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Abstract. With the rapid development of active-phased ar-
rays and solid-state transmitters, pulse compression tech-
nology has become increasingly important. Currently, pulse
compression waveforms with peak sidelobe levels better than
—50dB have been developed, enabling the broader applica-
tion of pulse compression technology in weather radar sys-
tems. However, existing sidelobe suppression levels are still
insufficient to ensure that radar data quality is unaffected by
range sidelobes for ship clutter, which have a high echo in-
tensity and cannot be removed by conventional quality con-
trol methods. In this study, we introduce a hybrid ship clutter
identification (HSCI) algorithm to address this issue in pulse
compression polarimetric radar observations. The HSCT al-
gorithm comprises two parts: mainlobe and sidelobe identifi-
cation (including the range and antenna sidelobes). Mainlobe
identification uses a random forest model that integrates mul-
tiple features to identify the mainlobe of ship clutter. Side-
lobe identification uses a series of heuristic criteria derived
from the statistical characteristics of ship clutter to distin-
guish them from precipitation echoes. The analysis results of
two typical cases indicate that after implementing the HSCI
algorithm, the impact of ship clutter on radar data is visu-
ally imperceptible. The statistical results show that the HSCI
algorithm achieves a promising performance in ship clutter
mainlobe identification on a test dataset comprising 400 ship
clutter gates and 2500 range gates of precipitation echoes,
with the precision, recall, and Fl-score all exceeding 97 %.

Application of this algorithm to the University of Helsinki C-
band dual-polarization Doppler weather radar data success-
fully reproduced ship tracks in the Gulf of Finland.

1 Introduction

As a sophisticated observation instrument, weather radar has
significantly advanced research in disaster weather warning
(Sandmel et al., 2023; Chen et al., 2024), precipitation mi-
crophysics (Ho et al., 2023; Li et al., 2024), and quantitative
precipitation estimation (Li et al., 2023; Hanft et al., 2023).
Evolving demands for meteorological applications continue
to drive improvements in radar performance and data qual-
ity, thereby stimulating the development of innovative radar
technologies. Pulse compression, which modulates radar sig-
nals to increase bandwidth and thus achieve a better range
resolution, is a typical example (Cook and Bernfeld, 1967;
Rihaczek, 1969). However, the pulse compression technique
was initially not widely adopted in the meteorological field
because its associated range of sidelobes could obscure weak
targets near strong ones.

The recent growing popularity of solid-state transmitters
and phased array radars (Weber et al., 2021; Palmer et
al., 2022; Kollias et al., 2022) has yielded rapid advances in
pulse compression technology. Bharadwaj and Chandrasekar
(2012) proposed a combination of a continuous nonlinear
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frequency modulation (NLFM) waveform with a minimum
integrated sidelobe level filter, and its performance was vali-
dated for reflectivity steps up to 40 dB through simulation ex-
periments. Kurdzo et al. (2014) introduced an NLFM wave-
form designed using a genetic algorithm. Specifically, this
approach optimized the frequency function represented by a
Bezier curve to generate an NLFM waveform with low side-
lobes and high range resolution. Compared with traditional
windowed methods, this technique offered a sensitivity gain
of approximately 3 dB. Torres et al. (2017) also used a ge-
netic algorithm to design an NLFM waveform tailored to
operational requirements, focusing on minimizing the trans-
mission bandwidth as the primary optimization goal. Other
optimization techniques used in this field include simulated
annealing (Pang et al., 2015) and quadratic optimization (Ar-
genti and Facheris, 2020). Owing to these advanced tech-
nologies, range sidelobes have been effectively suppressed,
enabling the broader adoption of pulse compression technol-
ogy in weather radar systems.

Like conventional short-pulse radar, pulse compression
radar data can also be contaminated by non-meteorological
echoes. Therefore, quality control is crucial for the effec-
tive use of radar data. Ground clutter, a common type of
non-meteorological echo, is caused by scattering from sta-
tionary targets, such as buildings or mountains (Billingsley,
2002). Typically, ground clutter exhibits a near-zero Doppler
velocity and narrow Doppler spectrum width (Hubbert et
al., 2009a). Numerous ground clutter identification and fil-
tering algorithms have been developed based on this char-
acteristic (Hubbert et al., 2009b; Torres and Warde, 2014;
Golbon-Haghighi et al., 2018; Hubbert et al., 2021) and
have achieved substantial success (Fig. 1). Biological echoes,
caused by scattering from airborne biological entities such as
insects and birds, represent another frequent source of non-
meteorological echoes (Stepanian et al., 2016). Given that
the shape, orientation, and other attributes of biological tar-
gets differ significantly from precipitation particles, simple
metrics such as correlation coefficients or depolarization ra-
tio thresholds can be used to effectively distinguish between
these two types of targets (as demonstrated in Fig. 2; Kilambi
et al., 2018; Pérez Hortal and Michelson, 2023).

In addition to the commonly observed ground clutter and
biological echoes, weather radars deployed along coastlines
usually detect echoes scattered from ships, referred to as ship
clutter, in meteorological contexts (Overeem et al., 2020).
Unlike other forms of clutter, ship clutter exhibits non-zero
Doppler velocities and high correlation coefficients, making
it challenging for existing quality control methods to sup-
press it effectively (as depicted in Fig. 3). Typically, a ship
spans one or more range gates. However, in pulse compres-
sion radar systems, the impact of ship clutter is not confined
to these gates but also extends radially and tangentially be-
cause of the range and antenna sidelobes. As illustrated in
Fig. 3, this results in numerous cross-shaped patterns that can
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extend over 10 km on the plan position indicator (PPI), sig-
nificantly compromising the quality of the radar data.

In this study, we propose a hybrid ship clutter identifi-
cation (HSCI) algorithm to enhance the data quality and
meteorological application performance of pulse compres-
sion radars. As stated above, non-meteorological echoes such
as ground clutter and biological echoes can be effectively
suppressed using well-established methods. This allows the
identification of ship clutter in this study to be simplified
to a binary classification problem, i.e., assuming that the
radar observation data contain only two types of targets:
ship clutter and precipitation echoes. The instruments and
related datasets used in this study are described in Sect. 2.
Section 3 provides an in-depth description of the HSCI al-
gorithm, while Sect. 4 presents the algorithm performance
evaluation results. A discussion and summary are presented
in Sects. 5 and 6, respectively.

