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Abstract. Low-cost, medium-precision sensor (LCS) net-
works have emerged as a promising approach for CO2 mon-
itoring under complex urban emission conditions. However,
the field performance of these LCSs faces significant chal-
lenges from environmental factors (e.g., temperature, humid-
ity) and long-term drifts caused by sensor degradation (e.g.,
light source aging). In this study, we performed 30 months
of co-located observations using LCS units (named SENSE-
IAP) alongside a Picarro reference analyzer to evaluate
long-term field performance, which is essential for the cor-
rection and validation of mid–low-cost CO2 observation
networks. The environmental correction system we devel-
oped effectively corrected the impact of daily environmental
changes, which reduced the root mean square errors (RM-
SEs) from 5.9± 1.2 to 1.6± 0.5 ppm for SENSE-IAP. The
corrections remained robust against seasonal environmen-
tal changes, maintaining daily RMSE typically within 1–
3 ppm throughout the 30 months of observation. Long-term
drifts, commonly occurred in LCS, produced biases of up
to 27.9 ppm over 2 years. Furthermore, seasonal drift cycle

contributed up to 25 ppm RMSE after 6 months of deploy-
ment. Although the environmental correction system could
not address these errors, linear interpolation effectively cal-
ibrated the long-term drift, reducing the 30-month RMSE
to 2.4± 0.2 ppm. To improve the accuracy of high-density
CO2 networks using such LCSs, we recommend maintain-
ing a calibration frequency preferably within 3 months and
not exceeding 6 months, with optimal calibration performed
during both winter and summer to ensure accuracy within
5 ppm. These findings indicate that SENSE-IAP instruments
can operate long-term without requiring a return to the labo-
ratory for re-calibration or frequent field standard gas calibra-
tion, thereby substantially reducing time, labor, and financial
costs.

1 Introduction

Urban CO2 emissions demonstrate complex spatial and tem-
poral variability (Wada et al., 2011) influenced by diverse
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emission sources (Gurney et al., 2012; Kellett et al., 2013),
meteorological factors (Grimmond et al., 2002; Lateb et al.,
2016), and potential misinterpretation by biogenic fluxes
(Miles et al., 2021). These complexities pose significant chal-
lenges in accurately capturing and interpreting the intricate
changes in urban CO2 concentrations, highlighting the neces-
sity for more advanced and comprehensive monitoring solu-
tions.

Recent advancements in medium-precision carbon moni-
toring technologies have enabled the establishment of high-
density sensor networks with low to mid cost and medium
precision, presenting a viable and competitive monitoring
strategy (Müller et al., 2020; Shusterman et al., 2018). This
approach effectively addresses the challenges posed by CO2
variability in urban environments, where complex emission
sources, vegetative carbon sinks, and dynamic meteorolog-
ical conditions interact. Unlike high-precision instruments
(0.1 ppm) such as Picarro cavity ring-down spectroscopy
(CRDS) analyzers (Picarro, 2023), which cost approxi-
mately USD 100 000; low-cost (USD 30–500); and mid-cost
(USD 1000–5000) sensors utilizing non-dispersive infrared
(NDIR) technology (Table 1) (Han et al., 2025), offer a 1–
10 ppm accuracy at a fraction of the price (USD 30–5000)
– representing a cost reduction of more than an order of
magnitude. This enhanced affordability facilitates large-scale
deployment, making these sensors particularly attractive for
comprehensive urban CO2 monitoring systems (Lopez-Coto
et al., 2017; Turner et al., 2016; Wu et al., 2016; Zeng et al.,
2021).

While cost-effective, NDIR sensors are sensitive to en-
vironmental changes and often exhibit long-term drifts and
abrupt jumps. Noise, environmental sensitivity, and temporal
drifts result in raw measurements that typically have more
significant errors and uncertainties than the accuracy and
resolution required for urban CO2 monitoring. The accu-
racy of these sensors typically depends on correction meth-
ods that account for environmental factors such as tem-
perature, humidity, and pressure. However, the sensitivities
of these variables can vary significantly, presenting major
challenges in calibrating large sensor networks (Bigi et al.,
2018; Delaria et al., 2021; Hagan et al., 2018; Martin et al.,
2017). With careful correction – using environmental cham-
bers and co-located high-precision instruments – these sen-
sors can achieve short-term measurement accuracy within
± 1–3 ppm under controlled laboratory conditions (Cai et al.,
2024; Grange et al., 2025; Müller et al., 2020).

