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Abstract. Satellite remote sensing of frozen hydrometeors in
deep convective systems is essential for understanding pre-
cipitation systems and the formation of upper-level clouds.
To reduce uncertainties in ice cloud microphysical properties
inside convective clouds, a combined use of millimeter-wave
sensors sensitive to frozen particles in deep convective clouds
is a promising strategy. This study uses the CloudSat Cloud
Profiling Radar (CPR) and the Global Precipitation Measure-
ment (GPM) Microwave Imager (GMI) to retrieve the verti-
cal profiles of ice water content (IWC), number concentra-
tion (Nt), and mass-weighted diameter (Dm). A new retrieval
method is developed by a combination of a deep neural net-
work (DNN) and an optimal estimation method (OEM). In
the first step of the algorithm, an initial guess is estimated by
DNN based on an a priori database, followed by the next step
where OEM seeks a more optimal frozen hydrometer profile.

The retrieval performance is evaluated against selected
match-up observations of CloudSat and GPM. The com-
bined use of CPR and GMI observations reduces retrieval
errors compared to the CPR-only observations. The retrieved
frozen hydrometer profiles excellently reproduce CPR re-
flectivity and GMI brightness temperatures (Tb) when com-
puted by forward simulations. The Dual-frequency Precipita-
tion Radar (DPR) reflectivity is also reasonably reproduced,
indicating some ability to retrieve large snow and graupel
particles detectable by the low-frequency radars. A signifi-
cant spread in simulated Tb is found for large ice water paths
(IWPs) among different ice habit models tested, of which the
optimal models are dendrite snowflake and soft sphere for
the ice density model used in this algorithm. The combined
algorithm developed by this work implies the potential of

passive and active millimeter-wave instruments for retrieving
multiple aspects of the cloud ice properties when combined
in tandem. Future work will incorporate new satellite mis-
sions, including EarthCARE Doppler millimeter-wave radar
and submillimeter-wave radiometers such as Ice Cloud Im-
ager.

1 Introduction

Frozen hydrometeors such as cloud ice, snow, and grau-
pel play a crucial role in tropical convective cloud sys-
tems, particularly those accompanied by intense rainfall and
widespread anvils. Deep convective clouds as often observed
in the tropics contain a significant amount of solid precipi-
tation particles aloft, which serve as the primary source of
heavy precipitation at the surface. Moreover, cirrus anvils
detrained from deep convection contributes to the formation
of nearly one-half of tropical upper-level clouds (Luo and
Rossow, 2004). These ice clouds in the tropical upper tropo-
sphere impose a significant radiative forcing in both short-
wave and longwave spectra, and the imbalance between the
shortwave and longwave effects depends on cloud micro-
physical properties (Hartmann and Berry, 2017; Ohno and
Satoh, 2018). The radiative forcing of clouds associated with
global warming is identified as one of the largest sources of
uncertainty in climate change predictions (IPCC, 2021). To
understand the formation processes of precipitation systems
in deep convective clouds and tropical upper-level clouds, it
is crucial to observationally clarify the properties of frozen
hydrometeors formed within convective clouds.
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Understanding the properties of frozen hydrometeors is
a significant challenge for both numerical modeling and
satellite observations. Among the general circulation models
(GCMs) used in IPCC assessments, significant discrepancies
in the global mean ice water path (IWP) have been reported,
resulting mainly from limitations in cloud parameterization
(Waliser et al., 2009). These discrepancies give rise to errors
in climate predictions and uncertainties in the cloud feed-
backs associated with global warming. High-quality global-
scale satellite observation data are instrumental for validat-
ing the climate models. However, the IWP estimates from
satellite observations, while relatively consistent in spatial
distribution, have significant discrepancies in absolute val-
ues among one another (Duncan and Eriksson, 2018; Elias-
son et al., 2011). The primary sources of these discrepancies
are believed to be the uncertainties in the cloud microphysi-
cal properties and differences in the sensor’s sensitivity to ice
particles (Duncan and Eriksson, 2018).

To reduce the uncertainty in cloud microphysical proper-
ties, a combined use of multiple sensors offers a promising
strategy. The signals observed by satellite sensors depend not
only on ice water content (IWC) but also on the cloud micro-
physical properties such as particle size distribution (PSD)
and particle shape. Constraining IWC and the cloud micro-
physical properties at the same time benefits from a syn-
ergy of multiple sensors with different measuring principles,
which could complement the technical limitations of individ-
ual sensors alone. Cloud ice observations have historically
begun with passive sensors in the visible, infrared (Heidinger
and Pavolonis, 2009), and microwave spectrum (Deeter and
Evans, 2000; Evans et al., 2012). In recent years, methods
for a combined use of radar and lidar have been developed
(Delanoë and Hogan, 2008, 2010; Deng et al., 2015, 2010;
Okamoto et al., 2003, 2010). Radar and lidar observations
of cloud ice, independently or in tandem, have led to sig-
nificant advancements in reducing the uncertainty of cloud
microphysical properties. However, the synergy of radar and
lidar observations is not optimal for the retrieval of frozen
hydrometer within thick clouds such as convective clouds
because the lidar signals experience severe attenuation. The
uncertainty in cloud microphysical properties within the con-
vective clouds remains a significant challenge.

This study explores a combined use of millimeter-wave
radar and radiometer measurements, which are both able
to penetrate through a deep cloud layer better than lidar
observations. The Cloud Profiling Radar (CPR) aboard the
CloudSat satellite and the Global Precipitation Measurement
(GPM) Microwave Imager (GMI) aboard the GPM core ob-
servatory are used in this study. GMI carries a series of chan-
nels from lower to higher frequencies (G-band) unlike the
single-frequency CPR. Since the scattering properties de-
pend on frequency and particle size, a combined use of CPR
and GMI observations at different wavelengths has the po-
tential to reduce uncertainties in the particle size distribution.
In addition, CPR captures the backscattered echoes from hy-

drometers, while GMI observes extinction (absorption and
scattering) signals. As shown previously (Liu, 2008), the
backscattering and extinction properties change differently
for various frozen particle shapes. Combining the different
measurement principles of CPR and GMI may help reduce
the uncertainties of particle shape. The objective of this study
is to develop an algorithm to retrieve the frozen hydrome-
ters combining CPR and GMI measurements, exploiting the
frequency and instrument dependencies of the microphysical
properties of ice particles.

