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Abstract. With the coming launch of the Climate Absolute
Radiance and Refractivity Earth Observatory (CLARREO)
Pathfinder (CPF) comes an opportunity to develop a new re-
trieval for warm, non-precipitating clouds from spectral re-
flectance measurements. With continuous coverage across
the shortwave spectrum and a factor of 5 to 10 lower ra-
diometric uncertainty than the Moderate Resolution Imaging
Spectroradiometer (MODIS), CPF facilitates the retrieval of
a vertical profile of droplet size, providing insight into the in-
ternal structure of a cloud. Measurements from MODIS co-
incident with in situ observations provide the foundation for
developing an optimal estimation technique. Solution con-
straints were required to ensure consistency with forward
model assumptions. The limited unique information in the
MODIS bands used in this analysis resulted in a non-unique
solution, with many droplet profiles leading to convergence.
Droplet size at cloud bottom is difficult to constrain because
visible and shortwave infrared reflectances have an average
penetration depth near cloud top. The region of convergence
within the solution space decreased along the cloud bottom
radius dimension by 1 pm when increasing the number of
wavelengths used in the retrieval from 7 to 35 and by 3.75 um
when reducing the total uncertainty from 3 % to 1 %. The en-
hanced accuracy and, to a lesser degree, the enhanced spec-
tral sampling provided by CPF measurements are essential to
extracting vertically resolved droplet size information from
moderately thick, warm clouds.

1 Introduction

Clouds affect Earth’s climate in complex, pivotal ways by
modulating incoming and outgoing radiation. They affect
weather on short timescales and climate on long timescales.
In situ cloud measurements provide thermodynamic and mi-
crophysical information over small spatial scales, but the
cost of scaling these observations daily and globally is pro-
hibitive. Remote sensing of clouds from space provides the
means of acquiring regional to global and seasonal to longer-
term information on cloud microphysics and the global distri-
bution and evolution of water in the atmosphere. Monitoring
cloud properties from space has improved our understanding
of the impacts of clouds on Earth’s climate, but cloud feed-
backs remain a critical challenge to predicting future climate
states.

Passive optical remote sensing of clouds uses measured
spectral reflectance of solar radiation to retrieve cloud opti-
cal depth (the number of photon mean free paths over the
vertical geometric depth of a cloud layer) and the photon-
penetration weighted cloud effective droplet radius. These
cloud optical properties “... are both a consequence of and
an expression for the solar radiative transfer characteristics
of clouds (Stephens et al., 2019).” Cloud optical depth plays
a fundamental role in cloud radiative feedbacks (Stephens,
2005), and cloud reflectivity (Bohren and Clothiaux, 2006).
The fraction of incident light absorbed by optically thick
warm clouds is proportional to the effective droplet radius
over the solar spectrum (Twomey and Bohren, 1980). The ef-
fective radius is an important parameter in the study of cloud
condensation nuclei (Twomey, 1977), droplet number con-

Published by Copernicus Publications on behalf of the European Geosciences Union.



5300

centration (Grosvenor et al., 2018) and precipitation (Chen
et al., 2007). From cloud optical depth and effective droplet
radius, liquid water path (mass of liquid water in a column of
air) and droplet number concentration (number of droplets in
a unit of volume) can be derived. Liquid water path is related
to cloud droplet growth processes and the onset of precipi-
tation (Miller et al., 2016), and has been used to verify the
representation of clouds in climate models (Stephens et al.,
2019). Droplet number concentration is used as a proxy for
cloud condensation nuclei to study the aerosol indirect effect
(Feingold et al., 2006).

Scattered solar radiation from clouds has been used to
derive effective droplet radius, cloud optical thickness, and
cloud phase since the 1960s. Sagan and Pollack (1967) used
spectrally varying reflectance measurements to study the
clouds of Venus. Hansen and Pollack (1970) applied the same
techniques to terrestrial clouds using measurements taken by
a shortwave infrared spectrometer on board a high-altitude
U-2 plane. Twomey and Seton (1980) expanded on this work
by outlining what is now considered the standard method for
deriving cloud optical properties with spectral measurements
in the visible and shortwave infrared (often referred to as the
bispectral method). Throughout the 1980s and 1990s, sev-
eral methods of reliably determining droplet size and opti-
cal depth (Nakajima and King, 1990; Twomey and Cocks,
1982) as well as cloud phase (Pilewskie and Twomey, 1987)
from remote measurements were developed. Twomey and
Cocks (1989) and Rawlins and Foot (1990) tested the re-
trieval theory using five and two wavelengths, respectively,
from airborne radiometer measurements to retrieve effective
radius and optical depth by comparing measurements with
computed reflectances. Beginning in the early 2000s, the af-
ternoon constellation of satellites, called the A-Train, put
decades worth of research to the test by implementing these
retrieval algorithms on a global, daily basis. The Moder-
ate Resolution Imaging Spectroradiometer (MODIS) on the
Aqua and Terra satellites has measured scattered solar ra-
diation and emitted terrestrial radiation in discrete spectral
bands for over 2 decades (Platnick et al., 2003). These mea-
surements were used to derive effective cloud droplet radius,
cloud optical thickness, cloud phase, liquid water path, and
droplet number concentration, for which there now exists an
extensive data record.

The bispectral method of cloud optical remote sensing can
be applied to measured reflectance in as few as two spec-
tral bands, one at a wavelength where absorption by wa-
ter is negligible and the other at a wavelength where wa-
ter weakly absorbs, defined by the product of droplet size
and bulk absorption coefficient being much less than unity
(Nakajima and King, 1990; Twomey and Cocks, 1982). Re-
flectances in these two spectral regions are nearly indepen-
dent from one another, especially for clouds with an opti-
cal thickness greater than about 10; at non-absorbing wave-
lengths reflectance is proportional to cloud optical thickness,
and at wavelengths where liquid water weakly absorbs re-
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flectance is proportional to effective droplet radius. This bis-
pectral method is employed to compute the MODIS Collec-
tion 6 cloud products by computing extensive lookup tables
of cloud reflectance with varying solar and viewing geom-
etry, effective cloud droplet radius, cloud optical depth and
various surface spectral reflectance assumptions (Amaras-
inghe et al., 2017). Cloud optical depth and effective droplet
radius are retrieved by calculating the minimum /? norm, the
root sum square, of the difference between two MODIS spec-
tral measurements of reflectance and the lookup table esti-
mates.

While the bispectral method is straightforward to imple-
ment, it assumes that droplet size within the pixel under ob-
servation is vertically and horizontally homogenous (Ama-
rasinghe et al., 2017). Theoretical analysis of warm, non-
precipitating adiabatic clouds predicts a vertical structure of
droplet size that increases from cloud base to cloud top (Yau
and Rogers, 1996). Many in situ measurements of warm,
non-precipitating clouds have verified this prediction; the op-
posite behavior has been found in precipitating clouds and
clouds containing drizzle (King et al., 2013; Miles et al.,
2000; Painemal and Zuidema, 2011). King et al. (2013) sug-
gested that the assumptions within the MODIS cloud prod-
ucts algorithm for warm, non-precipitating clouds may lead
to an overestimation of liquid water path by as much as 25 %.

The bispectral retrieval method results in a wavelength-
dependent effective radius due to the variability of liquid
(and ice) water absorption in the shortwave infrared, specif-
ically defined as the region between 1 and 2.5 um for this
study. This was explained by Platnick (2000) who showed
that photons at different wavelengths penetrate to different
depths within clouds due to the spectral dependence of single
scattering albedo. Thus, the retrieved droplet radius repre-
sents a weighted average over the vertical extent of the cloud,
with the largest weighting occurring at cloud top (Platnick,
2000). Platnick (2000) also performed an information con-
tent study showing that the three retrievals of effective radius
using three MODIS spectral channels centered at 1.6, 2.1,
and 3.7 um were found to provide only two pieces of infor-
mation. The reason these three measurements do not provide
three unique pieces of information is that the difference be-
tween the retrieval at the 1.6 um channel, rq ¢, and the re-
trieval at the 2.1 um channel, r; 1, is less than the retrieval
uncertainties for each (Platnick, 2000). Platnick (2000) de-
termined that the relative retrieval uncertainty needs to be at
most 5 % for the three MODIS retrievals, ry¢, 2.1, and 3.7
to provide three unique pieces of information.