Additionally, unlike high-precision instruments, NDIR
sensors are more prone to temporal drift and fluctuations. To
mitigate these issues, sensors are periodically re-calibrated
at the laboratory or undergo in situ field calibration using
traceable standard gases. While essential, these correction
processes are labor-intensive and time-consuming. Some net-
works adopt alternative approaches. For instance, sensor-
specific drift slope can be predetermined before deployment,
with offsets corrected using the lower percentile (5 %–10 %)

of observations across the entire network (Shusterman et al.,
2016). Delaria et al. (2021) demonstrated that using the me-
dian value from at least 12 sites with minimal temperature
dependence as a reference can maintain network precision
at 3.6 ppm. Another method involves determining drift by
comparing nearby instruments under specific weather con-
ditions when horizontal CO2 gradients are small (Müller et
al., 2020). A widely used and robust calibration method in-
volves automatic or manual standard gas injections. In the
Beijing and Jinan networks, we applied this method across
more than 160 instruments, with automatic standard gas cal-
ibration performed weekly. Results showed mean biases of
−1.28 to −0.64 ppm at a 1-month scale (Cai et al., 2024).
Manual standard gas calibration is particularly useful in mo-
bile observations, such as on-road vehicle measurements and
vertical profile observations using tethered balloons (Liu et
al., 2021; Bao et al., 2020). However, calibration costs can be
significant. For automatic standard gas calibration (weekly
frequency), expenses reach approximately USD 300 per sta-
tion per year, consuming two 8 L, 10 MPa gas tanks (one as
a working standard and the other for quality control). Conse-
quently, maintaining 100 stations with such low-cost sensors
would incur an annual cost of USD 30 000 for standard gas
alone.

Currently, several locations, such as California, Paris,
Switzerland, and Beijing, have established high-density CO2
monitoring networks utilizing NDIR sensors (Table 1).
For instance, the Berkeley Environmental Air-quality and
CO2 Network (BEACO2N) in California, USA, utilizes the
Vaisala CarboCap GMP343 sensor (mid-cost), with a raw
accuracy of ± 3 ppm +1 % reading (Vaisala, 2020). Af-
ter correcting for bias and temporal drift using the in situ
method, the observation accuracy is approximately 1–4 ppm
(Shusterman et al., 2016, 2018), while the reported accuracy
improved to 1.6–3.6 ppm after temperature correction (De-
laria et al., 2021). The Carbosense CO2 sensor network in
Switzerland (Müller et al., 2020), which uses the SenseAir
LP8 sensor (low-cost), with a raw accuracy of ± 50 ppm
(SenseAir, 2019), achieves an observation accuracy of 8–
12 ppm through initial laboratory chamber correction and
regular drift calibration via ambient co-location with nearby
reference instruments.

China aims at peaking carbon emissions before 2030 and
achieving carbon neutrality before 2060 (the Dual Carbon
Goals, DCGs) (He et al., 2020; Huang et al., 2023; Zeng
et al., 2022). To support China’s DCGs and address the
high spatial variability in CO2 concentration in urban ar-
eas, the Institute of Atmospheric Physics, Chinese Academy
of Sciences (IAP), has established a network of 134 sites
using SenseAir K30 sensor since 2017 (Han et al., 2024).
This study presents the correction methods developed for the
SenseAir K30 sensors and evaluates the accuracy achievable
through the environmental dependence correction method
based on laboratory simulation. At a field observation site in
Beijing, environmentally corrected low-cost sensors (LCSs)
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Table 1. Types of low-cost and mid-cost sensors.

Sensor type Typical cost Typical CO2 sensors Network
range (USD) precision (ppm CO2)

Low-cost USD 30–500 1–10 ppm SenseAir LP8, Switzerland, Carbosense CO2 sensor network
SenseAir K30 (Müller et al., 2020) Beijing,

SENSE-JJJ (Han et al., 2024)

Mid-cost USD 1000–5000 1–4 ppm Vaisala GMP343, California, BEACO2N (Asimow et al., 2024)
SenseAir HPP Switzerland, ZiCOS-M (Grange et al., 2025)

Paris, CO2 sensor network (Lian et al., 2024)

were co-located with high-precision Picarro instruments for
up to 30 months. By comparing the data with measure-
ments from Picarro instruments, we gained more profound
insights into the long-term performance and long-term drift
characteristics of the LCS, as well as assessed the effective-
ness of our long-term drift correction method. Our findings
demonstrate that timely long-term drift correction signifi-
cantly improved the accuracy of urban CO2 monitoring net-
works based on LCS and reduced time, labor, and money in-
vestment. This research provides valuable evidence for opti-
mizing the deployment and maintenance of LCS-based mon-
itoring networks in urban environments.