Previous studies that have explored a combined use of a
cloud radar and a microwave radiometer largely relied on
simulated observations (Pfreundschuh et al., 2020) or air-
craft observations (Evans et al., 2005, 2012; Pfreundschuh et
al., 2022), whereas few studies analyze actual observations
from multiple satellite-borne sensors used in tandem. In this
study, a method is developed to retrieve the vertical profiles
of IWC, number of concentration (Nt), mass-weighted diam-
eter (Dm), and the associated uncertainties. Machine learning
and optimal estimation approaches are combined into the in-
version model. Section 2 details the satellite data and numeri-
cal models used in this study. Section 3 describes the method-
ology and flow of the retrieval algorithm. Section 4 evalu-
ates the algorithm performance and the synergy of CPR and
GMI observations. Section 5 validates the retrievals using
CloudSat and GPM observations and investigates preferred
assumptions of particle shape. Section 6 compares the esti-
mates from current algorithm with existing cloud ice prod-
ucts. Finally, Sect. 7 summarizes the findings and outlines
future prospects.

2 Data and model

2.1 Simultaneous observations from the GPM and
CloudSat satellites

The CPR aboard the CloudSat satellite is a nadir-looking W-
band radar. Table 1 outlines the specifications of the CPR.
The detailed vertical structure of hydrometeors can be de-
rived from 94 GHz radar reflectivity from the CPR. The GMI
aboard the GPM core satellite is a conically scanning mi-
crowave radiometer. As shown in Table 1, the GMI channels
span a wide frequency range from 10 to 183 GHz (Newell
et al., 2015). In this study, brightness temperature (Tb) at
frequencies of 89 GHz and higher is used since these fre-
quencies are sensitive to the microwave scattering by frozen
hydrometeors. The GMI has the highest spatial resolution
among space-borne passive microwave sensors equipped
with frequencies above 166 GHz. The inclined orbit of the
GPM satellite has occasional orbital overlaps with polar-
orbiting satellites including CloudSat, allowing for simulta-
neous observations at various locations from time to time.

For the evaluation of the combined GMI and CPR algo-
rithm being developed, we utilize a match-up observation
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Table 1. Specifications of the GPM/GMI and Cloud Sat/CPR.

Vertical Spatial
Freq. [GHz] Noise (dBZ) resolution (km) resolution (km)

94 −29 0.5 1.4

Freq. [GHz] Noise (K) Polarization FOV (km)

10.65 0.77 V H 20× 32
18.7 0.63 V H 12× 18
23.8 0.51 V 10× 16
36.64 0.41 V H 10× 15
89 0.32 V H 6× 7
166 0.70 V H 6× 6
183.31± 7 0.56 V 6× 5
183.31± 3 0.47 V 6× 5

dataset from GPM/GMI, Dual-frequency Precipitation Radar
(DPR), and CloudSat/CPR (Turk et al., 2021). This dataset
collects data when GPM and CloudSat fly over the same lo-
cation within a time difference of 15 min. This dataset con-
sists of observations from GMI, DPR, and CPR along Cloud-
Sat’s ground tracks as well as the collocated ECMWF atmo-
spheric state variable data (ECMWF-AUX). For comparison,
also used are an existing cloud and precipitation product (2C-
ICE and 2C-RAIN) derived from CPR and Cloud-Aerosol
LIdar with Orthogonal Polarization Lidar (CALIOP) aboard
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) satellite (Deng et al., 2015). De-
tailed information regarding the products and parameters
used in this study is provided in Table 2. The comparison
and evaluation of the current algorithm with these datasets
will be discussed in Sects. 4 and 5.

2.2 Cloud-resolving model

In this study, an a priori database constituted of cloud
and atmospheric variables is constructed with global cloud-
resolving simulations from the Nonhydrostatic ICosahe-
dral Atmospheric Model (NICAM). The development of
NICAM, initially begun by Tomita and Satoh (2004), is
currently maintained by the Atmosphere and Ocean Re-
search Institute (AORI) at the University of Tokyo, the Japan
Agency for Marine-Earth Science and Technology (JAM-
STEC), and the RIKEN Advanced Institute for Computa-
tional Science (RIKEN/AICS). NICAM has spawned numer-
ous studies on tropical atmospheric dynamics (Miura et al.,
2007; Miyakawa et al., 2014; Nakano et al., 2015). NICAM
outputs of an Madden–Julian Oscillation (MJO) event of-
fered a test bed for the assessment of cloud microphysi-
cal schemes in comparison with satellite observations (Ma-
sunaga et al., 2008). Technical details about the NICAM can
be found in Satoh et al. (2008, 2014). The version of NICAM
simulations adopted in this study was run using a single-
moment microphysical scheme with a horizontal resolution
of 14 km and a vertical resolution of 38 layers.

2.3 Forward model

The Joint Simulator for Satellite Sensors (J-sim) (Hashino et
al., 2013, 2016) is used for forward simulations of satellite
observations in this study. J-sim, being developed by Japan
Aerospace Exploration Agency (JAXA), contains radar and
microwave radiometer modules based on the Satellite Data
Simulator Unit (SDSU) (Masunaga et al., 2010), which are
employed for simulating observations compatible with GP-
M/GMI, DPR, and Cloud Sat/CPR. J-sim allows various mi-
crophysical assumptions to be tested, such as particle size
distribution (PSD) and particle shape in the forward radiative
transfer calculations (for details, see Sect. 3.1). Technical de-
tails of J-sim are described in Hashino et al. (2013, 2016).