2 Instrument and data

At the Kumpula campus of the University of Helsinki, a
C-band dual-polarization Doppler weather radar (hereinafter
referred to as the Kumpula radar) was installed on the rooftop
of the Department of Physics building (60.204° N, 24.269° E,
60 m above mean sea level). In 2019, the klystron transmit-
ter of the Kumpula radar was upgraded to two solid-state
transmitters supported by Vaisala Oyj. The radar currently
serves as a prototype for evaluating the performance of solid-
state transmitters and pulse compression technology. Obser-
vational data collected between May and June 2020 were
used in this study.

The archived data from the Kumpula radar include the re-
flectivity factor at horizontal polarization (Zy), Doppler ve-
locity (vr), Doppler spectrum width (o), differential reflec-
tivity (Zpr), differential phase (¢pp), and co-polar corre-
lation coefficient (pgv). The scanning strategy used by the
Kumpula radar diverges from that used in operational radars,
such as the volume coverage pattern 21 used by the Weather
Surveillance Radar-1988 Doppler (Crum and Alberty, 1993).
Specifically, the Kumpula radar conducts three PPI scans at
an elevation of 0.5°, using diverse transmitting waveforms:
(1) unmodulated short pulse (SP), LFM, and NLFM. For
the LFM and NLFM waveforms, a frequency diversity tech-
nique was applied to address the blind-zone issue (Bharadwaj
and Chandrasekar, 2012). This involves transmitting an ad-
ditional unmodulated short pulse (ASP) at a slightly shifted
frequency to cover the blind zones created by the modulated
pulses. The detailed system characteristics of the Kumpula
radar and settings for different waveforms are listed in Ta-
ble 1.

The Kumpula radar, situated on the north coast of the Gulf
of Finland, which is a crucial waterway in Northern Europe,
frequently detects ship clutter at low elevation angles. We
compiled a radar dataset for ship clutter by manually identi-
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Figure 1. The 0.5° elevation of the Kumpula radar using the linear frequency modulation (LFM) waveform at 18:00 UTC 3 May 2020. The
Gaussian model adaptive processing (GMAP) algorithm built into the RVP900 signal processor was adopted to achieve this performance.

(a) Raw reflectivity; (b) reflectivity after ground clutter filtering.
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Figure 2. The 0.5° elevation of the Kumpula radar using the LFM waveform at 08:45 UTC 4 June 2020. Precipitation echoes are concentrated
within azimuthal intervals of approximately 60—180° with a high correlation coefficient, while other sectors are mainly affected by biological
echoes with a low correlation coefficient. (a) Filtered reflectivity; (b) correlation coefficient.

fying the distinct strong point echoes and cross-shaped signa-
tures. When these static signatures were insufficient to con-
firm the presence of ship clutter, the movement of echoes
across consecutive scans was used as supplementary evi-
dence. We acknowledge that an objective approach could be
more comparable to future studies, but no such methods are
available. Regarding this process, a visual example can be
seen in Fig. 4, which shows that several typical ship clutter
events (marked by dashed circles with different colors) were
observed by the Kumpula radar at 18:06 UTC 11 June 2020.
Although their echo intensity and shape changed consider-
ably over the ensuing 10 min (e.g., the ship clutter marked
by red dashed circles), the continuous tracing proves that
they came from the same target. Given that ships typically
take several hours to traverse the effective field of view of
the radar, we extracted only one scan per hour to maintain
a high level of diversity and independence among the differ-
ent instances of ship clutter. Ultimately, this method yielded
a dataset comprising nearly 1600 ship clutter events across
110 scans. To evaluate the consistency of the subjectively
annotated dataset, a secondary verification was conducted by
an independent annotator on a representative subset. Specif-
ically, 170 ship clutter events from 10 scans were re-labeled,
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and differences in labeling were observed only in two rela-
tively weak cases between the initial and secondary annota-
tions. This result suggests that the overall annotation quality
is high and that potential subjectivity has a limited impact on
the dataset. It is worth noting that the detectability of ship
clutter is dependent on atmospheric conditions, and super-
refraction is favorable for the radar beam to detect ships. The
super-refraction frequency in summer is usually higher than
in winter. Therefore, we are focused on analyzing summer-
time observations in this study.

The precipitation dataset was manually extracted from
four precipitation events that occurred on 10 May, 5 May,
4 June, and 5 June 2020. Despite the Kumpula radar using
pulse compression technology, which inherently produces
range sidelobes, its peak sidelobe level was maintained be-
low —50dB (as shown in Sect. 3.2.1 below). Furthermore,
the range sidelobes from strong precipitation echoes are typ-
ically overshadowed by the surrounding medium-intensity
precipitation echoes. Consequently, for most precipitation
echoes, the impact of range sidelobes was not significant.
It is important to note that both datasets — ship clutter and
precipitation — were derived from observational results ob-
tained using the LFM waveform and extracted by the same
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Figure 3. The 0.5° elevation of the Kumpula radar using the LFM waveform at 12:10 UTC 5 May 2020. Several ships present cross-shaped
radar variable fields, as well as non-zero Doppler velocity and high correlation coefficients. (a) Filtered reflectivity; (b) Doppler velocity;
(c) correlation coefficient.

Table 1. System characteristics and waveform settings of the Kumpula radar.

SP LFM NLFM ASP

Pulse width (us) 4.5 90 90 1
Swept bandwidth (MHz) / 2 3.8 /
Pulse repetition frequency (Hz) 600 800 800 800
Transmitter type Dual solid-state amplifiers
Polarization Dual linear
Frequency (GHz) 5.6-5.65

Peak power (kW) 4.5

Maximum duty cycle 30 %

3 dB beam width (°) 1

Antenna diameter (m) 4.2

Antenna gain (dB) 45

Sample number 40

Range gate spacing (m) 150

The “/” symbol denotes the absence of this parameter.

annotator, who consistently adheres to the criteria mentioned cesses each gate individually, its computational efficiency is
above. low. Moreover, because precipitation echoes occur more fre-
quently and cover larger areas than ship clutter, there is a
heightened risk of misidentifying these echoes as ship clut-
ter. Therefore, narrowing the identification area is crucial.