Following Platnick (2000), several studies were motivated
to retrieve droplet profiles leveraging the information avail-
able from MODIS measurements. Chang and Li (2002) pro-
posed using MODIS measurements at three shortwave in-
frared spectral bands to retrieve the vertical dependence of
effective droplet radius. Their method assumed a linear re-
lationship between effective droplet radius and cloud depth,
and, like MODIS Collection 6, they computed lookup tables
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of reflectance at each wavelength to retrieve a droplet profile.
Subsequent analysis by Chang and Li (2003) used MODIS
measurements to solve for the effective droplet radius at
cloud top and bottom using a pair of shortwave infrared
wavelengths. Repeating this for a different pair of shortwave
infrared wavelengths, the authors retrieved a droplet profile
by taking an average of the two linear retrievals. The au-
thors concluded that creating lookup tables for more than two
wavelengths and at least six free variables was too memory-
intensive for practical use with real data (Chang and Li,
2003). Using the method outlined by Chang and Li (2003),
Chen et al. (2007) suggested the vertical structure of droplet
size can be used to discern between clouds with and without
precipitation-sized droplets.

An early example of applying the optimal estima-
tion method to retrieve cloud optical properties was Hei-
dinger (2003), who retrieved effective radius and optical
depth using measurements at 0.63, 1.6, 3.8, 11, and 12 um.
Minnis et al. (2011) also developed an iterative technique
to retrieve cloud phase, optical depth, and effective radius
using observations from MODIS and the Visible Infrared
Imaging Radiometer Suite (VIIRS) to support the Clouds
and the Earth’s Radiant Energy System (CERES) data prod-
ucts using measurements at 0.65, 3.8, and 11 um. Poulsen et
al. (2012) developed a multispectral optimal estimation re-
trieval method named the Oxford-RAL retrieval of Aerosol
and Cloud (ORAC), used to retrieve effective radius, optical
depth, cloud top pressure, cloud fraction and surface temper-
ature. Sayer et al. (2011) applied the ORAC algorithm to the
data record of the Along Track Scanning Radiometers ATSR-
2 and AASTR, creating an extensive retrieved cloud property
data set. The ORAC-retrieved effective radius was found to
be 3.8 um smaller, on average, than the bispectral retrieval
using MODIS measurements (Sayer et al., 2011).

Kokhanovsky and Rozanov (2012) outlined the mathemat-
ical framework for applying an optimal estimation technique
to infer a vertical droplet profile using spectral measure-
ments. They showed that four MODIS wavelengths could be
used simultaneously with less computational cost than the
lookup table method to solve for three variables: the effective
radii at cloud top and cloud bottom and cloud optical depth.
The authors demonstrated their method with synthetic and
real MODIS measurements. Coddington et al. (2012) com-
puted the gain of Shannon information content with respect
to the retrieval of effective droplet radius and cloud optical
depth using hundreds of measurements across the solar spec-
trum. The authors found that beyond the traditional method
of using two wavelengths, there is additional information
within 100 spectral measurements that can meaningfully al-
ter the retrieval of droplet size and optical depth. King and
Vaughan (2012) applied an optimal estimation technique to
hundreds of synthetic spectral measurements throughout the
visible and shortwave infrared. The use of synthetic data en-
abled a systematic study of the impact of measurement un-
certainty on the retrieval uncertainty of cloud optical depth
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and the effective radii at cloud top and cloud bottom. King
and Vaughan (2012) concluded that a measurement uncer-
tainty of 1% would result in a retrieval uncertainty of less
than 2 um for the effective radius at cloud bottom and less
than 0.1 pm at cloud top. It is important to note that this result
depends on cloud optical depth (King and Vaughan, 2012).
For the retrieved radius at cloud bottom, the authors found
the minimum retrieval uncertainty for an optical depth of 10
(King and Vaughan, 2012).

The Climate Absolute Radiance and Refractivity Earth
Observatory (CLARREO) Pathfinder (CPF) is an upcoming
space-borne hyperspectral imaging spectrometer that will de-
ploy on the International Space Station, which occupies a
near-circular orbit about 400 km above Earth with an inclina-
tion of 51.6° (Shea et al., 2020). The CPF Hyperspectral Im-
ager for Climate Science (HySICS) will make measurements
of scattered radiation contiguously from 350 to 2300 nm with
a spectral sampling and resolution of 3 and 6 nm, respec-
tively (Shea et al., 2020). The HySICS radiometric uncer-
tainty is 0.3 %, and its nadir spatial resolution is 0.5 km after
3-pixel binning. The full swath width will be 70 km, com-
prised of 480 measurement pixels (Shea et al., 2020). We
have developed new methods that utilize the enhanced ra-
diometric accuracy and spectral resolution of CPF to retrieve
vertical profiles of cloud droplet size. The research herein
builds upon previous studies in several ways. First, we de-
veloped an optimal estimation technique that constrains the
set of possible solutions by maintaining a retrieved droplet
profile consistent with the forward model assumptions. Sec-
ond, we apply this optimal estimation method to MODIS
data coincident in time and space with in situ measure-
ments from the Variability of the American Monsoon Sys-
tems Ocean-Cloud-Atmosphere-Land Study Regional Ex-
periment (VOCALS-REX) field campaign to provide a means
of validation (Platnick et al., 2017a; Wood et al., 2011).
For decades, researchers have investigated the inherent chal-
lenges with comparing in situ measurements and remote re-
trievals (Feingold et al., 2006; Nakajima et al., 1991; Paine-
mal and Zuidema, 2011; Platnick and Valero, 1995; Stephens
and Tsay, 1990; Twomey and Cocks, 1989). We discuss how
comparisons between in situ and remote measurements pro-
vide support for algorithmic development, but differences in
sampling volumes reveal substantial limitations. Lastly, we
demonstrate how improved radiometric accuracy and, to a
lesser degree, an increase in the number of spectral measure-
ments used in the retrieval decreases the set of acceptable
solutions. For this analysis, we simulated top-of-atmosphere
reflectance spectra sampled by HySICS.

Section 2 provides an overview of passive optical remote
sensing of clouds from space, reviews current methods of de-
riving cloud optical properties from satellite measurements
and introduces the optimal estimation method used in this
analysis. Section 3 describes the data and forward model as-
sumptions. Section 4 presents results with comparisons be-
tween the retrieved vertical profiles and the in situ data and
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highlights the dependence on radiometric accuracy. Section 4
also discusses challenges comparing in situ and remote mea-
surements and the effects of increasing the number of wave-
lengths used in the retrieval. Section 5 provides an interpre-
tation of the results and discusses potential future work to
improve the methods.

2 Passive optical remote sensing of clouds
2.1 The bispectral method

Deriving cloud optical properties from spectral reflectance
measurements constitutes an inverse problem. As with any
inverse problem, the solutions are highly dependent on the
assumptions made in the forward model. When setting up a
retrieval of cloud effective radius and cloud optical depth, the
fundamental question is “What combination(s) of these vari-
ables would lead to the set of observations measured?” Let x
be the state vector that contains the variables we seek to re-
trieve, thus x = (re, 7¢). To solve for x, we define a forward
model, R, which maps our state vector to a set of spectral
reflectance measurements, m, such that R (x) = m. The re-
lationship between the desired state vector and spectral re-
flectance is nonlinear.

The MODIS Collection 6 cloud retrieval uses the bispec-
tral method, relying on an extensive library of forward model
calculations to retrieve the effective droplet radius, re, and
cloud optical depth, t. (Platnick et al., 2017b). The effec-
tive radius is defined mathematically as the ratio of the third
moment of the droplet size distribution, n (r), to the second
moment (Hansen and Travis, 1974):

_ fooorrr rZn (r)dr
fooorr r2n(r)dr '

ey

Te

In addition to the desired state vector, each reflectance cal-
culation depends on the solar and viewing geometry, the sur-
face albedo, wavelength, and molecular and aerosol scatter-
ing and absorption. Note that these independent variables are
not included in our equations. Lookup tables are created by
computing reflectance over ranges of each these indepen-
dent variables. The desired variables r. and 7. are determined
by computing the minimum /% norm difference between the
measured reflectances, m, and the forward model estimates
of reflectance, R(x).

2.2 Monte Carlo derived weighting functions

Unless droplet size is uniform throughout a cloud, the bis-
pectral retrieval of effective radius depends on the two wave-
lengths chosen because average photon penetration depth
within a cloud depends on the wavelength-dependent sin-
gle scattering albedo (Platnick, 2000). Using a Monte Carlo
model, we derived the weighting functions for the first
seven spectral channels of MODIS to determine the average
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penetration depth for a vertically inhomogeneous cloud. A
Monte Carlo model can simulate radiative transfer by treat-
ing photon—particle interactions stochastically. The critical
element of this model is to define the processes of scattering
and absorption probabilistically and then map each of these
distributions onto a uniform probability distribution that can
be sampled with a random number generator.

