Atmos. Meas. Tech., 18, 47554769, 2025
https://doi.org/10.5194/amt-18-4755-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Atmospheric
Measurement
Techniques

Comparison of the performance between three Doppler wind lidars
and a novel wind speed correction algorithm

Yidan Zhang', Hancheng Hu?, Yuan Li', Menggqi Liu', Fugui Zhang', Huilian She'!, and Hao Wu'

'Key Laboratory of Atmospheric Sounding, College of Electronic Engineering, Chengdu University of Information

Technology, Chengdu, 610225, China

2College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China

Correspondence: Hao Wu (wuhao@cuit.edu.cn)

Received: 18 April 2025 — Discussion started: 19 May 2025

Revised: 17 July 2025 — Accepted: 14 August 2025 — Published: 25 September 2025

Abstract. Doppler wind Lidars (DWLs) have been widely
used to detect wind vector variations, based on ground mon-
itoring of atmospheric boundary layer and wind shear. This
study evaluates the performance between three DWLs and
in situ balloon radiosonde. Lidars data comparison focuses
on low altitudes (height < 2km) from July to September
2021 from three producers: MSD (Minshida), CUIT (home-
made), and WP (windprofile) Lidars. Within the research
height range, comparisons show the root mean square er-
rors (RMSE) for wind speed were 1.11,4.45,and 5.15m s—L
while wind direction RMSE were shown at 49.83, 82.89, and
84.87°, respectively. The measurement accuracy decreases
with the altitude increase (up to 2km). The Lidar perfor-
mance requires a certain amount of aerosol backscattering,
when PM; 5 ranges within 35-50 ug m~3, MSD Lidar exhib-
ited the highest wind speed correlation (R? = 0.82) with ra-
diosonde, and the wind direction accuracy observed with the
three Lidars is enhanced with the increase of aerosol concen-
tration, indicating that particle loading is the critical factor
affecting the wind profile. Lidar performance varied signif-
icantly with planetary boundary layer heights (PBLH), par-
ticularly, the Lidar performance is relatively optimal when
the PBLH within 500-750 m, with the Pearson correlation
coefficients (PCCs) of wind speed are 0.97, 0.92, and 0.72,
while the wind direction is shown at 0.98, 0.75, and 0.70,
respectively. The vertical relationship between cloud base
height (CBH) and PBLH had also varied influences on the
Lidar measurements. Machine learning was used to remove
anomalies and complement missing values, the random for-
est (RF) demonstrated superior performance, with the Area
Under the Curve (AUC) of 0.93(CUIT) and 0.90(WP) in the

Receiver Operating Characteristic (ROC) curves. RF-based
correction of CUIT data enhanced the R? from 0.42 to 0.65.
The R? between the RF-based CUIT and Aeolus satellite
data was 0.83, indicating that the method effectively im-
proved data, even in circumstances of anomalies. We pro-
posed a new correction algorithm combined with the isola-
tion forest (IF) and RF to handle high-dimensional and in-
complete datasets. Our procedure could increase the Lidar
measurement quality of wind.

1 Introduction

The development of the low-altitude economy depends on
efficient airspace management and flight scheduling. The Li-
dar technology has laid a strong foundation for turbulence
measurement, wind shear detection, gravity wave analysis,
and boundary layer height estimation (Chanin et al., 1989;
Harvey et al., 2015; Sathe and Mann, 2013; Shun and Chan,
2008; Talianu et al., 2006). The biggest, most significant risk
of unmanned aerial vehicle (UAV) flight is the wind shear in
the low layer at the boundary. DWL uses the optical Doppler
effect to measure atmospheric wind speed by detecting the
frequency shift between emitted and backscattered laser sig-
nals, offering high spatial and temporal resolution measure-
ments (Du et al., 2017).

Conventional wind measurement systems face inherent
limitations. In recent years, Lidar has successfully overcome
many of the limitations associated with conventional detec-
tion equipment (Liu et al., 2019). For example, differing
from mechanical anemometers, DWL can remotely measure
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wind speed without contact with the atmosphere (Tavakol
Sadrabadi and Innocente, 2024). Radiosondes, reckoned as
the best accuracy, suffer from discontinuous temporal sam-
pling and cannot support all-weather monitoring (Abduna-
biev et al., 2024). In observational experiments, there are
phenomena leading to anomalies and missing DWL data.
These errors may arise from different atmospheric condi-
tions, for instance, the strong aerosol concentration and Bril-
louin backscattering signals may lead to errors in retrieving
low-altitude wind speeds (Fahua et al., 2021). Traditional
Lidar data inversion methods (e.g., Velocity Azimuth Dis-
play, VAD; Doppler Beam Swinging, DBS) exhibit horizon-
tal wind speed errors exceeding 10 % in complex terrains
(Liu et al., 2022). Differences in pulsed laser instruments can
affect the detection efficiency and accuracy of Lidar’s detec-
tion (Ge et al., 2014), as well as data processing methods
(Smalikho and Banakh, 2016).