The HSCI algorithm incorporates three specific con-
straints to enhance efficiency and accuracy:

3 Method

Figure 5 shows a flowchart outlining the HSCI algorithm,
which uses a straightforward sequential structure. The pro-

cess begins with the identification of the mainlobe of the ship 1. Identification is conducted only over sea areas, as this is
clutter in the radar data. If the identification results indicate naturally the most likely location for ship clutter.

the presence of ship clutter, the procedure continues with the

identification of ship clutter sidelobes, followed by the re- 2. Identification of range gates with local maximum reflec-
moval of the entire ship clutter (i.e., both the mainlobe and tivity is based on the definition used in this study, in
sidelobes). The range gate exhibiting the highest reflectivity which the mainlobe is the range gate with the highest
within the ship clutter is regarded as the mainlobe, whereas reflectivity within the ship clutter.

the remaining range gates are considered sidelobes. 3. A reflectivity threshold is set (defaulting to 20 dBZ) to

3.1 Mainlobe identification mask weak echoes. This constraint is primarily based on
the consideration that the sidelobes of weak ship clut-
3.1.1 Region limitation ter are often undetectable due to the radar’s sensitivity
limitations. As a result, the impact range of ship clutter
A single scan from weather radar typically yields hundreds is relatively small, exhibiting characteristics similar to
of thousands of range gate observations. If the algorithm pro- point clutter, which can be effectively suppressed using
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Figure 4. Typical ship clutter observed by the Kumpula radar at (a) 18:06 UTC, (b) 18:11 UTC, and (c) 18:16 UTC on 11 June 2020. Dashed

circles with different colors indicate different ship clutter events.
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Figure 5. Flowchart of the HSCI algorithm.

point clutter mitigation algorithms (Zhang et al., 2004;
Vaisala, 2016).

3.1.2 Feature calculation

Extracting features from radar variable fields that can dif-
ferentiate between ship clutter and precipitation echoes is a
crucial step in the implementation of machine learning al-
gorithms. Upon analyzing these fields, six distinct features
were identified: reflectivity difference (RD), reflectivity gra-
dient flag (RGF), oy, spectrum width ratio (SWR), Zpg, and
correlation coefficient difference (CCD).

https://doi.org/10.5194/amt-18-4839-2025

1.RD

The ship is a typical point target. As depicted in Fig. 3a, there
was a sharp decrease in the reflectivity when the ship moved
from being directly in the beam’s mainlobe to being slightly
off-center. This pattern was also observed in the pulse com-
pression radar along the radial direction. Within the HSCI
algorithm, RD was developed to quantify this phenomenon,
which is defined as:

RD = maX[ZH x,y)—Zux—-1,y),

Zy(x,y)—Zu(x+1,y),
Zy(x,y)—Zu(x,y—1),

ZH(x’Y)_ZH(an+1)], ey

where x and y represent the tangential and radial indices of
the mainlobe in the radar variable field, respectively, and max
denotes the maximum-value function.

2. RGF

The principle of the RGF is similar to that of the RD, indi-
cating that the reflectivity decreases as the distance from the
mainlobe increases. RGF is defined as follows:

RGF =[Zu(x—1,y) > Zu(x —2,y)]
& [Zu(x+1,y) > Zu(x +2,y)]
& [Zu@x,y—1) > Zu(x,y—2)]
& [Zu(x,y+1) > Zu(x,y+2)], (2)

where & represents the AND operation. It is important to
note that, unlike RD and the other features, RGF yields a
Boolean value.

3.0,

As a rigid target, a ship exhibits extremely high velocity
consistency. In contrast to the precipitation echo, which is

Atmos. Meas. Tech., 18, 4839-4855, 2025



4844

formed by a multitude of precipitation particles within the
sampling volume, the mainlobe of ship clutter displays a sig-
nificantly lower o,,, comparable even to ground clutter. Con-
sequently, o, was chosen as one of the features in the HSCI
algorithm.

4. SWR

When analyzing the o, of ship clutter, a sudden change in
the o, values at the position of the mainlobe and its adjacent
antenna sidelobes was observed such that o, (x £1,y) >
oy (xy). This phenomenon was observed by Feng and Fabry
(2016). It was explained by the sharp change in the antenna
phase pattern near the mainlobe and highlights a distinct
characteristic of ship clutter.

Although o, (x £1,y) >0y (xy), the difference is rela-
tively minor when compared to the o, of precipitation
echoes. To better illustrate the relative relationship between
oy(xx1,y)and o, (xy), we propose using the SWR, defined
as follows:

3

1 —1
SWR:maX[Gu(er ,y) ou(x ,y)]

O'u(x,}’) O'u(xJ’)
5. Zpr

ZpR, the ratio of reflectivity from horizontal to vertical po-
larization, can, to some extent, indicate the shape of precip-
itation particles (Seliga and Bringi, 1976). During descent,
raindrops encounter air resistance that causes large raindrops
to split into smaller droplets. On the other hand, hail tumbles
as it falls, leading to Zpr values close to 0 dB. Consequently,
Zpr values for most precipitation echoes typically fall within
the specific range of —1 to 6 dB (Kumjian, 2013). However,
in our analysis of ship clutter, we observed that Zpr values
varied almost randomly across the entire range (—8 to 8 dB in
the Kumpula radar). Thus, Zpr was incorporated as a feature
into the HSCI algorithm.

6. CCD

As depicted in Figs. 2b and 3c, the mainlobe of ship clut-
ter typically exhibits a high ppyv, like that of precipitation
echoes, while that in the antenna sidelobes of ship clutter
sharply decreases. This phenomenon can be attributed to the
antenna pattern, where the horizontal and vertical polariza-
tion channels align well in the mainlobe but mismatch in the
sidelobes. Consequently, this study introduces the CCD to
quantify the disparity between the antenna mainlobe and the
sidelobes of ship clutter. The CCD is defined as follows:

CCD = max |:,0HV (x,y) —puv(x—2,¥),

puv (x,y) — puv (x +2, y)} . “4)

Figure 6 shows the normalized histograms for the six
features of ship clutter and precipitation echoes using the
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Table 2. Overlapping area between normalized histograms for ship
clutter and precipitation echoes of six features.

