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Abstract. Understanding PM2.5 variability at fine scale is
crucial to assess urban pollution impact on the population
and to inform the policy-making process. PM2.5 in-situ mea-
surements at ground level cannot offer gapless spatial cover-
age, while current satellite retrievals generally cannot offer
both high-spatial and high-temporal resolution, with night-
time estimation posing further challenges. This study tack-
les these difficulties, introducing an innovative deep learning
data fusion method to estimate hourly PM2.5 maps using a
grid with cell size 100 m× 100 m on urban areas. We com-
bine low resolution geophysical model data, high resolution
geographical indicators, PM2.5 in-situ ground stations mea-
surements and PM2.5 retrieved at satellite overpass. To si-
multaneously treat spatial and temporal correlations in our
data, we deploy a 3D U-Net based neural network model.
To evaluate the model, we select the city of Paris, France,
in the year 2019 as our study region and time. Quantitative
assessment of the model is carried out using the ground sta-
tion data with a leave-one-out cross-validation approach. Our
method outperforms MERRA-2 PM2.5 estimates, predict-
ing PM2.5 hourly (R2

= 0.51, RMSE= 6.58 µg m−3), daily
(R2
= 0.65, RMSE= 4.92 µg m−3), and monthly (R2

= 0.87,
RMSE= 2.87 µg m−3). The proposed approach and its pos-
sible future developments can be highly beneficial for PM2.5
exposure and regulation studies at fine suburban scale.

1 Introduction

One of the key indicators in air quality monitoring and regu-
lation is PM2.5 which is the concentration of particulate mat-
ter (PM) with an aerodynamic diameter less than 2.5 µm in

cubic meter of air (µg m−3). PM2.5 has different chemical
compositions and its emissions originate from different natu-
ral and anthropogenic sources such as fuel combustion, wild-
fires, and sea salt. From the epidemiological point of view,
high PM2.5 levels have been connected to many illnesses,
such as stroke and cardiovascular and respiratory diseases
(Pope and Dockery, 2006; Cohen et al., 2017; Thangavel
et al., 2022). The pathogenicity of fine particulate matter pol-
lution makes it one of the biggest environmental health risks
as over 90 % of the world’s population lives in areas with
annual mean PM2.5 levels exceeding the new WHO 2021
air quality guideline of 5 µg m−3 (Health Effects Institute,
2019).

PM2.5 and other pollutants can be measured with high ac-
curacy by in-situ ground station networks. However, the ex-
isting monitoring sites are sparsely located and mostly in de-
veloped countries, typically few stations in a large metropoli-
tan area producing accurate measurements representing the
conditions in the proximity of the ground stations. Despite
some spatial interpolation techniques could be used (Deng,
2015; Koo et al., 2024) to estimate PM2.5 over larger urban
areas from the point-like measurements obtained by these
ground stations, they do not alone permit accurate spatially
distributed estimates for epidemiological studies and regula-
tion at a suburban level scale. Aiming at a more appropriate
spatial coverage and resolution, PM2.5 can also be estimated
by using airborne remote-sensing techniques, in particular
satellite retrievals. In satellite remote sensing, PM2.5 esti-
mates are typically based on Aerosol Optical Depth (AOD),
a quantity expressing electromagnetic radiation extinction
through a column of air at a given wavelength. AOD is a
columnar optical quantity while PM2.5 is a concentration of
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particles at ground level. For AOD to PM2.5 conversion, the
estimation utilizes auxiliary measurement and model data
such as aerosol vertical distribution and metereological vari-
ables (Chu et al., 2016; Tang et al., 2024). Nowadays many
AOD satellite products exist with different spatial and tem-
poral resolution. Different studies used low orbiting satellites
(e.g. MODIS product; Levy et al., 2013) that have one or
two overpasses per day or geostationary satellites (e.g. AHI
product; Bessho et al., 2016) giving sub-hourly estimates.
Instruments on low orbiting satellites have generally higher
spatial resolution than geostationary ones. Although giving
high spatial resolution PM2.5 estimates, low orbiting satel-
lites products have low temporal resolution (1–2 snapshots
per day) and retrieving information on night-time aerosols is
a challenging task for the development of geostationary satel-
lites products. Reanalysis models such as MERRA-2 (Ran-
dles et al., 2017) and CAMS (Inness et al., 2019), and fore-
cast models such as GEOS-CF (Keller et al., 2021) offer
hourly PM2.5 available globally. However, the spatial reso-
lution of these PM2.5 maps is low (tens of kilometers) for
higher resolution studies such as distribution of pollution at
suburban levels.

In recent years, numerous machine learning approaches
have been investigated and shown to be effective for air qual-
ity monitoring and PM2.5 forecasting. Several deep learning
models leverage both spatial and temporal dependencies in
meteorological and aerosol data to enhance prediction per-
formance. For instance, a study conducted across the Greater
Los Angeles area employed Graph Convolutional Networks
(GCNs) and Convolutional Long Short-Term Memory (Con-
vLSTM) models to integrate satellite remote sensing data
with ground-based monitoring, enabling accurate prediction
of PM2.5 concentrations (Muthukumar et al., 2022). Another
study focused on the Seoul region combined air quality and
meteorological data using kriging interpolation and a hy-
brid ConvLSTM-DNN model to generate PM2.5 concentra-
tion maps (Koo et al., 2024).

