemann (2021) used MODIS TIR data
with wavelengths similar to Massom and Comiso (1994), but
the classification into open water, thin sea ice, thick sea ice,
and clouds was performed by a deep neural network instead
of thresholds based on a histogram. As both approaches used
TIR data, they can also be applied at polar night. In con-
trast, Jäkel et al. (2019b), Thielke et al. (2023), and Wright
and Polashenski (2018) relied on high-spatial-resolution air-
borne data rather than satellite imagery. While Thielke et al.
(2023) used a thermal imager mounted to a helicopter during
polar night, both Wright and Polashenski (2018) and Jäkel
et al. (2019b) derived surface type classifications with air-
borne based measurements at visible wavelengths to distin-
guish open water, melt ponds, and sea ice. Thielke et al.
(2023) retrieved IST to distinguish sea ice and open water
with a resolution of 1 m and Wright and Polashenski (2018)
used imagery on the decimetre scale. In summary, results of
satellite retrievals offer wide scene and consistent time cover-
age but provide data with limited horizontal resolution, while

airborne data offer images of high horizontal resolution but
with limited spatial and temporal coverage.

Therefore, we have developed a skin temperature retrieval
algorithm applied to the TIR imager VELOX (Video air-
bornE Longwave Observations within siX channels; Schäfer
et al., 2022) and combined with a surface type classifica-
tion using supervised machine learning techniques. A ran-
dom forest algorithm (Breiman, 2001; Belgiu and Drăguţ,
2016; Wright and Polashenski, 2018) was used to classify the
observed surface types pixel-by-pixel into four categories:
open water (OW), ice–water mix (IWM), thin ice (TI), and
snow-covered ice (SC). To sharpen the interpretation of spa-
tial properties of the surface types, a segmentation was ap-
plied unifying neighbouring pixels of the same surface type
into segments. The article is structured as follows: the mea-
surements from the HALO–(AC)3 campaign and satellite
data used in this study are introduced in Sect. 2. The single-
channel surface skin temperature retrieval method and the
random forest algorithm used to classify surface types are
described in Sect. 3. The data are used to investigate the spa-
tial characteristics of the classified surface types in Sect. 4.

2 Measurements and instrumentation

2.1 Airborne campaign

The HALO–(AC)3 aircraft campaign was conducted from
7 March to 12 April 2022 to investigate the evolution of
air mass transformation processes during warm-air intru-
sions and cold-air outbreaks in the Arctic (Wendisch et al.,
2024). In total, 59 flights with multiple research aircraft
were realized, among them 17 flights with research aircraft
HALO, which was based in Kiruna, Sweden. In Fig. 1, the
locations of measurement are depicted, together with the
campaign-averaged sea-ice concentration (SIC). In addition
to all HALO tracks that were flown during the campaign
(limited to the map extent; for a full overview see Wendisch
et al., 2024).

Due to HALO’s range of up to 9000 km, the measure-
ments capture Arctic surface and atmospheric parameters on
a regional scale while ensuring high spatial resolution when
compared to satellite sensors like MODIS, AVHRR, or the
Sentinel-3 Sea and Land Surface Temperature Radiometer
(SLSTR; Donlon et al., 2012) The variability of different
Arctic surface types (OW, IWM, TI, and SC) is highest in
the region between the ice-free open ocean and the pack ice.
Here, we focus on small-scale variability of the surface skin
temperature resulting from the inhomogeneous distribution
of Arctic surface types. Therefore, the following analysis
will be restricted to the marginal sea-ice zone (MIZ), which
is suitable for such investigations. The MIZ is defined as
the region where the campaign averaged sea-ice concentra-
tion (SIC) average was between 10 % and 90 %. In addition,
we include data where the SIC exceeded 90 % for less than
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Figure 1. Overview of the data applied in this study, with the lo-
cation of the data points in orange and all flown HALO tracks in
light red. The average SIC during the campaign is shown in blue
contours, with a grey solid and dashed line indicating the 10 % and
90 % SIC contour, respectively. The data were provided by Spreen
et al. (2008). Pink stars indicate the location of the training data
used for the supervised classification.

Table 1. Spectral wavelength range and thermal noise uncertainty
in terms of the net equivalent temperature difference (NETD) of
VELOX (Video airbornE Longwave Observations within siX chan-
nels) adapted from Schäfer et al. (2022).