Feature = Overlapping area
RD 14.34 %
RGF 2593 %
oy 26.56 %

SWR 34.13 %
ZDR 33.35%
CCD 20.19 %

datasets specified in Sect. 2. It is worth noting that all feature
values are raw, with no normalization or scaling applied. The
overlapping areas of the probability distribution densities of
the two echo types are listed in Table 2. This overlap quan-
titatively reflects the discriminatory ability of each feature,
with smaller values indicating better differentiation capabil-
ity. Although the statistical analysis revealed that RD offers
the most effective discrimination among all the features, nei-
ther ship clutter nor precipitation echoes can be accurately
distinguished by relying solely on a single feature. Thus, it is
essential to integrate multiple features to further enhance the
identification accuracy.

3.1.3 Identification model

In this study, a random forest model was used to integrate
multiple features to identify ship clutter. Random forest is a
classic machine learning algorithm that primarily constructs
multiple decision trees and combines their prediction results
to enhance overall prediction accuracy and stability. Owing
to the advantages of random forest, such as high execution
efficiency, no need to scale input features, and the ability
to handle missing data, it has been widely used in the field
of weather radar, including tornado identification (Sandmal
et al., 2023), precipitation forecasting (Mao and Sorteberg,
2020), and raindrop size distribution retrievals (Conrick et
al., 2020). This study does not provide an in-depth introduc-
tion to the principle of the random forest algorithm; details
can be found in Ho (1998) and Breiman (2001).

Like other supervised learning methods, the development
of the random forest model involves two steps: training and
testing. The ship clutter and precipitation datasets mentioned
in Sect. 2 were split into training and test sets at a ratio of
3: 1. Although the selected precipitation dataset is extensive,
approximately only 10 000 range gates remain after applying
the region limitation described in Sect. 3.1.1 (7500 for train-
ing and 2500 for testing). In this study, the Python scikit-
learn machine learning library was used for training, test-
ing, and subsequent prediction tasks (Pedregosa et al., 2011).
The input for the random forest model comprises the six fea-
tures of the target range gate, and the output is a Boolean
identification result, where 1 and O represent ship clutter and
precipitation echoes, respectively. The hyperparameter con-
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Figure 6. Normalized histograms of six features across selected datasets. (a) RD; (b) RGF; (c) oy,; (d) SWR; (e) ZpR; and (f) CCD. Blue

and orange denote ship clutter and precipitation echoes, respectively.

figurations of the random forest model in the HSCI algo-
rithm are listed in Table 3. The “GridSearchCV” method
from scikit-learn was used to determine the optimal hyper-
parameters (listed in the third column of Table 3) by tuning
the model through iterations over the hyperparameter value
ranges (shown in the second column of Table 3). Specifically,
a k-fold cross-validation approach was integrated into this
process, with the default setting using 5 folds. This means
that the training dataset was partitioned into five subsets,
and for each hyperparameter configuration, the model was
trained on four subsets and validated on the remaining one.
This procedure was repeated five times (once for each sub-
set), with the average performance across all folds serving as
the evaluation metric. The hyperparameter combination that
yielded the highest average performance was then selected as
optimal. A detailed description of these hyperparameters can
be found in Pedregosa et al. (2011).

3.2 Sidelobe identification

3.2.1 Adaptively determine the potential sidelobe
distribution (PSD)

Although the scattered energy of the ship clutter is predom-
inantly concentrated in the mainlobe, the extensive distribu-
tion of weaker sidelobes can significantly interfere with radar
data applications. Therefore, once the mainlobe is identified,
the next step involves identifying the sidelobes. Unlike main-
lobe identification, which is performed gate by gate, sidelobe
identification leverages mainlobe identification results to de-
termine the PSD.

Sidelobes in ship clutter typically appear in a cross-shape
but vary in size. The signal-to-noise ratio (SNR) of a side-
lobe at different positions (SNRgjge (Ax, Ay)) is influenced
by the SNR of the mainlobe (SNR,in), the ambiguity func-
tion, and the antenna pattern, where Ax and Ay represent the
distance from the mainlobe in the tangential and radial direc-
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tions, respectively. If SNRgjge (Ax, Ay) at a range gate falls
below a set SNR threshold, that gate will be masked, and no
radar variables will be output. Therefore, a static PSD set-
ting may be insufficient when SNR iy 1s high and excessive
when SNR i, 1S low.

To determine the sidelobe distribution settings more effec-
tively, it is essential to make adaptive decisions for different
ship clutter events. Three main factors influence the sidelobe
distribution: SNRy,in, the relative power between the main-
lobe and sidelobe, and the SNR threshold used in the radar
variable estimation. Although the Kumpula radar does not
directly output SNR values, this study proposes a method to
obtain the SNR indirectly from reflectivity (details in Ap-
pendix A). Moreover, the SNR threshold is set by the user
and is a known value (1.5dB for the Kumpula radar). The
relative power between the mainlobe and sidelobe can be
calculated theoretically using the ambiguity function of the
specified pulse compression waveform and antenna pattern.
However, discrepancies between theoretical analysis and ac-
tual observations may arise because of unforeseen factors.
Consequently, this study derived the relative power between
the mainlobe and sidelobe through a statistical analysis of
actual data.

To capture as many sidelobe distribution characteristics
as possible, only ship clutter with SNRpain > 50 dB was se-
lected from the dataset. Because statistical results can be
skewed by echoes from other sources that overlap with the
mainlobe and/or sidelobe of the ship clutter, only eight rela-
tively isolated ship clutter events were ultimately selected for
the analysis of PSD statistics. For these clutter events, range
gates where sidelobes were located were manually selected
within 13.5 km (90 gates on the Kumpula radar) in the radial
direction and 15° (15 rays) in the tangential direction, cen-
tered on the mainlobe. It is worth noting that the radius along
the radial and tangential directions is determined by the in-
herent characteristics of the pulse width and antenna pattern

Atmos. Meas. Tech., 18, 4839-4855, 2025



4846

S. Zhang et al.: Ship clutter identification

Table 3. List of hyperparameter values used in the random forest model for the HSCI algorithm.