2 The application of SenseAir K30 sensors for urban
CO2 monitoring

A multivariate linear regression analysis was used for en-
vironmental correction, which can improve the accuracy of
the SenseAir K30 sensor from its initial specification of
± 30 ppm± 3 % of reading (SenseAir: K30 products sheets,
2022) to a range of 1.7–4.3 ppm (Martin et al., 2017). The en-
vironmentally corrected K30 sensor demonstrated reliability
and consistency when compared to higher-precision instru-
ments and standard gas under a controlled indoor environ-
ment with a root mean square error (RMSE) ranging from
1 to 3 ppm on a monthly scale (Cai et al., 2024). Further-
more, the low-cost sensor exhibited highly consistent with
Picarro system during on-road observations conducted using
the same vehicle with an RMSE of 3.6 ppm (Liu et al., 2021).
In a study by Bao et al. (2020), the sensor was utilized to
measure the CO2 vertical profile in the lower troposphere in
Hebei Province, China, showing good consistency with tradi-
tional gas chromatography measurements (Bao et al., 2020).
Additionally, Cai et al. (2024) applied the low-cost sensor in
an industrial park, revealing a CO2 concentration enhance-
ment of 5–28 ppm within the park compared to a reference
site (Cai et al., 2025a).

The Beijing–Tianjin–Hebei (or Jing–Jin–Ji, JJJ) network,
deployed with low-cost sensors, has provided valuable in-
sights into seasonal variations, urban–rural differences, and
the homology of CO2 and PM2.5 (Han et al., 2024). The low-
cost sensors have also been proven effective in detecting sig-
nals related to COVID-19. Continued CO2 measurements in
Beijing showed a 15 ppm reduction during the 2020 lock-
down period compared to the before and after periods. Simi-
larly, regular on-road CO2 observation in Beijing before, dur-
ing, and after COVID-19 lockdown showed a 40–60 ppm de-
crease during COVID-19 lockdown period (Liu et al., 2021).
These applications demonstrate the versatility and reliability
of low-cost sensors in capturing both environmental and an-
thropogenic influences on atmospheric CO2 concentrations.

3 Instrument design and correction methods of
SENSE-IAP

The SENSE-IAP instrument integrates three K30 sensors
alongside a Bosch BME680 (BME) sensor (Bao et al., 2020;
Liu et al., 2021), all collected by an updated version of Bea-
gleBone Green Wireless (BBGW). The standard version of
SENSE-IAP instrument also includes a Figaro TGS 2611
sensor for CH4 detection and a Plantower PMSA003 for
PM2.5 measurements. These components are compactly inte-
grated onto a single circuit board and housed within a weath-
erproof enclosure, as illustrated in Fig. 1.

The BME sensor is positioned close to the K30s to simul-
taneously monitor the temperature (T in °), relative humidity
(RH in %), and pressure (P in hPa) of the air mass inside the
instrument. This design ensures real-time correction of the
sensor response values, accounting for dynamically chang-
ing external environmental conditions and enhancing mea-
surement accuracy.

To improve the observing accuracy, we developed a CO2
calibration system incorporating both controlled environ-
mental experiments and calibration software (Bao et al.,
2020; Han et al., 2024; Liu et al., 2021). The system fol-
lows these main steps: (1) converting raw electrical sig-
nals to CO2 values within atmospheric observation ranges;
(2) resampling data from 2 s to 1 min to reduce white
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Figure 1. The layout of sensors in the standard version of SENSE-
IAP instrument.

noise; (3) applying environmental corrections of tempera-
ture, humidity, and air pressure during span calibration; and
(4) performing calibration using standard gas traceable to the
WMO X2007 scale (identical to the standard used in high-
precision systems like Picarro instruments) to remove system
bias. The controlled environmental experiments typically re-
quire 1 week of co-location with a reference instrument
to determine environmental correction coefficients followed
by another week of co-location for post-quality check. To
fully characterize long-term drift patterns, we recommended
maintaining observations for at least 1 year to capture sea-
sonal variations (including both summer and winter cycles).

The raw signals from all sensors were collected at a fre-
quency of 2 s with a standard deviation of approximately
± 4 ppm. Figure 2 shows the experimental results of contin-
uously introducing standard gas over 25 h to evaluate the in-
strument’s noise characteristics. As shown in Fig. 2, the Al-
lan deviation (in ppm) decreases with increasing integration
time. At a 2 s measurement interval, the noise level is 4 ppm,
which decreases to approximately 0.2 ppm for integration
times ranging from 2 min to 1 h. However, the Allan devi-
ation increases after 1 h of integration time, indicating the
presence of drift contributions.

In addition to white noise, the raw signals often contain
outliers that must be removed through quality control. Ac-
cording to Eq. (1), following the 3σ principle, the origi-
nal data points xi collected during the sampling period are
treated as samples. The average value x of non-missing xi
is calculated, and the standard deviation (SD) of the xi is σ .
If |xi − x|> 4σ , the data point is identified as an outlier and
removed. We adopted the 4σ threshold to strike a balance be-
tween effectively removing outliers and preserving the natu-

Figure 2. (a) The raw signals measured continuously over 25 h
from 03:00 UTC on 15 October to 03:00 UTC on 16 October 2022.
(b) Allan deviation log plots.

ral ranges of variability in the data.