Machine learning has been demonstrated to have the abil-
ity to solve missing values and improve DWL accuracy, such
as noise filtering and data imputation (Lin et al., 2022; Lolli,
2023; Yang et al., 2021). Meteorological data have the char-
acteristics of time series, and machine learning methodolo-
gies such as the RF and neural networks have been proved ef-
fective in unveiling latent patterns in wind-related time series
data. The incorporation of machine learning-based validation
and quality control algorithms has the potential to enhance
wind measurement accuracy and facilitate the prediction of
upper-level wind fields. In recent years, wind field data has
received a lot of attention, and the RF algorithms are partic-
ularly popular (Vassallo et al., 2020; Wang et al., 2017). For
example, the RF algorithm has been used to correct numer-
ical model wind predictions for weather forecasting (Wang
et al., 2021), improving forecast accuracy significantly. The
RF algorithm employs an ensemble of decision trees to miti-
gate overfitting and enhance prediction robustness (Hastie et
al., 2009). It has been proved to enhance prediction accuracy
without a substantial increase in computational cost, to be
robust against multicollinearity, and to demonstrate consid-
erable stability in scenarios involving anomalies (Boulesteix
etal., 2011). The RF algorithm has been demonstrated to ad-
dress missing data effectively and to manage high variabil-
ity, rendering it well-suited for the preprocessing of wind
datasets (Zhao et al., 2024b). In comparison to other algo-
rithms, such as AdaBoost and K-nearest neighbors (KNN),
RF demonstrates superior performance in predicting wind
speed and power generation, as evidenced by reduced mean
absolute percentage error (MAPE) values (Malakouti, 2023).
This study proposes the RF algorithm for Lidar wind data to
develop a wind profile correction algorithm. For the verifica-
tion of wind profiles, a radiosonde will be used to enhance
the stability of the system and evaluate the feasibility of the
algorithm (Huang et al., 2021).

Spaceborne wind Lidar technology is also effective for
wind detection (Kim et al., 2021). Satellite retrieval for wind
field information has become an important trend for future
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applications. The combination of ground-based and space-
borne Lidar enables high-precision atmospheric wind speed
observation, which is crucial for weather forecast and wind
energy development, but data acquisition rates for lower at-
mospheric layers significantly decrease under multilayered
clouds or optically thick cloud systems (Belova et al., 2021;
Rennie et al., 2021). Satellites equipped with scatterometers
and radiometers, such as Metop-A, Metop-B, and Coriolis
(He et al., 2022a; Silva et al., 2022), provide wind speed
and direction. The Aeolus satellite, launched by the Euro-
pean Space Agency in 2018, is the first to provide com-
prehensive global wind observation. It operates in a 320 km
sun-synchronous orbit, following a flight path roughly along
the Earth’s day-night boundary, and completing one orbit ev-
ery 90 min (Belova et al., 2021). The satellite provides high-
quality wind components and aerosol optical properties from
the Earth’s surface to the lower stratosphere (Belova et al.,
2021; Flament et al., 2021). The satellite with a 1.5m di-
ameter Lidar system emits ultraviolet laser pulses and col-
lects scattered light particles from the atmosphere at alti-
tudes of 20-30 km. Wind speed, direction, and other param-
eters are determined by measuring the Doppler shift of the
light waves (Witschas et al., 2020). This technology is one of
the most effective measurements. In 2021, Guo et al. (2021)
compared data from the European Space Agency’s satellite
with domestic wind profiler RWP network measurements,
finding a good match between the Aeolus wind product and
the RWP data. Chen et al. (2021) examined the seasonal
variation in Aeolus satellite detection performance in China
by combining ERAS and radiosonde data, concluding that
the satellite’s performance is influenced by seasonal factors.
Mie winds exhibit minimal systematic bias in regions with
strong scatterers (typically clouds/aerosols), though random
errors vary with signal strength. Rayleigh winds show small
biases and random errors in the clear-sky free troposphere
but face increased uncertainty in cloud-affected regions or
the clear-sky boundary layer. Within cloud layers, Rayleigh
channel signals are heavily scattered and absorbed by cloud
particles, necessitating reliance on the Mie channel. Aeolus’
strength lies in its global coverage, whereas its weaknesses
include vertical resolution, cloud-penetration capability, and
high sensitivity to clouds. Radiosondes remain an unparal-
leled reference benchmark, especially for validating Aeolus
under cloudy conditions-despite their spatial representativity
limitations. However, there is still a gap between comparing
and validating Aeolus satellite products and Lidar data. Joint
comparisons of spaceborne and ground-based measurements
are essential for assessing the advantages and limitations of
Lidar in accurately capturing wind fields, which will support
the integration of laser sensors and inversion algorithms in
next-generation wind measurement satellites.

This study investigates wind field measurements using
three ground-based Doppler Lidar systems (CUIT, MSD,
and WP Lidars) through a three-month comparative cam-
paign at the Nanjiao Observatory in Beijing, collocated with
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radiosonde observations. the accuracy of the three ground-
based Lidars are evaluated against radiosonde data as the ref-
erence standard. The study investigates the impact of PM> 5
concentration on wind measurement performance. The ef-
fect of height on wind speed and direction was analyzed by
comparing the Lidar performance under different PBLH and
CBH conditions. The study also conducts satellite-ground
validation to assess the consistency of the Aeolus Satellite.
We propose a novel machine learning framework for wind
profile correction by comparing various algorithms to opti-
mize the data accuracy.

2 Instruments and methods
2.1 Method and instruments

The experiment was conducted at Beijing’s Nanjiao Ob-
servatory (39.80°N, 116.32°E, 30ma.s.l.) from 9 June to
31 August 2021, featuring a three-month intensive compar-
ative observation campaign with multiple Lidar wind mea-
surement systems. The Nanjiao Observatory, an integrated
atmospheric observation base of the China Meteorological
Administration. It plays a significant role in monitoring and
predicting weather changes in the Beijing region. The ob-
servatory stands as the sole upper-air meteorological station
within a 200 km radius, and launches enhanced radiosondes
every day at 01:15, 07:15, and 19:15 LST. As the radiosondes
ascend with the ballon, they drift with the wind and collect
upper-air wind field data. These balloons can climb to at least
40 km altitudes, providing wind field data within the region.

As shown in Fig. 1, Three coherent DWLs — MSD (Min-
shida Technology Co.), CUIT (homemade), and WP (Wind-
Print S4000) — were deployed alongside daily radiosonde
launches. Both the MSD Lidar and CUIT Lidar employ
single-frequency pulsed fiber lasers with a wavelength of
1550 nm. Aerosol molecules and large particles present in the
air serve as tracers of the wind field. Coherent DWL retrieves
the atmospheric wind field by measuring the backscatter
of aerosols moving with the wind field (Weickmann et al.,
2009).