Channel Wavelength range (µm) Symbol NETD (K)

1 7.7–12.0 TB,1 0.048
2 8.7± 0.6 TB,2 0.347
3 10.7± 0.4 TB,3 0.605
4 7.7–12.0 TB,4 0.048
5 11.7± 0.8 TB,5 0.473
6 12.0± 0.5 TB,6 0.442

10 min. A set of remote sensing instruments was deployed
on HALO (Ehrlich et al., 2025), of which only those rele-
vant to the analysis are briefly introduced here. To capture
two-dimensional (2D) fields of TIR radiances, the VELOX
(Video airbornE Longwave Observations within siX chan-
nels) TIR imager was operated in a nadir-viewing configura-
tion. VELOX covers a spectral range of 7.7 to 12 µm, provid-
ing radiance measurements, which are converted to bright-
ness temperatures (Schäfer et al., 2022). At a typical flight
altitude of 10 km, the imager achieves a horizontal resolution
of 10 m by 10 m per pixel, corresponding to a field of view
(FOV) spanning an area of 5 km by 6 km. VELOX acquires
images with a temporal resolution of 100 Hz.

The instrument is operated with six spectral filters re-
sulting in six channels, of which two are redundant broad-
band channels (channel 1 and 4). The remaining channels
are narrow-band, each centred on specific wavelengths. The
uncertainty in the measurements is characterized by the net
equivalent temperature difference (NETD) for each channel.

The broadband channels have a NETD of 0.048 K, while the
narrow-band channels show varying NETD values shown in
Table 1. For HALO–(AC)3, the corrected brightness temper-
ature data, resampled to 1 s temporal resolution, were pro-
vided by Schäfer et al. (2023). To retrieve cloud cover, the
HALO Microwave Package (Mech et al., 2014, HAMP) and
the water vapour differential absorption lidar WALES (Wirth
et al., 2009) were installed on HALO. In addition, 330 drop-
sondes (George et al., 2024) were released during the cam-
paign. We have restricted our analysis to cloud-free scenes in
the MIZ. For this purpose, a cloud mask based on campaign-
specific radar reflectivity and lidar backscatter coefficient
thresholds was applied (Konow et al., 2019). To ensure the
data quality, each scene was visually examined to confirm
the absence of clouds.

2.2 Satellite data

Independent measurements of surface skin temperature were
provided by MODIS sea-ice surface temperature (IST; Hall
and Riggs, 2021) and sea surface temperature (SST; NASA,
2024). Both datasets were based on a split-window re-
trieval algorithm, which determined surface skin tempera-
ture from the measured brightness temperatures. For the re-
spective surface types, MODIS channels 1 (0.645 µm), 2
(0.865 µm), 4 (0.555 µm), 6 (1.64 µm), 31 (11 µm), and 32
(12 µm) were used. The IST dataset were provided as swaths
with a horizontal resolution of 1 km by 1 km, while the SST
dataset is gridded with a horizontal resolution of 4 km by
4 km. Daily fields of SIC were provided by the assimilated
MODIS/AMSR-2 SIC product, derived from a synthesis
from MODIS and AMSR-2 (Ludwig et al., 2019). Depend-
ing on the combination of MODIS and AMSR-2, the fields
of SIC have a 5 km horizontal resolution for all conditions
and 1 km for cloud-free scenes. Satellite images in terms of
spectral radiance with high horizontal resolution were ob-
tained from the Sentinel-2 multispectral imager (MSI, here-
after Sentinel-2) data. To characterize the surface reflectivity,
the red (0.664 µm), green (0.559 µm), and blue (0.492 µm)
(RGB) channels were sufficient, which have a horizontal res-
olution of 10 m by 10 m. For the high latitudes reached by
HALO-(AC)3 observations, the revisit time of Sentinel-2 is
about 1 d, which enabled daily observations and allowed for
collocation of the satellite observations with VELOX images
(Spoto et al., 2012). The Sentinel-2 data were accessed via
the Google Earth Engine (GEE; Gorelick et al., 2017).