σ =

√∑n
i=1(xi − x)

2

n− 1
(1)

Subsequently, the raw signals are averaged from a 2 s interval
to a 1 min interval (resample) to reduce standard deviation. A
1 min integration time was chosen as an optimal trade-off be-
tween noise reduction and maintaining sufficient time reso-
lution to track natural variations in CO2 concentrations accu-
rately. As in Eq. (2), the resampled value Yi for each minute
is calculated as the average of all non-outlier values xj within
that minute.

Yi =

∑m
j=1xj

m
(2)

The correction system we developed substantially im-
proves the accuracy of CO2 measurements through a com-
prehensive process that includes outlier removal and noise re-
duction. Figure 3 shows the main steps of the correction sys-
tem, with the data cleaning method described earlier consti-
tuting the initial two steps. As shown in Fig. 3a, the raw sig-
nal (blue) undergoes de-specking and denoising (red). How-
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Figure 3. (a) Compared CO2 at each processing step. (b) Synchronized monitoring of T and RH. (c–f) The scatter plots of CO2 measurements
form LCS and Picarro instrument at different processing steps, including (c) the raw signal in 2 s resolution, (d) the values after noise
reduction at a 1 min resolution, (e) the CO2 concentrations after environment corrections, and (f) systematic bias correction.

ever, a noticeable deviation remains between the LCS mea-
surements and the true value, with a correlation coefficient
(r value) of approximately 0.6 (Fig. 3c–d). The differences
mainly come from environmental sensitivity and baseline de-
viations in concentration.

Similarly to the correction standards used in high-
precision systems, our LCS units are calibrated using stan-
dard gas traceable to the WMO X2007 scale. This calibra-
tion adjusts the span and calibrates system bias before de-
ployment. For the typical CO2 concentration range (400–
700 ppm), a concentration-dependent offset (1C) exists be-
tween the time-averaged LCS measurements and the stan-
dard gas concentration. Since this concentration dependence
varies for each K30 sensor, laboratory corrections are essen-
tial for accuracy improvement. Our concentration correction
process includes multiple concentration gradients, ensuring
applicability to real-world monitoring scenarios. The fitting
parameters of 1C against the measured values are deter-
mined through regression analysis, enabling precise correc-
tion across the operational range.

1C = Ym− y0, (3)

where y0 represents the concentration of standard gas or the
high-precision reference instrument (Picarro G2301); Ym is
the minute-averaged values from LCSs.

Environmental calibration was conducted in an environ-
mental controlled chamber. The LCS environmental sensi-
tivity corrections included T compensation (10–50 °C in five
steps), RH compensation (10 %–90 % in nine steps), and P
compensation. This correction is based on sensitivity test-
ing conducted in the laboratory (Martin et al., 2017), with
comparisons made against Picarro. Each sensor is assigned
unique sensitivity parameters through multivariate regression
and iteration analysis.

1C = f (aT ,YT )+ f (aH ,YH )+ f (aP ,YP )

+ f (aC,YC)+ ε, (4)

where the baseline correction coefficient is ε; YT , YH , YP ,
and YC represent the compensation values for the T , RH,
P , and concentration sensitivity, respectively, applied to the
minute-averaged CO2 measurement; aT , aH , and aP are the
regression coefficients against T , RH, and P , respectively;
and aC is the span correction coefficient against concentra-
tion.
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Figure 4. (a) Map of the location of Beijing-IAP in Beijing. (b) Map showing the location of Beijing-IAP within Beijing’s main urban area.
(c) The diagram of gas flow design for the synchronous observation system. (d) The photographs of the instrument installation setup. The
source for the basemap used in panels (a)–(b) is ESRI (https://server.arcgisonline.com/arcgis/rest/services/World_Topo_Map/MapServer,
last access: 16 June 2025).

Thus, the corrected CO2 can be expressed as

C = Ym− (f (aT ,YT )+ f (aP ,YP )+ f (aH ,YH )

+ f (aC,YC)+ ε). (5)

The r values between the CO2 corrected in the final two steps
and the Picarro measurements are close to 1 (Fig. 3e–f). Ad-
ditionally, the difference between the environmental correc-
tion (pink) and baseline calibration (green) in Fig. 3a repre-
sents the coefficient ε. After applying these correction steps,
the accuracy of the LCS measurements improved to 1–4 ppm
compared to Picarro (Liu et al., 2021).

