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Abstract. Macrophysical properties of clouds are influenced
by underlying microphysical processes. In practice, there is
often an observational gap in bridging the two. For exam-
ple, our current understanding of aerosol-cloud interaction
and cloud—climate feedback is hindered by a lack of ro-
bust measurements of the distribution of drop sizes within
clouds, especially for the smallest drop sizes. Doppler radar
measurements have proven useful in estimating rainfall drop
size distributions (DSDs) but face an intermediate chal-
lenge of requiring a correction for the presence of verti-
cal air motion. Recent advances in millimeter-wave technol-
ogy have made radar measurements at increasingly smaller
wavelengths possible, allowing for analysis of particle-size-
dependent scattering effects to derive estimates of vertical
winds and thereby DSDs. This work demonstrates a method
of deriving range-resolved DSDs using Doppler spectra at
238 GHz measured by the CloudCube ground-based G-band
atmospheric Doppler radar. The observations utilized are of
marine boundary layer clouds during March and April 2023
in La Jolla, CA, USA, taken as part of CloudCube’s partic-
ipation in the Eastern Pacific Cloud Aerosol Precipitation
Experiment (EPCAPE) campaign. This method first identi-
fies notches in the velocity spectra and compares them to
the theoretical notch velocities predicted by size-dependent
backscattering and terminal velocity models to estimate the
range-dependent vertical wind. After removing the vertical
wind, binned DSDs are retrieved from the zero-wind spec-
trum. Bulk properties of the precipitation are then derived, in-
cluding the number concentration, liquid water content, char-
acteristic drop size, and precipitation rate. For the case study
presented here, calculated bulk properties are found to be rel-

atively invariant to the forward-model assumptions made in
the estimation of the full DSD retrieval. Validation of this
method on larger volumes of data would make such retrievals
useful tools in assessing physical models of drizzle.

1 Introduction

Marine boundary layer clouds represent the largest physi-
cal source of uncertainty in projections of climate sensitivity
(Zelinka et al., 2020) and are central to understanding the ra-
diative forcing of aerosol-cloud interactions (Bellouin et al.,
2020). A consistent finding is the relationship between the
occurrence of precipitation and the mesoscale organization
of low clouds (Abel et al., 2017; Yamaguchi et al., 2017;
Smalley et al., 2022), where a transition from closed-cell
clouds to open-cell clouds is associated with precipitation
onset. Therefore, these cloud transitions are critical in con-
straining both aerosol-cloud interaction and cloud—climate
feedbacks. A current dilemma in climate projection is the
fact that the accuracy of future projections is limited by a
negative correlation between aerosol—cloud interactions and
cloud-climate feedback (Gettelman et al., 2024). This anti-
correlation has been clearly linked to climate model rep-
resentation of the precipitation formation process (Suzuki
et al., 2013).

Accurate measurements of drizzle and light rain are es-
sential to improve the understanding of the microphysi-
cal processes in boundary layer clouds and constrain both
the aerosol—cloud interactions and the cloud—climate feed-
back. Understanding how the size distribution of drizzle
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drops evolves in both time and space can provide insight
into coalescence, breakup, and evaporation processes that
shape cloud macrophysical properties. Current methods of
directly measuring DSDs include using either ground-based
or airborne disdrometers, devices which directly measure
drop sizes. Ground-based disdrometers only measure drops
which fall all the way to the surface and have a limited ca-
pability to observe the smallest precipitation drops (Wang
and Bartholomew, 2023). Airborne measurements are more
likely to capture data at several elevations; however these
measurements are sparse.

Continuous observations from remote sensing measure-
ments are necessary to fill the gaps in in situ sampling.
Radar is the optimal tool for remote observations of driz-
zle and light rain from ground-based or airborne platforms.
The most straightforward method to derive drizzle parame-
ters is by assuming a reflectivity drizzle—rate (Z—R) relation-
ship (Comstock et al., 2004). However, in practice, Z—R re-
lationships have primarily been used operationally for satel-
lite cloud radar observations where reliable Doppler observa-
tions are not available (Lebsock and L’Ecuyer, 2011; Mroz
et al., 2023). The widespread proliferation of millimeter-
wave Doppler cloud radars has enabled a new class of re-
trieval of drizzle and light rain that combines radar reflectiv-
ity and higher Doppler moments. For example, Frisch et al.
(1995) combine Ka-band Doppler spectral moments with an
assumption of zero vertical wind and an assumed drop size
distribution shape to derive the vertical profile of drizzle pa-
rameters. O’Connor et al. (2005) built on this approach by
combining W-band Doppler moments with lidar backscatter
and a method to correct for turbulent broadening. This multi-
sensor approach has subsequently been used to make novel
observations of drizzle in stratocumulus clouds (Ghate and
Cadeddu, 2019). Galloway et al. (1999) invert an airborne
W-band Doppler spectrum to derive a binned drizzle DSD
without assuming a DSD shape while retaining the zero mean
wind assumption.