3 Retrieval methods

3.1 Surface skin temperature

VELOX detects spectral radiances in the TIR wavelength
range that are converted to TIR brightness temperatures, TB,
characterizing the combined emission by atmospheric com-
ponents and the surface. Actually, a significant contribution
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Figure 2. Empirically determined total uncertainty of the surface
skin temperature retrieval δTS as a function of VELOX-measured
brightness temperature TB,5. In dark blue, the total uncertainty was
calculated for the SCA, in light blue for the SW.

results from emission by atmospheric gases, although the
spectral bands are located in the atmospheric window re-
gion. This atmospheric contribution has to be removed from
the signal to derive the surface temperature, also called sur-
face skin temperature. To correct for the atmospheric emis-
sion between the aeroplane and the surface, a split-window
method (SW) is commonly applied (McMillin and Crosby,
1984; Li et al., 2013). Adjusted to VELOX measurements,
this approach can be formulated as follows:

TS = asw+ bsw · TB,5+ csw · (TB,5− TB,6). (1)

TS represents the surface skin temperature, TB,5 is the bright-
ness temperature measured with VELOX channel 5 installed
on HALO in about 10 km altitude, which is least affected
by water vapour absorption. The coefficients asw, bsw, and
csw are empirically determined with a linear regression.
Thus, TB,5− TB,6, represents the brightness temperature dif-
ference between channels 5 and 6, serving as a proxy for
water vapour absorption. Vincent et al. (2008) found that
this brightness temperature difference observed in the Arc-
tic region is also sensitive to other parameters, such as at-
mospheric inversion height or aerosol particles. Their pro-
posed single-channel algorithm (SCA; Vincent, 2019) has
been adapted to VELOX data as follows:

TS = asca+ bsca · TB,5. (2)

We have performed radiative transfer simulations (RTSs)
to constrain the contribution of atmospheric absorption to
the surface skin temperature for both retrieval methods. The
RTSs were conducted with the radiative transfer library (li-
bRadtran; Emde et al., 2016). The simulations were ini-
tialized with temperature and humidity profiles from drop-
sondes that were released from HALO during the campaign
(Wendisch et al., 2024). The surface skin temperature was
provided by MODIS (Hall and Riggs, 2021), whereas ozone
content was given by the ERA5 reanalysis data (Hersbach
et al., 2020).

For the molecular absorption parameters, REPTRAN
medium (Gasteiger et al., 2014) was chosen, along with

the DIScrete ORdinate Radiative Transfer solvers (DISORT;
Stamnes et al., 2000). To constrain the retrieval uncertainties
as a function of the atmospheric total column water vapour
concentration, the integrated water vapour (IWV) was varied
from 0 to 50 kg m−2. During the HALO–(AC)3 campaign,
the integrated water vapour (IWV) was confined to values
less than 10 kg m−2 (Walbröl et al., 2024). To evaluate the
two retrieval methods the total uncertainty δTS was calcu-
lated for both algorithms. Adapted from Brown and Minnett
(1999), who formulated the uncertainties for the MODIS IST
retrieval, the total uncertainty of the VELOX retrievals was
formulated as follows:

δT sw
S =

√
(δT sw

atm)
2+ (δTVEL,i)2, (3)

δT sca
S =

√
(δT sca

atm)
2+ (δTVEL,5)2, (4)

δTvel,i =

√
(δT

sys
vel,i)

2+ (δT ran
VEL,i)

2, (5)

where

δT
sys

VEL,i = A+B · TB,i, (6)

δT ran
VEL,i = NETDB,i . (7)

The overall uncertainty of the surface skin temperature δTS
was quantified as the square root of the sum of the squared
uncertainties from the atmospheric correction and the uncer-
tainty introduced by VELOX δTVEL,i , which was split into a
random part δT ran

VEL,i equivalent to the NETD and a system-
atic part δT sys

VEL,i . The systematic uncertainty was parameter-
ized based on the measured brightness temperature TB,i in
channel i. The superscripts “sca” and “sw” correspond to the
respective algorithms, while the index subscript i indicates
VELOX channel i. The total uncertainty for both retrievals,
depending on TB,5 and assuming a constant δTatm, is shown
in Fig. 2. Due to the difference in considering only the NETD
of channel 5 for the SCA and both NETDs of channel 5 and
6 for the SW, the SCA retrieval has a lower error across all
temperature ranges.

To evaluate the sensitivity of the retrievals to IWV, the total
uncertainty of both retrievals as a function of IWV is shown
in Fig. 3. Below the IWV threshold of 10 kg m−2, the SCA
outperforms the SW, due to the reduced NETD only using
one channel. Above this threshold, atmospheric absorption
dominates the total uncertainty favouring the SW algorithm.
In summary, the single-channel algorithm has a lower to-
tal uncertainty for IWV values below 10 kg m−2, while the
split-window algorithm is more suitable for more humid at-
mospheres. Therefore, the SCA is applicable in the Arctic
region when low IWV concentrations are present.