3 Retrieval algorithm

In this section, the current algorithm methodology is de-
scribed to retrieve the vertical profiles of IWC, Nt, Dm, and
the associated uncertainties. The algorithm flow shown in
Fig. 1 consists of two components. The first component,
marked by a dashed blue box, produces an initial estima-
tion of the vertical profiles of IWC and Nt (and Dm) using
a deep neural network (DNN). In the second component in-
dicated by a dashed red box, the optimal estimation method
(OEM) is adopted to optimize the frozen hydrometer pro-
file (IWC, Nt, and Dm) using the DNN estimates as the first
guess and then estimates the retrieval error. The DNN tech-
nique has the disadvantages that estimates are highly depen-
dent on the training dataset and that uncertainty cannot be
easily evaluated, but it has the advantage of obtaining rea-
sonable estimates with a very low computational cost. The
DNN technique is suitable for a quick estimation of an ini-
tial guess. On the other hand, OEM is computationally more
expensive than DNN but is a well-established methodology,
providing statistically robust retrievals that best match obser-
vations (Rodgers, 2000) beyond the constraint of the a pri-
ori database used for the DNN component. OEM is suitable
for the final optimization of the retrieved values and the esti-
mation of uncertainty. The cloud microphysics assumptions
commonly used by DNN and OEM are described in Sect. 3.1,
the details of the DNN training in Sect. 3.2, and the details
of the OEM framework in Sect. 3.3; an example of retrieval
using this combined algorithm is shown in Sect. 3.4.

3.1 Cloud microphysical assumption

3.1.1 Particle size distributions

The cloud PSD is determined in a complex manner depend-
ing on a variety of factors such as in-cloud temperature but
needs vast simplifications in practice when formulated in re-
trieval algorithms. In previous studies, lognormal or gamma
distribution functions (Austin et al., 2009; Deng et al., 2010),
which consist of temperature-dependent PSD parameters,
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Table 2. Details of the GPM, CloudSat, CALIPSO, and ECMWF-AUX products.

Product name Satellite sensor Parameter used in this study

ECMWF-AUX Pressure, temperature, specific humidity,
skin temperature, surface wind 10 m

1C-R.GPM.GMI GPM/GMI Brightness temperature

2A.GPM.DPR GPM/DPR Ku- and Ka-band radar reflectivity

2B-GEOPROF CloudSat/CPR Height, latitude, longitude, W-band
radar reflectivity, CPR cloud mask

2C-ICE CloudSat/CPR and CALIPSO/CALIOP Ice water content, effective radius

2C-RAIN CloudSat/CPR and CALIPSO/CALIOP Liquid water content

Figure 1. Flow of the retrieval algorithm.

have been mainly used to capture the basic properties of PSD.
In this study, the following temperature-dependent gamma
PSD function is assumed as in Heymsfield et al. (2013):

N(D)=N0D
µ exp (−λD), (1)

µ=−14.09− 0.248 T (T <−61)

µ=−0.59− 0.030 T (T ≥−61). (2)

Here N0 is the intercept, µ is the dispersion, λ is the slope
parameter, and D is the maximum dimension of a particle.
In this algorithm, µ is prescribed as a function of tempera-
ture (T ) as defined by Eq. (2) of Heymsfield et al. (2013),
while N0 and λ are free parameters to be optimized in the al-
gorithm. The PSD for liquid hydrometeors (cloud water and
rain) is as given by the NICAM cloud microphysical scheme
(Tomita, 2008).

3.1.2 Particle shapes and densities

Radar and radiometric observations also depend on the shape
and density of frozen hydrometeors. Frozen hydrometeors
are more diverse in shape and density than liquid hydrom-
eteors. For example, light snowflakes have a density of less
than 100 kg m−3 and have significantly different single scat-
tering properties (SSP) from spherical solid ice (with the

density of 916 kg m−3). The discrete dipole approximation
method (DDA) has been widely used to calculate SSP for
non-spherical particles (Draine and Flatau, 1994; Liu, 2008;
Okamoto, 2002). J-sim has an option to incorporate the SSPs
of 11 different non-spherical shapes into radiative transfer
calculations using pre-computed DDA databases (Liu, 2008).
These non-spherical particle models are assumed to be ran-
domly oriented, and the effects of ice-particle orientation on
V- and H-polarized Tb (Gong and Wu, 2017) are not consid-
ered in this study. In addition to these non-spherical parti-
cle models, this algorithm assumes a “soft sphere” with the
mass–diameter (m–D) relationship reported in Heymsfield
et al. (2013). Figure 2 and Table 3 show the m–D relation-
ship and the parameters of each particle model used in this
study. Section 4 provides the retrieval results assuming “soft
sphere” particle model, and Sect. 5 discusses the optimal par-
ticle shape assumptions including non-spherical models.

3.1.3 Retrieval parameters

The retrieval parameters of frozen hydrometers are IWC, Nt,
and Dm, as expressed by the following equations.

IWC=

∞∫
0

m(D)N (D)dD =
amN0

λµ+bm+10(µ+ bm+ 1), (3)

Nt =

∞∫
0

N (D)dD =
N0

λµ+10(µ+ 1), (4)

Dm =

∫
∞

0 D4N (D)dD∫
∞

0 D3N (D)dD
=
µ+ 4
λ

,

Re =
3

4ρice

∫
∞

0 amD
bmN (D)dD∫

∞

0 aaDbaN (D)dD

=
3amλ

ba−bm

4ρiceaa

0(µ+ bm+ 1)
0 (µ+ ba+ 1)

. (5)

The definition of particle size varies among previous studies.
Although Dm is used in the present algorithm, effective ra-
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Table 3. Details of the parameter for the 12 different ice-particle models.