This study necessitates retrieving Aeolus satel-
lite data from the FEuropean Space Agency (ESA)
website (https://earth.esa.int/eogateway/catalog/
aeolus-scientific-12b-rayleigh-mie-wind-product, last
access: 21 September 2025) for comparative analysis.
Aeolus is a wind-profiling satellite, launched by ESA
in 2018. It operates in a 320km Sun-synchronous orbit,
following a flight path approximately aligned with Earth’s
day-night terminator, completing an orbit every 90 min
(Belova et al., 2021). The satellite is equipped with a 1.5m
diameter telescope, a scattering receiver to collect reflected
signals, and a Doppler wind ultraviolet Lidar system named
“Aladin”, which operates with an output power comparable
to a small nuclear reactor and can penetrate the atmosphere
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up to 30km altitude. Its working principle involves a
processing system with a 1.5 m diameter aperture emitting
pulsed ultraviolet laser beams (wavelength 355 nm) at a rate
of 50 observations per second, with each beam generating
billions of photons directed at the atmosphere. However,
only a few hundred are scattered back to the satellite due
to interactions with atmospheric molecules. The Doppler
effect determines the time delay between emitted pulses
and backscattered signals. The Doppler effect determines
the time delay between emitted pulses and backscattered
signals, and the wind field is observed by calculating the
wind direction, speed, and displacement. The mean wind
speed measurements are obtained by averaging the values
obtained in vertical and horizontal directions. Vertical
sampling is conducted within 24 altitude bins, ranging from
0.25 to 2 km.

A comparison of the technical specifications of Aeolus and
other Lidars is presented in Table 1. The three Lidars use
range gates to select specific distance ranges, measuring the
velocity of aerosol particles within these ranges, and obtain-
ing wind speeds at different altitudes. The Aeolus Level 2B
(L2B) product is the Aeolus satellite’s primary wind field
product. It provides horizontal line-of-sight (HLOS) wind
speed observations that have been atmospheric corrected and
geo-located, extracting the necessary L2B data variables,
such as the latitude, longitude, and wind speed information
within the observation time range. The L2B product also pro-
vides scene classification based on the backscatter ratios cor-
responding to winds from “cloudy” or “clear” atmospheric
regions, generating observation types such as “Rayleigh-
clear”, “Rayleigh-cloudy”, and “Mie-cloudy” (Borne et al.,
2024; Martin et al., 2021).

The satellite-Lidar comparison in the article refers to the
method proposed by Guo et al. (2021). The Aeolus Level 2B
wind products represent averages over specific vertical bins
(each bin spanning 0.25-2 km in height), while ground-based
instruments achieve resolutions of 30 m/50 m/60 m. Prepro-
cessing Steps as follows:

— Step 1: Partition the high-resolution ground-based lidar
data according to Aeolus’s vertical bin boundaries.

— Step 2: Average the ground-based data within each bin
to generate vertical-layer-averaged wind fields corre-
sponding to Aeolus.

— Step 3: Project the averaged wind fields onto Aeolus’s
line-of-sight (HLOS) direction for comparison.
2.2 Data processing

The collected data often have outliers in the DWL measure-
ment process. Data use quality control can obtain accurate in-
formation about the changes in the atmospheric wind profile,
which is helpful to understand and predict the atmospheric
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Figure 1. Location of the Nanjiao Observatory and instruments deployed during the campaign.

Table 1. Instruments Technical Index.

Index CUIT Lidar MSD Lidar Aeolus-Level 2B
Lidar detection Height 50-1500 m 50-5000 m 0-30km

Range resolution 50m 30m/60 m 0.25-2km

Speed measurement range 0-60ms~! —55-55ms~! —150-150m s 1
Accuracy of speed measurement < 0.2m g1 <0.5ms! 1-3ms!

Laser pulse band 1550 nm 1550 nm 355nm

Power consumption T6W 300-1000 W 850 W

Size 440 mm x 400 mm x 260mm 700 mm x 700mm x 1300mm 4.6m x 1.9m x 2.0m
Weight 21.5kg 130kg 1260 kg

Working temperature range —-30—+50°C —-30—+50°C

motion pattern. As shown in Fig. 2, the wind speed and di-
rection data from the radiosonde, CUIT Lidar, MSD Lidar,
and WP Lidar are height-matched through the implementa-
tion of the sliding window method, producing a comprehen-
sive dataset that is arranged sequentially based on time, al-
titude, wind direction, and wind speed. This dataset serves
as the foundation for subsequent analyses. The sliding win-
dow method, widely used in signal processing and time series
analysis, was applied to align datasets. This method involves
strategically restricting the maximum number of data points
that each window can accommodate, as previously outlined
in the extant literature (Wang et al., 2023; Zhao et al., 2024a).
The specific matching process, using the radiosonde height
and CUIT Lidar height as an example, employs a sliding win-
dow of size 3, moving two positions to the right each time.
In each window, a value is selected and compared with the
CUIT Lidar height, with the closest value being selected as
the matched radiosonde height.
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When measuring wind speed, sudden peaks often result
in anomalous values. The isolation forest (IF) model is used
to filter the data to identify and remove these anomalies. IF
(Liu et al., 2008) is an unsupervised anomaly detection algo-
rithm that effectively identifies anomalies in a dataset by iso-
lating outliers (Hernandez-Mejia et al., 2024). The algorithm
recursively partition data points into subsets using randomly
selected features and thresholds (Borne et al., 2024). Anoma-
lies require fewer partitions to isolate them from other data
(Liu and Aldrich, 2024). Anomalous values have the charac-
teristic of being few and significantly different from normal
values. The IF can separate and remove anomalies without
modeling the normal data, and identify anomalous data ac-
curately. In constructing the binary tree structure, fewer par-
titions are required to isolate anomalous data, which is closer
to the root, and normal data is further from the root. This fea-
ture allows for effective anomaly detection. The CUIT data is
complete without any omission. The one with the most miss-
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Figure 2. The flow of Lidar and radiosonde dataset height matching.

ing data is CUIT Lidar, where 426 out of a total of 2885 data
points are missing, the missing rate reaches 14.8 %. The sec-
ond one is WP Lidar, there are 46 missing data points, ac-
counting for 1.6 % of the total 2885 points. The following
algorithm will be used to optimize missing and anomalous
data.