To estimate PM2.5, we recently proposed a method
(Porcheddu et al., 2024) leveraging the Sentinel-3 POP-
CORN AOD product (Lipponen et al., 2022). The POP-
CORN AOD is a post-process corrected version of Sentinel-3
SYNERGY land AOD, characterized by a high spatial res-
olution on a grid with cell size 300 m× 300 m and derived
using a feed-forward neural network trained on AERONET-
collocated data. This enhanced AOD product provides ac-
curate spectral aerosol information for five regions of inter-
est (Central Europe, Eastern USA, Western USA, Southern
Africa, and India) for the year 2019, making it a valuable in-
put for air quality estimation models. To post-process correct
the MERRA-2 AOD-to-PM2.5 conversion ratio, we deployed
an ensemble of deep neural networks for a fusion of collo-
cated ground station in-situ PM2.5 data, MERRA-2 reanaly-
sis model AOD and PM2.5 data, spectral AERONET AOD,
satellite-observed spectral top-of-atmosphere reflectances,
and meteorology data. We also used various high-resolution

geographical indicators representing, e.g., population den-
sity and land surface elevation. The deep learning model
was used for estimation of PM2.5 on a grid with cell size
100 m× 100 m from low orbiting satellite images, producing
1–2 daily per overpass snapshots of high-resolution PM2.5
data where AOD data was available.

In this study, we have two research questions. How could
we obtain PM2.5 maps offering large (e.g. metropolitan level)
spatial coverage with both high spatial and temporal resolu-
tion? Considering satellite derived PM2.5 maps where AOD
data is missing, e.g. because of cloud covering, how can we
estimate PM2.5 at those locations? To address these ques-
tions, we propose a novel deep learning based data fusion
method to produce hourly PM2.5 estimates on a grid with
cell size 100 m× 100 m. We use a 3D U-Net architecture
(Çiçek et al., 2016) to produce 24 h sequences of hourly
PM2.5 maps. The model is trained to yield a small L2-misfit
with the PM2.5 estimates obtained during satellite overpasses
in our previous study (Porcheddu et al., 2024), as well as with
available ground station data. As inputs, we utilize 24 h se-
quences of geophysical model data (MERRA-2) providing
low-resolution maps of meteorological and aerosol-related
indicators (1 h temporal resolution), and high-resolution geo-
graphical indicator maps (1-month temporal resolution). This
allows the model to generate hourly PM2.5 outputs for the en-
tire 24 h period covered by the inputs. The model is trained
on data for the year 2019 in the city of Paris, France, and as-
sessed against ground station data with a leave one out cross
validation approach.

2 Data

This section describes the data used in the proposed deep
learning based data fusion for high resolution PM2.5. The
proposed approach is tested using data from Paris, France,
for the year 2019. NOODLESALAD PM2.5 and OpenAQ
PM2.5 data are used as target to train and test our model.
MERRA-2 data and high-resolution geographical indicators
are utilized as input features. Since our satellite-based target
variable (NOODLESALAD PM2.5) is represented on a grid
with cell size 100 m× 100 m, we train the model on the same
grid, considering that some input features are on coarser and
others on finer spatial representations. With this approach
the model represents spatial patterns at the target data scale
when fusing information from input data with different spa-
tial scales. All the input features are listed in Table A1 in
the Appendix. It is important to notice that other similar data
sources could be utilized with our methodology.

2.1 NOODLESALAD PM2.5

NOODLESALAD PM2.5 (Porcheddu et al., 2024) retrievals
are obtained applying a deep learning based post-process cor-
rection approach to the MERRA-2 AOD-to-PM2.5 conver-
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sion ratio. The post-process corrected AOD-to-PM2.5 con-
version ratio is utilized to map high resolution POPCORN
SENTINEL-3 SYNERGY AOD estimate (Lipponen et al.,
2022) to high resolution PM2.5 estimate. The post-process
correction of MERRA-2 AOD-to-PM2.5 conversion ratio is
carried out deploying an ensemble of fully-connected feed-
forward neural networks and a fusion of surface in-situ PM2.5
observations, MERRA-2 reanalysis model AOD and PM2.5
data, spectral AERONET AOD, satellite-observed spectral
top-of-atmosphere reflectances, meteorology data, and var-
ious high-resolution geographical indicators. The ensemble
technique leads to a distribution of predictions for a sin-
gle PM2.5 estimate. The median of the ensemble is con-
sidered as the PM2.5 estimate and the width of the distri-
bution is regarded as an uncertainty related to the machine
learning model training (model uncertainty). NOODLE-
SALAD PM2.5 offers high resolution on a grid with cell
size 100 m× 100 m and is currently available for Sentinel-
3A and 3B overpasses, covering Central Europe for the year
2019. The two Sentinel-3 satellites currently flying provide
revisit times of less than two days for OLCI and less than
one day for the SLSTR instrument at equator. Swath width
of the OLCI instrument is 1270 km. SLSTR swath width is
1420 km for the nadir view and 750 km for the oblique view.

Evaluation metrics for PM2.5 at satellite overpass (R2
=

0.55, RMSE= 6.2 µg m−3) and PM2.5 monthly averages
(R2
= 0.72, RMSE= 3.7 µg m−3) show good agreement be-

tween NOODLESALAD PM2.5 and OpenAQ ground sta-
tions data (Porcheddu et al., 2024). Given the better spatial
coverage compared to ground stations and the high spatial
resolution at satellite overpass, we utilize NOODLESALAD
PM2.5 to inform the model about PM2.5 fine spatial distri-
bution. In this work, we consider NOODLESALAD PM2.5
retrievals in Paris, France, in 2019, and utilize them as part
of the target data to train our model.