Range of equal-mass
Particle shape Dmax (µm) sphere radius (µm) am (cgs units) bm (cgs units)

Soft sphere 0-inf 0-inf 0.0528 2.1
Long column 121–4835 25–1000 0.034 3.0
Short column 83–3304 25–1000 0.1122 3.0
Block column 66–2632 25–1000 0.2103 3.0
Thick plate 81–3246 25–1000 0.1064 3.0
Thin plate 127–5059 25–1000 0.0296 3.0
3-bullet rosette 50–10 000 19–1086 0.005 2.16
4-bullet rosette 50–10 000 19–984 0.0039 2.23
5-bullet rosette 50–10 000 21–1058 0.0049 2.23
6-bullet rosette 50–10 000 21–1123 0.0059 2.24
Sector snowflakes 50–10 000 25–672 0.0011 1.54
Dendrite snowflakes 75–12 454 33–838 0.0015 2.0

Figure 2. Mass–diameter relationship for each particle model used in this study.

dius (Re) is also calculated by Eq. (5) for ease of comparison
with existing data products. The parameters of area–diameter
relationship aa and bb in Eq. (5) are set to the values reported
in Heymsfield et al. (2013).

3.2 Deep neural network for initial value estimation

The flowchart of DNN training is shown in Fig. 3. As men-
tioned earlier, the frozen hydrometeor datasets of the cloud-
resolving model (NICAM) are used as the reference data,
and the observations simulated by the forward model (J-sim)
from the NICAM data are input to the DNN training. The
training dataset and procedure are described below in some
detail.

3.2.1 Training dataset

Figure 4a, c, and e show the contoured frequency by altitude
diagram (CFAD) of absolute humidity (AH), and tempera-
ture (T ) from NICAM reference dataset in the tropics. For
comparison, Fig. 4b, d, and f plot the CFAD of AH and T
from the ECMWF-AUX product, respectively, for 3 winter
months (DJF) of 2015 in the tropics. The tropical oceans have
little seasonal variation, so there are no significant changes
over different seasons. Although not shown in Fig. 4, IWC,
pressure (P ), liquid water content (LWC), sea surface tem-
perature (SST), and sea surface wind speed (SSW) obtained
from NICAM are also recorded for forward calculations. Fig-
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Figure 3. Flow of DNN training using NICAM dataset.

ure 4e and f show the CFAD of radar reflectivity simulated
from NICAM and actual observed CPR reflectivity. The hu-
midity, temperature, and radar reflectivity simulated from
NICAM are similar to those of real atmospheric profiles, in-
dicating that NICAM serves well as a reference (a priori)
database for initial value estimation.

3.2.2 DNN training

The DNN transforms the input data using the weight ma-
trix W and the activation function ϕ (x). Using a nonlinear
function ϕ (x), DNN allows for a nonlinear transformation.
In this study, the widely used ReLU function is adopted as
ϕ (x). The DNN inversion model yDNN can be written as fol-
lows for input data: xi .

yDNN (xi)=W3ϕ (W2ϕ (W1xi + c1)+ c2)+ c3. (6)

Here, cn values are constant vectors. The DNN model con-
sists of three layers with 200 nodes in this study. During
DNN training, W is optimized using the back-propagating
algorithm to minimize the following loss function JDNN.

JDNN =
∑

i

(
yDNN− yi

)T (
yDNN− yi

)
=

∑
i

(
yDNN (xi)−F−1 (xi)

)T (
yDNN (xi)−F−1 (xi)

)
,

(7)

where the reference data yi are NICAM-based frozen hy-
drometer profiles, and the input data xi are the simulated ob-
servation from reference yi for GMI and CPR. Therefore, yi
can be represented as the true inversion solution of the for-
ward model F−1 (xi). The DNN inversion model yDNN (xi)

would ideally approach the true inversion model F−1 (xi)

through the minimization of JDNN. In practice, care must be
taken to avoid technical issues such as overfitting.

To stabilize the DNN training, the following preprocess-
ing of input data is performed. GMI Tb depends not only on
cloud physical parameters but also on water vapor, temper-
ature profiles, and surface emissions. To factor out these ef-
fects,1Tb (above 89 GHz), which is the all-sky Tb minus the

clear-sky Tb, is used as the input for DNN. Clear-sky Tb is
obtained by repeating the forward simulations with all con-
densates taken out. The clear-sky Tb values for the real ob-
servations are calculated similarly but with the atmospheric
states from ECMWF-AUX (see Sect. 4 for details). The CPR
reflectivity profiles have a much larger number of dimensions
than the GMI Tb data, which are used together as DNN in-
puts. An empirical orthogonal function (EOF) analysis is per-
formed to retain only the first 10 principal components of
radar reflectivity profiles (EOFZej , j = 1–10), so the di-
mension size is made comparable between CPR and GMI
observations. The cumulative variance by the top 10 prin-
cipal components accounts for approximately 99.9 % of the
total variance. The principal component EOFZej is obtained
from the Eqs. (8) and (9).

1
n

ZZT ej = λjej (j = 1∼ 10)

Z=
(

Zetrain
1 −Zetrain

1 , · · ·, Zetrain
n −Zetrain

n

)
, (8)

EOFZej = eTj Zeobs (9)

Here, ej is the eigenvector of Eq. (8); Zetrain
n and Zetrain

n rep-
resent the radar reflectivity profile and its vertical average,
respectively, for the nth sample in the training data; Zeobs is
the observed radar reflectivity profile; and EOFZej is the
j th principal component.

It is noted that the NICAM simulations contain errors due
to the limited resolution of the model or the representative-
ness of real cloud profiles by the model. These errors would
only remotely affect the final retrieval in that the DNN-
derived solution is adjusted by the OEM as outlined next.
As such, the role of the DNN in this algorithm is an efficient
production of the initial values for the OEM component.

3.3 Optimal estimation for the final retrieval and
uncertainty evaluation

The bottom half of Fig. 1 shows the main flow of the OEM
for finale retrieval and uncertainty evaluation. The OEM is
a Bayesian method that finds a solution which maximizes
the given posteriori possibility density function ppost (X |Y )

(Rodgers, 2000). Here, the state vector X is defined by com-
bining vertical profiles of IWC and Nt, and the measurement
vector Y is the CPR Ze and GMI Tb above 89 GHz.

X =



log(IWC)1
...

log(IWC)n
log(Nt)1
...

log(Nt)n


,Y =



Ze1
...

Zen
Tb89
...