2.2.1 Isolation tree

Let T be a node of the isolation tree (iTree). T has two possi-
bilities: it is either a leaf node with no children or an internal
node with a test and exactly two children. (717;). The test is
composed of an attribute g and split value p, where p > ¢,
which divides the data points into 77 and T;.

The sample data X = {x1x3, ..., x,} where n represents the
number of instances in the distribution. The iTree is recur-
sively constructed by splitting based on the attribute ¢ and
split value p. The splitting process terminates when the tree
reaches the height limit (| X| = 1), or when all instances in X
have the same value.

2.2.2 Anomaly detection

For anomaly detection, the method primarily ranks data
points based on path length or anomaly score, with the points
at the top being considered anomalous.

Path length: The path length A (x) of point x is calculated
as the distance from the root node of the iTree to the leaf
node for point x.

Anomaly score:

After getting the path length 4 (x), the outlier scour of x is
as follows:

E(h

S(ru) =2~ cw (1)

Con— 2u—1)
() =2H (@ —1) = = 2)

where the u is the number of samples, and C (u) is the av-
erage path length of all data in the training set. H (i) is har-
monic number, In (i) +0.5772156649. E(h) is the average
path length of x across n iTrees.

1. When E (h) — C(u), S — 0.5;
2. when E(h) = 0, S — 1;
3. when E(h) >u—1,5 - 0;

Evaluate and remove outliers based on the anomaly score.
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1. If S(xu) approaches 0.5, the outlier becomes less appar-
ent.

2. If S(xu) approaches 0, the score is normal value.

3. If S(xu) approaches 1, the value is anomalous.
2.3 Random forest for lidar data

To address the missing values after Lidar detection and after
outlier removal, this study uses RF to correct the Lidar data.
In the correction of Lidar data, the wind speed and direction
at each altitude layer are treated as samples. Considering the
uncertainties and errors in the original data, the RF is used for
correction. By integrating multiple decision trees, RF can ef-
fectively handle and analyze high-dimensional complex data,
accurately predicting wind speed and direction, thereby im-
proving wind field data’s supplementation and prediction ca-
pabilities. It is important to note that the performance of the
RF model largely depends on the quality of the training data
and the selection of features. Additionally, attention should
be given to the issue of overfitting, and the model should be
optimized and adjusted based on actual conditions. The RF
model in this research is built as follows: Step 1: Extract a
sub-sample matrix from the training matrix as the training
samples.

Step 2: Each sample has M features. Specify a constant
m where m << M and randomly select a subset of m features
from the M features. Finally, select the optimal feature subset
for regression.

Step 3: Allow the tree to continuously split until a certain
height is reached.

Step 4: Repeat the previous three steps until the regression
tree is fully constructed and trained. The final output model
is the “ensemble predictor” f (x). The ensemble predictor
f (x). is composed of the “base learners” hy (x),...,hy(x)
(Cutler et al., 2012):

1 J
F@y=53 0 @ 3)

2.4 Lidar data correction

The overall data processing workflow is shown in Fig. 3. Af-
ter matching the wind direction and wind speed data from the
three Lidars with radiosonde data using the sliding window
method, the data is compared under different pollution condi-
tions, PBLH, and weather conditions to identify the optimal
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Figure 3. The total flow of data processing.

performing Lidar and the Lidar that requires improvement.
For missing values caused by the instrument itself or fol-
lowing anomaly cleaning, cubic spline interpolation (CSI),
back propagation neural network (BPNN), Genetic Algo-
rithm (GA), k-nearest neighbor (KNN), and RF were used
to fill the missing values. By comparing the correlation of
each algorithm, the most suitable algorithm is identified for
the final Lidar data optimization, the Aeolus satellite is used
to verify the reliability of the algorithm further.

3 Results and discussion
3.1 Performance comparison of Doppler wind lidars

Figure 4 compares wind speed and direction data from MSD
Lidar, CUIT Lidar, and WP Lidar with the radiosonde data at
different heights. The dispersion of the scatter points repre-
sents the correlation between the Lidars and the radiosonde
data. The WD was defined as the range from 350 to 10°,
and all winds within this range were classified as northerly,
which were not considered anomalies in the study. As shown
in Fig. 4, MSD Lidar, CUIT Lidar, and WP Lidar exhibited
good consistency with the radiosonde data in the low-altitude
region below 600 m. However, as the altitude increased, the
dispersion of wind speed and direction from the three Lidars
gradually increased, especially above 1500 m. Regression
parameters of three Lidars and radiosonde data are summa-
rized in Table 2. MSD Lidar had a wind speed and direction
slope of 0.99 and 0.81, respectively, with RMSE values of
1.11ms~! and 49.83°, which were closest to the radiosonde
data. CUIT Lidar showed significant anomalies below 750
and above 1500 m, with wind speed overestimated, and wind
direction RMSE reaching 82.89°. The performance of WP
Lidar exhibited an overestimation of wind speed across all
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different pollution scenarios

Comparison between
different PBLH

Comparison between
different weather conditions

1

Wind measurement
performance after
algorithm optimization

optimization for
CUIT and WP

Satellite

Table 2. Regression parameters of three Lidars and radiosonde.