One common shortfall of the Doppler-based methods men-
tioned above is the difficulty in accounting for the effect
of the vertical air motion on the mean Doppler. In this re-
spect, Mie scattering in millimeter-wave radars can be use-
ful in constraining the vertical air motion when the size of
drops is similar to the observing wavelength of a radar sys-
tem. Specifically, the backscattering efficiency at a partic-
ular observing wavelength contains several peaks and val-
leys as a function of drop radius, as seen in Fig. 1. Lher-
mitte (1987) first proposed the technique of using full W-
band Doppler spectra that show similar oscillatory shapes
along with information about the theoretical backscattering
efficiency in each velocity bin to simultaneously retrieve in-
formation about vertical air velocity and rain DSD. The dif-
ference between the theoretical and observed locations of
any minima seen in the Doppler spectrum would yield in-
formation about vertical air motion in the scene, while the
relative heights of any maxima seen in the spectrum would
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Figure 1. Backscattering efficiency as a function of particle radius
for three different radar bands. The solid lines represent backscat-
tering calculated with the T-matrix method, which assumes some
oblateness of the drops. The dotted lines represent Mie backscatter-
ing, which assumes the drops are spherical. The horizontal dotted
lines represent lines of efficiency equal to 0 and 1 for each band.
Calculations are described in Sect. 2.3.

yield information about the DSD of the scattering particles.
Kollias et al. (2002) demonstrated vertical air motion re-
trievals derived from W-band Doppler spectrum observations
of stratiform precipitation. Giangrande et al. (2010) was the
first to demonstrate the full utility of this technique in an-
alyzing W-band Doppler spectra. This work retrieved mea-
surements of both vertical winds and best-fit parameters to
a Marshall-Palmer log-linear DSD; however, useful spectra
can only be captured at the W-band for storms with large
droplets greater than ~ 0.8 mm. As seen in Fig. 1, the first
backscattering minimum occurs at a larger drop radius for
lower observing frequencies. Thus, to be sensitive to mea-
surements of drops as small as drizzle (smaller than a diam-
eter of 0.5 mm), it is necessary to make Doppler spectrum
measurements at a higher frequency. For the G-band in par-
ticular, the first minimum is located at a small enough radius
that its location is insensitive to the parameterization of the
drop aspect ratio, permitting high-accuracy quantification of
the vertical air motion in all but the lightest liquid-phase pre-
cipitation. The utility of G-band observations was theorized
by Battaglia et al. (2014) and first demonstrated by Courtier
et al. (2024) in the addition of G-band Doppler spectra to a
multi-frequency DSD retrieval.

This work explores the capability of making retrievals
based only on G-band spectra to profile liquid-phase precip-
itation DSDs in marine boundary layer clouds. This class of
precipitation is ideally suited for the G-band for two reasons:
(1) the preponderance of small drops means that the Mie res-
onance (or notch) will frequently not be observed in W-band
spectra but will be observed at the G-band, and (2) the liquid
water content is small, and thus the hydrometeor attenuation
tends to be small. The latter fact means that attenuation cor-
rection can be performed without incurring the large errors
that are common in rainfall retrievals at frequencies used to
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Table 1. Summary of KaZR and CloudCube G-band radar spec-
ifications at EPCAPE. FMCW - frequency-modulated continuous
wave.

KaZR  CloudCube G-band
Frequency (GHz) 34.89 238.8
Transmission type Pulsed FMCW
Pulse width (us) 0.3 40
Pulse repetition interval (ms) 0.27 0.042
Peak transmit power (W) 100 0.24
Antenna beamwidth (deg) 0.19 0.35
Range resolution (m) 30 10
Unambiguous range (km) 40 6.3
Velocity resolution (ms™ 1 0.02 0.06
Nyquist velocity (m s7h +7.97 +7.5
Time resolution (s) 4 0.4

observe more highly attenuated conditions (e.g., Ka-band or
W-band; Hitschfeld and Bordan, 1954). To demonstrate these
capabilities, this paper uses the first operational data from
the deployment of a newly developed G-band Doppler cloud
radar to a large field deployment at a coastal site with fre-
quent marine boundary layer clouds and validates the results
against ancillary observations.

2 Instrument and data overview
2.1 CloudCube instrument

CloudCube is a modular triple-frequency (Ka-band, W-band,
and G-band) atmospheric radar instrument developed at the
Jet Propulsion Laboratory. Its use of both a fully solid-state
design and direct up/down conversion between the baseband
and RF allows it to have a uniquely compact architecture,
ideal for deployment in the field. This paper focuses specif-
ically on the G-band channel, currently the only CloudCube
channel with full Doppler spectral resolution. The observ-
ing frequency, 238.8 GHz, was strategically chosen to take
advantage of an intersection between an allowed frequency
allocation and a trough in the atmospheric absorption curve.
It also lies close to the limits at which transmit sources of
sufficient power are available. A summary of the instrument
parameters are shown in Table 1, and more detail on the in-
strument can be found in Socuellamos et al. (2024a).