Tb183±3


(10)

Here, n is the number of cloud ice layers. IWC and Nt pro-
files are set to be in a logarithmic form to avoid negative
estimates. The microwave radiative transfer at 89 GHz and
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Figure 4. CFAD of NICAM reference dataset and actual atmospheric variables. CFAD of temperature profiles for (a) NICAM and
(b) ECMWF-AUX. CFAD of absolute humidity profiles for (c) NICAM and (d) ECMWF-AUX. CFAD of radar reflectivity profiles for
(e) simulation and (f) CPR observation.

Figure 5. Example of the initial estimation by DNN and iteration process by OEM. (a) The CPR reflectivity observations are plotted as a
black line and radar reflectivity simulated from the DNN initial estimates as a dark-blue line. The OEM iteration process is shown with the
number of iterations, and the radar reflectivity simulated from the OEM final estimates is plotted with a dark-red line. (b) Same comparison
as in (a) for GMI 1Tb. (c) The DNN initial estimates of IWC are plotted with a dark-blue line and the OEM final estimates of IWC with a
dark-red line. (d) Same comparison as in (c) for Nt.

higher frequencies is significantly affected by water vapor.
Ideally, the water vapor profile should also be included in the
state vector X of Eq. (10) and optimized within the OEM
framework. From a technical perspective, however, optimiz-
ing both the ice-particle and water vapor profiles is compu-
tationally demanding, as the amount of information provided
by satellite observations (i.e., the dimension of the observa-
tion vector Y in Eq. 10) is too limited relative to the num-
ber of unknown parameters to be retrieved (i.e., the dimen-

sion of the state vector X). This imbalance can cause con-
vergence issues in the retrieval. For thick ice clouds such as
deep convective clouds, scattering signals from ice particles
are expected to dominate brightness temperature despite the
considerable absorption and emission signals from water va-
por. Therefore, the water vapor profile from ECMWF-AUX
is used as a fixed input, and only the ice cloud profile is opti-
mized. The fidelity of the ECMWF-AUX water vapor profile
is discussed in Sect. 4.1.
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Figure 6. The match-up observation data of CloudSat/CPR reflectivity and GPM/GMI brightness temperature for algorithm inputs. (a) The
vertical distribution of CPR reflectivity and freezing level (dotted line). (b) The solid lines are GMI Tb observations, and the dotted lines
are the clear-sky brightness temperature simulated from ECMWF-AUX. (c) Horizontal distribution of CPR Zeint (red line), 166 GHz 1Tb
(black line), and shifted 166 GHz 1Tb (blue line).

Figure 7. The retrieved IWC (a), Nt (b) and Re (c) profiles from the current algorithm. The dotted lines are the freezing level.

Assuming a Gaussian possibility density function, the cost
function JOEM to be minimized by OEM is written as the
following equation.

JOEM = (Y −F (X))
T S−1

e (Y −F (X))

+ (X−Xa)
T S−1

a (X−Xa) , (11)

where F (X) is the satellite observation simulated by the for-
ward model (J-sim) from the state vector X; Xa is a priori

state, given by the initial value estimated by DNN; and Sa is
the covariance error matrix for the a priori state. For the sake
of mathematical consistency, Sa in theory should be specified
using error covariances calculated from the a priori dataset
(i.e., the DNN training data). However, the error correlations
derived from NICAM may not be fully reliable, as NICAM
is a limited representation of cloud statistics in the real at-
mosphere. Hence Sa is tuned in a simplistic manner without
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referring to the a priori dataset. The elements of Sa includ-
ing off-diagonal terms are defined as (Sa)kl = σ

2
a exp

(
−
dkl
L

)
to take into account the level-to-level correlations (Delanoë
and Hogan, 2008; Rodgers, 2000). Here, dij is the distance
between k and l layers. Although several values of σa and
L are tested and have little impact on the retrieval results,
the combination σa = 0.5 and L= 3.5 km, which gives the
most favorable performance, is selected. Se is the covari-
ance error matrix for measurements which take into account
not only sensor-derived measurement errors but also forward
simulation-derived errors such as the uncertainty due to par-
ticle shape assumptions. The measurement error of CPR re-
flectivity is set to be 2.5 dBZ according to previous studies
(Deng et al., 2010). A previous study (Kulie et al., 2010) re-
ported that the uncertainty in the high-frequency Tb due to
particle shape assumptions is

√
5.15 K at 166 GHz. In addi-

tion, since the GMI footprint is larger than the CPR footprint,
errors caused by the non-uniform beam filling (NUBF) effect
should be considered. The measurement error of GMI Tb is
set sufficiently large value of 4 K, and the off-diagonal terms
of Se are assumed to be zero.

The Gauss–Newton iteration method is used as the algo-
rithm for finding the minimum value of the cost function in
Eq. (11), and the state vector of the ith iteration Xi is repeat-
edly updated until convergence according to the following
equation:

Xi+1 =Xi +

(
S−1

a +HT
i S−1

e Hi

)−1

[
HT
i S−1

e (Y −F(Xi))−S−1
a (Xi −Xa)

]
, (12)

H=
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
. (13)

The Jacobian matrix H is calculated using the finite differ-
ence method by applying forward simulations to IWC and
Nt profiles being perturbed in each layer. The convergence
is evaluated using the χ2 test (Rodgers, 2000) to obtain the
final-retrieved state vector. OEM offers the retrieval errors
defined by the trace of the following matrix S defined below.

S=
(

S−1
a +HT S−1

e H
)−1

(14)

It should be noted that since Sa and Se are built upon simple
assumptions, the retrieval error calculated by Eq. (14) is valid
only approximately.