As a consequence, we continue with the derivation of the
regression coefficients asc,bsc of the SCA algorithm. For this
purpose, the RTSs were performed with a temporal reso-
lution of 1 s, resulting in simulated brightness temperature
values for VELOX channel 5 TB,5,RTS at HALO flight alti-
tude. These simulated brightness temperature values at flight
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Figure 3. Comparison of surface temperature retrieval uncertainty
(δTS) as a function of integrated water vapour (IWV, kg m−2) for
the single-channel algorithm (dark blue) and split-window method
(light blue).

Figure 4. MODIS skin temperature TS,MOD is compared to the sim-
ulated brightness temperature at HALO flight altitude for VELOX
channel 5 (11.5 µm) TRTS,B5.

altitude are linearly regressed against MODIS surface skin
temperature. The resulting fit parameters for slope and offset
serve as the single-channel coefficients:

asc = 9.051K (8)

bsc = 0.967K−1. (9)

In Fig. 4, MODIS surface skin temperatures TS,MOD were
plotted against simulated brightness temperature TB,5,RTS.
The regression shows a coefficient of determination of R2

=

0.99 and a root mean square error (RMSE) of 0.47 K. Sub-
stituting δsc

atm = 0.47 and NETD= 0.473 K into Eq. (4), the
overall uncertainty of the SCA algorithm using RTSs with
ERA5 IWV data was computed as

δTS = 1.1± 0.3K, (10)

where the range of δTS reflects the error for different mea-
surement conditions.

Figure 5. True colour image provided by Sentinel-2 on 4 April 2022
at 13:35:00 local time. The four coloured rectangles represent
the surface types selected for this study: sea-ice-free open water
(green), ice–water mix (purple), thin sea ice (grey), and snow-
covered sea ice (yellow).

3.2 Surface type classification

To distinguish different surface types, we have adapted estab-
lished definitions (Miao et al., 2015; Wright and Polashenski,
2018; Jäkel et al., 2019a). As no melt ponds were observed
during HALO-(AC)3, this surface type was omitted. To il-
lustrate the surface types, a Sentinel-2 true colour image is
analysed in Fig. 5. All surface types applied in this study are
present in this scene and characterized in Table 2.

The image analysis consists of three steps. First, the
VELOX 2D-images are preprocessed. Next, a random forest
(RFA) classification algorithm is applied for pixel-wise sur-
face classification. Finally, a segmentation algorithm is used
to identify and summarize areas of the same surface type.

3.2.1 Preprocessing images

Since the temporal sampling rate of the VELOX data was
1 Hz, and the typical cruise speed of HALO was about
200 m s−1, it was possible to construct push-broom-like im-
ages (PLIs) of the corresponding nadir strips at each time
step. With this technique, the effect of the viewing zenith an-
gle (VZA) on the measured brightness temperature can be
neglected. Furthermore, georeferencing was performed for
each data point of the PLI, providing crucial information
about the geographic location of the measurement. This pro-
cess incorporates the geographical position, flight altitude,
and attitude data from HALO, as well as the calculated view-
ing azimuth and zenith angles for the applied lens and de-
tector combination of VELOX and the measured mounting
direction of VELOX.
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Table 2. Surface types with short characterization, corresponding
abbreviations, and representative images from Fig. 5.

Abbr. Surface type Image

OW Open water: sea-ice-free surfaces
of open-ocean
water, including leads.

IWM Sea ice–water mixture: unconsol-
idated frazil and grease
ice, mixed with open-ocean water.

TI Thin sea ice: freshly formed sea
ice (nilas), appearing dark
or grey in optical wavelengths.

SC Snow-covered sea ice: sea ice
covered with a snow layer.

3.2.2 Random forest classification of surface types

To determine the surface type, a random forest (RFA) was
implemented in a pixel-by-pixel fashion; i.e. each pixel was
individually classified. The RFA comprises a supervised ma-
chine learning method that constructs ensembles of decision
trees, which are fitted to user-defined ground-truth data. It
combines the interpretability of decision trees with the ro-
bustness to noise characteristics of other ensemble methods
(Breiman, 2017; James et al., 2023). For the implementation
of the RFA, the machine learning library autogluon (Erickson
et al., 2020) was used, allowing for a comparison of multi-
ple machine learning methods. Compared to other supervised
learning algorithms, the RFA demonstrated comparable ac-
curacy, while significantly reducing computation time.