Hyperparameter

Value range

Selected value

n_estimators

10, 20, 50, 100, 200 100

criterion entropy, gini entropy
max_depth None, 5, 10 5
min_samples_split 1,2,4 4
min_samples_leaf 1,2,4 1
min_weight_fraction_leaf 0 0
max_features None, auto auto
max_leaf nodes None
min_impurity_decrease 0
bootstrap True
oob_score False
random_state None
warm_start False

class_weight

balanced_subsample

of the Kumpula radar. For a pulse width of 90 us (Table 1),
the maximum range affected by the range sidelobes of ship
clutter is 13.5 km. Moreover, as the angle deviates from the
mainlobe, the power of the sidelobe echoes decreases sig-
nificantly. Therefore, the sidelobes beyond the 15° azimuthal
range can be considered below the radar’s sensitivity and thus
unobservable. To facilitate statistical analysis across different
ship clutter events, the SNR values of the ship clutter were
normalized (i.e., SNRyain and SNRgige (Ax, Ay) were sub-
tracted from SNRp,in in dB units). Owing to several factors
in actual observations, the relative relationship between the
mainlobe and sidelobes of the eight ship clutter events was
inconsistent. As previously discussed, to capture as many
sidelobe distribution characteristics as possible (thereby en-
suring the results are applicable across a wide range of sce-
narios), the maximum value of SNRgjge(Ax, Ay) from the
eight ship clutter events was selected. Additionally, the max-
imum values of the antenna sidelobes were obtained on both
sides, using the antenna mainlobe as the reference axis.

The statistical results of the relative power between the
mainlobe and sidelobe are shown in Fig. 7. When a range
gate was identified as the mainlobe of the ship clutter, the
SNR differences between it and the surrounding range gates
were calculated. Range gates with SNR differences exceed-
ing the statistical results shown in Fig. 7 were identified as
PSD.

3.2.2 Velocity and SNR filter

As shown in Fig. 8, the adaptively determined PSD is effec-
tive in identifying all affected range gates for isolated ship
clutter. However, when ship clutter overlaps with other types
of echoes, such as the precipitation echoes shown in Fig. 9,
eliminating the PSD can lead to the loss of important infor-
mation. In other words, the PSD is a sufficient but unneces-
sary condition for the sidelobe distribution of the ship clutter.
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Figure 7. Statistical result of the relative power between the main-
lobe and sidelobe for eight ship clutter events with high SNR.

Thus, additional constraints are required to refine the PSD
screening.

When analyzing the signatures of ship clutter across dif-
ferent radar variables, it was found that the v, of the side-
lobes exhibits consistent patterns. This consistency makes vy
a highly effective indicator for PSD screening. As shown in
Fig. 8a, among the five identified ship clutter events, Nos. 1
and 4 are particularly notable for their distinct cross-shaped
patterns. Correspondingly, their vy (Fig. 8c) also display
cross-shaped distributions with small differences within each
group (standard deviations of 0.48 and 0.37 ms™!, respec-
tively).

To quantitatively assess the v, distribution of ship clutter,
we selected datasets based on criteria similar to those for the
PSD statistics described in Sect. 3.2.1, albeit with less strin-
gent SNR requirements. Consequently, statistics were gath-
ered from 65 ship clutter samples. After normalizing the SNR
and vy of the ship clutter sidelobes, the data were categorized
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Figure 8. The 0.5° elevation of the Kumpula radar using the LFM waveform at 11:55 UTC 5 May 2020. (a) Reflectivity before ship clutter
filtering; (b) reflectivity after filtering all range gates in the PSD; (¢) Doppler velocity; (d) reflectivity after filtering using velocity and SNR
thresholds.
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Figure 9. The 0.5° elevation of the Kumpula radar using the LFM waveform at 19:55 UTC 4 June 2020. (a) Reflectivity before ship clutter
filtering; (b) reflectivity after filtering all range gates in the PSD; (c) Doppler velocity; (d) reflectivity after filtering using velocity and SNR
thresholds.
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Figure 10. Violin plots showing the normalizing vy for the normal-
izing SNR of ship clutter sidelobes from —80 to 0dB in steps of
20dB.

into bins based on the power difference between the side-
lobes and the mainlobe, ranging from —80 to 0dB in 20dB
increments. The statistical outcomes, illustrated in the vio-
lin plot in Fig. 10, indicate that while there are outliers, a
vy threshold of 1 ms™! is adequate to encompass most ship
clutter sidelobes.

A notable exception, however, is ship clutter No. 1 in
Fig. 9, where precipitation and ship clutter overlap and ex-
hibit similar v, values. To address this, we introduced an ad-
ditional SNR threshold, that is, the SNR of the ship clutter
sidelobe must exceed the lower limit used for PSD determi-
nation in Sect. 3.2.1 but not exceed the higher SNR threshold
(default to 10dB). Typically, the SNR of ship clutter side-
lobes is lower than that of precipitation echoes.

The identification results, after applying the v, and SNR
thresholds, are presented in Figs. 8d and 9d. Compared with
Fig. 9a, Fig. 9d effectively isolates and removes only the re-
gions affected by ship clutter, with minimal loss of precipi-
tation echo information. Meanwhile, there is no observable
degradation in the identification performance for the isolated
ship clutter between Fig. 8a and d.

4 Performance evaluation
4.1 Case analysis

Figure 11a presents a typical clear-air scenario observed by
the Kumpula radar using the LFM waveform at 13:10 UTC
on 5 May 2020, where several ship clutter events were ob-
served in isolation from the precipitation and sea clutter. The
results of the mainlobe identification are indicated by red cir-
cles. In Fig. 11a, which displays the Zy before the appli-
cation of ship clutter filtering, both strong cross-shaped and
weaker point-shaped ship clutter are evident. Following the
implementation of ship clutter filtering, as shown in Fig. 11b,
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both strong and weak ship clutter were effectively removed.
The influence of ship clutter on Zy was substantially miti-
gated, rendering it visually undetectable.