3.4 Example of the retrieval

Figure 5 shows an example retrieval for a given CPR and
GMI match-up observation. The solid black lines in Fig. 5a
and b are the CPR reflectivity and GMI 1Tb used as the in-
put, and Fig. 5c and d plot the DNN-based initial estimates
of IWC and Nt profiles and the iteration process by OEM.
Figure 5a also shows the CPR reflectivity and GMI1Tb sim-
ulated by the forward model using the DNN and OEM esti-
mates as the input. The DNN yields the estimates that are
roughly, if not perfectly, consistent with the satellite obser-
vations, suggesting that the DNN performs well as an initial
value estimator. The OEM, refining the DNN estimate, es-
timates the frozen hydrometer profiles in better agreement
with both the CPR reflectivity profile and GMI Tb. A statisti-
cal evaluation of the algorithm performance will be discussed
in Sects. 4 and 5.

4 Algorithm performance

4.1 Application to match-up observations of GPM and
CloudSat

In this section, the present algorithm is applied to actual
match-up observations from CloudSat and GPM satellites
(Turk et al., 2021). Figure 6a and b show a snapshot of simul-
taneous observations of CPR and GMI on 18 March 2016,
containing a mature tropical convective system. Observed
GMI Tb is plotted with solid lines, and the simulated clear-
sky Tb from atmospheric data ECMWF-AUX is plotted with
dashed lines. The GMI Tb and the simulated clear-sky Tb
are in good agreement in the clear-sky regions (latitudes
<−11°), showing the fidelity of the temperature and humid-
ity sounding in use. A sensitivity experiment has been con-
ducted (not shown) with the ECMWF-AUX humidity profile
replaced with a saturated or supersaturated water vapor pro-
file within the cloud-masked regions. This change was found
to have no significant impact on the ice cloud retrieval re-
sults. Therefore, the ECMWF-AUX humidity profile is used
as input even within cloudy regions in this study. The 1Tb
for each channel is the difference between GMI Tb and sim-
ulated clear-sky Tb.

Figure 6c plots GMI 166GHz1Tb with a dotted black line
and vertically integrated CPR reflectivity Zeint, defined as
follows (Kulie et al., 2010), with a blue line:

Zeint =

HCT∫
HFL

Ze(h)dh. (15)

Here, HFL and HCT are the freezing level and cloud-top
height, respectively. Care needs to be taken, however, when
comparing Zeint with the corresponding GMI 1Tb. While
the CPR is a nadir-looking radar, GMI observations have a
slanted viewing angle of about 52.8° at Earth’s surface. As a

https://doi.org/10.5194/amt-18-4791-2025 Atmos. Meas. Tech., 18, 4791–4807, 2025



4800 K. Ohara and H. Masunaga: Retrieving frozen hydrometeors in deep convective systems

Figure 8. Retrieval error analysis for investigation of synergy between CPR and GMI observations. Retrieval error profiles of (a) IWC and
(b) Nt on a logarithmic scale. (c) An example of IWC error profiles calculated for CPR-only (blue line) and combined-use case (red line).
(d) Error reductions of IWC from the CPR-only case by adding each GMI high-frequency channel to the CPR observation. (e) Sensitivity
(Jacobian) of each GMI high-frequency channel to IWC in each layer. (f) Same comparison as in (c) for Nt. (g) Same comparison as in (d)
for Nt. (h) Same comparison as in (e) for Nt.

result, the layer of cloud ice aloft producing a depression of
GMI Tb is horizontally offset from the CPR profile matched
up to the surface geolocation. To reduce the error due to
this misalignment, 1Tb is shifted so that the correlation of
horizontal pattern between 1Tb and Zeint becomes the high-
est (shown in red line). As described in Sect. 3.3, the errors
caused by the NUBF effect are already considered in the co-

variance matrix Se. The CPR reflectivity and the shifted GMI
1Tb are input to the algorithm to retrieve the frozen hydrom-
eter profile. The retrieved IWC,Nt, andDm profiles obtained
from the current algorithm are shown in Fig. 7.
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Figure 9. Reproducibility of the CPR reflectivity and GMI Tb for the current algorithm. (a) Example of the simulated CPR reflectivity
and (b) simulated GMI Tb (solid lines) from the frozen hydrometeors estimated by the current algorithm. Dotted lines are actual GMI
Tb observations for comparison. (c) Statistical comparison between actual reflectivity and simulated reflectivity for 10 match-up cases.
(d) Results of the same comparisons as in (c) for each GMI high-frequency channel.

4.2 Reduction of uncertainty by synergy between GMI
and CPR observations

The OEM also provides the retrieval errors by Eq. (14). Fig-
ure 8a and b show the retrieval error of IWC and Nt on the
logarithmic scale. Figure 8c and f are example profiles of
the IWC and Nt retrieval errors extracted from a latitude of
−6°. To assess the performance of the GMI-CPR synergy,
the retrieval errors are compared between the CPR-only (blue
line) and combined-use cases (red line), respectively. The
combined-use case has smaller errors than the CPR-only case
in all layers, confirming a positive impact of adding GMI ob-
servations to CPR measurements.

Figure 8d and g plot the reduction of errors when each
GMI channel is added to the CPR-only observation one by
one. The 89 GHz Tb contributes mainly to the reduction of
retrieval errors in the lower layers, while 183± 3 GHz Tb
mainly reduce errors in the upper layers. The error reduction
in the upper layers is exclusively owing to 183± 3 GHz Tb
only, with the contribution of other frequencies being mini-
mal. The 166 and 183± 7 GHz Tb contributes across all lay-

ers from the upper to the lower layers. Figure 8e and h show
the sensitivity of each GMI high-frequency channel to IWC
and Nt in each layer using the Jacobian matrix in Eq. (13).
The peak of error reduction shown in Fig. 8d and g is con-
sistent with the peak of sensitivity shown in Fig. 8e and h for
each channel. As noted earlier, the true values of Sa and Se
are unknown, so the retrieval errors theoretically calculated
by Eq. (14) may not be accurate in practice. Given the un-
certainty in Sa and Se, the quantitative interpretation of error
reductions in Fig. 8 requires caution. Nevertheless, the sen-
sitivity analysis results in Fig. 8d, e, g, and h meet physical
expectations, and thus the error estimates above are consid-
ered to be valid from a qualitative perspective.