Clouds were modeled as horizontally infinite plane-
parallel layers with a finite optical thickness and a vertical
profile of effective radius. Liquid water content, LWC, is de-
fined as the total mass of liquid water per unit volume of air:

o0
4
LWC = /pgnr3n(r) dr, )
0

where p is the density of liquid water. Assuming a parcel of
air rises adiabatically, LWC increases linearly with geomet-
ric height. A linear relationship between liquid water content
and height can be defined as

LWC (z) = LWC (0) + (LWC (H) — LWC (0)) % 3)

where H is the total geometric depth of the cloud such that
z=0atcloud base and z = H at cloud top. If we assume that
total number concentration, N.(z), is constant with height,
and we define the droplet distribution as consisting of a single
radius, r., then we can remove the integral in Eq. (2) and use
Eq. (3) to solve for the effective radius under the adiabatic
assumption:

1

5 '
re(2)= (4ﬂN , (LWC(O)+(LWC(H)—LWC(O))%))
Z 1
= (o + Ciop = oot 77) @)

where riop and rpo are the effective radii at cloud top and
cloud base, respectively (Platnick, 2000). We note that this
adiabatic model is consistent with the commonly used Ben-
nartz adiabatic model for a non-zero liquid water content
value at cloud base (Bennartz, 2007). This droplet profile was
used for all Monte Carlo simulations. Clouds were comprised
of 100 plane-parallel layers with droplet size following a nar-
row gamma distribution in each layer with an effective vari-
ance, vefr, of 0.077 (equivalent to libRadtran’s width parame-
ter, o« = ﬁ —3 =10) (Deirmendjian, 1964). Figure 1 shows
normalized weighting functions for a vertically inhomoge-
neous cloud. Each weighting function represents the condi-
tional probability of a photon scattered in the upward direc-
tion at cloud top, given that it penetrated to a maximum depth
of t.

The wavelength-dependent column-weighted retrieved ef-
fective radius is approximated by

Tc

rE = /re (1) w;, (7) dr, (5)

0
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Figure 1. Weighting functions of the MODIS instrument’s first seven spectral channels. Model parameters are shown in the lower right
corner. (i is the cosine of the solar zenith angle, Ay is the surface albedo below the cloud layer, Nppotons represents the number of photons
used to compute each weighting function, N ayers represents the number of homogeneous, plane-parallel layers, and 7 is the total optical
depth of the cloud. Horizontal dashed lines represent the optical depth associated with the retrieved effective radius using the wavelength

specified (Eq. 5).

where w, () is the wavelength-dependent weighting func-
tion (Platnick, 2000). For a non-constant droplet profile,
Eq. (5) represents the retrieved effective radius for a given
wavelength. From Fig. 1, it is evident that reflectance at dif-
ferent shortwave infrared wavelengths depend on the droplet
profile. Since single scattering albedo, @y, and to a lesser ex-
tent the asymmetry parameter, varies with wavelength, mea-
surements at different wavelengths probe different depths
within a cloud. In general, droplet absorption, defined by
1 —w, controls the vertically dependent weighting functions
since photons that are more likely to be absorbed are less
likely to penetrate deep into cloud layers. Figure 1 shows that
on average, reflectance is dominated by scattering from the
cloud top due to a greater proportion of photons reaching a
maximum penetration depth in the upper region of the cloud.

The development of a Monte Carlo simulation to model
radiative transfer within clouds provided insight into how
wavelength-dependent reflectance samples different layers
of clouds. If r. were constant with height the structure of
each weighting function and the depth of average penetra-
tion would be irrelevant. Figure 1 shows that weighting func-
tions at all seven MODIS wavelengths used in this analysis
reach a similar maximum optical depth of about one. Further-
more, these weighting functions are broad and have consid-
erable overlap, signifying considerable correlation between
reflectances at different wavelengths. Ideally, a set of orthog-

https://doi.org/10.5194/amt-18-5299-2025

onal weighting functions that probe different depths of the
cloud would be preferred. While this is not achieved with
wavelengths in the visible and shortwave infrared region,
measurements at many wavelengths can still be used to in-
crease the retrieval signal-to-noise ratio.

2.3 The optimal estimation method

Kokhanovsky and Rozanov (2012) applied an optimal es-
timation technique to retrieve a state vector that included
droplet size at cloud top and base: x = (rtop, ot Tc). Impor-
tantly, since only upper and lower values of the droplet pro-
file are retrieved, this technique requires an assumption about
the dependence of droplet size with altitude within cloud.
Once droplet size is retrieved at the top and base, r.(7) can
be determined continuously across the domain t = [0, t.].
We assumed that the droplet profile was adiabatic according
to Eq. (4).

The Gauss—Newton iterative method, a technique used to
solve nonlinear least-squares problems, is used to solve for
the state vector (Rodgers, 2000). At each iteration, the new
state vector estimate is

~1
Xl =xi+ (8;1 + KIS K,») (K7 s

(m — R(x;)) +Sa(x; —xa)], (6)
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where matrices are indicated in capitalized boldface, and vec-
tors are indicated in lowercase, italicized boldface. x; is the
state vector estimate of the i th iteration, x, is the a priori state
vector, S, is the a priori covariance matrix, K; is the Jacobian
matrix of R(x;), and S, is the measurement covariance ma-
trix. The a priori state vector represents the best guess of the
values of each retrieved variable before the Gauss—Newton
iterative solution is derived. The a priori covariance matrix
accounts for the uncertainty in the a priori guess and the
relationship between each state variable. The measurement
covariance matrix is the sum of measurement and forward
model uncertainties: S¢ = Sy + Sgm (Poulsen et al., 2012).
S defines the measurement uncertainty at each wavelength
and the correlation between measurements at different wave-
lengths. Two measurements with a non-zero covariance are
at least partially redundant with respect to retrieving the de-
sired variables. Sty defines the forward model uncertainty,
which can be separated into two categories: sources propor-
tional to the measured signal and the uncertainties in surface
reflectance (Poulsen et al., 2012). The Jacobian is defined as

IR(xj, A1)  OR(xj, A1) OR(xj, A1)
. 8rmp . Fbot . atc

K; = VR (x;) = dR(g«:iJ»z) ngxiJ»z) dR(giJ»z)
top Fbot Tc

N

The forward model, R, is used to compute reflectance at a
set of wavelengths for some cloud state, x;. The Jacobian
represents the change in reflectance due to a perturbation in
each state variable. Equation (6) balances several competing
factors during each iteration: the difference between the mea-
sured and computed reflectances (m — R(x;)), the difference
between the current state estimate and the a priori (x; — x3),
and the rate of change of the estimated measurements with
respect to the current state variable (K; = VR(x;)).

To construct Eq. (7), we compute the change in reflectance
due to a small change in one of the state variables. For exam-
ple,

IR a) AR ((r}‘)p + AFOP_ pbot 7y ,\1)

aritop Artop

®)

is the change in reflectance due to a change in the ra-
dius at cloud top. We defined the change in the state vari-
ables as a fraction of the current iteration state vector.
However, the magnitude of the change in reflectance de-
pends on the initial values of the state variables. In addi-
tion, we need the change in reflectance to be greater than
the measurement uncertainty. To ensure these conditions
for all cases analyzed, the Jacobian was computed using
the following fractions to estimate the partial derivatives:

Ax; = [O.lrimp, 0.35r}’°t, O.I‘L'Ci]. These values, derived us-

ing MODIS measurements and determined through trial and
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error, ensured that the reflectance change exceeded the mea-
surement uncertainty when the state vector was outside of a
local minimum. These fractions need to precisely estimate
the Jacobian, defined as the rate of change of reflectance
with respect to an infinitesimal change in one of the state
variables, and account for the MODIS measurement uncer-
tainty. For example, we found that if Arpe Was too small,
then AR(xX) was dominated by measurement uncertainty.
If Arpor was too large, we no longer accurately estimated
the local slope. These fractions were used for all seven spec-
tral channels because the MODIS measurement uncertainty
at these channels is roughly constant (adjustments should be
made for use with other instruments). We note that the lower
radiometric uncertainty of HySICS enables the detection of
smaller changes in reflectance, enabling better estimates of
the partial derivatives of the Jacobian.