2.2 OpenAQ

OpenAQ (https://openaq.org/, last access: 13 April 2023) is
an open-access database for ground stations air quality data.
In this study, we utilize OpenAQ as our source for surface in-
situ PM2.5 observations. OpenAQ offers pointwise air quality
measurement data from thousands of stations. The temporal
resolution of the data varies by station, with 1 h and daily
observations commonly available. Figure 1 shows a map of
OpenAQ stations that provide hourly data within our region
of interest. We discard PM2.5 observations when they are
greater than the calculated upper fence Q3+6× (Q3−Q1)
(where Q3 and Q1 are respectively the third and first quar-
tiles of the PM2.5 distribution), regarding them as outliers.
This step was carried out to filter extreme outliers, which can
be caused by exceptional events or ground station malfunc-
tions.

Figure 1. Map of OpenAQ stations in the region of interest (Paris,
France).

2.3 MERRA-2

The Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA-2), is NASA’s reanalysis
model (Randles et al., 2017). MERRA-2 provides model data
for various variables in meteorology, aerosols and air quality.
MERRA-2 has a spatial resolution of 0.5°× 0.625°, which
is approximately 50 km in the Central Europe region. The
time-varying variables from MERRA-2 that we use have a
temporal resolution of 1 h, with both instantaneous and time-
averaged values available depending on the variable and data
product. Appendix A contains a list of all MERRA-2 vari-
ables that are used as inputs in the proposed approach.

In addition to the variables contained in the MERRA-2
data, we calculate certain input variables from the MERRA-2
meteorological and aerosol data. These data are defined as:

– Relative humidity (RH) at the surface. Equation
based on the Clausius-Clapeyron equation (see e.g.
Michaelides et al., 2019):

RH=0.263 ·PS ·QLML/exp
((

17.67

· (T2M− 273.15)
)
/(T2M− 29.65)

)
(1)

– Wind direction (WD10M) at 10 m:

WD10M= arctan(−V10M/U10M) (2)

– Wind speed (WS10M) at 10 m:

WS10M=
√

U10M2+V10M2 (3)
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– PM2.5 at surface: (Buchard et al., 2016)

PM2.5 =
(
1.375 ·SO4SMASS+ 1.4 ·OCSMASS

+BCSMASS+DUSMASS25

+SSSMASS25
)
· 109 (4)

– AOD-to-PM2.5 ratio η:

η =
PM2.5

TOTEXTTAU
(5)

2.4 High-resolution geographical indicators

All geographic variables with the original resolution larger
than 100 m were regridded to a common spatial grid with a
resolution of 100 m using the Universal Transverse Merca-
tor (UTM) projection. Linear interpolation method was used
for continuous features and nearest neighbor interpolation for
categorical variables. This preprocessing ensured that all fea-
tures were spatially collocated prior to input into the deep
learning model.

2.4.1 OpenStreetMap roads

OpenStreetMap is an open-source project that contains high
spatial resolution map data. In our model, we utilize Open-
StreetMap roads as a data source for inputs. Specifically, we
calculate the distance to the nearest street or highway and
use this measurement as one of our input variables. The dis-
tances are computed on a grid with cell size 100 m× 100 m.
In OpenStreetMap, all paths, streets, and highways are cate-
gorized under “highways”. However, we only consider cer-
tain sub-classes that include roads and highways accessible
to car traffic, as these are potential sources of PM2.5 pollu-
tion (information from OpenStreetMap, 2023). Appendix A
lists all the OpenStreetMap road types used to determine the
distance to the nearest road.

2.4.2 NASA Black Marble Night Lights

NASA’s Black Marble is a night light product derived
from the Visible Infrared Imaging Radiometer Suite (VIIRS)
day/night band (DNB) radiances captured during night-time.
The DNB is extremely sensitive to light, allowing it to de-
tect even very low-intensity lights on Earth’s surface at night.
Most of these night-time lights are attributed to human activ-
ities. Since the distribution of night lights closely reflects hu-
man presence, we use NASA’s Black Marble Night Lights as
a proxy for population density, incorporating it as an input in
our models. We utilize Night Light data with a spatial reso-
lution of 500 m, based on the annual data product VNP46A4
(Wang et al., 2020).

2.4.3 MODIS land cover type

We utilize the MODIS MCD12Q1 land cover type data prod-
uct (Sulla-Menashe and Friedl, 2018) to generate input vari-

ables that represent the distances to the nearest International
Geosphere Biosphere Programme (IGBP) land cover types
(Loveland and Belward, 1997; Belward et al., 1999). The
MODIS MCD12Q1 data product has a spatial resolution of
500 m. A complete list of the IGBP land cover types can be
found in Appendix A.

2.4.4 Digital elevation model

We utilize the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) digital elevation model
(DEM) to represent land surface elevation (Fujisada et al.,
2011, 2012; NASA/METI/AIST/Japan Spacesystems and
US/Japan ASTER Science Team, 2019). The ASTER DEM
provides a spatial resolution of 1 arcsecond, which is approx-
imately 30 m.