2.2 EPCAPE campaign

The data presented in this paper were collected as part
of CloudCube’s participation in the Eastern Pacific Cloud
Aerosol Precipitation Experiment (EPCAPE), a campaign of
the U.S. Department of Energy (DOE) Atmospheric Radia-
tion Measurement (ARM) user facility (Russell et al., 2021).
The main goal of EPCAPE was to better understand marine
stratocumulus clouds and their effect on Earth’s radiation
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budget. CloudCube measured cloudy and lightly raining cu-
mulus and drizzling stratocumulus over several days during
March and April 2023 from atop Scripps Pier in La Jolla, CA,
stationed adjacent to the ARM Mobile Facility (AMF). Data
from all three bands of CloudCube were saved during this
time. Details on the post-processing of the data can be found
in Socuellamos et al. (2024c), and the datasets are made pub-
licly available in Socuellamos et al. (2023). The majority of
the precipitation events during this deployment period were
not observed by CloudCube because at that time the instru-
ments did not have radomes and had to be covered during
periods of surface precipitation to protect the radars.

This paper also uses data taken from several ARM instru-
ments to both aid and supplement the presented analysis. No-
tably, our retrievals rely on temperature, pressure, and hu-
midity profiles collected by radiosondes (Holdridge, 2020)
for determining the correct values of particle backscatter-
ing efficiencies, fall speeds, and gaseous attenuation. The re-
trievals are validated with the ARM Ka-band radar (KaZR;
Widener et al., 2012; see the radar parameters in Table 1)
and the 2-D video disdrometer (VDIS; Bartholomew, 2020)
instruments.

2.3 Scattering properties

The single-scattering properties of liquid precipitation drops
are calculated with the T-matrix method (Mishchenko and
Travis, 1998), using the Python wrapper of Leinonen (2014).
The aspect ratio of drops is modeled using the equation
g = 1.055—0.0653 D, where D is the drop diameter (mm),
valid in the range 1.5-8 mm (Thurai and Bringi, 2005), and
b/a is the axis ratio of the spheroids. The aspect ratio is
equal to 1 for the smallest drops (smaller than a diameter
of 0.84 mm), for which this formula produces aspect ratios
larger than unity. A lookup table is created with the drop
single-scattering properties in 1 um increments in radius and
1 K increments in temperature. The temperature-dependent
refractive index is taken from Warren (1984). At the Cloud-
Cube observing frequency (238 GHz), the first minimum is
located at a drop radius of 0.33 mm.

3 Data filtering and minima finding

CloudCube collected around 51 h of data over 13 separate
days during its deployment. However, only a few instances
spread over 2d of this dataset contained spectra resolving at
least one backscattering minimum for at least 0.5 continu-
ous kilometers and 100 continuous seconds to perform ro-
bust retrievals. These values are chosen arbitrarily — future
work may investigate selecting these thresholds adaptively.
The spectrum in Fig. 2b, referred to hereafter as “the exam-
ple spectrum”, is used to demonstrate our methods for the
remainder of this paper.
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Figure 2. (a) Reflectivity curtain for several minutes of G-band radar data collected on 30 March 2023. The pink line shows the location of
the cloud base, as measured by the ARM laser ceilometer. (b) Mean Doppler velocity corresponding to the reflectivity curtain in (a). (¢) A
full Doppler spectrum from data collected during the time marked by the dotted black line in (a). The dashed red line shows the elevation
for the example 1-D spectrum on the right. (d) The black line represents the original measured spectrum, whereas the pink line shows the
Wiener smoothed spectrum. The thicker dashed vertical lines represent minima in the spectrum that are considered to be truly correlated
with minima in the backscattering function, whereas the thin dashed lines represent other candidate minima that the £ind_peaks function

found without enforcing any checks.

To provide context for this example spectrum, Fig. 2a
shows the G-band reflectivity curtain and marks the time
at which the example spectrum was collected. Also shown
is the cloud base height as measured by the ARM infrared
laser ceilometer (Morris, 2016). Figure 2c shows a charac-
teristic Doppler spectrum of a precipitating postfrontal shal-
low cumulus ice-phase cloud. This cloud happens to have
a cloud base near the melting level, which can be very
clearly observed in Fig. 2b as the region near an altitude
of 1.4km, below which the narrow Doppler spectrum with
small Doppler velocity rapidly broadens as large ice crys-
tals melt into falling raindrops with significantly increased
Doppler velocities. Note also how the melting layer appears
as a weak bright band in panel (a) and a rapid change in the
mean Doppler velocity in panel (b). In the liquid precipita-
tion below the melting layer, there are multiple resonances in
the Doppler spectra, corresponding to the Mie notches that
can be exploited to find the vertical air motion. As the scat-
tering properties of liquid drops and the resulting Doppler
spectra are relatively straightforward to calculate compared
to the complexity of modeling ice, this work limits itself to
analyzing regions where only liquid water is present. An in-
vestigation of ice retrievals is saved for future work.
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To begin, the spectra are smoothed in the range direction
to filter out the smallest scale of vertical turbulence, improv-
ing the signal to noise in the minima detection. The spectra
originally have a range resolution of 10 m, and a 1-D Gaus-
sian blurring kernel is used to smooth to an effective range
resolution of 50 m. Following the smoothing step, each 1-D
velocity power spectrum is analyzed to identify any minima.