During our analysis, we needed to constrain the solu-
tion space of the retrieved variables when using the Gauss—
Newton iterative technique. We adopted the bound-constraint
method of Doicu et al. (2003) to ensure the following con-
straints were satisfied:

Tbot < T'top;
1 < rpot < 25,
1 < reop < 25. )]

The first constraint is required because we assumed an adi-
abatic droplet profile. If the first constraint is not satisfied,
the adiabatic forward model assumption is invalidated. The
second and third constraints are required because the pre-
computed table of Mie calculations used to convert cloud
properties to optical properties has an effective radius upper
limit of 25 um (Emde et al., 2016). These constraints exclude
the retrieval of drizzle or precipitation sized droplets. Future
iterations of this work will use an expanded lookup table with
a larger effective radius upper limit. For each iteration, we
defined a new direction as

pi = (sa—l + K/ s;! K,»)*1 (K S;' m — R(x)))
+8Sa(xi —x4)] (10)

such that the updated state vector guess was xX;+1 = X; + pi
(Doicu et al., 2003). We then solved for the maximum scalar
value, a, that resulted in a new state vector, x; 11 = x; + ap;,
that met our state variable constraints and resulted in a lower
12 norm between the estimate and true measurements:

VR ap) —m)? < /S R —m2 ()

From hereon we will use the term cost function,commonly
noted as J, to refer to the left side of Eq. (11), the /2 norm of
the difference between the forward model reflectances and
the true measurements. This was repeated until one of two
convergence metrics was met. If the percent difference of
the cost function between two successive iterations was less
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than 3 %, the process was terminated. This value was adopted
from an extensive number of retrievals. Values lower than
3 % were the result of a local minima and further iterations
never led to significant changes in the retrieved state vector.
The other convergence criteria terminated the iterative pro-
cess if the cost function was less than or equal to the /> norm
of the total uncertainty (measurement and forward model),
ém, and the previous iteration (Doicu et al., 2003):

VO (R@ie)—m)? < \/Z @m)? < /> (R(x)—m)>.  (12)

Once convergence occurred, the posterior covariance matrix
was computed. The uncertainties of the retrieved variables
are the square root of the main diagonal (Rodgers, 2000).

S = (K's;! K+S;1)_l (13)

3 Data used and forward model assumptions

We applied our optimal estimation algorithm outlined in
Sect. 2.3 to real data using multispectral measurements from
MODIS. We used the MODIS spectral response functions
to simulate top-of-atmosphere reflectance for the first seven
spectral channels listed in Table 1, which reports the band-
width and spectral resolution of each channel (MODIS Aqua
and Terra Relative Spectral Response Functions, 2025). The
resolution was estimated by computing the full width at half
maximum. These seven spectral channels were used because
they avoid water vapor absorption, simplifying the forward
model. The following analysis only considered MODIS ob-
servations of liquid water clouds over the ocean with an op-
tical depth of at least 3. We chose this threshold because
visible and shortwave infrared reflectances become more in-
dependent from one another with increasing optical depth
(Nakajima and King, 1990; Twomey and Cocks, 1989). The
uncertainties reported in Table 1 are average values for all
pixels meeting the aforementioned constraints from the three
MODIS swaths used in Fig. 3 (MODIS Characterization
Support Team (MCST), 2017).

In this analysis, libRadtran (Emde et al., 2016) was used
to run 1-D DISORT (Stamnes et al., 2000) to compute for-
ward modeled spectral reflectance. All clouds were defined
as they were in the Monte Carlo simulations (Sect. 2.2)
with an adiabatic droplet profile, 100 plane-parallel lay-
ers, and a gamma droplet distribution with a vertically con-
stant effective variance of 0.077. This effective variance
value was chosen based on analysis of in situ measurements
of non-precipitating marine stratocumulus clouds from the
VOCALS-REXx flight campaign. We note that the assumption
of a narrow monomodal droplet distribution is a simplifica-
tion that is not valid for all clouds. In situ measurements have
found that the droplet distribution tends to widen towards
cloud top (Meyer et al., 2025). Furthermore, the presence of
drizzle-sized droplets leads to a tail in the droplet distribution
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Table 1. First seven spectral channels of the MODIS instrument.
The reflectance uncertainty represents the average for water cloud
observations over ocean with an optical thickness of at least 3.

Band Bandwidth (nm) Resolution Reflectance

(nm)  uncertainty (%)
1 614-681 47.5 1.95
2 820-899 38.3 2.03
3 452-481 19 1.91
4 593-569 19.8 1.77
5 1214-1271 23.5 1.65
6 1596-1660 27.7 1.58
7 2058-2175 52.3 1.65

(Portge et al., 2023; Zinner et al., 2010). Future applications
will explore alternate droplet distribution assumptions. We
used the MODIS retrieval of cloud top height to define the
upper boundary of the cloud, but this value is likely to be
imperfectly aligned with the cloud top effective radius that
we retrieved due to retrieval uncertainties in both. Cloud ge-
ometric thickness was set to 0.5 km, following our own anal-
ysis showing negligible impacts of cloud geometric thick-
ness on reflectance for the wavelengths used. We used the
US 1976 standard atmosphere to define vertical profiles of
all atmospheric gases (Anderson et al., 1986). Several for-
ward model assumptions mirrored the forward model used in
the MODIS Collection 6 cloud optical properties retrieval al-
gorithm (Amarasinghe et al., 2017). Maritime aerosols were
assumed since only cloudy scenes over ocean were consid-
ered. Aerosol optical depth was defined as 0.1 for all cases
(Amarasinghe et al., 2017). The Cox—Munk surface bidirec-
tional reflectance model was used to account for the impact
of wind speed and direction of the ocean surface (Amaras-
inghe et al., 2017; Cox and Munk, 1954).

It is worth noting that, while an accurate forward model is
desired, the primary function of the forward model and al-
gorithm developed for this research was a proof of concept
for retrieving vertical droplet profiles. Nevertheless, forward
model uncertainty exists, and several works have detailed the
many sources related to the retrieval of cloud optical prop-
erties (Platnick et al., 2017b; Poulsen et al., 2012; Watts et
al., 1998). Our analysis considered clouds over ocean with
an optical thickness of at least 3. Therefore, we have ig-
nored uncertainty related to surface reflectance. Sources of
uncertainty most relevant to our retrieval and the limited
cases we investigated include the precipitable column wa-
ter amount above cloud, cloud top height, the effective vari-
ance of the droplet size distribution, vertical profiles of at-
mospheric gases and aerosols, the plane-parallel assumption,
and the instrument response (Platnick et al., 2017b; Poulsen
etal., 2012).

We used measurements of relatively homogenous clouds
to avoid the impacts of 3-D radiative effects on our retrieval.
However, our assumption of a plane-parallel cloud does not
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accurately represent all cloud structures. Horizontally inho-
mogeneous clouds can lead to 3-D radiative effects, such as
illumination and shadowing that result from a net horizontal
radiative energy transport. Previous studies have shown that
sub-pixel inhomogeneity leads to an increase in the uncer-
tainty of retrieved effective radius (Zhang et al., 2012; Zhang
and Platnick, 2011). We limited our analysis to relatively ho-
mogeneous marine stratus clouds, which have been shown to
have modest 3-D biases on the retrieval of effective radius
(Zinner et al., 2010). In addition, Zhang and Platnick (2011)
showed the sub-pixel inhomogeneity index, the ratio of the
standard deviation of the 16 sub-pixels of MOIDS-measured
reflectance at 250 m spatial resolution to the mean, was a
strong indicator of whether horizontal inhomogeneity af-
fected the retrieval of effective radius. The authors concluded
that effective radius retrievals were biased from 3-D radiative
effects when the cloud had an inhomogeneity index greater
than 0.3 (Zhang and Platnick, 2011). Three-dimensional ra-
diative effects of relatively homogenous clouds with an inho-
mogeneity index of less than 0.1 are likely minor, and, there-
fore, it may be possible to determine the cloud vertical struc-
ture using different shortwave infrared measurements (Zhang
and Platnick, 2011). All pixels used in the development of
our algorithm, including the three cases shown in Fig. 3, had
an inhomogeneity index of less than 0.1. We will further ad-
dress horizontal cloud structure and sub-pixel inhomogeneity
in Sect. 5.