Sentinel-2 images classified manually were used as the
ground truth. For labelling these images, the Computer Vi-
sion Annotation Tool (Sekachev et al., 2020, CVAT) was ap-
plied. In total, 58 VELOX images from 10 research flights
were labelled, resulting in 13 million labelled pixels. The

Table 3. Input parameters as processed from VELOX measure-
ments and used in the pixel-wise RF surface type classification.

Variable Description

TB,1 VELOX channel 1 (7.7 to 12 µm).

1TB,2–5 Brightness temperature difference (BTD) be-
tween channels centred at 8.54 and 11.7 µm.

1TB,3–5 BTD between channels centred at 10.7 and
11.7 µm.

1TB,5–6 BTD between channels centred at 11.7 and
12 µm.

|∇TB,1| Magnitude of the horizontal gradient of broad-
band brightness temperature as a measure of
horizontal inhomogeneity.

TB,1 Mean of TB,1 in a 5× 5 pixel neighbourhood.

σTB,1 Standard deviation of TB,1 in a 5×5 pixel neigh-
bourhood.

Figure 6. Confusion matrix of the RFA prediction, showing the
percentage of the correctly predicted pixels on the diagonal. The
off-diagonal elements represent the false positive and false negative
values.

locations of the training data are depicted as pink stars in
Fig. 1. The training data were sampled randomly from the
available data (Sentinel-2 image available, cloud free) and
subsequently filtered to resemble all latitudes equally. Seven
input features, as defined in Table 3, are applied to the RFA.
All parameters are calculated from VELOX brightness tem-
perature data.

The accuracy of a multi-class classification problem can
be expressed by the ratio of correct to all predictions. When
validated in a 5-fold cross-validation setup, the RF showed
an accuracy of 87 % with respect to the test data.

To further assess the performance of the RFA, a confusion
matrix is shown in Fig. 6. The highest accuracy is achieved
on the SC surface type (95 %), followed by the OW surface
type (90 %). The TI surface type achieves a lower overall ac-
curacy with 71 %, due to transitional nature of this surface
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Figure 7. Overview of surface classification and segmentation re-
sults for the push-broom-like image captured on 4 April 2022 from
13:36:14 to 13:38:31 UTC. (a) Broadband brightness temperature
TB,1 (7.7–12 µm) as push-broom-like image. (b) Initial surface type
classification using the random forest algorithm (RFA), identifying
open water, thin ice, and snow-covered ice. (c) Initial segmentation
using the segment-anything model (SAM), with numbered segments
representing the 10 largest areas for illustration. (d) Final surface
type classification: the most common surface type within each seg-
ment from (c) was assigned, and a surface skin temperature thresh-
old was used to sort the ice–water mix (IWM) from OW. (e) Final
segmentation, where new segments were assigned to all connected
regions of the same surface type derived from (d), with the largest
segments again highlighted by their respective numbers.

type. In Fig. 7b, the initial RFA classification for an exam-
ple scene is shown. A common challenge when using RFA
for image classification is the speckles, as seen in this fig-
ure. To address this issue, segmentation is required, which is
described in the next section.

3.2.3 Segmentation

To assign the predefined surface types to the retrieved
fields of surface skin temperature, the PLIs are subjected
to the open-source image segmentation algorithm segment-
anything (SAM; Kirillov et al., 2023). The SAM algorithm
image segments on the basis of colour gradients and points

that are placed by the user. The initial segmentation of an ex-
emplary scene is shown in Fig. 7c. Although the model was
not fine-tuned, i.e. not trained with a specific user dataset, it
proves a high capability to segment previously unseen data in
a zero-shot fashion (Wu and Osco, 2023; Ren et al., 2024).
This offers an advantage over training a segmentation algo-
rithm, which is demanding in terms of data points and com-
putational time.

To automatically generate a segmentation mask with
SAM, a grid of points is placed on the PLI and then recur-
sively shifted to avoid over-segmentation of the images. This
means that initially a grid is constructed on the image, and the
algorithm searches for segments close to the grid points. To
ensure stable segmentation, the grid is divided into smaller
subgrids, which are then shifted relative to the initial grid
points. This process is repeated three times. Since some over-
segmentation still occurs, resulting in smaller predicted seg-
ments than those identified by humans, information from sur-
face classification is added to the segmentation. First, each
segment identified by SAM is subjected to a majority vote,
meaning the most frequently occurring surface type within
a particular segment is assigned to that segment. Finally, the
segments are obtained by merging neighbouring segments of
the same surface class. This results in a natural image seg-
mentation, which is illustrated in the lowest panel of Fig. 7e.