To discern true backscattering minima from Rayleigh-
distributed noise fluctuations, we search for minima using
a smoothed version of each 1-D spectrum. The spectrum is
smoothed using a Wiener filter, and we use the difference
between the smoothed and original spectra to estimate the
standard deviation of the noise fluctuations. Next, we utilize
the Python function scipy.find_peaks (Virtanen et al.,
2020), which identifies a peak as any point where its two
neighbors are of a lower value — using sign-inverted spectra
allows the minima to show up as peaks. To separate true min-
ima from spurious ones, a few criteria are imposed. We man-
date that for true detections, the depth of the minima (mea-
sured as the peak to trough distance between the minimum
and the nearest peak) must be at least 5 times the standard
deviation of the noise fluctuations. Based on the spacing be-
tween successive minima seen in the T-matrix backscattering
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calculation, it is enforced that the spacing between minima
found in the spectra must be separated by at least 1.15ms™ .
For sets of minima found with smaller spacings, minima with
lower signal to noise ratios (SNRs) are preferentially filtered
out. Our final check is to ensure that we are not erroneously
identifying points in the noise floor of the spectrum as min-
ima by ensuring that for true detections there are continuous
data points for at least I ms~! on each side of the minimum.
A demonstration of this minima retrieval for a single eleva-
tion is shown in Fig. 2c.

After minima at all elevations have been identified in
a Doppler spectrum profile from a single time, they are
classified based on which minimum in the backscattering
function they correlate to. The simplest method of doing
this would be to draw boundaries of fixed width in ve-
locity space and assume all points within each section are
correlated to the same backscattering notch. However, this
requires an a priori assumption of a mean vertical wind
value with relatively low variance across elevation. To mit-
igate the risk of poor retrievals resulting from incorrect
initial assumptions, a Gaussian mixture model (GMM) is
used to cluster points associated with the same backscat-
tering notch. This method assumes that all points in a
given dataset are drawn from one of N multivariate Gaus-
sian distributions, each with their own means and covari-
ance matrices. We utilize the Python implementation of
GMMin sklearn.mixture.GaussianMixture (Pe-
dregosa et al., 2011). The algorithm initially looks for data
points in the 1 ms~! regions around the locations of the first
three theoretical backscattering minima for 7 =270 K. The
number of components for the GMM to sort data into is deter-
mined by how many of these initial regions have data within
them. For example, Fig. 3a shows a spectrum with these di-
visions overlaid. Since data are present in all three of the di-
visions, a GMM with three components is used. The initial
locations of the three Gaussian components are decided us-
ing the mean elevation and velocity of the data within each
division. The shape of each Gaussian is initialized by a co-
variance matrix derived from the standard deviations of the
elevations and velocities of the data. An example of these
initial guesses is also shown in Fig. 3a.

The final components are fit by adjusting the parameters of
the Gaussians until the likelihood of all points being drawn
from one of the distributions is maximized. The final classifi-
cations are adjusted if necessary by ensuring that each height
only contains one point from each distribution. Any outlier
points that have anomalously low likelihoods are masked. An
example of the final distributions can be seen in Fig. 3b. Note
the cyan point to the far left of the spectrum that was identi-
fied as a minimum but is masked as an outlier due to being
many standard deviations away from any of the three Gaus-
sian components. Within each cluster, any remaining out-
lier points are identified using the LocalOutlierFactor
(LOF) method in sklearn, which measures the local den-
sities of points and identifies any points that have anoma-
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lously low local densities. In this example case, the LOF
method identified the cyan point near 250 m, close to the
purple points, as being an outlier point. However, it did not
identify the two yellow points that seem to be, upon visual in-
spection, outside the distribution. Tuning this method exactly
can be a challenge.

4 Vertical wind retrieval

After classifying the minima, the vertical winds are re-
trieved from their measured locations. The Gaussian com-
ponent with the mean velocity closest to zero is assumed
to contain the points that correspond to the first backscat-
tering minimum. For each elevation, the temperature mea-
sured by the radiosonde is used to select the correct
temperature-dependent backscattering efficiency function.
As the backscattering efficiency is a function of diameter
and our spectrum power is a function of velocity, drop di-
ameters are transformed to drop velocity by assuming that
all drops fall at terminal velocity. For drop diameters greater
than 100 um, we linearly interpolate between the data points
presented in Gunn and Kinzer (1949) to calculate terminal
velocity. For smaller drops, we use Stokes’ law, v, = thsz
(k=1.19 x 108 is a constant, D is in m, and v; is termi-
nal velocity in ms™!). The effects of air density are cor-
rected for by multiplying the terminal velocity by a cor-
rection factor, C = (po/p)™, where pg = 1.204 kg m~3 (den-
sity for standard temperature and pressure) and m = 0.375 +
(2.5 x 1075)D (Beard, 1985). The air density, p, as a func-
tion of elevation is calculated using the temperature and pres-
sure values measured by radiosondes. Once backscattering
efficiency is transformed to be a function of velocity, the
measured minimum value is subtracted from the theoreti-
cal value to retrieve vertical wind as a function of height:
Vwind (1) = Vmeas(h) — Viheo (h). An example of this retrieval
using each of the minima is shown in Fig. 3c. The colors of
the vertical wind curves correspond to the colors of the min-
ima used to derive the wind speeds.