During VOCALS-REX, aircraft measurements of cloud
droplet profiles were acquired from 14 flights conducted
from 15 October to 15 November 2008. Some of the flight
paths were spatially and temporally coincident with over-
passes of the Terra and Aqua satellites (Wood et al., 2011).
Over the entire duration of VOCALS-Rex, three vertical pro-
files were sampled within 5 min of a MODIS overpass, pro-
viding the best opportunities for comparison with remote
retrievals. The Cloud Droplet Probe (CDP) manufactured
by Droplet Measurement Technologies (Lance et al., 2010)
measured forward scattering from a laser source to deter-
mine droplet diameters between 2 and 52 um. The 2-D cloud
optical array probe (2DC) by Particle Measurement Systems
(Strapp et al., 2001) similarly measured droplet diameters be-
tween 25 and 1560 um. To avoid redundancy, we ignored the
2DC data for droplet diameters less than 52 pym. These two
data sets are distinct in that one consists primarily of typi-
cal cloud droplet sizes (~ 10 um), whereas the other contains
drizzle and precipitation-sized droplets (> 100 um). These
two measurement systems enabled us to segregate clouds be-
tween those with and without drizzle by using a liquid wa-
ter path threshold of 1 gm™2 as measured by the 2DC in-
strument, a slightly lower threshold than was used by Paine-
mal and Zuidema (2011). This effectively removed any sam-
pled clouds with droplets larger than 52 ym from our data
set. Painemal and Zuidema (2011) found a positive bias for
the CDP LWC measurements compared to those from a hot
wire probe. We applied their prescribed correction using a
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simple linear regression to the CDP droplet size distribu-
tion. In defining cloud top and bottom within the in situ data,
we followed Painemal and Zuidema (2011), who defined the
minimum liquid water content threshold of 0.03 gm™> and
a minimum total droplet number concentration threshold of
1 cm™3. Therefore, the cloud top and bottom were identified
as the minimum and maximum altitudes where both criteria
were satisfied.

Using over 100 VOCALS-REX in situ vertical profiles
without drizzle or precipitation-size droplets, we computed
the median profiles of effective radius, liquid water content,
and number concentration by normalizing the vertical dimen-
sion, discretizing it into 30 bins and computing the median
value for each. For each vertical bin, we found that a log-
normal distribution best fit the measurements of effective
radius and liquid water content, whereas a normal distribu-
tion was the best fit for number concentration. The shad-
ing in Fig. 2, which represents the average deviation from
the median value, reflects these distributions: the shading
is symmetric for number concentration and asymmetric for
the effective radius and liquid water content. Figure 2 shows
that the median profiles of effective radius and liquid wa-
ter content closely resemble the theoretical adiabatic profiles
overlaid in black. Figure 2 shows that the median profile of
droplet effective radius was found to increase with altitude
within cloud. We found the median effective radius at cloud
top was about 37 % larger than the value at cloud base for
non-precipitating marine stratocumulus. These results justify
the adiabatic assumption that results in a linear increase in
liquid water content with altitude within cloud. We also note
that the median profile of droplet number concentration is
roughly constant with altitude, another assumption in the for-
ward model.

The Gauss—Newton method assumes a Gaussian prior with
symmetric uncertainty about the a priori value. The a priori
value for the radius at cloud top and the optical depth was
defined as the bispectral retrieval of effective radius and op-
tical thickness, respectively, using MODIS measurements at
0.65 and 2.13 um (Table 1). The a priori value for the radius
at cloud bottom was defined as 70 % of the retrieved effec-
tive radius. This percentage was derived from the median in
situ vertical profile of effective radius (Fig. 2), which shows
that the value of cloud bottom radius was 70 % of the value
of cloud top effective radius. The a priori uncertainties for
cloud top radius and optical depth were set to their respective
MODIS Collection 6 bispectral retrieval uncertainties (Plat-
nick et al., 2017b). For the three MODIS scenes analyzed
in this study, the mean retrieval uncertainty of cloud effec-
tive radius for liquid water clouds over ocean with an optical
depth of at least 3 was 8.2 % (~ 0.89 um). For optical thick-
ness, the mean retrieval uncertainty was 5.1 % (~ 0.57). We
should note that the retrieved effective radius does not repre-
sent the droplet size at cloud top, as the weighting functions
in Fig. 1 demonstrate. Nevertheless, we consistently retrieved
droplet sizes at cloud top close to the in situ measured val-
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ues, proving the bispectral retrieval to be an effective value
for the a priori at cloud top.

For the a priori uncertainty of droplet effective radius at
cloud bottom, we scaled the bispectral retrieval uncertainty
of effective radius using the weighting function for 2.13 pm.
Most photons at 2.13 um are scattered near cloud top. There-
fore, we need to express a higher uncertainty for the a priori
value for the radius at cloud bottom. We used the 2.13 um
weighting function to determine the portion of the total mea-
sured signal with a maximum penetration depth within the
upper and lower quartiles of the cloud. For the example cloud
in Fig. 1, which has a similar droplet profile as the median
effective radius profile found during the VOCALS-Rex cam-
paign (Fig. 2), over 50 % of the measured signal comes from
the upper quartile of the cloud. Only 8 % of the total signal
comes from the lowest quartile. Thus, we adopted a cloud
bottom uncertainty of a factor of 6 larger than the retrieved
effective radius uncertainty. For the measurement covariance
matrix, S, the measurement component, Sy,,, was defined as
the uncertainty for the seven spectral channels of MODIS
used in this analysis. Average reflectance uncertainty values
are shown in Table 2. For the forward model component,
Stm, we assumed a value of 2.5 % for all channels, adopt-
ing a similar used by Poulsen et al. (2012) over the same
wavelength range. The different spectral measurements and
the retrieved variables were assumed to be independent from
one another. While the use of diagonal covariance matri-
ces is common (King and Vaughan, 2012; Kokhanovsky and
Rozanov, 2012), it does not reflect the true nature of the prob-
lem (see Sect. 5).

Section 4 shows retrievals for the three vertical profiles
sampled within 5 min of a MODIS overpass. To account for
the temporal displacement of cloud location, we applied a
simple advection model using horizontal wind speed and
direction measured on the aircraft. Using the median wind
speed and direction from within the cloud, we computed the
distance the cloud would have travelled during the time be-
tween MODIS and VOCALS-REx. The location was either
projected forward or backward depending on whether the in
situ sampling occurred before or after the MODIS overpass.
The horizontal distance travelled by plane during in situ sam-
pling exceeded the MODIS pixel sampling distance for all
cases shown in this study. None of the droplet profiles shown
in Sect. 4 were contained within a single pixel. After ap-
plying our advection model, the MODIS pixel closest to the
newly projected location was used for the retrieval.

It is important to quantify the uncertainty of the in situ
measurements since they were used to validate our retrieval
algorithm. However, the CDP droplet size uncertainty esti-
mate is attributed to several factors that make it difficult to
quantify (Lance et al., 2010). Droplets that pass through the
edges of the sampling area tend to have much higher uncer-
tainty than droplets that pass through the center. Uncertainty
due to coincidence, where multiple droplets pass through the
sampling area within the sampling time of the detecting op-
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tics, is challenging to estimate because it depends on droplet
size, particle concentration, and transit location within the
sampling area. There are also limitations to the size reso-
lution of the instrument due to the non-monotonic relation-
ship between droplet size and the scattered laser light sig-
nal (Lance et al., 2010). Lance et al. (2010) used a water
droplet generating system to determine the sizing accuracy
of the CDP instrument. Using their results, we simplified the
CDP measurement uncertainty for this analysis by defining
an uncertainty of 20 % for effective radii below 5 um, and an
uncertainty of 10 % for those above 5 yum.

4 Results

Figure 3a, b, and c show results applying the algorithm de-
scribed in Sect. 2.3 for the retrievals of r.(t) for clouds with
in situ derived optical depths of 6.5, 11, and 19.5, respec-
tively. Each figure also shows the MODIS Collection 6 bis-
pectral retrieval of r. and t. using measurements at 0.65
and 2.1 pm. The time, location, and sub-pixel inhomogeneity
of each MODIS observation, along with the VOCALS-REx
sampling time and the time difference between each mea-
surement is listed in Table 2. The bispectral retrieval of ef-
fective radius was within range of the cloud top in situ mea-
surement for each case, demonstrating consistency with its
use as the a priori value for the radius at cloud top. The
estimated liquid water path from the retrieved profile was
closer to the in situ measured value than that derived from
the bispectral retrieval for two of the three cases. The abso-
lute difference between the multispectral estimate of liquid
water path and that derived from the bispectral method for
Fig. 3a, b, and c are 1.5, 0.7, and 12.5gm’2, respectively.
There are several factors contributing to these results. While
the retrieval of the radius at cloud top was close to the in situ
measurements in all cases, the retrieval of the radius at cloud
bottom was consistently larger than the in situ measurement.
Second, we showed in Fig. 2 that the median vertical profile
of droplet size of over 100 in situ measurements was close to
adiabatic. This provided the basis for assuming an adiabatic
droplet profile in the forward model, but this does not mean
all in situ measured profiles were adiabatic, as evidenced by
the large spread in the observations.