3 Methods

Our objective is to estimate time series of surface PM2.5
maps (3D PM2.5 arrays, two spatial dimensions and one time
dimension) in the region of interest by fusion of satellite and
ground station measurement data, model data and different
indicators as inputs for the deep learning model. Since we are
dealing with unstructured data in the form of images, a well-
suited choice for the machine learning model is a Convolu-
tional Neural Network (CNN) (LeCun et al., 1989; Bishop
and Bishop, 2024). Furthermore, since both the input maps
and the output maps represent the same region of interest,
a U-Net model is an appropriate choice (Ronneberger et al.,
2015). As the data is in 3D, we choose a variant of U-Net
called 3D U-Net (Çiçek et al., 2016). The main difference
between conventional U-Net and 3D U-Net is that the lat-
ter deploys 3D convolutions instead of 2D convolutions for
processing 3D image data.

One must note that other network architectures could also
be utilized. One possibility would be, e.g., to use a U-Net
with convolutional Long Short-Term Memory (LSTM) lay-
ers (Shi et al., 2015). Convolutional LSTM layers behave as
LSTM layers, with the key difference of performing their in-
ternal operations as convolutions, consequently being a pos-
sible choice for processing time series of 2D images. Never-
theless, we decided to use 3D U-Net as it was found compu-
tationally feasible and less memory intensive for processing
the large data sets.

The input data consist of 4 dimensional arrays. The first
dimension represents time and has size 24 in order to con-
tain hourly information of a single day. The second dimen-
sion contains the different channels (i.e. the different input
features) and the remaining two dimensions are the spatial
dimensions with image size of 960× 960. The output is a
3 dimensional array containing 24 hourly PM2.5 maps in
the region of interest as 960× 960 images with pixel size
100 m× 100 m.
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Figure 2. Visualization of the applied neural network architecture.

The model architecture has been implemented using the
PyTorch framework (Paszke et al., 2019), a widely used li-
brary known for its flexibility and efficiency in developing
deep learning models. A detailed schematic of the model
architecture is provided in Fig. 2 to illustrate its structure
and components, whereas Fig. 3 visualizes the correspond-
ing data flow.

The model consists of a contracting path (the encoder) and
an expansive path (the decoder). On each level of the con-
tracting path, 3D convolutions combined with ReLU activa-
tions and max pooling layers help in finding relevant fea-
tures from the input maps, producing a new representation of
the input with lower spatial and temporal resolution with a
higher number of channels. The expansive path deploys 3D
nearest neighbour upsampling and 3D convolutions followed
by ReLU activations in order to recover a final output with
the same spatial and temporal resolution of the input. No-
tice the skip connections linking each contracting path level
to the corresponding expansive path level: from an intuitive
point of view, these are useful to exploit the fine details con-
tained in the input when generating the output. Finally, the
output layer is a 3D 1× 1× 1 convolution followed by Soft-
Plus activations in order to constrain the output to be a pos-
itive definite array. Please notice that when we talk about
3× 3× 3 convolution and 1× 1× 1 convolution, we are re-
ferring to the size of the convolution kernel/filter along the
depth, height, and width of the input volume. The number

of parameters involved in the convolution operation can be
obtained considering the number of input and output chan-
nels at a specific convolution layer (Fig. 2). When testing the
network architecture, various kernel sizes, internal activation
functions, and upsampling techniques were evaluated, but no
significant differences in performance were observed.

3.1 Loss function

We use the Mean Square Error (MSE) as the loss function in
the supervised regression problem of fitting the 3D U-Net
model to the training data. Ideally in clear sky conditions
for a satellite overpass, we would have a full PM2.5 map. In
ideal conditions for a single ground station, we would have
a full time series without missing data. However, in reality
satellite overpass data can lack information at some pixels,
e.g. cloud covering can hinder AOD retrievals, therefore hin-
dering PM2.5 estimates, and a ground station can malfunc-
tion, leading to missing data in the time-series of the station.
Furthermore, on a single day we usually have significantly
more PM2.5 pixel values coming from the satellite overpasses
than measured values from the ground stations. The ground
stations PM2.5 data are usually more accurate than satellite
estimate data and they are our only data source available
hourly. On the other hand, NOODLESALAD PM2.5 is our
data source providing information far from the ground sta-
tions at the time of satellite overpasses. Therefore, to take
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Figure 3. Visualization of the data flow in our method. Low spatial resolution (MERRA-2) data and high spatial resolution geographical
indicators are projected on a common grid, joined and utilized as model input. The model output consists of hourly PM2.5 maps.

the missing data and highly different number of satellite ver-
sus ground station data available into account, we consider
masking and weighting the data in the MSE loss function.

Let the batch size be denoted by B (with B = 4 for this
particular case) and define N = {1, . . .,960× 960} as the set
of all pixel indices. For each sample b in the batch, define
Hst,b ⊆ {1, . . .,24} as the set of hours during which ground
stations measurements are available, and Hop,b ⊆ {1, . . .,24}
as the corresponding set of hours for satellite overpasses. Let
yb,h,i represent the target measurement at sample b, hour h,
and pixel index i, with ŷb,h,i denoting the corresponding pre-
dicted value by the deep learning model. When a measure-
ment is not available (due to lacking data from a ground mon-
itoring station or failed satellite retrieval due to cloud cover-
ing) yb,h,i is encoded as 0, since this value does not naturally
occur in the dataset (PM2.5 is not zero in a realistic setting).
On the other hand, ŷb,h,i is always a positive real value by
choice, since SoftPlus was chosen as activation function for
our model output.