Lidar  Condition Fitted curve N RMSE
MSD WS y=0.99x 4+ 0.51 2885 1.11
WD y=0.81x4+36.65 2885 49.83
CUIT WS y=1.18x +0.67 2514 4.45
WD y =0.54x + 86.3 2885 82.89
WP WS y=1.14x +1.69 2848 5.15
WD y=0.48x4+99.67 2885 84.87

heights. Notably, the magnitude of errors was particularly
pronounced in high-altitude regions, as evidenced by wind
direction RMSE reaching 84.87°. Overall, the observation
data in the low-altitude region (blue) were more stable. In
contrast, the high-altitude region (red) decreased observation
accuracy for all three Lidars due to altitude effects. This re-
veals an exponential decay trend in Lidar measurement ac-
curacy with increasing altitude, consistent with the attenua-
tion characteristics of Lidar backscatter signals. These results
provide critical insights for high-precision wind field moni-
toring: The MSD Lidar is the preferred choice for boundary
layer observations (< 1.5km). At the same time, real-time
radiosonde data correction is advised for elevated altitude ap-
plications.

3.2 Comparative analysis of performance under
different air quality conditions

To investigate the performance of three DWLs in measur-
ing wind speed and direction under different aerosol mass
concentrations, the experiment integrated PM5 5 concentra-
tion data from collaborative observations with wind pro-
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Figure 4. (a) WS and (b) WD of radiosonde data and MSD Lidar at different heights; (¢) WS and (d) WD of WP Lidar; Comparison of

(e) WS and (f) WD of CUIT Lidar; color bar represents height.

file analysis. The PMj; 5 concentrations are relatively low at
the site, so the concentration range was divided into three
pollution levels: L1 (PM3 5 =0-15pg m_3), L2 (PMjys =
15-35ugm™3), and L3 (PM,.5 = 35-50 ugm—3) (Wu et al.,
2016). Figure Sa—c present Scatter plots of wind speed re-
gression relationships for the MSD, CUIT, and WP Lidars
across these pollution tiers, with linear regression lines for
L1 (red), L2 (green), and L3 (yellow). The results show the
correlation of the three Lidars in different pollution levels.
It is evident that aerosol concentrations significantly affect
the performance of Lidar in wind speed detection. The re-
gression parameters of the three Lidars and radiosonde un-
der different pollution conditions are summarized in Table 3.
During L3 pollution episodes, MSD Lidar achieves the high-
est correlation with the radiosonde (R? = 0.82), demonstrat-
ing strong stability and reliability. In contrast, CUIT Lidar
and WP Lidar show much lower correlations under L3 con-
ditions (R%UIT =0.24, R\ZNP = (0.04), indicating that their de-
tection performance is significantly affected by air quality.
Under L1 conditions, the correlations for CUIT Lidar and
WP Lidar are R? = 0.35 and R? = 0.32, with RMSE values
of 1.43 and 1.36ms™!, respectively. Under L2 conditions,
the correlations decrease to R* =0.3 and R> = 0.17, with
RMSE values of 1.45 and 1.39 ms™!, respectively. Aerosol
mass concentration has a negative impact on the detection
performance of DWL, particularly for CUIT and WP Li-
dars, which exhibit significant performance degradation un-
der higher pollution levels. No data were collected under
heavy pollution conditions (> 50 ugm™3 PM, 5) during the
experiment, which may be attributed to a decline in perfor-
mance above 50 ugm—3.

The wind direction difference can be used to evaluate the
impact of different aerosol mass concentrations on the per-
formance of DWL. Due to the periodic nature of wind di-
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rection data, the absolute value of the wind direction differ-
ence was calculated, and differences exceeding 180° were
excluded from the analysis. Figure 5d—f illustrates the distri-
bution of wind direction differences as a function of PMj 5
concentration and height. The x-axis represents aerosol mass
concentration, the y-axis represents height, and the colorbar
represents the wind direction difference. The MSD Lidar ex-
hibits high detection accuracy, maintaining wind direction
deviations within 20°. Under the L1 air quality, maximum de-
viations (D > 20°) occur below 400 m altitude, while within
the 400-1400 m range, deviations remain below 10°. For L2
conditions within this height band, deviations increase to
17.5°. The wind direction difference of MSD Lidar remains
below 7.5° at altitudes above 1 km, indicating high accuracy
in high-altitude detection, though with certain limitations un-
der low aerosol concentration conditions. The CUIT Lidar
demonstrates a heightened wind direction difference of 40—
65° when PM, 5 concentrations fall below 17 ugm™3. When
PM, 5 concentrations increase to 17-37 uygm™3, the devia-
tion reduces to 30—40°. As PM; 5 concentrations increase
(> 40 ugm™3), the difference significantly decreases to 10—
25°, indicating improved accuracy under higher pollution
conditions. The WP Lidar demonstrates the poorest perfor-
mance (< 15ug m~3 PM,5), with deviations reaching 50-
80°. However, when PM» 5 concentrations exceed 40 pg m~3
and altitudes exceed 800 m, deviations significantly reduce to
about 10°. WP’s performance above 800 m improves with de-
viations within 20° under L3 conditions. The observed accu-
racy enhancement with increasing aerosol concentrations (>
800 m altitude) likely stems from amplified laser backscat-
tering signals caused by atmospheric particulates. This phe-
nomenon particularly improves wind field retrieval accuracy
in elevated regions. Operational deployment of DWL sys-
tems in polluted environments requires careful consideration
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Figure 5. Comparison of radiosonde data with CUIT, MSD, WP (a—c) WS, and (d—f) WD at different heights and PM> 5 concentrations.

Table 3. Regression parameters of three Lidars and radiosonde un-
der different pollution conditions.