The retrieved droplet profiles in Fig. 3a and b follow a sim-
ilar pattern to their respective in situ measurements, but both
are larger than the in situ at nearly all levels within the cloud.
This clearly affects the liquid water path comparisons. In par-
ticular, the retrieved effective radius at cloud base in Fig. 3b
did not match the in situ measurements as well as the other
two cases. As such, the estimated liquid water path using the
retrieved profile was nearly identical to the value estimated
by the bispectral retrieval. It proved difficult to determine ex-
actly why this case fared worse than the other two, and it
appears at odds with King and Vaughan (2012) who found
uncertainty of the effective radius at cloud base to be at a
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Figure 2. Median vertical profiles of effective radius, liquid water content, and droplet number concentration for non-precipitating clouds
measured during the VOCALS-Rex flight campaign. The green line shows the median value of the distribution as a function of normalized
cloud depth. The green-shaded area represents the average deviation above and below the median line. The black lines in panels (a) and (b)
show the theoretical adiabatic profile using the boundary values found by the median profile. The vertical line in panel (c) highlights the

near-constant number concentration.

Table 2. The MODIS pixel observation time, location and sub-pixel inhomogeneity for each observation shown in Fig. 3, along with the
corresponding VOCALS-REX in situ sample duration and the time difference between the two measurements.

Figure MODIS MODIS MODIS VOCALS-REx VOCALS-REx Time
observation observation sub-pixel in situ start in situ end difference
time (UTC) latitude and inhomogeneity time (UTC) time (UTC) (min)

longitude index H,

3a 11 Nov 2008 18:54:28  —24.0986, —75.0013 0.09 18:45:20 18:45:50 8.88

3b 11 Nov 2008 14:42:29  —22.8188, —73.0008 0.07 14:40:59 14:41:38 1.18

3c 9 Nov 2008 14:30:20 —22.8970, —73.0036 0.08 14:33:33 14:34:23 3.62

minimum for a cloud optical depth of about 10 when using
synthetic data.

We investigated the uniqueness of the retrieved solutions
and found that the constraints applied to the Gauss—Newton
technique outlined in Sect. 2.3 were required to retrieve
droplet profiles that consistently resembled in situ measure-
ments. The Gauss—Newton solver is not designed to find the
global minimum. Instead, it converges towards a local mini-
mum, which depends on the initial state vector estimate and
the a priori (Rodgers, 2000). Indeed, there are many state
vectors that will result in a set of spectral measurements
within the MODIS measurement uncertainty because of the
low relative weights near cloud base for the seven spectral
channels used in this analysis. In our analysis we found that
without constraints on the solution space, even an a priori
close to the in situ values for the radius at cloud top and
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bottom could still lead to a solution with rtop < rpot, Which
invalidated the forward model assumptions.

To provide insight into the sensitivity of the multispectral
retrieval of rpo¢ With cloud optical depth we analyzed the
components of the Jacobian. Figure 4 shows the change
in estimated spectral reflectance, R(x;), due to a change
in the cloud bottom radius for three clouds with different
optical thicknesses but identical droplet profiles equal
to the median droplet profile found in Fig. 1. For the
ith iteration and the jth spectral channel, we estimate
the change in reflectance using the following equation:
AR (xi, Aj) = R ((riop.i » Foot,i + Arboti s Te;)s Aj) —

R ((rop.i » Tboti » T;) » »j) The y axis of Fig. 4 shows this
change for the seven spectral channels used in our multispec-
tral retrieval. The behavior observed in Fig. 4 matches our
expectations defined by the bispectral method. The change
in estimated reflectance due to a change in rpy is small in
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Figure 3. Comparison between the effective radius calculated from in situ measurements (black circles), the MODIS bispectral retrieval of
effective radius and optical depth (dotted vertical and horizontal blue lines, respectively), and the retrieved vertical profile using the optimal
estimation method (pink dashed curve). The liquid water path estimate using in situ data, the MODIS retrievals, and our retrieved vertical
profile are stated in the bolded box. Retrieval uncertainty for the effective radius at cloud top and bottom are shown as pink horizontal bars.
Optical thickness retrieval uncertainty is represented by the pink vertical bar. In situ uncertainties are shown as black horizontal bars. The
MODIS and in situ data were recorded on 9 November 2008 (b) and 11 November 2008 (a, c).
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the visible where the droplet single scattering albedo is close
to 1. In the shortwave infrared, water droplet absorption
is proportional to the droplet radius. Thus, we expected
a greater change in reflectance in the shortwave infrared
spectral channels as the cloud bottom radius increases due
to decreasing single scattering albedo. However, as optical
depth increased, fewer photons penetrated the cloud’s full
depth, and eventually there was no change in reflectance.

The black circles and squares in Fig. 4 show the mea-
surement uncertainty for the MODIS and HySICS instru-
ment, respectively. These uncertainties are also displayed in
absolute reflectance. We multiplied the reported percentage
radiometric uncertainties of each instrument with the orig-
inal reflectance, R ((riop,i, rbot,i» Te;)» Aj), from each spec-
tral channel. While the change in reflectance and the cor-
responding uncertainties depend on the current state vec-
tor, the overall behavior remains the same, with the change
in reflectance at non-absorbing wavelengths remaining be-
low the measurement uncertainty, and the absorbing wave-
lengths exceeding it. For moderately thin clouds with an op-
tical depth of less than 10, the change in reflectance typi-
cally exceeds the measurement uncertainty at wavelengths
1.64 and 2.13 um. Changes in estimated reflectance when op-
tical depth was 20 were equivalent or less than the measure-
ment uncertainty. This represents an upper threshold in opti-
cal depth over which this retrieval is valid. Figure 4 also em-
phasizes expected improvements in this method from utiliz-
ing CPF measurements with radiometric uncertainty of 0.3 %
(Shea et al., 2020).

4.1 Comparing in situ measurements with remote
retrievals

It is important to acknowledge the difficulty in comparing
remote retrievals of droplet size with their in situ measured
counterparts. We used the in situ measurements as a guide
while developing our algorithm, but it would be incorrect to
treat them as absolute truth. Many previous studies found re-
trieved effective radius to be systematically larger than the
corresponding in situ measured values (Meyer et al., 2025;
Nakajima and Nakajma, 1995; Painemal and Zuidema, 2011;
Twomey and Cocks, 1989). In a recent example, Meyer et
al. (2025) found two different remote estimates of cloud ef-
fective radius, one using the bispectral technique, and the
other using polarized reflectance measurements at scattering
angles near the cloud bow, disagreed by 1-3 um. Both remote
retrievals of effective radius were found to be larger, on av-
erage, than the coincident in situ derived value (Meyer et al.,
2025). In addition, the two in situ cloud probes used in the
analysis disagreed with one another by over 1 pm (Meyer et
al., 2025).

At nadir, the area sampled on the ground by a single
MODIS pixel is approximately 1km?. With a near-circular
orbit, the Terra and Aqua satellites have a roughly con-
stant height above Earth’s surface of about 709 km. We es-
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timate the sampling volume of a plane parallel cloud with a
0.5km thickness viewed by a single nadir-looking pixel to
be about 0.167 km>. The sampling volume of the CDP laser
probe is the product of the distance traveled by the plane
over the sampling time with the sampling area of the in-
strument, which is about 0.3 mm? (Lance et al., 2010). The
C130 aircraft that carried the CDP flew at an average speed of
107 ms~!. With a 1 Hz sampling rate, the sampling volume
of the CDP instrument was about 32 cm?, or 3.2x 10~ km?.
Therefore, the volumes sampled by the aircraft instruments
and the MODIS spectrometer differ by 13 orders of magni-
tude. The enormous difference requires a discussion about
the spatial variability of droplet size within marine stratocu-
mulus clouds.

Throughout the VOCALS-Rex flight campaign, numerous
horizontal flight paths were conducted at a near-constant al-
titude. We used these legs to investigate the horizontal vari-
ability of effective radius in non-precipitating clouds. We
constrained this analysis to horizontal legs where the plane
had a maximum vertical displacement of 10 m during sam-
pling. Figure 5b shows three representative samples of ef-
fective droplet radius, which showcases the two common
regimes of behavior: steadily increasing or decreasing, and
a quasi-stable mean. The range of these three horizontal legs
conveys how much change in droplet size is possible. These
ranges were calculated to be 1.1 um (red), 5.5 um (blue), and
6.4 um (yellow). The blue curve in Fig. 5b shows a stable
effective radius over a horizontal range of 42 km. However,
there are two sharp deviations near 2 and 4km from the
quasi-stable. The corresponding liquid water content mea-
surements in Fig. 5a, and the droplet number concentrations
in Fig. 5b, show sharp decreases. If these two outliers are re-
moved, the range of the blue curve is 2.9 um, and the standard
deviation is 0.45 um.