This merging step can connect large, contiguous areas of a
single surface type (e.g. thin ice), which can influence feature
size statistics. Therefore, the initial, finer-grained segmenta-
tion from SAM (prior to merging) is retained for a sensitivity
analysis (see Sect. 4.3). To allow for full transparency and
further exploration by the community, both the initial and fi-
nal merged segmentation masks were provided in our public
dataset (Müller et al., 2025). In a final post-processing step,
the IWM class is identified to ensure the physical consistency
of the final product. This step addresses instances where pix-
els were classified as OW despite having temperatures well
below the physical freezing point of seawater. Specifically,
any OW pixel with a surface skin temperature cooler than
−3 °C was reclassified as IWM. This threshold was chosen to
represent a sub-pixel sea-ice fraction of greater than 33 %, as-
suming the sub-pixel surface skin temperature of sea ice to be
−15 °C and the surface skin temperature of OW close to the
freezing point of−1.7 °C (Skogseth et al., 2009; De La Rosa
et al., 2011).

4 Results and discussion

4.1 Surface skin temperature

In Fig. 8, the VELOX-retrieved surface skin temperature
TS,VELOX is compared to the MODIS surface skin tempera-
ture TS,MOD, obtained from Hall and Riggs (2021) and NASA
(2024), showing the coefficient of determination R2 to be
equal to 0.96.
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Figure 8. Scatter plot of MODIS TS,MOD against VELOX-retrieved
TS,VEL, with VELOX data averaged to match the MODIS pixel
size. The appended frequency distributions show the corresponding
surface skin temperature distributions for both datasets.

For this comparison, the instantaneous FOVs of the sin-
gle VELOX pixels were combined by averaging to fit the
MODIS pixel-size, allowing for a direct comparison be-
tween their two datasets. The RMSE was determined to be
2.0 K with a bias of 0.51 K and a mean average difference of
1.55 K. Furthermore, Fig. 8 indicates slightly higher values
of surface skin temperature derived from VELOX, TS,VELOX,
with respect to MODIS, TS,MOD, over sea ice and lower val-
ues over open water. As the dataset comprises multiple days,
it is essential to provide information on the location of the
data. To simplify this spatial information into a scalar, the
data are grouped by their distance to the sea-ice edge (pos-
itive direction into the internal ice zone). As the individual
pixels have been georeferenced, their relative distance to the
nearest sea-ice edge (defined by campaign-averaged SIC val-
ues between 9 %–11 %) is computed. For this, the distance of
each spatial segment centre to the temporally closest avail-
able AMSR-2/MODIS SIC pixel is calculated. The mean sur-
face skin temperature coloured by surface types is plotted in
Fig. 9a against the distance to the sea-ice edge.

In Fig. 9b, the mean surface skin temperature of all seg-
ments TS, weighted by their size, is shown. A clear separation
between the TS of different surface types is observed as ex-
pected. The values from Fig. 9b are displayed together with
the corresponding error range in Table 4.

4.2 Spatial analysis of surface types

From the segmentation, we retrieve the corresponding seg-
ment size, mean temperature, and standard deviation of each
segment. The results are illustrated in Fig. 10, showing the
spatial distance of each segment centre to the nearest sea-
ice edge plotted against the corresponding surface type. The
fraction of the open-water surface type decreases from 40 %
to below 5 % in the first 20 km, while the fraction of the

Figure 9. (a) Mean TS of different surface type segments, weighted
by segment size and aggregated over 10 km bins from the sea-ice
edge into the internal ice zone. (b) Mean TS over all marginal sea-
ice-zone segments.

Figure 10. Fraction of total area for the four surface classes
as a function of the distance to the closest sea-ice edge. The
red dashed line indicates the open-water fraction (1.0 - SIC) from
MODIS/AMSR-2 (Ludwig et al., 2019).

snow-covered surface type becomes increasingly dominant
when approaching the pack ice. The surface types thin ice
and ice–water mix maintain relatively constant fractions of
occurrence across all considered distances from the ice edge,
with no clear trend observed.