Figure 11c presents the observation from the Kumpula
radar at an adjacent time, using the NLFM waveform. To
demonstrate the generalizability of the HSCI algorithm, we
applied it to this case, observed under the NLFM waveform.
It is worth noting that the mainlobe identification employed
the same random forest model as that used for the LFM
waveform. However, the relative power relationship between
the mainlobe and sidelobes was re-estimated based on obser-
vations under the NLFM waveform, primarily due to the dif-
ferent sidelobe structures of the two waveforms. As shown in
Fig. 11d, the HSCI algorithm achieves ship clutter suppres-
sion performance comparable to that under the LFM wave-
form. This demonstrates that the HSCI algorithm is not only
effective for LFM waveforms but also exhibits good general-
izability across different waveform types.

A precipitation event observed by the Kumpula radar at
22:40 UTC on 4 June 2020 is shown in Fig. 12, in which
several ship clutter events were completely mixed with pre-
cipitation echoes. In cases where ship clutter sidelobes are
involved, the echo intensity of most ship clutter sidelobes is
generally lower than that of the adjacent precipitation echoes.
As a result, the intrinsic characteristics of the ship clutter
sidelobes, such as the v, values approaching those of the ship
clutter mainlobe, are not prominently displayed in these over-
lapping range gates. Instead, the characteristics of the domi-
nant precipitation echoes prevail. Therefore, the analysis pri-
marily focuses on the identification of ship clutter mainlobes.
This typical case includes the three main output scenarios of
the HSCI algorithm: (1) ship clutter is successfully identi-
fied (highlighted with red or white circles); (2) precipitation
echoes are mistakenly identified as ship clutter (red or white
circles indicated by arrows); and (3) ship clutter is not effec-
tively identified (highlighted with black rectangles). For the
first scenario, a comparison between Fig. 12a and b shows
that the impact of ship clutter has been effectively suppressed
without compromising the surrounding precipitation echoes.
In the second scenario, although errors occurred in the main-
lobe identification, the application of velocity and SNR filters
in sidelobe identification effectively controlled the loss of
precipitation echoes — that is, only the range gate misidenti-
fied as a ship clutter mainlobe and its eight nearest neighbor-
ing gates were mistakenly removed. For the third scenario,
although the presence of ship clutter can be inferred from
polarimetric variables such as pyy (Fig. 12d), its impact on
Zy (Fig. 12a) is so minimal that it is virtually undetectable.

4.2 Statistical evaluation
A quarter of the manually curated dataset, consisting of 400
gates for ship clutter and 2500 gates for precipitation echoes,

was used to objectively assess the mainlobe identification re-
sults. The remainder of the dataset (75 %) served as the train-
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Figure 11. Reflectivity on the 0.5° elevation of the Kumpula radar using the LFM (13:10 UTC) and NLFM (13:11 UTC) waveforms on
5 May 2020. (a) Before ship clutter filtering using the LFM waveform; (b) after ship clutter filtering using the LFM waveform; (c) before
ship clutter filtering using the NLFM waveform; (d) after ship clutter filtering using the NLFM waveform. The mainlobe identification results
are highlighted by red circles.
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Figure 12. The 0.5° elevation of the Kumpula radar using the LFM waveform at 22:40 UTC 4 June 2020. (a) Reflectivity before ship clutter
filtering; (b) reflectivity after ship clutter filtering; (c) Doppler velocity before ship clutter filtering; (d) co-polar correlation coefficient after
ship clutter filtering. The mainlobe identification results are highlighted with red or white circles, with misidentified cases indicated by blue
arrows, whereas the unrecognized ones are highlighted with black rectangles.
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Table 4. Performance evaluation results of the HSCI algorithm for
identifying the ship clutter mainlobe based on the test dataset.

Echo type Precision  Recall F1-score
Ship clutter 949%  9725% 98.36 %
Precipitation echoes  99.56 % 99.92%  99.74 %

ing set for the random forest identification model. Three met-
rics — precision, recall, and F1-score — were used in this study
to evaluate the performance of the HSCT algorithm. They are
defined as follows:

.. TP
Precision = ——, (5)
TP + FP
TP
Recall = ————, (6)
TP +FN
2 x Precision x Recall
Fl-score = , @)

recision + Recall

where TP denotes the number of range gates correctly identi-
fied, FP denotes the number of range gates incorrectly iden-
tified, and FN denotes the number of range gates not identi-
fied. Table 4 summarizes the precision, recall, and F1-score
of the HSCI algorithm on the test dataset. For ship clutter,
the algorithm achieved a precision of 99.49 %, a recall of
97.25 %, and an Fl-score of 98.36 %. In the case of pre-
cipitation echoes, precision reached 99.56 %, recall 99.92 %,
and the F1-score 99.74 %. These results demonstrate that the
HSCI algorithm performs well on both echo types, with all
three metrics exceeding 97 % and most exceeding 99 %.

The performance of the identification process was further
quantified using a probability density plot like that shown in
Fig. 6, where the overlapping area between the distributions
of ship clutter and precipitation echoes was only 2.83 %.
This represents a significant improvement over the results
obtained using a single feature, as detailed in Table 2, and
underscores the benefits of integrating multiple features to
enhance the identification accuracy.

In addition to using labeled datasets to evaluate the per-
formance of mainlobe identification, this study also incorpo-
rated observed scanning data from the Kumpula radar. Un-
like other studies that typically present identification results
from one or a few radar scans (Tang et al., 2014; Kurdzo
et al., 2020), our analysis encompasses a 24 h precipitation
event on 4 June 2020. The Zy value both before and after the
removal of ship clutter was converted into precipitation rates
(R) using the Z—R relationship Zy = 300R!® (Marshall and
Palmer, 1948), and the total precipitation rate for the entire
event was accumulated. The conversion of Zy to the precipi-
tation rate has two important purposes. First, the precipitation
rate is a critical parameter in meteorological applications, of-
fering a more direct reflection of identification performance.
Secondly, it facilitates the accumulation of data, allowing for
the analysis of long-term effects.
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The rain accumulations before and after the removal of
ship clutter are shown in Fig. 13 and b. As illustrated in
Fig. 13a, numerous areas with high precipitation accumu-
lation appear in linear formations over the sea. Following
the application of ship clutter removal, as shown in Fig. 13b,
these anomalous values were effectively eliminated, whereas
the precipitation echoes in other areas remained unaffected.
This confirms the efficacy of the ship clutter identification
algorithm and demonstrates its capability to enhance the ac-
curacy of precipitation measurements. Figure 13c shows the
difference in precipitation accumulation before and after ship
clutter removal (i.e., subtracting the precipitation accumu-
lation shown in Fig. 13b from that in Fig. 13a), highlight-
ing the overestimation of precipitation caused by ship clut-
ter. A comparison with the ship traffic density map of the
Gulf of Finland shown in Fig. 13d reveals a strong correla-
tion between the two, substantiating the assertion that these
echoes originated from ships. Moreover, in the main naviga-
tion channel (the red area in Fig. 13d), the precipitation ac-
cumulation after ship clutter removal exhibits a smooth dis-
tribution similar to the surrounding areas. This suggests, to
some extent, that the loss of precipitation echoes caused by
the HSCI algorithm is negligible.