For each sample b and hour h, define:

Sst,b,h = {i ∈N | yb,h,i 6= 0 and h ∈Hst,b}, (6)

S̃op,b,h = {i ∈N | yb,h,i 6= 0 and h ∈Hop,b}, (7)

representing pixel indices where ground station measure-
ments (Sst,b,h) and satellite overpass measurements (S̃op,b,h)
are available. The sets Sst,b,h and Sop,b,h are defined sep-
arately for the ground stations and satellite overpass data.
From the satellite overpass data, we create a subset Sop,b,h ⊂

S̃op,b,h of data with 25 % of size of S̃op,b,h by uniform ran-
dom sampling of the pixels to be used in the minimization.
The random sampling is performed at each training step (for
every update of the network parameters) and can be seen
as an optimization technique analogue to batch shuffling.
This undersampling is beneficial for training on overpass es-
timates, especially given the substantial pixel count (nearly
1 million when all pixels provide valid measurements at over-
pass times).

The average losses for the ground stations and overpass
contributions are defined by summing over the respective sets
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of valid hours:

Lst,b = Cst,b
∑
h∈Hst,b

1
|Sst,b,h|

∑
i∈Sst,b,h

(yb,h,i − ŷb,h,i)
2 (8)

Lop,b = Cop,b
∑

h∈Hop,b

1
|Sop,b,h|

∑
i∈Sop,b,h

(yb,h,i − ŷb,h,i)
2 (9)

where Cst,b and Cop,b are factors depending on the sizes of
the sets Hst,b and Hop,b (defined respectively as |Hst,b| and
|Hop,b|). If these sets are empty, Cst,b and Cop,b are equal to
0, otherwise they correspond to 1

|Hst,b|
and 1

|Hop,b|
respectively.

Analogously, |Sst,b,h| and |Sop,b,h| represent the sizes of the
sets Sst,b,h and Sop,b,h.

We then define the sample-specific loss Lb as:

Lb =


Lst,b+Lop,b

2 , if Lst,b 6= 0 and Lop,b 6= 0
Lst,b, if Lop,b = 0
Lop,b, if Lst,b = 0

(10)

Finally, the overall loss for the batch is defined as:

L=
1
B

B∑
b=1

Lb (11)

This formalization provides the necessary structure to in-
clude both ground station and satellite overpass target data
within each batch. A schematic representation of the loss
function is presented in Fig. 4.

3.2 Model training

For each data sample, one or two target maps correspond to
the available satellite overpasses data (i.e. NOODLESALAD
PM2.5) while the others contain only ground stations data
(therefore 11 pixels for each map when data is available from
all the stations). In order to test the results from the network
training, we used leave-one-out cross-validation (CV) (i.e.
we removed one different station from each training and used
the data left out of training for testing purposes). Therefore,
we trained 11 different networks (one for each ground station
in the region of interest). Furthermore, the dataset has been
split into training set (approximately 80 % of the data sam-
ples) used for the optimization of the network weights and
validation set (approximately 20 % of the data samples) used
for early stopping of the optimization. The early stopping is
a form of regularization useful to avoid overfitting of the net-
work (Goodfellow et al., 2016; Bishop and Bishop, 2024).
It consists in keeping track of both the training error and
validation error with the objective of stopping the training
when the validation error starts to increase (i.e. when the net-
work stops to learn useful patterns and noise in the training
set starts to play a significant role). While early stopping is
not the only regularization technique applicable to train deep
learning models, it offers a good trade-off between model
performance and training time. We consider a patience pa-
rameter equal to 30, meaning that the training stops when

no improvement on the validation loss is recorded over 30
epochs. Since using a small batch size introduces fluctua-
tions in the loss during training, this choice of the patience
parameter is reasonable, as a lower patience value could pre-
maturely stop training and lead to underfitting.

We utilized the Adam algorithm (with learning rate equal
to 0.0001) and the custom loss function described in Sect. 3.1
to optimize the network model parameters.

4 Results

4.1 Overall performance and evaluation metrics

We considered a leave-one-out CV approach, training 11
models, each time leaving one station out of the training as
test station. The results of predicted PM2.5 at the locations of
the 11 AQ stations in Paris are shown in Fig. 5.

Different fidelity metrics (per each trained model) were
calculated to compare MERRA-2 estimates (orange bars)
and our model predictions (blue bars) to OpenAQ measure-
ments (ground truth). Correlation R2, Root Mean Square Er-
ror (RMSE) and Mean Absolute Error (MAE) values are
shown on the left, middle and right columns. These met-
rics are evaluated for hourly averages, daily averages and
monthly averages (estimated using the hourly averages) on
the top, middle and bottom row. The fidelity metrics aver-
ages show that our model clearly outperforms MERRA-2.
R2 CV averages for our model are 0.51 (hourly averages),
0.65 (daily averages) and 0.87 (monthly averages). R2 CV
averages for MERRA-2 are respectively 0.10, 0.18, and 0.42.
RMSE CV averages for our model are 6.58 µg m−3 (hourly
averages), 4.92 µg m−3 (daily averages) and 2.87 µg m−3