There are small inconsistencies between wind speeds at
the same height calculated from different minima. It is dif-
ficult to determine the exact cause of this inconsistency, but
it is likely that a combination of uncertainty in the Gunn—
Kinzer terminal velocity relationship and the drop obliquity
parameterization are the largest contributors to this discrep-
ancy. For a monotonically varying DSD, the details of the
DSD should not affect the locations of the minima. For the
rest of the analyses presented in this paper, only the vertical
winds derived from the first minimum are considered (corre-
sponding to the red points in Fig. 3). Recall that the location
of the first minimum can be assumed to be insensitive to the
drop obliquity parameterization.

Atmos. Meas. Tech., 18, 5141-5155, 2025
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Figure 3. (a) A 2-D Doppler spectrum with all identified minima overlaid. The dashed black lines represent the boundaries used to define the
initialization of the classifier. The blue stars represent the means of the points within the boundaries, and the colored ellipses represent the
initial covariances in both the height and the velocity directions. (b) A 2-D Doppler spectrum with all identified minima classified according
to their correlation to notches in the backscattering function. The cyan points are minima that were filtered out as being erroneous, and the
ellipses show the probability spaces of the Gaussian mixture model components. (¢) Vertical winds calculated from the classified minima.

5 Drop size distribution retrieval

As described in Kollias et al. (2011), the measured Doppler
spectra can be described by the following equation:

S(v + Vwind)obs = (A + Ga)[S(v)Q . g(av,turb)] + €5, €))

where v is the true particle velocity, vying is the vertical wind
speed, A is attenuation, €, is the attenuation error, S(v)q is
the quiet-air spectrum (no turbulence), g (o wrb) is the convo-
lution kernel that describes spectral broadening due to turbu-
lence, and € represents error in the measured spectral power.
Retrieval of the quiet-air spectrum from the measured spec-
trum would enable measurement of the drop size distribution
as a function of drop radius, N (), in units of m3m!

,using
the following relationship:
S() : N @
V)= ————=0pk(FN@#F)—,
T SR WP T du,

where A is the observing wavelength in mm, |K (1)|? is the
dielectric factor at the observing wavelength, and opck (7) is
the backscattering cross section in mm? as a function of par-
ticle size. S(v)q has units of mm®m—3 (ms™")~!. As the
CloudCube spectra are saved in units of dBZ, the spectra
are transformed to linear units using the relations dBZ =
10log,((Z/Z0), Zo = 1 mm®m—3, and Z = S(v) dv.

The radius resolution of the DSD retrieval is defined by the
velocity resolution of CloudCube (0.06 ms~ 1) and varies ac-
cording to g—;. The radius resolution varies greatly as a func-
tion of drop radius. For radii less than 50 um, the resolution
starts off coarse as (f—; is larger. This value decreases initially
as the fall speed of the smallest drops is given by Stokes’ law.
The resolution value increases with larger drop sizes. Plots of
the terminal velocity relationships and the radius resolution
at standard temperature and pressure are shown in Fig. 4. The
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variations seen in the radius resolution plot are likely due to
measurement errors in the Gunn—Kinzer points.

5.1 Turbulence-free assumption

To begin with the simplest retrieval scheme, we first assume
that spectra were captured in a turbulence-free environment.
Ignoring attenuation error for now as well, the measured
spectrum can then be modeled simply as

SV + Vwind)obs = AS(V)Q + €. 3)

With this simplification, once attenuation is corrected
for, the above equation can be inverted to solve for N(r).
Calculation of the spectrum error is carried out according
to the analysis presented in the appendix of Hogan et al.
(2005). Based on CloudCube’s observing wavelength and the
scale of wind speeds, both measured directly by the son-
des and calculated from the spectra, we can assume that
each collected Doppler spectrum, which is sampled once ev-
ery 36 ms, is fully independent from the previous spectrum.
Then, the spectrum error can be written as

€s 1 1 2 1 4
s M<+SNR+SNR2>’ ®
where M is the number of averaged samples in our spectra,
and SNR is the signal to noise ratio of each of the points
in the spectrum. For CloudCube, M = 30 spectra were av-
eraged together before being saved to disk. For attenuation,
both water vapor attenuation and hydrometeor attenuation
should be considered. Elevation-dependent water vapor at-
tenuation is derived using the temperature and relative hu-
midity measured by the radiosondes (Rosenkranz, 1998). As
shown in Fig. 5a, the hydrometeor attenuation is calculated
and accumulated for each elevation where data to retrieve the
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Figure 4. (a) The terminal velocity relationships plotted along with interpolated radius values corresponding to the measured CloudCube
spectrum velocities. The transition between the Stokes’ law regime and the Gunn—Kinzer interpolated points occurs at a radius of 50 um.
(b) The radius resolution plotted as a function of the radii interpolated from the spectrum velocities.