Before deployment, the span and system bias of the LCSs
were calibrated. However, once deployed to field stations,
LCSs tended to drift on a weekly to monthly scale, neces-
sitating time-dependent drift calibration. We defined Scor as
the starting time of drift and Ecor as the time when the
drift slope stabilized or when calibration was required, with
1= Ecor−Scor.1Cdrift represents the bias between the con-
centration C measured by the instrument and the standard
concentration C0 at Ecor. Using the Eq. (6), the drift rate
over time (ppm min−1) at Ecor is calculated (st ). The bcal is
a constant deviation, representing the difference between the
baseline and the standard value before long-term drift occurs
(at Scor). This value is generally considered to be zero since
system bias has been calibrated before departure. The error at
any time between Scor toEcor can be calibrated to Cdrift

Cor using

the following formulas:

1Cdrift = st1t + bcal, (6)

Cdrift
Cor = C−1Cdrift. (7)

This integrated instrument with environmental correction
and drift correction is named SENSE-IAP.

4 Co-located observation system

Our experiment has been conducted since July 2022 at IAP
(Beijing-IAP site, Fig. 4a and b). Located in a central urban
area with high population density, the Beijing-IAP site is sig-
nificantly influenced by traffic emissions.

To evaluate the performance of the LCS, we devel-
oped a synchronous observation system that compares the
LCS with high-precision instruments. This system includes
two SENSE-IAP units (numbered pi688 and pi736), each
equipped with three K30 sensors. A cavity ring-down spec-
trometer (Picarro G2301) was used as the high-precision in-
strument for CO2 measurements (Picarro, 2023). The preci-
sion and accuracy of the Picarro instrument are better than
0.1 ppm (Yang et al., 2021). At Beijing-IAP, the Picarro ana-
lyzer was calibrated monthly using high-pressure standard
gases provided by the Meteorological Observation Center
of the China Meteorological Administration (MOC/CMA),
which are traceable to the World Meteorological Organiza-
tion (WMO) X2007 scale.
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To ensure long-term synchronous observation between the
LCSs and Picarro, deployment enables two sets of instru-
ments to measure the same gas mass. This ensures that any
differences in observed values only come from the effects of
T , RH, and P , as well as the concentration span, all of which
can be adjusted through correction methods. The deployment
setup is shown in Fig. 4b–c.

The instruments were mounted on the edge of an open
window to directly measure the outdoor air and environmen-
tal changes, which were almost the same as field-deployed
conditions (Figs. 4 and S8 in the Supplement). Temperature
primarily ranged from 0–40° and RH typically between 0 %
and 60 %. A partition isolated the LCSs from indoor spaces,
ensuring measurements primarily reflected outdoor environ-
mental conditions. Three K30 sensors and one BME sensor
were housed in a transparent cover featuring two 2 mm di-
ameter ventilation holes in the upper-left and lower-left cor-
ners (red circles in Fig. 4c and d). Air passively diffuses into
the pi688 enclosure, while a 4 mm diameter blue tube con-
nected to the cover’s left side enabled active air sampling via
an air pump (GAST DOA-P504-BN). Upstream of the pump,
the airflow passed through a capsule-type 10 µm filter (CO-
BETTER 92WM-LPF1000) for particulate matter removal
(Fig. 4c). Downstream of the pump, a Nafion drying tube
is installed for Picarro analysis (bypassed for SENSE-IAP
measurements) (Fig. 4c). The filtered air is then divided by a
four-way valve, delivering 3–5 L min−1 to the pi736 and 0.3–
0.4 L min−1 to the Picarro analyzer, with excess air vented
through the final outlet.

5 Environmental corrections for field measurements

To distinguish between the effects of short-term environmen-
tal factors and long-term drifts, we present these corrections
separately. To focus specifically on the environmental cor-
rections, all results in this section were obtained after re-
moving long-term drift. A comprehensive discussion of long-
term drift is provided in Sect. 5. Figure 5 shows the results
from environment-corrected SENSE-IAP at the Beijing- IAP
site compared with those from the Picarro system. After ap-
proximately 2 weeks of data collection during both summer
and winter, the SENSE-IAP showed highly consistent results
with Picarro, with RMSEs of 1.6 ppm in summer and 1.8 ppm
in winter. In contrast, the raw CO2 concentration data from
the SenseAir showed a higher RMSE of 6.2 ppm in summer
and 7.0 ppm in winter. Furthermore, the effectiveness of en-
vironmental correction is evident across different seasons.

The correction system effectively adjusted the CO2 con-
centration within the 400–700 ppm measurement range. As
shown in Fig. 5b, during the period from 16 to 19 July, even
when the ambient CO2 concentration experienced significant
fluctuations, the instrument showed high consistency with Pi-
carro. The T and RH detected by the BME sensor were used
to monitor the instrument’s internal environment. Notably,

Table 2. The long-term drift trend of six sensors (unit: ppm per
month).