(monthly averages). The same metrics averages for MERRA-
2 are respectively 9.05, 7.04 and 4.08 µg m−3. MAE CV
averages for our model are 4.61 µg m−3 (hourly averages),
3.59 µg m−3 (daily averages) and 2.51 µg m−3 (monthly av-
erages). MAE CV averages for MERRA-2 are respectively
6.39, 5.14 and 3.30 µg m−3. We can notice from Fig. 5 that
our model outperforms MERRA-2 on all hourly and daily
value metrics, and in most monthly averaged with the excep-
tions that MERRA-2 has better monthly MAE for stations
5 and 11, better RMSE for station 11. The R2 values still
show a clear improvement of our model. For what regards
station 5, the better RMSE and worse MAE are due to the fact
that RMSE highlights outliers (i.e. MERRA-2 commits less
but bigger mistakes). Anyway, the important R2 values for
both station 5 and station 11 show that our model correctly
predicts the AQ trends better but is off mainly by a scaling
factor. From Fig. 1, one would expect some differences in
the performances at different ground stations, since the more
isolated is the station, the less information from surrounding
stations is present in the training data (we have ideally full
PM2.5 maps only once per day). Stations 1, 2, 10, and 11 are
clearly positioned outside the city center of Paris. Looking at
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Figure 4. Schematic representation of the loss function. Red squares represent available data points. White squares represent missing data.
Black arrows represent operations: these operations are performed using available data (red squares) and the pixels with missing data are
omitted.

the metrics for these stations, only the location of station 11
seems to have somewhat different prediction accuracy by our
model than the stations located in the city center. Although
we considered a relatively small dataset to train and test our
model, these results suggest it is not overfitting the training
data.

Figure 6 presents an example of model performance at
hourly resolution at Station 1 between 4 and 13 Decem-
ber 2019, compared against MERRA-2 and OpenAQ ob-
servations. The comparison illustrates that our model cap-
tures the observed variability more accurately than MERRA-
2. Figure 7 shows hourly PM2.5 concentration maps for the
Paris region on 6 December 2019, with spatial patterns that
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Figure 5. R2 (a, d, g), RMSE (b, e, h) and MAE (c, f, i) evaluation metrics resulting from the leave-one-out cross-validation per each test
station. The metrics have been calculated for hourly averages (a–c), daily averages (d–f) and monthly averages (g–i). Our model predictions
(blue bars) and MERRA-2 estimates (orange bars) are compared to the ground truth data (OpenAQ).

Figure 6. Comparison between hourly PM2.5 estimates from our model (blue), MERRA-2 (orange) and OpenAQ ground stations measure-
ments (black) at station 1. The period considered runs between 4 and 13 December 2019.
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Figure 7. PM2.5 map on 6 December 2019. The dots reprent PM2.5 measurements from OpenAQ ground stations.

agree well with OpenAQ station data. Zooming on these
hourly maps we can notice slight block artifacts arising from
MERRA-2 input low resolution. This effect could potentially
be mitigated via spatial continuity constraints (i.e. adding a
regularizer to the loss function) and will be considered in fu-
ture work.

4.2 Seasonal daily trends and monthly averages

Figure 8 shows daily cycle averages on the different seasons
(top and middle rows) and monthly averages (bottom row) of
2019 at the test station 1. Black lines represent the ground
station measurements, while orange lines and blue lines rep-
resent respectively MERRA-2 estimates and our model pre-
dictions. Focusing on the daily cycle averages, qualitatively
our model and MERRA-2 seem comparable for the spring
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Figure 8. PM2.5 daily cycle averages for the different seasons and monthly averages (at station 1). The black lines represent OpenAQ mea-
surements, the orange lines represent MERRA-2 estimates and the blue lines are predicted by our model. The evaluation metrics comparing
respectively MERRA-2 and our model to the ground truth (OpenAQ) are shown on the bottom-right.

seasons (March, April, May). The difference is evident on
the winter (December, January, February), autumn (Septem-
ber, October, November) and summer (June, July, August)
seasons. Especially on the summer season, our model im-
proves notably the accuracy and correlation over MERRA-2.
The improvement can be seen quantitatively looking at the
metrics on the bottom-right of Fig. 8 (here the estimates for
all the seasons have been taken into account in the calculation
of the evaluation metrics). Notice how the metrics values for
MERRA-2 and our model have been encoded with the same

colors of the legend. On the bottom-left of Fig. 8 we compare
monthly averages estimates. Again, the difference between
MERRA-2 and our model is evident. While MERRA-2 could
seem to give a good approximation to the PM2.5 annual av-
erage at the station, it is not able to capture the time series
trend. Our model improves notably from this point of view,
showing also improvements in accuracy. This is clear from
the metrics for monthly averages, where the R2 is more than
3 times higher for our model, while the RMSE and MAE
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Figure 9. Predicted PM2.5 seasonal averages maps by hour for the 2019 winter season (December, January and February) on the city of
Paris. The dots represent ground stations measurements. These plots are obtained considering the model trained leaving out station 1.

are about half of the respective errors in the MERRA-2 esti-
mates.

Figure 9 shows PM2.5 seasonal averages maps by hour
for the 2019 winter season (December, January, February)
predicted by our model on the city of Paris. The dots rep-
resent ground stations measurements. The general time se-
ries trend reflects the PM2.5 variations seen in Fig. 8 on the

top-left panel. The PM2.5 levels seem to decrease at day
time, and raise again at night time. This behaviour can be
expected and physically explained through boundary layer
height variations. Spatial variations of PM2.5 are reasonable
and in agreement with what found predicting PM2.5 levels
at satellite overpass (Porcheddu et al., 2024): the city center
and areas surrounding main highways are predicted as the
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Figure 10. Predicted PM2.5 monthly averages maps for the year 2019 on the city of Paris. The dots represent ground stations measurements.
These plots are obtained considering the model trained leaving out station 1.

most polluted areas. The maps shown in Fig. 9 are obtained
considering station 1 as test station.