DSD are available as per
N
Awt(Ry) =) AA(Ry). 5)
n=0

Attenuation accumulation is determined by assuming that
the DSD stays constant between successive range bins. The
extinction coefficient can then be assumed to be constant be-
tween R(n) and R(n+ 1), making the two-way optical depth
T= 2fk(R)dR =2kAR (the factor of 2 accounts for the
round-trip distance made by a radar echo). To find k, the
extinction coefficient, we need to integrate over extinction
contributions from all particle sizes in the measured DSD:
k= [k(r)dr = [ N(r)oex(r)dr. Here, ey (r) represents the
extinction cross section of the particles, which is computed
from the procedures described in Sect. 2.3. The incremental
attenuation contribution is then determined by

AA(R,) (in dB) = 10logo(e ") = 10log,o (e~ *A8).  (6)

The relative importance of each of these attenuation con-
tributions at the G-band is shown in Fig. 5b. Because the pre-
cipitation in this case is light, the attenuation is dominated by
the water vapor. Figure 6a shows the 2-D DSD retrieved from
the example spectrum. There are lines of increased particle
number density coinciding with the radii where backscatter-
ing minima occur. These are likely unwanted artifacts in the
retrieval due to some combination of not taking turbulence
into account, errors in the radius—terminal velocity relation-
ship, or errors in the radius—backscattering efficiency rela-
tionship. To retrieve a 2-D DSD that mitigates these artifacts
without robust knowledge of the sources and magnitude of
error, we implement a forward-modeling approach.

5.2 Forward modeling of turbulent spectrum

The forward-modeling approach attempts to retrieve a vector
that best represents the DSD. The model first uses an initial
vector N that represents the DSD to create an idealized spec-
trum using Eq. (2). A log-linear best fit is applied to the DSD

https://doi.org/10.5194/amt-18-5141-2025

calculated under the turbulence-free assumption for initial-
ization. This spectrum is then smoothed with a blurring ker-
nel that represents the effect of the turbulence to compute a
spectrum that can be best compared with the measured spec-
trum. We minimize a loss function to find the most likely
vector N. A diagram of this is depicted in Fig. 7.

Our forward model needs an estimate of the turbulence
scale at every height. To do this, the framework described in
O’Connor et al. (2005), which uses large-scale turbulence to
estimate smaller-scale turbulence as such, is utilized:

123
2 _ 2 small
Oy turb = Oy, air 23 ;273 |- 7
L large — L small
The term Uvzair is the variance in the vertical wind speeds,

while the terms Lsman and Lyage represent the small and large
length scales of the turbulence, respectively. The L terms are
dependent on the horizontal wind in the line of sight of the
observation (U), the range of interest (R), the beamwidth of
the radar (), and the averaging time (¢):

%
L:Ut+2Rsin<§>. (8)

The short timescale, fyma, iS the time between successive
spectra (1.13 s for CloudCube). The long timescale, fjarge, iS
the total time over which the variance of the vertical winds
is calculated. The variation in the vertical winds in the time
vicinity of the example spectrum is shown in Fig. 8a. This
figure also shows the horizontal wind speeds captured by the
sondes at the same time as the example spectrum and the
final turbulence derived from those values. The turbulence
scale is very similar to the velocity resolution of the spectra,
so smoothing will have a relatively small effect on the DSD
retrieval.

The most obvious choice of loss function for our forward
model would be least squares. However, as we noted in the
previous section, factors beyond turbulence correction lead

Atmos. Meas. Tech., 18, 5141-5155, 2025



5148

A=A+ A+
..t AN~1

A=A+ A,

Aror = Aq

Ground

Altitude (km)

N. Y. Yurk et al.: Vertical wind and drop size distribution retrieval

2.5

—— Water Vapor
—— Hydrometeor

(b)

2.01

1.5

1.0

0.5

0.0

2 4 6 8
G-band Attenuation (dB)
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to unphysical artifacts in the retrieved DSDs. One way to re-
trieve a smooth DSD would be to impose a functional form
for the DSD, such as the modified gamma distribution (Deir-
mendjian, 1969). We take another approach. To encourage
the retrieval of smoother and more physically realistic DSDs,
we utilize a regularized least squares loss function:

]

The first part of the loss function is a classic least squares
loss. The second term represents the regularization. We use
the total squared variation (TSV) regularizer, represented by
(Niy1 — N;)?. This regularizer was first introduced by Ku-
ramochi et al. (2018) as a way to enforce smoothness in 2-D
imaging retrievals. The same principle applies to 1-D vectors,
as penalizing the squared difference between adjacent points
in a DSD favors a smoothly varying vector. The term « rep-
resents the regularizer weight, which determines how strictly
we want to enforce vector smoothness. A large amount of

2
(Scalc,i - Smeas,i )

2
S,i

©))

- +a(Niy1 — Ni)z]
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regularization, meaning a larger value for o, will retrieve
highly smoothed DSD vectors. We show a demonstration of
this in Fig. 9.

We see that the pink curve (representing the highest
amount of regularization we explored) produces a very
smooth DSD and, in turn, a very smooth final spectrum. In
Fig. 10, we show a 2-D DSD for the example spectrum, re-
trieved using the highest regularizer weight we tested, 10*.
Compared to the turbulence-free DSD retrieval, we see a
significant reduction in sharp gradients, though they are not
completely eliminated. A primary issue with using regular-
ized least squares, however, is that we currently have no way
to validate our choices of regularization. As the problem is
over-constrained, different regularizer choices can yield final
results with similar least squares errors. Without any ground
truth data to train for the correct regularizer weight, we can
only place confidence in the general shape and statistical
properties derived from the DSD.

https://doi.org/10.5194/amt-18-5141-2025
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6 Discussion
6.1 Sources of uncertainty

Thus far in this work, we have not propagated errors to de-
rive a final estimate of the uncertainty for the retrieved DSD
values. While we acknowledge the importance of robust un-
certainty analysis, many of the sources of error present are
unable to be parameterized for easy propagation through all
of the steps of this retrieval. Therefore, this section lists each
potential source of error and qualitatively comments on the
sensitivity of the final DSD to this error.