SENSE-IAP pi688 pi736

Slope (ppm per month) s1 s2 s3 s1 s2 s3

Drift in the first year −1.2 −1.0 −1.4 −0.6 −1.1 −0.1
Drift in the second year −1.2 −0.5 −0.2 −1.3 0.1 −0.1

in winter mornings, sunrise caused a significant temperature
increase due to the presence of metal components on the cir-
cuit board (Fig. 5f). Our environmental correction success-
fully corrected for the temperature dependence, as the devi-
ation between the SenseAir and Picarro showed a strongly
correlated with temperature in both seasons (Fig. S1a). Ad-
ditionally, the deviation of SenseAir relative to Picarro was
significantly associated with RH in summer (Fig. S1b), and
our correction system incorporated humidity, which was re-
lated to ambient temperature. Compared to the raw SenseAir
data, the consistency of all six sensors improved markedly,
with the RMSE decreasing from 5.0± 1.0 to 1.3± 0.2 ppm
in summer and from 6.8± 0.8 to 2.0± 0.4 ppm in winter
(Fig. S2).

Our correction system can perform environmental sensi-
tivity analysis and correction on individual sensors, with the
correction efficacy remaining robust across seasonal envi-
ronmental changes. We further analyzed the daily RMSE of
the SENSE-IAP relative to Picarro during 30 months of co-
located observation. As shown in Fig. 6a, the daily RMSE of
one sensor (pi688-K30) ranged from 1.5 to 4.0 ppm through-
out the observation period, with the light blue shadow rep-
resenting the monthly mean± standard deviation. The aver-
age and median of daily RMSEs for this sensor were less
than 2.0 ppm (Fig. 6b), except for an increase to higher than
2 ppm in summer (dark green). Compared to Picarro, the con-
sistency of SENSE-IAP was better in winter, with an RMSE
below 2.0 ppm on most days. Except for a few sensors ex-
hibiting slightly higher RMSEs (approximately 3.0 ppm) in
spring and autumn (pi732-K30), the daily RMSEs of the six
sensors showed no significant seasonal variation (Fig. 6b).

6 Performance of typical long-term drift and
correction method

After environmental correction, the six SENSE-IAP sensors
were co-located with a Picarro analyzer synchronously for
over 30 months. As shown in Fig. 7, two types of long-term
drift were identified: (1) a downward drift trend and (2) a
seasonal drift cycle. While the environmental correction sys-
tem effectively corrects the impact of diurnal environmental
changes (Fig. 6), significant errors occurred in sensors due to
the two types of long-term drift. Without the long-term drift
calibration algorithm, the bias of SENSE-IAP could reach
27.9 ppm with an RMSE of approximately 28.1 ppm (Fig. 7).
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Figure 5. Comparison between hourly CO2 concentrations measured by the SENSE-IAP and Picarro systems at the Beijing site from 13 to
27 July 2022 (a–c, g) and 10 to 24 January 2023 (d–f, h). We compared both the raw CO2 data from SenseAir (blue) and the environmentally
corrected data from SENSE-IAP (red) with that from Picarro (black). The T and RH were measured for the environment inside the instrument.

During the observation period, all six sensors exhibited
long-term downward drifts ranging from 0.1 to 1.2 ppm per
month (Fig. 7 and Table 2). Among the six sensors deployed
in this study, only pi736 K30_3 showed a drift trend of less
than 0.1 ppm per month (Table 2). For sensors such as pi688-
K30 and pi688-K30_2, the 1CO2 displayed a continuous
downward trend over the 30 months, with slopes of 1.2 and
1.0 ppm per month, respectively (Table 2). Notably, the drift
trends for these sensors did not show significant stabilization
over time.

In addition to the downward drift trend, sensors like
pi688-K30_3 and pi736-K30 exhibited varying seasonal cy-
cle trends. After 6 months of deployment, these sensors
showed RMSEs of 25.3 and 24.8, respectively (Fig. 7). How-
ever, after more than 1 year of observation, the impact of sea-
sonal drift decreased, and the errors caused by long-term drift
were highlighted, resulting in reduced RMSEs as 17.3 and
10 ppm, respectively. The RMSE evaluation was conducted
during the identical period employed for drift correction.

From the perspective of drift magnitude, a significant bias
of 5 ppm (approximately 1 % of the ambient CO2 concen-
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Figure 6. (a) The time series of daily RMSEs for hourly CO2 concentration relative to Picarro (purple points) from June 2022 to Decem-
ber 2024, with a monthly rolling mean (blue line and shadow). (b) Box plot of the daily RMSEs of all six sensors across different seasons.
Sensors from the same instrument are represented in the same colors (spring: dark pink/pink, summer: dark green/green, autumn: orange/yel-
low, and winter: dark blue/blue). Within each box, the red line indicates the mean value, while the blue dashed line represents the median
values.

tration) typically occurred within 3–10 months after calibra-
tion, with most cases observed within 5 months. The seasonal
drift cycle occurred on a 6-month scale, with maximum er-
rors typically occurring in winter and summer. Therefore, we
recommend that the long-term drift calibration frequency of
SENSE-IAP should be no less than 3 months and no longer
than 6 months. In addition, drift calibration should be per-
formed at least once during both winter and summer seasons.
If the target monitoring accuracy is within 3 ppm, the drift
calibration frequency should be at least every 2 months, as a
3 ppm bias typically develops within 2–5 months.