When compared with the provided SIC from
MODIS/AMSR-2, the computed RMSE and mean ab-
solute difference (MAD) are 8 % and 5 %, respectively.
For this comparison, the nearest available SIC data from
the satellite product were matched with a similar FOV
of the VELOX PLI. The errors result from the temporal
mismatch between both datasets, as MODIS/AMSR-2
SIC is only available as a daily gridded product. When
comparing the bias, i.e. the difference between VELOX SIC
and MODIS/AMSR-2 SIC, an underestimation of 3 % or an
overestimation of 5 % is observed, depending on whether
only pixels classified as open water are considered open
water or if pixels classified as both open water and ice–water
mix are included. As shown in Fig. 10, the open-water
fraction and the area fractions derived from VELOX agree
within the given error range.
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Figure 11. Double-logarithmic graph of the segment size density
(coloured dots) for all four surface types as a function of the seg-
ment size. The surface types are colour-coded, indicating open
water (green), ice–water mix (purple), thin ice (grey), and snow-
covered ice (yellow). Linear fits (coloured lines) are added in the
respective surface type colour, providing the exponents listed in the
top right.

4.3 Segment size distribution

Since the segmentation enables the measurement of individ-
ual segment sizes, an analysis of the spatial structure of the
data is performed. Here, we extend the concept of the floe
size distribution (FSD; Rothrock and Thorndike, 1984; Her-
man, 2010; Bateson et al., 2022) to the segment size distri-
bution NSSD, resulting in the following description:

NSSD(xSEG)= C · (xSEG)
β . (11)

Here, xSEG represents the segment size in units of m2,C is an
empirical constant, and β is the dimensionless power-law ex-
ponent describing the scaling of the distribution. The closer
the exponent is to zero, the more NSSD favours large seg-
ments. This approach simplifies the complex spatial hetero-
geneity of the MIZ by expressing the scaling of NSSD using
β, a single scalar value.

In Fig. 11, the segment size density NSSD (in units of
km−2) for different surface types is displayed in a double-
logarithmic graph as a function of the segment size, xSEG. In
addition, the individual distributions are fitted with a linear
model. The slope of each linear fit corresponds to the expo-
nent of the power-law distribution, β. The different βi values
computed for each surface type are shown in Table 4.

We conclude that, in addition to the different sea-ice types,
the surface types ice–water mix and open water also follow
a power-law distribution. The computed β values for, for ex-
ample, the snow-covered sea-ice type are in the range of cor-
responding literature data, with values ranging from −0.91
to −2.9 (Herman, 2010). A key characteristic observed dur-
ing our flights over the MIZ was the presence of large, con-

Table 4. Summary of mean surface temperature TS, power-law ex-
ponents β, and goodness of fit R2 for the corresponding NSSD, for
different surface types.

TS (°C) β R2

OW −3.2± 1.1 −1.68± 0.04 0.987
IWM −12.1± 2.3 −1.60± 0.02 0.992
TI −17.0± 1.4 −1.25± 0.02 0.996
SC −22.2± 2.0 −1.50± 0.02 0.992

Table 5. Power-law coefficients for the four surface types, with
“Connected segments” denoting the final segmentation where same
surface type segments are merged and “Broken segments” the finer
SAM segmentation.

Surface type OW IWM TI SC

Connected segments −1.69 −1.60 −1.25 −1.50
Broken segments −1.84 −1.69 −1.32 −1.56
Relative difference (%) 8.9 5.6 5.6 4.0

tiguous areas of thin ice or snow-covered ice, which can ap-
pear as very large segments in our final classification (e.g.
Fig. 7e). We interpret these as genuine physical features of
newly forming ice in the MIZ at the time of observation
rather than as segmentation artefacts. However, we acknowl-
edge that the definition of a “segment” is sensitive to the pro-
cessing methodology and that the scale of these large features
can influence the resulting feature size distribution (FSD). To
quantify this sensitivity, we performed an additional analysis
by calculating the FSD statistics on the initial, finer-grained
segmentation generated by SAM, before our final step of
merging adjacent segments of the same class (an example
of this initial stage is shown in Fig. 7c). The results, summa-
rized in Table 5, demonstrate that the power-law coefficients
change by 4 % to 8 %, depending on the surface type.

To gain more insight into the spatial heterogeneity within
the MIZ, we fit the NSSD of the snow-covered segments to
10 km sized bins of distance to the sea-ice edge (in pack-ice
direction).