The most significant source of uncertainty is the estima-
tion of the vertical wind. Confidence in the vertical wind
value is dependent on the confidence in the minimum find-
ing. The Gaussian mixture model used in minimum classi-
fication does provide an in-distribution probability for each
classified point; however, there exists no clean way to relate
this probability value to an uncertainty in ms~!. Using min-
imum depth as a proxy for uncertainty is also not feasible, as
there is no guarantee that the deepest minimum in a spectrum
actually corresponds to a backscattering notch. The terminal
velocity is seen to affect the quiet-air estimate of the first
minimum; however, several relationships are seen to provide
a consistent theoretical first minimum velocity. Hence, utiliz-
ing only the first minimum to compute vertical wind reduces
uncertainty in the final wind estimate.

https://doi.org/10.5194/amt-18-5141-2025

Offsets in the radiosonde release time and the measure-
ment time of the G-band spectra may introduce a small un-
certainty as well. Important properties either directly mea-
sured by the sonde or computed from sonde measurements
include air density, air temperature, gaseous attenuation, and
horizontal wind. The largest source of uncertainty likely
arises from temporal variation in the gaseous attenuation pro-
file, which may fluctuate by up to a few decibels if the hu-
midity changes significantly. The horizontal wind measure-
ment directly affects the turbulent broadening calculation.
For the case of EPCAPE, the turbulent broadening is min-
imal, so temporal variations in the horizontal wind likely
would not have a large effect. However, for measurements
taken at much windier sites with large variations in the hori-
zontal winds, a confident estimate on the turbulent broaden-
ing may be difficult to calculate. Air temperature and density
are used to adjust the scattering functions and the terminal
velocity functions, respectively, though these only change by
a few percent over the course of 1-2km. Without a priori
knowledge of the timescales of the variability of these quan-
tities, it is impossible to estimate an uncertainty value to be
included in the retrieval process.

Another source of uncertainty that is challenging to quan-
tify is the retrieval uncertainty. The uncertainty in the re-
trieved DSD introduced by regularization choices and ini-
tial condition choices cannot be parameterized. The mea-
surement uncertainties for the spectrum data are known, but

Atmos. Meas. Tech., 18, 5141-5155, 2025
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part of the retrieval uncertainty depends on the solution space
for each model. The scipy.optimize function utilized in
this retrieval provides an estimated covariance matrix; how-
ever, the high dimensionality of this problem likely leads to a
complex solution space that is likely not explored thoroughly
enough for good covariance estimates. Monte Carlo opti-
mization techniques perform a more thorough search of the
solution space generally, but such methods are too computa-
tionally expensive for high-dimensionality problems such as
ours. Thus, a full error estimation for this forward model is
highly non-trivial and is beyond the scope of this work.

6.2 Validation with co-observing instruments
Despite not fully understanding the uncertainty in the final

retrieval, a first-order understanding of the accuracy of the
retrieved DSD can be found by utilizing data from both the

Atmos. Meas. Tech., 18, 5141-5155, 2025

ARM KaZR and the VDIS instruments. Using the DSD de-
picted in Fig. 10 along with Eq. (2), we can calculate a pre-
dicted Ka-band spectrum for each elevation. We use T-matrix
scattering coefficients at the Ka-band to calculate both the
backscattering and the extinction cross sections. We correct
for water vapor and hydrometeor attenuation in our theoret-
ical spectrum before integrating across velocity to compute
a single reflectivity value for each elevation. This reflectiv-
ity can be directly compared to the reflectivity measured by
KaZR, as shown in Fig. 11a. We can see that for the exam-
ple spectrum, the predicted Ka-band reflectivity matches the
KaZR fairly well, generally within a few decibels. The pres-
ence of larger drops, which G-band instruments are not as
sensitive to but Ka-band instruments are, may affect the ac-
curacy of the predicted Ka-band reflectivity. Uncertainties in
the hydrometeor attenuation also increase with elevation, po-
tentially leading to higher inaccuracies in the Ka-band pre-
dictions as well. Still, the general consistency between the
two curves gives us some confidence in the quality of our
retrievals.

We can also use direct measurements of the DSD taken
by VDIS and compare them to the lowest-elevation retrieved
DSD we have available for the same time. The video dis-
drometer measures number densities in 0.1 mm radius incre-
ments, with a limiting drop size of 0.05 mm. However, the ac-
curacy of the VDIS measurements below 0.1 mm is reduced
due to the instrument struggling more to distinguish between
smaller drop sizes. Additionally, the VDIS only saves data
in 1 min increments, and unfortunately we only have a few
minutes of data for which DSDs are able to be retrieved in
the times adjacent to the example spectrum. Thus, there are
only two coincident times between the CloudCube measure-
ments and the VDIS measurements, plotted in Fig. 11. We
see a similarity between the retrieved DSD and the VDIS-
measured DSD, with discrepancies being the highest at the
smallest drop sizes. Because of the significant fall time of
the small droplets from the lowest DSD elevation (typically

https://doi.org/10.5194/amt-18-5141-2025
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Figure 12. Visualization of estimation uncertainty in precipitation properties due to errors in the vertical wind retrieval and choices of
regularization in the DSD retrieval. The solid lines represent parameters derived with the winds shown in Fig. 3 and with a regularizer weight
of @ = 10*. The dashed line shows properties derived with the same winds but with very little regularization (o = 1). The shaded region
represents properties retrieved with o = 10* but assuming a £0.12 ms~! deviation from the measured vertical wind. This represents two

spectrum bins away from the best estimate.