The method for the long-term drift calibration is as fol-
lows. According to functions 6–7, we illustrate our long-term
drift calibration method by focusing on the first year of ob-
servations. At the start of the observation period (June 2022),
we adjusted the baseline of the six sensors. We designated the
initial calibration time point as Scor for the first observation
period (June 2022 to January 2023). The inflection point of
the drift trend in February 2023 was identified as Ecor for
the first period and as Scor for the second period of the ob-
servation (January to September 2023). The Ecor for the sec-
ond period was set to September 2023 in this study. We ap-
plied the linear calibration method between these two time
points for both periods of the drift trend. After calibration,
the CO2 concentrations from the six sensors showed strong

consistency with the Picarro, with an RMSE ranging from
2.4–3.0 ppm (Fig. 8).

It should be noted that due to the loose connection of
ventilation pipeline between July 2023 and March 2024, the
CO2 concentration measured by pi736 and Picarro were not
strictly synchronized. This issue led to a relatively lower
short-term monitoring accuracy during this period, primarily
due to the lag effect caused by air diffusion. To assess the ac-
tual hourly monitoring accuracy of SENSE-IAP, we excluded
data from this period. Without this exclusion, the RMSE for
pi736 would have been 3.9–4.5 ppm (Fig. S3). However, to
ensure the completeness and robustness of the long-term drift
analysis, we retained samples from this period, allowing for
a more comprehensive evaluation of drift trends over time.

7 Comparison of data quality across multiple levels
over a long-term scale

As previously mentioned, the correction system effectively
corrected the sensors’ short-term environmental dependence.
By applying a linear calibration method at least every
3 months, we can calibrate the time-dependent drift of LCSs
and resolve residual seasonal cycles that the environmental
correction system cannot fully resolve. This seasonal varia-
tion is prominently reflected in the original electrical signal
(raw signal). As shown in Fig. S4b, we eliminated the influ-
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Figure 7. Time series of 1CO2 for the six sensors at the Beijing-IAP from June 2022 to December 2024 (black), with the monthly rolling
mean (yellow line). The gray shadow represents the 1-month time range used to evaluate the RMSE and bias for each sensor after half a year,
1 year, and 2 years of deployment.

ence of short-term environment changes through a 24 h run-
ning mean, revealing that the seasonal drift cycle in the raw
signal can reach up to 100 ppm with an RMSE of 38.2 and a
bias of −21.1 ppm (Table 3).

The defining characteristic of medium-precision low-cost
sensors is the presence of long-term drift. This drift, which
exhibits a downward trend, is observed in all sensors, with
variations only in the drift rate (Fig S5). Long-term drifts
resulted in an RMSE of 15.8 and a bias of −12.0 for the
LCS, respectively (Table 3). Although seasonal cycle does
not significantly alter the overall trend of long-term drift, sea-
sonal environmental variations can introduce errors of up to
25 ppm if baseline calibration are performed only annually

(Fig. 7). Therefore, we recommend that baseline calibration
be conducted at least every 6 months, ideally during both
winter and summer.

The data provided by the SenseAir manufacturer were cor-
rected for temperature sensitivity using the default tempera-
ture parameters. The long-term drift was calibrated using a
so-called ABS algorithm, which employs periodic one-point
calibration in SenseAir, assuming that the minimum value
of CO2 concentration is 400 ppm in fresh air (SenseAir-
Corrected data). However, due to the constant assumption of
fresh air concentration, coupled with the carbon absorption
of vegetation in summer and the higher emissions in win-
ter, the SenseAir-Corrected data exhibit a fluctuating trend
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Table 3. Evaluation parameters∗ of the CO2 concentration measured by K30 sensors compared to those from Picarro, including SenseAir-
Corrected values, Raw signal, and SENSE-IAP at the Beijing-IAP from June 2022 to December 2024 (unit: ppm).