In Fig. 12, the size power-law exponent β is shown as
a function of the distance to the sea-ice edge for the dif-
ferent surface types. A linear trend is fitted only to the TI
data, suggesting significance with a R2

= 0.76 and a p value
less than 0.001. The increase in β from −1.6 to −1.3 re-
flects a physical characteristic of the MIZ. Closer to the sea-
ice edge, a higher number of smaller segments is observed
(more negative β) due to intensified floe breakup, whereas
larger floes (less negative β) become more prevalent further
into the MIZ, where ocean wave propagation is more attenu-
ated (Herman, 2010; Denton and Timmermans, 2022).
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Figure 12. Power-law exponent β of the segment size distribution
NSSD, binned in 10 km steps, starting from the sea-ice edge into the
direction of the internal ice zone by surface type. For (a) open water,
(b) ice–water mix, and (d) snow-covered ice, no trend is observed.
For (c) thin ice, a significant linear trend is observed.

5 Summary and conclusions

During the HALO–(AC)3 aircraft field campaign, covering
the Fram Strait to the North Pole in March and April 2022,
an extensive dataset of surface and atmospheric properties
was measured by a variety of instruments mounted on three
research aircraft (Wendisch et al., 2024). The data were com-
piled by the High Altitude and LOng range research aircraft
(HALO), which was instrumented with radar, lidar, a drop-
sonde launching facility, microwave radiometer, and various
spectral imagers (Ehrlich et al., 2025). This study was based
on observations collected by the VELOX (Video airbornE
Longwave Observations within siX channels; Schäfer et al.,
2022) thermal infrared (TIR) imaging system, which was in-
stalled on HALO in a nadir viewing direction. Due to its fast-
spinning filter wheel (100 Hz) equipped with multiple spec-
tral band-pass and long-pass filters, a high spatial resolution
of 10 m by 10 m pixel size for a target at 10 km distance is
achieved with VELOX, providing valuable high-resolution
TIR spectral radiances expressed in brightness temperatures.

Using VELOX data from HALO–(AC)3, which are pub-
licly available from Schäfer et al. (2023), a single-channel
(SCA) surface skin temperature retrieval based on linear co-
efficients derived from radiative transfer simulations (RTSs)
was adapted. Comparisons with multiple-channel retrievals
and surface skin temperature products from the MODerate
resolution Imaging Spectroradiometer (MODIS; Hall et al.,
2004; Hall and Riggs, 2021; NASA, 2024) provided agree-
ment in the range of 2 K, with a coefficient of determination
of R2

= 0.96 and a bias of 0.5 K. To categorize the obtained
surface skin temperature fields, a surface type classification

algorithm was developed based on publicly available soft-
ware tools combined with physically reasonable thresholds
applied to regenerated push-broom images from the initial
brightness temperature data. The resulting two-dimensional
fields provide segment-vise information of the surface type,
which can then be analysed in combination with, e.g. the
retrieved surface skin temperature. The data were classified
into the following surface types: open water (OW), thin ice
(TI), ice–water mix (IWM), and snow-covered ice (SC). The
IWM class was identified in a post-processing step, reclassi-
fying all OW pixels with a surface skin temperature of less
than −3°C as IWM.

With the surface skin temperature and surface classifica-
tion retrievals, important parameters were obtained with high
spatial resolution. When computing the resulting sea-ice con-
centration (SIC) from the surface classification, agreement
with a bias of about 5 % with the MODIS/AMSR-2 prod-
uct was obtained, if the IWM surface type is assigned to
be “sea-ice-free”. Additional sensitivity studies will be re-
quired to assess the influence of this surface type. The es-
tablished classification serves as a promising foundation for
these future investigations. The retrieved power-law segment
size statistics are generally consistent with values reported
in the literature (Denton and Timmermans, 2022). For the
snow-covered surface type, these findings align with those of
Herman (2010), who observed power-law exponents ranging
from−0.91 to−2.9 and reported an increase in the exponent
when transitioning from the sea-ice edge to the interior ice
zone. Overall, although the temporal duration and the spatial
extent of the presented dataset are limited, agreement with
other studies emphasizes its value for the sea-ice commu-
nity. Extending this analysis to different seasons will be cru-
cial for capturing processes like melt pond evolution, though
this will require multi-sensor data fusion to resolve the in-
creased complexity of surface types. Therefore, the primary
value of this high-resolution methodology lies in providing
“ground truth” for calibrating satellite retrievals and refining
sub-grid-scale parameterizations in pan-Arctic models.
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on Zenodo at https://doi.org/10.5281/zenodo.14510200 (Müller,
2025).
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