Although a performance analysis based on a pre-
constructed dataset has been conducted, a quantitative eval-
uation under real observational conditions is still lacking.
The full-day observations from the Kumpula radar on 4 June
provide an opportunity to address this gap. We extracted 24
scans, selecting one scan per hour, and determined the lo-
cations of ship clutter using the same method described in
Sect. 2. The evaluation results are summarized in Table 5. A
total of 247 ship clutter events were identified across the 24
scans (i.e., the sum of the second and third columns in the
second row). Of these, the HSCI algorithm successfully de-
tected 238, missing only nine. Additionally, 31 range gates
associated with precipitation echoes were mistakenly identi-
fied as ship clutter. However, as discussed in Sect. 4.1, the
actual loss of precipitation echoes is well controlled, thanks
to the velocity and SNR thresholds integrated into the HSCI
algorithm.

5 Discussion

The evaluation results confirm that the HSCI algorithm ef-
fectively identifies both the mainlobe and sidelobes of ship
clutter observed by the Kumpula radar. Combined with its
logical simplicity and high computational efficiency, it ap-
pears highly promising for implementation in commercial
signal processors (e.g., RVP900). However, due to the cross-
radial effect of the antenna sidelobes, the implementation of
the HSCI algorithm requires a buffering delay of several hun-
dred milliseconds for the data from these radials, limiting its
performance to quasi-real-time operation. Nonetheless, this
represents a cost-effective compromise for reducing the in-
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Figure 13. The 24 h rain accumulation on 4 June 2020 from the Kumpula radar at 0.5° elevation. (a) Before ship clutter filtering; (b) after
ship clutter filtering; (c) difference between before and after filtering (i.e., subtracting the precipitation accumulation shown in panel (b)
from that in panel a); (d) ship density map of the Gulf of Finland (© MarineTraffic 2024; image source: https://www.marinetraffic.com/, last

access: 21 February 2025).

fluence of ship clutter on radar data. Additionally, some con-
figuration information needs to be pre-integrated into the sig-
nal processor. For example, geographic information about the
sea area must be collected in advance based on the radar
deployment location and used in the region limitation step
of the HSCI algorithm. In addition, other radars may have
different antenna patterns and pulse compression waveforms
compared to the Kumpula radar, which makes the statistical
results obtained in this study inapplicable to them. There-
fore, when applying the HSCI algorithm to other radars, a
large amount of ship clutter data must be manually selected
for algorithm training and characteristics analysis, which is a
labor-intensive yet necessary task.

In this study, the method used to suppress the negative im-
pact of ship clutter is to mask radar variables at the range
gates where ship clutter is identified. However, when precip-
itation echoes overlap with ship clutter (as shown in Fig. 12),
this inevitably leads to the loss of precipitation data. An ef-
fective strategy to address this challenge is to move the stage
of ship clutter identification and filtering from “data process-
ing” to “signal processing” (Keeler and Passarelli, 1990),
which will become feasible when the HSCI algorithm is in-
tegrated within the signal processor. This approach involves
using spectrum processing techniques to suppress the ship
clutter component in the radar signal while preserving the
precipitation component, similar to ground clutter filtering
methods such as GMAP (Siggia and Passarelli, 2004) and
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CLEAN-AP (Torres and Warde, 2014). The center position
of the notch filter needs to be adjusted from zero frequency
to match the vy of the ship clutter’s mainlobe.

During the evaluation of the HSCI algorithm (Sect. 4.1),
we observed that weak ship clutter affects overlapping pre-
cipitation echoes differently in reflectivity and polarimetric
variables, with the latter being more susceptible to contami-
nation. In such cases, a general-purpose non-meteorological
echo filter based on a correlation coefficient threshold could
be used as an optional supplement to the HSCI algorithm in
operational settings (Tang et al., 2014), helping to mitigate
the potential impact of residual weak ship clutter on meteoro-
logical applications. In addition, the evaluation revealed that
the HSCI algorithm has a tendency to over-identify ship clut-
ter. However, because the algorithm employs velocity and
SNR filters in the sidelobe identification, even when precip-
itation echoes are mistakenly identified as ship clutter, the
resulting precipitation loss can be kept to a minimum. For
these limited range gates that are incorrectly removed, inter-
polation techniques or speckle filters can effectively restore
the missing information (Vaisala, 2016).

Due to the limitations of available observational data, this
study develops and evaluates the HSCI algorithm primarily
based on ship clutter observed by the Kumpula radar in the
Gulf of Finland, using an LFM waveform. While the fea-
tures designed for ship clutter identification and the over-
all logic of the HSCI algorithm are intended to be general
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Table 5. Performance evaluation results of the HSCI algorithm for
identifying the ship clutter mainlobe based on observations from
4 June 2020.

Time Hit Miss False
(UTC) alarm
Total 238 9 31
00:00:41 21 0 2
01:00:40 14 0 2
02:00:40 10 1 4
03:00:41 11 1 7
04:00:40 14 0 2
05:00:40 12 1 0
06:00:41 8 0 1
07:00:40 9 0 2
08:00:40 7 1 0
09:00:41 4 0 0
10:00:41 2 0 1
11:00:41 6 1 1
12:00:41 10 1 0
13:00:41 16 0 3
14:00:40 14 0 2
15:00:40 16 0 0
16:00:40 11 0 0
17:00:41 8 1 0
18:00:41 12 0 2
19:00:40 10 0 1
20:00:41 11 0 0
21:00:41 4 0 0
22:00:41 6 1 1
23:00:40 2 1 0

and not tied to a specific radar system or waveform, we ac-
knowledge that the current validation is restricted to a single
radar platform, geographic location, sea state, and waveform
configuration. Therefore, the robustness and generalizability
of the algorithm under varying conditions — such as across
different radar systems, geographical regions, environmental
conditions (e.g., sea clutter dynamics influenced by wind or
temperature), seasons, and transmitted waveforms — remain
to be comprehensively assessed. We recognize this as a sig-
nificant limitation of the present work. Future studies will
aim to address this issue by applying the HSCI algorithm to
a broader range of observational datasets, enabling a more
rigorous evaluation of its performance and adaptability in di-
verse operational scenarios.