Data type SenseAir-Corrected Raw signal SENSE-IAP-Env-Corrected SENSE-IAP-Env + Drift-Corrected

Sensors RMSE Bias RMSE Bias RMSE Bias RMSE Bias

pi688 K30 15.9 −5.7 34.4 −20.2 20.1 −16.9 2.2 0.1
pi688 K30_2 10.1 −3.1 35.1 −19.0 15.7 −13.6 2.4 1.3
pi688 K30_3 10.2 −3.3 45.2 −24.2 21.5 −20.0 2.3 0.5
pi736 K30 10.8 −1.1 22.0 −11.8 13.5 −3.5 2.6 1.1
pi736 K30_2 13.0 −2.6 38.4 −23.0 14.3 −10.8 2.8 1.0
pi736 K30_3 12.5 −4.2 53.9 −28.1 9.8 −7.0 2.2 0.7
Mean 12.1 −3.3 38.2 −21.1 15.8 −12.0 2.4 0.8
SD 2.0 1.4 9.9 −5.1 4.0 5.6 0.2 0.4

∗ According to the statistical results of 24 h running means.

Figure 8. (a) Comparison of hourly CO2 concentrations measured by six sensors and Picarro at Beijing-IAP from June 2022 to Decem-
ber 2024. (b) The time series of 1CO2. (c) Scatter plot of SENSE-IAP and Picarro. (d) Histogram plot of the 1CO2.
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of approximately 20 ppm, with higher values in summer and
lower values in winter. Consequently, the bias of SenseAir-
Corrected data can be −3.3± 1.4 ppm with an RMSE of
12.1± 2.0 ppm (Fig. S6, Table 3). In contrast, the drift-
calibrated SENSE-IAP data demonstrate a much smaller bias
(0.8± 0.4 ppm) and an 80 % improvement in accuracy with
an RMSE of 2.4± 0.2 ppm (Fig S7, Table 3).

8 Seasonal drift cycle effects on SENSE-IAP

As shown in Fig. S8, the seasonal variations observed before
instrument linear calibration were correlated with T , RH, and
P . The 1CO2 between pi736-K30 and Picarro significantly
correlated with all three environmental factors, with r values
of −0.58, −0.46, and 0.33 against T , RH, and P , respec-
tively. In contrast, the relationship between pi688-K30_3 and
environmental factors was opposite to that of pi736-K30,
with r values of 0.33, 0.5, and−0.6 against T , RH, and P , re-
spectively. Considering seasonal phase differences between
CO2 concentration changes and environmental factors, this
seasonal deviation was likely attributable to not only insuf-
ficient environmental compensation but also the influence of
seasonal effects on the instrument’s physical properties. For
instance, changes in the sensor’s optical cavity size caused by
thermal expansion and cold contraction can change the opti-
cal path lengths, subsequently affecting the pressure within
the optical cavity and the strength of infrared CO2 absorption
(Yao et al., 2023). However, this hypothesis cannot fully ex-
plain why the two sensors, pi688 K30_3 and pi736 K30, ex-
hibited opposite drift directions during the same season.

Long-term drift is typically observed in low- and mid-
cost NDIR CO2 sensors. Although our findings provide valu-
able references data specifically for K30 sensors, the recom-
mended calibration frequency and observed seasonal cycle
characteristics may also apply to other similar NDIR sensors.
The calibration method we employed is universally applica-
ble and effective for long-term drift corrections. For other
NDIR sensors, we recommend selecting several representa-
tive samples for co-location with a high-precision instrument
under field conditions for a minimum of 1 year to fully char-
acterize their performance. This extended co-location period
is crucial for comprehensively for evaluating both long-term
drifts trends and seasonal drift patterns. Such characteriza-
tion studies provide essential guidance for implementing re-
mote calibration in high-density sensors networks. Alterna-
tively, standard gas calibration serves as a practical substitute
method. Based on our experimental results, we recommend
a calibration frequency of at least once every 1 to 3 months
for this approach.

9 Conclusions

We evaluated low-cost NDIR CO2 sensors using Picarro as
a reference instrument. Our environmental correction sys-

tem effectively corrected the impact of short-term daily
environmental changes by assigning unique environmen-
tal sensitivity parameters to each sensor. This approach re-
duces the short-term RMSE from 5.9± 1.2 ppm for SenseAir
to 1.6± 0.5 ppm for SENSE-IAP. The correction system
demonstrates robustness against seasonal environmental
variations, maintaining a daily RMSE of 1–3 ppm.

Based on a 30-month observation, we recommend that
the calibration frequency for long-term drifts do not exceed
6 months. For optimal performance and to ensure the tar-
get monitoring accuracy remains within 1 % of the ambient
CO2 concentration, a 3-month calibration interval is recom-
mended. If standard instruments, standard gases (which are
generally easier to obtain) or other reliable concentration ref-
erences such as model simulations are available, long-term
drift can be linearly corrected at the seasonal scale.

Consequently, after deployment, even with significant en-
vironmental changes around the instrument, there is no need
to frequently bring the instruments back to the laboratory
for re-correction of environmental impacts. After the long-
term drift calibration, the RMSE of SENSE-IAP remains
2.4± 0.2 ppm even after 30 months of operation. This per-
formance enables long-term deployment of the instruments,
significantly reducing the maintenance costs associated with
LCS.
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