The maps shown in Fig. 10 represent PM2.5 monthly av-
erages for the year 2019 predicted by our model on the city
of Paris. Dots represent ground stations measurementes. The
general time series trend reflects the content of the bottom-
left panel in Fig. 8 as expected: PM2.5 levels are higher

in colder months, while lower in warmer months. Again,
this temporal variation of PM2.5 could be explained through
boundary layer height variations and also residential heat-
ing plays an important role in winter. Spatial variations of
PM2.5 present the same structure already discussed before
for Fig. 9. Again, the maps shown in Fig. 10 are obtained
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Figure 11. Feature importance calculated as sum of the normalized absolute SHAP values for predictions at station 1.

considering station 1 as test station. The agreement with the
test station and training stations is generally good.

4.3 SHAP explainability

We employed the SHAP DeepExplainer to compute SHAP
values and assess feature importance for the model predic-
tions at station 1 (Lundberg and Lee, 2017). Due to com-
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putational constraints, the SHAP values were calculated us-
ing a smaller background dataset, with analysis conducted
on a subset of 90 randomly selected days. Feature impor-
tances were determined by summing the normalized absolute
SHAP values, and are shown in Fig. 11. As expected, T2M
(2 m air temperature) emerged as one of the most significant
predictors, consistent with prior findings. For instance, T2M
influences the temporal variability of PM2.5 through bound-
ary layer dynamics and contains information about seasonal
emission changes. Specific aerosol variables such as BCC-
MASS (Black Carbon Column Mass Density), could give the
model an idea of how much important black carbon concen-
tration is for the final PM2.5 estimate, but at the same time act
as proxy for other species related to black carbon emission
sources. Among the most important high resolution input
features, ASTERDEM (ASTER Digital Elevation Model)
and BlackMarble (NASA Black Marble Night Lights) offer
information about terrain topology and human activities lo-
cation. While the former could provide useful information
about aerosol transport, the latter could act as a proxy for
aerosol sources spatial distribution. More generally, aggre-
gating the feature importances in Fig. 11, one can estimate
the importance of athmosperic variables (35 %), aerosol vari-
ables (25 %) and high resolution indicators (40 %).

5 Conclusions

We developed a novel deep learning data fusion method
to estimate hourly PM2.5 on a grid with cell size
100 m× 100 m, utilizing low-resolution geophysical model
data, high-resolution geographical indicators, satellite PM2.5
retrievals and in-situ PM2.5 ground measurements. A 3D U-
Net based architecture was deployed to take into account
both spatial and temporal correlations in the data at hand.
The methodology was tested on data from Paris, France, for
the year 2019.

The model outperforms MERRA-2 PM2.5 estimates (our
starting point, utilized as model input) on all the evalua-
tion metrics considered. Our estimates are generally consis-
tent with the PM2.5 spatio-temporal variability assessed by
ground stations measurements. Our method seems promising
in answering our research questions: reliable gapless PM2.5
maps at fine scale in absence of AOD data, due to absence of
satellite overpass or due to failed AOD retrieval, seem possi-
ble.

Further improvements could be obtained by various
means. The method is flexible for what concern data sources,
as different data sources could be utilized as inputs, and tar-
gets in the training process. In particular, different satellite
PM2.5 sources could be considered in the training. So far, we
considered only NOODLESALAD PM2.5. In future studies,
we could take into account other satellite data at different
satellite overpass times and with different spatial resolution.
Considering that geostationary retrievals have high tempo-

ral resolution, we could also combine low orbiting instru-
ments and geostationary instruments to integrate all the avail-
able information both on the spatial and temporal dimen-
sions. Further, instead of relying solely on data, we could
introduce physical constraints in our loss function, push-
ing the model training to the space of physical solutions
assisted by differential equations. Physics Informed Neural
Networks (PINNs) (Raissi et al., 2019) have shown promis-
ing results in many areas of science and they can be a prac-
tical solution to achieve a deep learning based assimilation
model at fine scale. It is also important to address the is-
sue of data imbalance. The PM2.5 distribution in the train-
ing data is inherently skewed toward lower values, posing a
common challenge in training models. Additionally, satellite
retrieval maps (NOODLESALAD PM2.5) are more suscepti-
ble to cloud cover during winter, causing seasonal imbalance
to the training data. Expanding the dataset to include more
locations and years could help mitigate these issues and im-
prove model performance. We remark that assessment of the
credibility of the spatial features in high-resolution air pol-
lution mapping remains an important future topic. However,
this is not an straightforward task due to the lack of indepen-
dent ground based high-resolution data. At scales of single
cities, such local data could possibly be obtained from sep-
arate measurement campaigns (e.g. using drones) for short
time periods or low-cost sensor networks such as PurpleAir
which, however, may have somewhat limited accuracy.

In conclusion, given the encouraging results and possible
future developments, we believe our methodology could be
relevant for PM2.5 related exposure and regulation studies at
finer (suburban level) scale.
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Appendix A: Table with input features and lists of
variables used from datasets

Table A1. Table of input features for the model.