6 Summary

In this study, a hybrid ship clutter identification (HSCI) algo-
rithm for pulse compression weather radar was introduced.
This algorithm not only identifies the mainlobe of the ship
clutter but also detects the range sidelobes resulting from
pulse compression technology and the antenna sidelobes in-
herent to all radars. Data observed using the Kumpula radar
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at the University of Helsinki (from May to June 2020), which
frequently captures the activities of ships sailing in the Gulf
of Finland, were used in this study. For algorithm develop-
ment and performance evaluation, 1600 ship clutter gates and
10000 range gates of precipitation echoes were manually se-
lected.

The HSCI algorithm is structured into two parts: main-
lobe and sidelobe identification. In the mainlobe identifica-
tion step, the identification region is initially limited to min-
imize false identifications and enhance efficiency. Six fea-
tures — RD, RGF, o,, SWR, Zpr, and CCD - are then cal-
culated and used in a random forest model to distinguish the
ship clutter mainlobe from precipitation echoes. If the model
confirms the presence of a ship clutter mainlobe, the process
transitions to sidelobe identification.

The potential sidelobe distribution (PSD) of ship clutter is
dynamic, increasing or decreasing with the SNR of the main-
lobe. The first step in sidelobe identification uses an adap-
tive method to accurately determine the PSD, thus avoiding
missed identifications that leave sidelobe residues or exces-
sive identifications that lead to precipitation data loss. Ve-
locity and SNR filters were then applied within the PSD to
further protect against the loss of precipitation information
due to overlapping ship clutter and precipitation echoes.

Two typical cases (one in clear air and the other during
precipitation) were used for the algorithm performance anal-
ysis. The results demonstrate that isolated ship clutter is ac-
curately identified and filtered out, whereas ship clutter over-
lapping with precipitation is also effectively identified and re-
moved while preserving the precipitation data. Even in cases
where precipitation is misidentified as ship clutter, the loss
of actual precipitation echoes is minimized due to the con-
straint mechanisms embedded in the HSCI algorithm. In ad-
dition, the algorithm (mainlobe identification part) was eval-
uated on a test dataset comprising 400 ship clutter gates and
2500 range gates of precipitation echoes. For ship clutter,
the algorithm achieved a precision of 99.49 %, a recall of
97.25 %, and an F1-score of 98.36 %. In the case of precipi-
tation echoes, precision reached 99.56 %, recall 99.92 %, and
the F1-score 99.74 %. This study also evaluated the cumula-
tive precipitation before and after ship clutter filtering during
a 24 h precipitation event. The results show that the precip-
itation overestimation caused by ship clutter was effectively
eliminated, and the footprint of precipitation overestimation
corresponded well with the ship density map. Furthermore,
the quantitative evaluation based on the 24 h observations
(rather than the pre-extracted dataset) also demonstrated the
robust performance of the HSCI algorithm.

It is worth mentioning that the phased array technol-
ogy is becoming increasingly prevalent in weather radar.
Since the early 21st century, the United States has con-
ducted experiments and developed advanced phased array
weather radars such as ATD (Weber et al., 2021) and Horus
(Palmer et al., 2023). Similarly, China has pioneered the op-
erational application of phased array technology in several
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provinces (Geng and Liu, 2023). Pulse compression tech-
nology, a cornerstone of active phased array radars, sug-
gests that the HSCI algorithm proposed in this study may
have even wider applications in the future. Moreover, phased
array radars often use digital beamforming for rapid scan-
ning. However, this can exacerbate the deterioration of the
antenna sidelobes in the direction of elevation (Schvartzman
et al., 2021). Consequently, it is anticipated that future HSCI
algorithms will evolve from being two-dimensional to being
three-dimensional.

Appendix A

SNR is commonly used as a threshold parameter to mask
regions with noise and weak signals that are significantly in-
fluenced by noise. Although SNR can be included as part of
the archived data along with other radar parameters such as
7y, Vr, 0y, ZDR, ¢$pP, and ppy, in some signal processors,
it is not always mandatory. For instance, the Kumpula radar
used in this study did not output an SNR. Given that the SNR
is a crucial factor for adaptively determining the PSD in the
HSCI algorithm, an estimation technique was developed to
accurately obtain the SNR using reflectivity (Z).

In Vaisala RVP signal processors, Z (expressed in loga-
rithmic units) is estimated from the SNR (expressed in loga-
rithmic units) and a series of constants (Vaisala, 2016):

Z =SNR+C. (A1)

For simplicity, a series of constants is consolidated and de-
noted by C. When the SNR reaches the preset threshold
SNRy,r (1.5 dB for the Kumpula radar), the radar detects the
minimum reflectivity Zmin:

Zmin = SNRyr + C. (A2)
Subtracting Eq. (A2) from Eq. (A1):

Z — Zmin = SNR — SNR ;. (A3)
The SNR can then be determined by transposing:

SNR = Z — Zin + SNRyy;. (A4)

In Eq. (A4), Z can be sourced from the archived data, and
SNRyy is a predefined value set by the user. Zp;, for each
range can be determined through statistical analysis of a large
dataset.

It is worth emphasizing that the proposed SNR estimation
method can be viewed as the inverse of the reflectivity esti-
mation. As such, the derived SNR maintains the same level
of accuracy as that obtained directly from the raw time series
data, without introducing any additional errors.

Data availability. The radar data used in this study are avail-
able from Matti Leskinen (matti.leskinen@helsinki.fi) or Dmitri
Moisseev (dmitri.moisseev @helsinki.fi) upon request.
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