Lidar Level Fitted curve N R? RMSE
MSD L3 y=0.938x+0.825 61 0.82 0.66
L2 y=0.896x +0.829 61 0.65 0.47
L1 y=0.996x +0.599 61 0.76 0.79
CUIT L3 y=0.622x +2931 61 0.24 1.96
L2 y=0.692x +2.499 61 0.30 1.45
L1 y=0.94x+1.12 61 0.35 1.43
WP L3 y=1451x4+0.346 61 0.04 2.89

L2 y=1129x+0.665 61 0.17 1.39
L1 y=0.723x+2.545 61 032 1.36

of both instrument specifications and ambient aerosol char-
acteristics. Overall, the observed performance improvement
at L3 (35-50 ugm~3) concentrations reflects that the Lidar
requires a certain amount of aerosol backscattering.

3.3 PBLH’s impact on Doppler wind lidars

Aerosol concentrations exhibit a pronounced inverse correla-
tion with PBLH variations. During daytime, convective up-
drafts enhance PBLH development, which promotes vertical
diffusion of aerosols and reduces their near-surface concen-
trations (Paul and Das, 2022; Su et al., 2018). This section
quantifies explicitly the sensitivity of Lidar wind field re-
trievals to PBLH stratification. Performance evaluations of
three Lidar systems (MSD, CUIT, and WP Lidar) against ra-
diosonde measurements were conducted across PBLH and
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CBH used by the ERAS datasets. The time resolution of the
PBLH and CBH of the ERAS reanalysis data is one hour. The
three Lidars matched the time and altitude through the slid-
ing window method. Because of the linear relationship, the
Pearson correlation coefficient (PCC) was chosen to repre-
sent the correlation with the radiosonde. As shown in Fig. 6,
the MSD Lidar exhibited a correlation higher than 0.85 with
radiosonde wind speed across all height intervals, demon-
strating strong accuracy and insensitivity to PBLH varia-
tions. However, its wind direction correlation notably de-
creased to 0.53 within the 1500-1750 m PBLH range, likely
attributable to enhanced aerosol-layer complexity at elevated
mixing heights and the small samples in this range (N = 41).
Although the sample size within this PBLH is relatively
less, wind speed was unaffected; only the poor performance
in wind direction was particularly prominent. This may be
due to complex turbulent structures and aerosol distributions
leading to wind direction instability in high PBLH regions
(Lothon et al., 2009; Su et al., 2020; Yamartino, 1984). Out-
side this interval, wind direction correlations remained robust
(> 0.70), indicating superior overall performance. The CUIT
Lidar showed a wind speed correlation generally above 0.7,
its performance was optimal in the 500-750 m PBLH range
(pws = 0.92, pwp = 0.75), but its wind speed decreased to
0.6 at a PBLH of 1000-1250 m. The wind direction corre-
lation dropped below 0.4 when PBLH exceeded 1500 m, re-
flecting limitations in high-altitude detection. The WP Lidar
showed significant deficiencies in wind speed detection, with
correlations below 0.72 across all height intervals, and its
performance declined notably with increasing PBLH.
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Figure 6. Comparison of (a) WS and (b) WD between radiosonde
data and CUIT Lidar, MSD Lidar, and WP Lidar at different PBLH;
Color bar represents Pearson correlation coefficient.

This may be attributed to the principle of DWL, which
posits that backscattering signals from aerosols play a criti-
cal role in wind speed measurement, particularly within the
boundary layer and lower troposphere (He et al., 2022b; Li
and Yu, 2018; Tan et al., 2019). The performance of Li-
dar is influenced by the distribution of particles, which is
affected by different PBLH levels. At lower altitudes (<
750 m), all three Lidars demonstrated optimal performance,
likely due to stable wind speed and direction, and minimal
turbulence within this range, resulting in superior Lidar mea-
surement accuracy. Conversely, the wind direction measure-
ment performance declined substantially at higher altitudes
(> 1500 m).

To further investigate the influence of PBLH on Lidar per-
formance, the vertical relationship between CBH and PBLH
(both derived from ERAS data) was introduced to analyze
atmospheric impacts on Lidar measurements. As illustrated
in Fig. 6, two distinct PBLH ranges, 1000—1250 and 500—
750 m, were selected to examine contrasting Lidar perfor-
mance (superior vs. inferior). The WS and WD performance
of three Lidars under varying CBH and PBLH conditions is
summarized in Table 4.

When PBLH was elevated (1000-1250 m) with low clouds
(CBH < 1km), the PCCs for MSD are 0.85 (WS) and
0.93 (WD). Under shallow PBLH (500-750 m) with higher
clouds (CBH > 750m), MSD exhibited significantly im-
proved PCCs of 0.97 (WS) and 0.98 (WD), maintaining its
superior performance. Notably, MSD and CUIT Lidars dom-
inated in WS correlation (PCCs: 0.85 and 0.59, respectively)
under high PBLH conditions (1000-1250 m, CBH < 1 km),
which is similar to Fig. 6. In this case, the coupling ra-
tio between cloud and PBLH is as high as 90 % (Su et al.,
2022), the atmosphere is usually accompanied by higher rel-
ative humidity (Liu, 2019), the turbulent mixing effect in
the boundary layer is enhanced, and the vertical distribution
of aerosols becomes complicated, all of which exacerbated
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Table 4. The WS and WD performance of three Lidars under vary-
ing CBH and PBLH conditions.

Condition PBLH CBH MSD CUIT WP
A 1000-1250 > 1250 0.82 041 057
<1000 0.85 059 029

500-750 >750 097 048  0.64

<500 091 0.85 0.80

WD 1000-1250 > 1250 0.76 055 052
<1000 0.93 052 028

500-750 >750 0.98 0.65 0.59

<500 0.65 042 028

Lidar signal interference. Conversely, PBLH was elevated
(500-750 m) with high clouds (CBH > 750 m), WD corre-
lations dominated across all three Lidars (PCCs: 0.98, 0.65,
and 0.59). The decoupling between clouds and the boundary
layer fostered a stable vertical structure, confining aerosols
and turbulence predominantly below the PBLH. This stratifi-
cation minimized cloud-induced signal attenuation, enabling
clearer detection of vertical wind profiles.