5 Consistency in measurement space

5.1 Reproducibility of CPR and GMI observations

In situ data to validate cloud physical parameters are limited
in availability. The algorithm performance is therefore tested
using measurables (Ze and Tb) instead of retrieved variables
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Figure 10. Reproducibility of DPR Ku and Ka-band radar reflec-
tivity. Snapshot of the (a) Ku-DPR observation and (b) simulated
Ku-band reflectivity from the current algorithm estimates. Snapshot
of the (c) Ka-DPR observation and (d) simulated Ka-band reflectiv-
ity from the current algorithm estimates. (e) Statistical comparison
between actual Ku-DPR observations and simulated Ku-band re-
flectivity using 10 match-up cases. (f) Same comparison as in (e) for
Ka-band reflectivity.

(IWC, Nt, andDm). To this end, measurables are reproduced
with forward simulations using the retrieved frozen hydrom-
eter parameters as the input for comparison with actual ob-
servations. This comparison is performed using 10 match-up
observations of CPR and GMI, including the case shown in
Figs. 6 and 7. The 2C-RAIN product is used for cloud liquid
water and rain water beneath the cloud-ice layer. As far as the
layer of liquid cloud and rain is optically thick for microwave
radiation as typical of heavily raining clouds, high-frequency
Tb becomes far less sensitive to liquid water path (LWP) than
to IWP (Masunaga, 2022), and the uncertainty resulting from
the liquid component is negligible.

Figure 9a and b show an example of simulated CPR radar
reflectivity in the solid-phase layer and GMI Tb from the cur-
rent algorithm estimates. Compared to the actual observa-
tion shown in Fig. 6, the spatial structure of radar reflectiv-
ity and the horizontal distribution of Tb are reproduced well.
Figure 9c and d are scatter plots of the simulated and ac-
tual observations for the 10 match-up cases. The simulated
radar reflectivity and Tb at high-frequency channels are both

unbiased overall against the actual observations. This result
assures self-consistency of the current algorithm.

5.2 Reproducibility of DPR observations

DPR carried by the GPM core observatory yields simultane-
ous observations with GMI radiometry, providing additional
data to assess the algorithm performance. GPM/DPR, a suite
of Ku- and Ka-band radars, are sensitive to large frozen hy-
drometeors such as snow and graupel inside of deep con-
vective clouds, having information independent of CPR and
GMI observations. This study uses DPR reflectivity above
freezing level to test the cloud ice estimates from the present
algorithm. Similarly to Fig. 9, the Ku- and Ka-band radar re-
flectivity is simulated from the current algorithm estimates
of frozen hydrometers (Fig. 10b and d) for comparison with
the actual DPR observations ((a) and (c)). The current esti-
mates of cloud ice reproduce the overall distribution of ob-
served Ku and Ka radar reflectivity. As shown in Fig. 10e
and f, the simulated DPR reflectivity exhibits no systematic
bias against the actual DPR observation for the 10 match-up
cases despite the significant spread.

5.3 Particle shape assumptions

This section discusses the assumptions of the particle model
optimal for this synergistic algorithm. CPR reflectivity
mainly captures the backscattering properties of particles,
while GMI Tb values mainly observe the scattering and ab-
sorption properties. A combined use of these two indepen-
dent information has the potential to constrain uncertainties
in the assumptions of the particle model. To test this, the
reproducibility of CPR and GMI observations is evaluated
with different non-spherical particle models listed in Table 3.
Only the particle model that consistently represents all the
backscattering, absorption, and scattering properties would
allow the algorithm to find the solution (frozen hydrometer
profile) that accords with both CPR and GMI observations.
Figure 11a–f compare the simulated reflectivity and Tb with
the actual CPR and GMI observations for the six representa-
tive particle models (long column, thin plate, 4-bullet rosette,
sector snowflake, dendrite snowflake and soft sphere). The
CPR reflectivity is well reproduced regardless of the particle
model assumptions by optimizing IWC and Nt (that is, the
PSD parameters λ and N0) in our algorithm. On the other
hand, the simulated Tb is clearly lower than the observed
Tb for cold Tb values, except for the dendrite snowflake and
soft sphere cases. These results indicate two points: (1) the
soft sphere and dendrite snowflake are the optimal particle
models for cold Tb values among the six models tested here,
and (2) CPR observations alone are not sufficient to simul-
taneously constrain the uncertainties in the PSD and particle
models.

Figure 11g plots the difference between the simulated and
actual Tb as a function of IWP for each particle model as-
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Figure 11. Comparison of the reproducibility of CPR and GMI observations for various particle models. Scatter plots between actual
observations and simulated observations assuming (a) long column, (b) thin plate, (c) 4-bullet rosette, (d) sector snowflake, (e) dendrite
snowflake, and (f) soft sphere. (g) Dependency of Tb bias (simulation− observation) of Zeint (IWP) for each particle model.

sumption. Since the IWP estimate varies with the particle
model assumptions, the horizontal axis is substituted by Zeint
in Eq. (15). Simulated Tb is much lower than the observation
for most non-spherical particle models at large Zeint (IWP),
whereas for the dendrite snowflake and soft sphere, Tb bias
is relatively small for the whole range of Zeint. The find-
ings imply that for clouds with very large IWP such as deep
convective clouds, the dendrite snowflake and soft sphere
may be the most appropriate particle models. It should be
noted, however, that for more frequently occurring clouds
with moderate to low IWP, differences in Tb bias among
particle models are small, making it difficult to identify a

clearly preferable model. A previous study (Fig. 11 in Kulie
et al., 2010) shows a similar figure to Fig. 11g and also re-
ported that most non-spherical particle models except the
dendrite snowflake exhibit excessive scattering (negative bi-
ases to actual observation) for large IWPs. Kulie et al. (2010)
first converted CPR reflectivity to IWC, assuming Liu’s non-
spherical model (Liu, 2008), and then simulated Tb from this
IWC, assuming the same particle model to compare with the
actual SSMIS 157 GHz Tb. Their study assumed a fixed PSD
when simulating Tb, so the failure to reproduce SSMIS Tb
values may be caused by an inappropriate PSD assumption
rather than the particle model. However, even our algorithm,
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Figure 12. (a) Example of IWC and Re profiles of 2C-ICE product in same case as Figs. 6 and 7. (b) Comparison of IWC and Re between
2C-ICE and the current estimates assuming soft sphere for 10 match-up cases.

which optimizes PSD parameters by OEM, cannot find the
solution that is simultaneously consistent with the CPR and
GMI observations for non-spherical particle model except for
dendrite snowflake.