Using 50 horizontal in situ legs from VOCALS-REx, we
computed the standard deviation of effective radius over
three spatial scales representing the smallest and largest
cross-track MODIS pixel sampling distances on the ground,
and the HySICS sampling distance at nadir. For MODIS, the
cross-track sampling distance is 1 km, and at a scan angle of
55°, it is about 5 km long (Nishihama et al., 1997). The sam-
pling width at nadir for the HySICS instrument is 0.5 km. We
computed the standard deviation of droplet size over each
length scale by sliding windows over all 50 horizontal legs
assuming the variability was invariant with direction within
the horizontal plane. Figure 6 shows the histogram of stan-
dard deviations for the three length scales. The median vari-
ability for 0.5, 1, and 5km was 0.31, 0.37, and 0.47 um, re-
spectively, and is represented as vertical dotted lines in Fig. 6.
Thus, as scan angle increases, the pixel ground sampling area
captures larger variations in droplet size. Figure 6 clearly
demonstrates that for the marine stratus clouds sampled dur-
ing VOCALS-Rex, the median variability of effective radius
with respect to the horizontal plane decreases with decreas-
ing sampling distance.
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For comparing remote sensing with in situ measurements,
it is important to recognize that the in situ profile represents a
very small portion of the MODIS sampling volume. The re-
trieval of droplet size from MODIS measured radiance over a
single pixel represents an integral over the sampled volume,
which accounts for the contribution to reflectance at a given
time, depth, and horizontal location (Feingold et al., 2006).
In addition to the retrieval and in situ measurement uncertain-
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ties, the horizontal variability of droplet size is another am-
biguity to consider when comparing remote retrievals with in
situ measurements. Other factors that may contribute to this
discrepancy are the assumed droplet size distribution effec-
tive variance and the imaginary index of refraction of liquid
water (Meyer et al., 2025). Meyer et al. (2025) adjusted these
two parameters in their forward radiative transfer model and
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found better agreement between in situ measurements and
remote retrievals in some cases.

It should be noted that our classification of horizontal and
vertical profiles is non-ideal but a necessary byproduct of air-
borne sampling. Every vertical profile sampled by VOCALS-
REXx spanned far more horizontal distance than vertical. Our
intention with Fig. 2 was to show a representation of the dis-
tribution of droplet sizes sampled along the vertical dimen-
sion of a cloud; however, droplet horizontal variability is in-
evitably part of airborne vertical sampling.

Temporal variability also contributes to a discrepancy be-
tween in situ measurements and retrievals. The three ver-
tical profiles shown in this study are those closest in time
between a MODIS and in situ measurement for the entire
VOCALS-Rex field campaign. The time difference between
the MODIS observation and the VOCALS-REx measure-
ments was defined as the difference between the recorded
time of the MODIS pixel used in the retrieval with the time of
the in situ sampling halfway through the vertical droplet pro-
file. The time differences were 8.88 (Fig. 3a), 1.18 (Fig. 3b),
and 3.62 min (Fig. 3c). We attempted to account for advec-
tion within our retrieval algorithm, but this does not account
for the variability of cloud droplet size over time.

4.2 Simulated HySICS spectra

We retrieved droplet profiles using the lookup table method
introduced in Sect. 2.1 with simulated HySICS spectra to
investigate two aspects that impact the solution space: the
number of wavelengths used in the retrieval and the total
uncertainty. Simulated reflectance spectra were generated in
a similar manner to the synthetic data generated by King
and Vaughan (2012). libRadtran was used to compute top-
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of-atmosphere reflected radiance spectra for plane-parallel
clouds over ocean with an adiabatic droplet profile using 1-
D DISORT (Emde et al., 2016; Stamnes et al., 2000). Re-
flectance at each HySICS spectral channel was estimated by
convolving the radiance spectrum with the HySICS spec-
tral response functions and normalizing with the incident so-
lar irradiance. For this analysis, we assumed a uniform ra-
diometric uncertainty of 0.3 % across all spectral channels.
Rather than estimating the uncertainty due to each compo-
nent in the forward model, we investigated two scenarios:
one with 2.7 % forward model uncertainty, which is consis-
tent with values used by Poulsen et al. (2012), and one with
0.7 % forward model uncertainty. This resulted in total un-
certainty values of 3 % and 1 %, respectively. The later sce-
nario may be difficult to achieve, but future applications may
be able to leverage the full contiguous spectrum sampled by
HySICS to simultaneously retrieve properties that are usu-
ally assumed in the forward model. We will discuss this fur-
ther in Sect. 5. We generated simulated spectra with varying
uncertainty by sampling from a Gaussian distribution with
a zero mean. The lookup table method took about 50 times
longer to compute than the iterative Gauss—Newton method,
but once completed, we created a map from state space to
measurement space. We repeated this process for different
sets of spectral channels and for different values of measure-
ment uncertainty to study how these two aspects affect the
retrieval of droplet size at cloud base.

To quantify how the number of spectral channels used
in the retrieval affects the solution, we solved for the state
vector with two different sets of wavelengths. The simu-
lated reflectances were computed for a vertically inhomo-
geneous cloudy scene using the same solar-viewing geom-
etry as the MODIS measurement shown in Fig. 3a, and
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a similar state vector to the one sampled by VOCALS-
REx shown in the same figure Forward modeled reflectance
was computed for different combinations of the three state
variables, x = (roprbotTc). Figure 8 shows the contours of
the relative cost function, the fraction of the cost func-
tion with respect to the /> norm of the total uncertainty:

V(R (x;) —m)2/\/>" (8m)>. The left side of Fig. 8 was
generated using seven spectral channels aligned with the
seven MODIS spectral channels used in the multispectral
retrieval (Table 1). The right side of Fig. 8 was generated
using 35 spectral channels across the visible and shortwave
infrared that avoided water vapor and other gaseous absorp-
tion (Fig. 7). Both panels in Fig. 8 assumed a total uncer-
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tainty of 3 %. According to the convergence criteria outlined
in Sect. 2.3, the iterative algorithm terminates when the cost
function is less than or equal to the /% norm of the total uncer-
tainty (Eq. 12). This region of cost function minima is located
within the isopleth of one. State vectors within this isopleth
lead to forward model reflectances within the uncertainty of
the measurements. The solution space occupies three dimen-
sions corresponding to the three retrieved variables. Figure 8
collapses the solution space into two dimensions by taking
the difference between the cloud bottom radius dimension
and the radius at cloud top associated with the global min-
imum relative cost function value. When we increased the
number of spectral bands from seven to 35, the region of
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cost function minima decreased along the cloud bottom ra-
dius dimension by about 1 um. The light shading in both pan-
els of Fig. 8 represent state vectors with a negative value of
Ttop — T'bot» Which invalidates our forward model assumption.
Figure 8 demonstrates that when using 35 spectral channels
with a total uncertainty of 3 %, the number of state vectors
within the isopleth of one with a larger radius at cloud bot-
tom than cloud top is reduced.

Figure 9 illustrates the impact of total uncertainty on the
solution space. We computed forward modeled reflectances
for the same scene described above for Fig. 8, but we kept the
number of wavelengths used in the retrieval constant, using
the same 35 spectral channels as the right side of Fig. 8. The
left side of Fig. 9 shows the relative cost function using syn-
thetic spectra with 3 % total uncertainty, whereas the right
side used synthetic spectra with 1% total uncertainty. Un-
like the small reduction of the cost function minima region
with increasing wavelengths, Fig. 9 shows a significant re-
duction with decreasing total uncertainty. The region within
the isopleth of one decreased along the cloud bottom radius
dimension by about 3.75 pm. Figure 9b shows a steeper so-
lution space for retrievals with a total uncertainty of 1% as
compared to 3. We consistently found the gradient to be large
outside the convergence region, but once inside, the gradient
was quite small. Even if we allow the iterations to continue
within the isopleth of one, the slopes are small enough that
the algorithm quickly converges at a local minima. It is im-
portant to note that the shape of the contours depends on the
state vector and varies with each simulated HySICS spectra
because of the addition of Gaussian noise. Both figures show
the mean state for the particular state vector used.

The widths of the contours in Figs. 8 and 9 represent the
retrieval uncertainty for the radius at cloud bottom (y axis)
and cloud optical thickness (x axis). When the total uncer-
tainty is reduced from 3 % to 1 %, Fig. 9 shows that the un-
certainty of the radius at cloud bottom decreases from about
8.5 to about 4.75 um, and the uncertainty for the retrieved
cloud optical thickness decreases from 1.1 to 0.2. The aver-
age MODIS bispectral retrieval of optical thickness for warm
clouds over the ocean with an optical thickness of at least
3 falls within the two retrieval uncertainties for a total un-
certainty of 3% and 1% (0.51). Due to the uncertainty in
the retrieved cloud bottom radius, our values are higher than
the average MODIS bispectral retrieval of effective radius
(0.89 um), which was expected given the lack of a signal
from the lower portion of the cloud. Our results appear to
align with the results of King and Vaughan (2012), who cal-
culated droplet profile retrieval uncertainties for different to-
tal uncertainties.