3.4 Analysis of correction results of random forest
algorithm

The IF filtering identified additional data gaps in both CUIT
and WP Lidar datasets. To maintain temporal continuity,
anomalous values were replaced with NaN rather than row
deletion. Five interpolation algorithms — CSI, BPNN, GA, k-
NN, and RF — were implemented to enhance data reliability.
Fig. 7 shows the comparison of the Receiver Operating Char-
acteristic (ROC) curves of five optimization algorithms. The
Area Under the Curve (AUC) metrics, accompanied by 95 %
confidence intervals (CI) derived from bootstrap resampling
(n = 1000). Random forest (RF_CUIT and RF_WP) demon-
strated superior performance with the AUC of 0.93 (95 %
CI [0.91-0.94]) and 0.90 (95 % CI [0.89-0.91]), underscor-
ing its robustness in modeling non-linear relationships and
high-dimensional atmospheric data. This aligns with its in-
herent capability to handle complex interactions within lidar-
derived wind profiles. CSI’s inherent locality is characterized
by using cubic functions to connect adjacent points (Komsta,
2010). This approach entails global fitting, thereby rendering
any alteration in a single data point capable of affecting the
entire curve. This heightened sensitivity can make the spline
curve more uneven and challenging to manipulate, particu-
larly for functions comprising linear segments or sudden al-
terations (Maglevanny and Smolar, 2016). Wind speed may
exhibit nonlinear or abrupt variations over time and space
under higher altitudes or complex airflow conditions. Cubic
spline interpolation struggles to capture such non-smooth dy-
namic changes effectively, leading to increased interpolation
errors. For BPNN, the sufficiency and efficiency of the train-
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Figure 7. The ROC Curves between three Lidars and radiosonde after interpolation using five algorithms.

ing set are critical factors influencing generalization (Singh
et al., 2023). With limited wind speed data, there is a risk of
overfitting or underfitting, which may lead to unstable per-
formance. Due to the inherent randomness of genetic oper-
ations, the GA does not always produce optimal solutions,
although it can find suboptimal solutions within a reasonable
time (Jurasovic and Kusek, 2010). While GA excels in global
optimization, its iterative nature might hinder real-time pro-
cessing efficiency, a critical factor for operational Lidar sys-
tems. The k-NN algorithm is sensitive to local data struc-
tures, performing poorly in regions with sparse observations
or high volatility (Gupta et al., 2020). The RF algorithm can
handle high-dimensional datasets and capture complex non-
linear relationships effectively (Grimm et al., 2008; Hore-
mans et al., 2020). RF minimizes the risk of overfitting, re-
sulting in more reliable predictions by aggregating multiple
decision trees (Grimm et al., 2008; Horemans et al., 2020; Li
etal., 2023). Regarding interpolation, RF can effectively han-
dle missing values, ensuring that the model remains robust
and accurate (Xu et al., 2024). The iterative hyperparame-
ter tuning process optimized RF’s performance, confirming
its suitability for DWL data correction under complex atmo-
spheric conditions.

In summary, all algorithms significantly outperformed the
random guess baseline (AUC = 0.5), and the confidence in-
tervals across all methods are narrow (< 0.04 AUC range),
confirming their utility and reliability in wind data refine-
ment. recommended. RF is recommended for Lidar applica-
tions, prioritizing accuracy due to its high AUC and stable
CI. These findings highlight the importance of algorithm se-
lection tailored to specific operational requirements in atmo-
spheric remote sensing.

To achieve optimal interpolation results, a parameter grid
was defined with “mtry” and “ntree”. “mtry” represents the
number of features considered at each split in the RF, with
mtry € [1,10], and “ntree” represents the number of trees,
with ntree € [100, 500]. The parameter grid was iteratively
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traversed in the training function to identify the optimal pa-
rameter configuration, with a fixed random seed ensuring
computational reproducibility.

Figure 8a shows the scatter plot of wind speed data after
removing anomalies using the IF and interpolating missing
values with RF. Initial CUIT Lidar wind speed data exhibited
poor agreement with radiosonde measurements (R? = 0.42).
Following anomaly removal via the IF and RF-based interpo-
lation, correlation improved significantly (R = 0.65). The
RF interpolation led to a more complete data distribution,
with missing values being compensated for.

Figure 8b shows the distribution of differences between
CUIT Lidar and radiosonde data after algorithmic process-
ing. The original CUIT data (green) exhibited a wide dis-
tribution with a maximum difference of 34 ms~!. The peak
of the difference was not concentrated near Oms~!. After
filtering the data with IF (blue), anomalies were removed,
and the differences became more concentrated within —3—
3ms~!. The IF effectively identifies and outliers, allowing
the remaining data to better align with the radiosonde trend.
After optimizing and supplementing the data using the RF
algorithm (orange), the wind speed data became closer to the
radiosonde data, with the peak difference aligning at Oms~".
The range of the difference distribution further narrowed,
demonstrating a high consistency between the interpolated
CUIT Lidar data and the radiosonde data. The orange his-
togram exhibited significantly superior symmetry and con-
centration compared to the blue histogram, RF not only re-
paired missing values but also preserved the global character-
istics and trends of the data. In summary, the enhanced peak
concentration of the difference distribution validates the ap-
plicability and reliability of the RF model in correcting non-
linear data. These improvements are particularly pronounced
in low-altitude regimes (< 1km), where boundary layer tur-
bulence amplifies measurement uncertainties.
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and (b, d) a profile plot from a single radiosonde observation.