around 50 m) to the ground, comparing measurements with
the same time stamps may involve comparing slightly differ-
ent drop populations. However, with a very limited amount
of G-band data of good enough quality to retrieve DSDs (typ-
ically only of the order of a few minutes) and the slow sam-
pling time of the VDIS, it is challenging to compare mea-
surements with a sufficient lag time to account for the fall
time.

6.3 Estimating bulk precipitation properties

Despite the various uncertainties described above, we can
derive bulk properties of the DSDs, which are easier to use
and should be more robust to uncertainties. Here we derive
four bulk properties of the distribution. Figure 12 shows the
plots of the mass-weighted mean radius, total number den-
sity, liquid water content, and precipitation rate derived from
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the DSD of the example spectrum. The mass-weighted mean
radius, Ry, is calculated as

_ [N(R)YM(R)RAR
"7 [N(R)M(R)dR "’

(10)

where M(R) = pwV(R) = pw(4/3)R? is the mass of a wa-
ter droplet with radius R, where py, is the density of lig-
uid water and V(R) is the volume of a drop with radius
R. The total number density is simply calculated as Ny =
f N(R)dR, the liquid water content is calculated as LWC =
J N(R)YM(R)dR, and the precipitation rate is calculated as
P = f N(R)V(R)v(r)dR. Profiles of these properties are
shown for the lowest and highest explored values of the reg-
ularization weight, «, and for a +0.12m s~ ! error in the ver-
tical wind speed (representing =+ two bins in the measured
Doppler spectrum). We see that while these errors may affect

Atmos. Meas. Tech., 18, 5141-5155, 2025
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Figure 13. Compilation of statistics that can be calculated from retrieved DSDs, shown for five G-band spectra spaced 35 s apart. Times
shown in the left column are seconds elapsed since 30 March 2023 at 17:10:18 UTC. Gaps in the DSD are due to minima corresponding to
the first backscattering minimum not being available at that elevation. In the bottom row in particular, this can be seen for elevations where
the minimum is actually below the noise floor and is therefore not detected by our algorithm. Spectra are shown in dBZ, using the same color

bar as used previously. N (r) is in units of m~3m!

the details of the binned DSDs, the bulk precipitation prop-
erties are relatively insensitive to the choice of regularization
weight and fairly robust to vertical air motion uncertainties.

Figure 13 shows the plots of these precipitation properties
derived from the DSDs of five different spectra, spaced 35 s
apart. This figure highlights the rapid timescale of variabil-
ity present in these drizzling systems. Coarse sampling times
in measurements of the precipitation properties are at risk of
missing important details in the cloud and precipitation pro-
cesses.

Atmos. Meas. Tech., 18, 5141-5155, 2025

, using the same color bar as used previously.

7 Conclusions

We have presented a retrieval methodology to derive verti-
cal wind and the precipitation DSD in light rainfall from
a nadir-pointing G-band Doppler spectrum. This work ex-
tends the methods developed for the W-band to lighter rain-
fall than has been possible to date. The G-band retrievals
work well for light precipitation because the first Mie notch
occurs near a radius of 334 um, thereby enabling accurate es-
timation of the wind speed for very light precipitation rates.
Furthermore, the precipitation water contents are very small,
so the attenuation from condensed water is insignificant rel-
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ative to the gaseous attenuation. As pointed out by Courtier
et al. (2024), the method demonstrated here would optimally
be combined with multi-frequency W- and K-band Doppler
spectra (e.g., Tridon and Battaglia, 2015) to seamlessly ex-
tend from the lightest precipitation events to the heaviest pre-
cipitation events.

There are residual uncertainties in the binned DSD due
to inaccuracies in the droplet fall velocity and drop oblig-
uity relationships, which appear as ripples near the location
in the spectrum where Mie notches are present. We expect
some uncertainty contribution from factors such as errors
in the minimum-finding routine, errors in the estimation of
turbulent broadening effects, errors in computed gaseous at-
tenuation, and discrepancies in air temperature and density,
which propagate into errors in the DSD retrieval. Neverthe-
less, the bulk statistics of the DSD, such as the water content,
number concentration, precipitation rate, and mass-weighted
mean size, are relatively robustly derived. We note that the
retrievals presented here are for high-SNR cases with clearly
defined notches in the spectrum. Future work will refine the
algorithm presented here to work for spectra with less clearly
defined spectral features.

With the growing number of G-band radar observations
(including CloudCube G-band’s ongoing participation in the
Cloud And Precipitation Experiment at kennaook; Mace
et al., 2023), the Doppler spectral retrieval method offers the
unique potential to provide profiles of light rainfall and driz-
zle in stratocumulus and shallow cumulus clouds relative to
approaches centered on radar reflectivity.
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