U10M V10M PS
T2M SO4SMASS OCSMASS
BCSMASS DUSMASS25 SSSMASS25
SO4CMASS OCCMASS BCCMASS
DUCMASS25 SSCMASS25 TOTEXTTAU
TOTANGSTR TOTSCATAU QLML
SURFACERH PM25 surface_to_column_ratio_PM25
ETA winddirection windspeed
ASTERDEM BlackMarble distancetoroad
distancetoroad_upwind_1 distancetoroad_upwind_2 distancetoroad_upwind_3
distancetoroad_upwind_4 distancetoroad_upwind_5 distancetoroad_upwind_6
distancetoroad_upwind_7 distancetoroad_upwind_8 distancetoroad_upwind_9
distancetoroad_upwind_10 distancetoroad_upwind_11 distancetoroad_upwind_12
distancetoroad_upwind_13 distancetoroad_upwind_14 distancetoroad_upwind_15
distancetoroad_upwind_16 distancetoroad_upwind_17 distancetoroad_upwind_18
distancetolandclass_1 distancetolandclass_2 distancetolandclass_3
distancetolandclass_4 distancetolandclass_5 distancetolandclass_6
distancetolandclass_7 distancetolandclass_8 distancetolandclass_9
distancetolandclass_10 distancetolandclass_11 distancetolandclass_12
distancetolandclass_13 distancetolandclass_14 distancetolandclass_15
distancetolandclass_16 distancetolandclass_17 landclass

A1 MERRA-2 variables

We use the following meteorology-related variables from the
MERRA-2 M2T1NXSLV dataset:

– PS: surface pressure (Pa)

– T2M: 2 m air temperature (K)

– U10M: 10 m eastward wind (m s−1)

– V10M: 10 m northward wind (m s−1)

We use the following meteorology-related variables from
the MERRA-2 M2T1NXFLX dataset:

– QLML: surface specific humidity (1)

We use the following aerosol and air quality related vari-
ables from the MERRA-2 M2T1NXAER dataset:

– BCCMASS: Black Carbon Column Mass Density
(kg m−2)

– BCSMASS: Black Carbon Surface Mass Concentration
(kg m−3)

– DUCMASS25: Dust Column Mass Density – PM2.5
(kg m−2)

– DUSMASS25: Dust Surface Mass Concentration –
PM2.5 (kg m−3)

– OCCMASS: Organic Carbon Column Mass Density
(kg m−2)

– OCSMASS: Organic Carbon Surface Mass Concentra-
tion (kg m−3)

– SO4CMASS: SO4 Column Mass Density (kg m−2)

– SO4SMASS: SO4 Surface Mass Concentration
(kg m−3)

– SSCMASS25: Sea Salt Column Mass Density – PM2.5
(kg m−2)

– SSSMASS25: Sea Salt Surface Mass Concentration –
PM2.5 (kg m−3)

– TOTANGSTR: Total Aerosol Angstrom parameter
[470–870 nm] (1)

– TOTEXTTAU: Total Aerosol Extinction AOT [550 nm]
(1)

– TOTSCATAU: Total Aerosol Scattering AOT [550 nm]
(1)
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A2 OpenStreetMap road types used to compute the
distance to the closest road

We use the following road types to compute the distance to
the closest road. The descriptions of the road types are ob-
tained from OpenStreetMap (2023).

– motorway: A restricted access major divided highway,
normally with 2 or more running lanes plus emergency
hard shoulder. Equivalent to the Freeway, Autobahn,
etc.

– trunk: The most important roads in a country’s system
that aren’t motorways.

– primary: The next most important roads in a country’s
system.

– secondary: The next most important roads in a country’s
system.

– tertiary: The next most important roads in a country’s
system.

– motorway_link: The link roads (sliproads/ramps) lead-
ing to/from a motorway from/to a motorway or lower
class highway. Normally with the same motorway re-
strictions.

– trunk_link: The link roads (sliproads/ramps) leading
to/from a trunk road from/to a trunk road or lower class
highway.

– primary_link: The link roads (sliproads/ramps) leading
to/from a primary road from/to a primary road or lower
class highway.

– secondary_link: The link roads (sliproads/ramps) lead-
ing to/from a secondary road from/to a secondary road
or lower class highway.

– tertiary_link: The link roads (sliproads/ramps) leading
to/from a tertiary road from/to a tertiary road or lower
class highway.

A3 IGBP land cover types

IGBP classification contains the following land cover types:

1. Evergreen needleleaf forests

2. Evergreen broadleaf forests

3. Deciduous needleleaf forests

4. Deciduous broadleaf forests

5. Mixed forests

6. Closed shrublands

7. Open shrublands

8. Woody savannas

9. Savannas

10. Grasslands

11. Permanent wetlands

12. Croplands

13. Urban and built-up

14. Cropland/natural

15. Snow and ice

16. Barren

17. Water bodies

Code and data availability. The OpenAQ data is open data
and available for download at https://openaq.org/ (last access:
13 April 2023). The OpenStreetMap data is open data and avail-
able for download at https://www.openstreetmap.org/ (last access:
13 April 2023). All the NASA data (MERRA-2, MODIS, ASTER
DEM) used in this work is open data and can be found and down-
loaded using the NASA Earthdata Search website at https://www.
earthdata.nasa.gov/ (last access: 13 April 2023). The NASA Black
Marble Night Lights data is available at https://blackmarble.gsfc.
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SALAD PM2.5) and code will be available from the authors on a
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