3.5 Aeolus verification

As shown in Fig. 9, comparative analysis of Aeolus satel-
lite products revealed enhanced wind speed retrieval preci-
sion under cloudy conditions (Mie-channel R? =0.90) com-
pared to clear-sky retrievals (Rayleigh-channel R* = 0.88.
This performance differential stems from amplified backscat-
ter signals through cloud-aerosol interactions, underscoring
the critical role of atmospheric particulates as natural scatter-
ing tracers for optimizing spaceborne wind profiling.

https://doi.org/10.5194/amt-18-4755-2025

The Aeolus satellite exhibits high consistency with ra-
diosonde data in both channels, indicating the feasibility
of using Aeolus for Lidar data validation. A case for a ra-
diosonde observation on 17 June 2021, as shown in Fig. 9a
and b, indicates that CUIT Lidar data had a high proportion
of missing values, with a missing rate of up to 80 %. How-
ever, in this case, the application of RF for interpolation led to
a substantial enhancement in the congruence between CUIT
Lidar and radiosonde data, particularly within the 0.5-1 km
altitude range. During the radiosonde observation on 18 June
in Fig. 9c and d, the IF successfully identified and removed
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anomalies in the 200-600 m range. Following RF interpola-
tion, the correlation between CUIT Lidar and Aeolus satellite
data exhibited a substantial enhancement, with R? reaching
0.83. This outcome signifies that this method can effectively
enhance data quality and accuracy, even in anomalies. But
that reflects agreement on the scale resolvable by Aeolus,
not necessarily the full resolution of the Lidar. Integrating
Aeolus validation and RF-based correction establishes a ro-
bust framework for enhancing Lidar data reliability. These
findings validate the ability of machine learning for complex
atmospheric data reconstruction.

4 Conclusions

This study was conducted at the Nanjiao Observatory in Bei-
jing from 9 June to 31 August 2021, using three ground-
based DWLs (MSD, CUIT, and WP) and simultaneous ra-
diosonde data to evaluate the performance of the Lidars un-
der different conditions.

The results show that all Lidars demonstrate strong con-
cordance with radiosonde wind speed measurements at the
low altitude of 600 m. As altitude increases, the deviations
in wind speed and direction from the three Lidars gradu-
ally increase. The RMSE of wind speed for MSD Lidar is
1.11ms™!, 445ms~! for CUIT Lidar and 5.15ms™! for
WP Lidar. In terms of wind direction, MSD Lidar exhibited
the most accurate performance, with an RMSE of 49.83°,
CUIT Lidar with an RMSE of 82.88°, and WP Lidar exhib-
ited the most significant deviation with an RMSE of 84.87°.
Among the three Lidars, MSD Lidar exhibited the highest
accuracy in wind speed and wind direction measurements,
closest to radiosonde measurements.

The correlation and accuracy of wind speed measurements
from MSD Lidar with radiosonde data were optimal under
varying pollution conditions, as evidenced by R? values of
0.76, 0.65, and 0.82 for L1, L2, and L3 pollution conditions,
and RMSE values of 0.79, 0.47, and 0.66 ms—!, respectively.
Additionally, under light pollution conditions with aerosol
mass concentrations of 0—15pgm™3, MSD Lidar exhibited
the highest correlation with radiosonde wind speed, demon-
strating its intense sensitivity to aerosol mass concentrations.
When the aerosol concentration in the lower atmosphere in-
creases to a certain level (40-50 ugm~3), Lidar can facili-
tate better signal reception by scattering improvement. Con-
sequently, it is imperative to consider the impact of vary-
ing aerosol mass concentrations when detecting low-altitude
wind fields to ensure the optimal performance of Lidar in-
struments.

The PBLH significantly influences Lidar performance,
with the most effect observed at PBLH of 1000-1250 m,
and the optimal performance at lower altitudes (500-750 m).
MSD and CUIT Lidars dominated in WS correlation (PCCs:
0.85 and 0.59, respectively) under high PBLH conditions
(1000-1250 m, CBH < 1km). The turbulent mixing effect
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in the boundary layer is enhanced, and the vertical distri-
bution of aerosols becomes complicated, which exacerbates
Lidar signal interference. Conversely, PBLH was elevated
(500-750 m) with high clouds (CBH > 750 m), WD corre-
lations dominated across all three Lidars (PCCs: 0.98, 0.65,
and 0.59). The decoupling between clouds and the boundary
layer fostered a stable vertical structure. This stratification
minimized the cloud-induced signal attenuation.

Five algorithms interpolation (CSI, BPNN, GA, k-NN, and
RF) was applied to CUIT and WP Lidar, the RF demon-
strated superior performance with the AUC of 0.93 (95 %
CI [0.91-0.94]) and 0.90 (95 % CI [0.89-0.91]) in the ROC
curves. And RF-based correction of CUIT enhanced R? from
0.42 to 0.65, bringing it into closer alignment with the ra-
diosonde data. This outcome underscores the efficacy of the
RF correction algorithm, its reliability, and its aptitude for
managing high-dimensional and incomplete data.

The cloud cover has a significant impact on the DWL mea-
surement by the comparative analysis with the Aeolus satel-
lite product, the results revealed enhanced wind speed re-
trieval precision under cloudy conditions (Mie-channel R =
0.90) compared to clear-sky retrievals (Rayleigh-channel
R? = 0.88). In the case of severe anomalies, the correlation
between CUIT Lidar and satellite data is significantly en-
hanced after RF interpolation, and R? reaches 0.83.

Overall, this study sheds light on the different factors af-
fecting the DWLs of wind speed and wind direction, includ-
ing different aerosol mass concentrations, PBLH and CBH
conditions, Machine learning, and Satellites, and the combi-
nation of IF and RF algorithms can effectively improve the
quality and accuracy of wind field data for the future research
of low-altitude detection.
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