While the results in Fig. 11g indicate that the soft sphere
assumption best reproduces satellite observations, several
previous studies have reported that non-spherical particles
are essential in reproducing realistic scattering signals in-
stead of soft sphere particles (Ekelund et al., 2020; Kuo et al.,
2016; Olson et al., 2016; Kulie et al., 2010). This apparent in-
consistency may be explained by a few possible hypotheses
as follows.

The validity of soft spheres may vary largely with the par-
ticle density model (m–D relation) in use. The present work
adopts the m–D relationship from Heymsfield et al. (2013),
which is different from the soft sphere model used in previ-
ous studies. The current finding does not imply that all soft
sphere models, if any, are superior to non-spherical particle
models used in previous studies.

The soft sphere model best fits observations for very large
IWPs, suggesting that it may only be well suited for certain
cloud types such as deep tropical convective clouds. This
is physically reasonable because an appreciable amount of
graupel is formed by riming in deep convection. The scat-
tering properties of graupel are likely better approximated
by soft spheres than snowflakes and ice crystals. In contrast,
the soft sphere assumption may be less appropriate for strat-
iform precipitation investigated in Olson et al. (2016), where

scattering is likely dominated by aggregated snow particles.
Such differences in cloud microphysics between convective
and stratiform clouds may explain the contrasting results be-
tween the present and previous studies.

6 Comparison with other cloud ice products

The current retrieval is compared with the CloudSat/-
CALIPSO standard radar/lidar product (2C-ICE). Figure 12a
and b show the IWC and Re estimates of 2C-ICE, and the
observable areas for the CALIPSO lidar (lidar cloud mask
above 25 %) are shaded in grey. Figure 12c and d compare
the 2C-ICE estimates with the current algorithm assuming
soft sphere for the 10 match-up cases. Here, Re is calculated
using Eq. (5). The IWC estimates of current algorithm agree
very well with 2C-ICE, but there is a positive bias in Re. In
particular, the Re bias tends to increase with Re toward deep
inside the cloud layer. As shown in Fig. 12a and b, in the 2C-
ICE product, the combined radar and lidar observations are
limited to near the cloud tops, so the retrieval in deeper cloud
layers is almost based on the CPR observations only. On the
other hand, this study also uses GMI, allowing synergetic ob-
servations even deep inside of clouds (as shown in Fig. 8e
and h). The current algorithm actually captures large snow
and graupel particles inside convective clouds, to which the
DPR is sensitive (as shown in Fig. 10). In addition, lidar is
sensitive to small particles, whereas microwave instruments
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are sensitive only to relatively large hydrometers. One pos-
sible reason for the Re bias is the difference in the sensor-
specific sensitivity. Other factors could be differences in the
cloud microphysical assumptions such as PSD and particle
shape.

7 Summary

This study develops an algorithm to retrieve the vertical pro-
files of IWC, Nt, and Dm in deep convective systems using
simultaneous CPR and GMI observations. A new algorithm
that combines the DNN and OEM for the inversion prob-
lem solver is proposed. The role of DNN in this algorithm is
to estimate near-optimal initial values at low computational
cost. The DNN is trained using an a priori database con-
structed from the cloud-resolving model (NICAM) (Fig. 4).
The OEM uses the DNN estimate as an initial state to fur-
ther optimize the frozen hydrometer profile to be consistent
with CPR and GMI observations (Fig. 5). The retrieval error
is calculated as a byproduct of the OEM at the in same time.
The retrieval performance of the current algorithm is evalu-
ated using match-up observations of CPR and GMI (Figs. 6
and 7). The combined use of CPR and GMI reduces the re-
trieval error compared to the case using CPR only, indicat-
ing a positive impact of the synergy between CPR and GMI
observations (Fig. 8c and f). These reductions of retrieval er-
ror are significant at multiple altitudes where the GMI high-
frequency Tb is most sensitive to ice particles (Fig. 8d, e, g,
and h).

To evaluate the validity of the current algorithm estimates,
the reproducibility of microwave Tb and radar reflectivity
is tested through forward simulations. The CPR and GMI
observations are reproduced to a reasonable extent overall
(Fig. 9). Furthermore, the current estimates statistically re-
produce the DPR observations (Ku- and Ka-bands), which
have independent information and are sensitive to large snow
and graupel particles inside convective clouds (Fig. 10). In
addition, it was found that the evaluations of the simultane-
ous reproducibility of CPR reflectivity and GMI Tb values
can constrain the choice of non-spherical particle model. For
dendrite snowflake and Heymsfield’s soft sphere, Tb bias is
relatively small regardless of IWP, whereas the simulated Tb
is much lower than observed Tb at large IWP for other parti-
cle models tested (Fig. 11).

Finally, the current estimates are compared with the ex-
isting radar–lidar cloud ice product (2C-ICE) (Fig. 12). The
results are statistically in agreement for IWC, but Re tends
to be overestimated by the current algorithm compared to
2C-ICE. The biases may be caused by differences in cloud
microphysics assumptions (such as particle models) and the
sensitivity of the sensors used in the algorithm.

The framework of the algorithm developed in this study
can be applied to the combined use of various cloud/-
precipitation radars and millimeter/submillimeter radiome-

ters by adjusting the sensor configuration of the forward
model. In the future, we plan to extend the algorithm
to Doppler CPR carried by the EarthCARE satellite and
millimeter/submillimeter-wave radiometers such as GOSAT-
GW/AMSR3 and MetOp-SG/ICI, which are to be launched
within the next few or several years.
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