5 Discussion and conclusions

To prepare for upcoming high-accuracy, full-spectral space-
borne hyperspectral measurements, we have developed new
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methods to retrieve vertical profiles of cloud droplet size. We
extended the results of King and Vaughan (2012) by develop-
ing an iterative Gauss—Newton technique that was applied to
real data. Using the first seven spectral channels of MODIS
and coincident in situ measurements from the VOCALS-REx
flight campaign, we showed that retrieving a profile of effec-
tive radius is possible, but solving for the effective radius at
cloud base is problematic because of the similarity of weight-
ing functions at various visible and shortwave infrared wave-
lengths. Other studies have retrieved vertical profiles of ef-
fective radius from MODIS data without addressing solution
uniqueness (Chang and Li, 2003; King and Vaughan, 2012;
Kokhanovsky and Rozanov, 2012). Chang and Li (2003)
outlined methods to retrieve droplet profiles, applied these
methods to real data, and investigated changes in retrieved
variables due to reflectance uncertainty. Kokhanovsky and
Rozanov (2012) used the Gauss—Newton optimal estimation
method to retrieve droplet profiles, demonstrating that their
method worked on real data. King and Vaughan (2012) inves-
tigated the impact of measurement uncertainty on retrieval
uncertainty using synthetic hyperspectral data but did not ad-
dress solution uniqueness. The limited unique information in
the MODIS bands used in our analysis led to a non-unique
solution, with many droplet profiles leading to a set of spec-
tral measurements within the MODIS measurement uncer-
tainty. We implemented a constrained form of the algorithm,
which reduced the solution space to a set consistent with
the forward model assumptions, leading to state vectors that
more closely matched the in situ measurements.

Coincident in situ measurements were used to validate the
retrieval. Algorithmic parameters described in Sect. 2.3 were
tuned such that the retrieved droplet profile closely matched
the in situ measurements. However, in situ measurements
cannot be treated as absolute truth because the sampling vol-
umes of VOCALS-REx and the MODIS measurements differ
by 13 orders of magnitude. Using VOCALS-REX in situ data,
we found the median horizontal variability of effective radius
to be between 0.31 and 0.47 pm for the three pixel ground
sampling distances of 0.5, 1, and 5 km. The retrieved droplet
size is representative of a radiatively weighted mean over the
sampling volume. The in situ measurement is considered a
point measurement, which is more susceptible to spatial per-
turbations. Horizontal variability of effective radius over the
MODIS pixel sampling area should be taken into account,
along with the in situ measurement and retrieval uncertainty,
when making these comparisons.

The three in situ vertical profiles analyzed in this study
spanned multiple MODIS pixels. Unfortunately, there was
never a scenario where a vertical profile was completely con-
tained within a single pixel. We found that the overlapping
pixel with an optical depth closest to the in situ measurement
performed best in the retrieval. This result demonstrates the
important interdependence between the retrieved variables:
we required an accurate a priori of optical depth to retrieve
droplet sizes that more closely matched the in situ measure-
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ments. Indeed, Figs. 8 and 9 demonstrate the importance of
an accurate a priori and initial guess because these values
help define the approach to the convergence region. Future
work will explore the use of a non-diagonal a priori covari-
ance matrix and the interdependence between the retrieved
variables.

The first seven spectral channels of MODIS were used
in this analysis because they avoid water vapor absorp-
tion. We also simulated reflectance for 35 HySICS spectral
channels that are relatively free of water vapor and other
gaseous absorption to investigate how the number of spec-
tral measurements and reduced total uncertainty affect the
retrieval. We assumed radiometric uncertainty for both in-
struments was uncorrelated, a simplification of their true na-
ture. The measurement uncertainty of HySICS reported by
Kopp et al. (2017) indicated that neighboring spectral chan-
nels strongly covary with one another. Future iterations of
this work will leverage these results to define the off-diagonal
elements of the measurement covariance matrix. When we
increased the number of wavelengths from 7 to 35 using sim-
ulated HySICS spectra, we found that the region of cost func-
tion minima within the solution space decreased along the
cloud bottom radius dimension by about 1 um. Future ap-
plications with hyperspectral measurements from CPF will
consider hundreds of spectral bands, including those in the
wings of shortwave infrared water vapor absorption features.
Perhaps this additional information will enhance the modest
improvements to the retrieval of droplet size at cloud base
shown in Fig. 8 by increasing the retrieval signal-to-noise ra-
tio.

https://doi.org/10.5194/amt-18-5299-2025

Minimizing forward model uncertainty leads to a
measurement-limited solution that may be unachievable with
CPF’s unprecedented accuracy. Indeed, reducing total un-
certainty to 1 % may prove difficult, but future work should
strive for more accurate forward models. Assuming a droplet
profile is just one assumption that reduces forward model
uncertainty because the assumption of a vertically homoge-
neous droplet profile is known to be a simplification for cer-
tain types of clouds (Platnick, 2000). For example, Meyer
et al. (2025) explored adjusting the assumed droplet size
distribution effective variance and the imaginary index of
refraction of liquid water and found better agreement be-
tween in situ and remote measurements in some cases. In
the future, an optimal estimation algorithm may be able to
leverage the full spectrum of CPF to estimate cloud phase
(Pilewskie and Twomey, 1987), cloud top height (Rozanov
and Kokhanovsky, 2004), above-cloud column water vapor
(Albert et al., 2001), carbon dioxide column amount (Buch-
witz and Burrows, 2004), and aerosol optical depth (Mauceri
et al., 2019), reducing forward model uncertainty for the
droplet profile retrieval by limiting the number of assump-
tions.

For this analysis, we assumed plane-parallel clouds with
a vertically inhomogeneous droplet profile. However, real
cloud structures often exhibit horizontal variation within a
single pixel, likely impacting the retrieval of an effective ra-
dius profile. Several previous studies have investigated the
impact of sub-pixel horizontal inhomogeneity on the bispec-
tral retrieval of effective radius using large-eddy simulation
(LES) to generate horizontally and vertically inhomogeneous
cloud fields. An LES model can account for turbulent mix-
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ing in the boundary layer, heat and moisture transport, and
can resolve cloud droplet size distributions, which provide
more realistic 3-D cloud structures than a 1-D model. Zhang
et al. (2012) used the full details of LES-simulated cloud mi-
crophysics and a MODIS cloud properties retrieval simulator
to investigate the systematic difference between effective ra-
dius retrievals r3 7 and r, 1. The authors found that the differ-
ence between r3 7 and ;. increases as the sub-pixel inhomo-
geneity index increases, and attribute sub-pixel variations of
cloud optical depth as the primary cause of these differences
(Zhang et al., 2012). A similar study by Zinner et al. (2010)
also used LES-generated cloud fields to investigate the im-
pact of 3-D radiative effects on retrievals of effective radius
and found them to be pronounced only for scattered cumulus
scenes, whereas the effects for marine stratus were small.

We performed single-pixel analysis on real MODIS mea-
surements, which precludes any knowledge of sub-pixel in-
formation other than the sub-pixel inhomogeneity index. We
limited the observations used in our analysis to MODIS ob-
servations of marine stratus clouds with a sub-pixel inhomo-
geneity index of less than 0.1 to reduce the impact of 3-D
radiative effects (Zhang and Platnick, 2011). While we at-
tempted to minimize potential 3-D impacts on our retrieval,
to broaden the applicability of similar approaches, future
work using LES-generated cloud fields will be necessary to
investigate the impacts of sub-pixel inhomogeneity and 3-D
radiative biases on the retrieval of a droplet profile. Previ-
ous work by Zhang et al. (2016) established a mathematical
framework for estimating the retrieval uncertainty for scenes
with large sub-pixel reflectance variations. We expect simi-
lar biases to those found in previous studies for effective ra-
dius when using the first seven MODIS spectral channels or
measurements from CPF with high spatial inhomogeneity to
retrieve a droplet profile. Mitigation of 3-D effects on tradi-
tional 1-D retrievals is an ongoing field of research. Several
promising studies have shown machine learning techniques
trained on LES data are capable of overcoming some 3-D
biases (Nataraja et al., 2022). The applicability of machine
learning to overcome 3-D biases impacting droplet profile
retrievals should be explored.

In addition to 3-D biases, other factors can affect droplet
profile retrievals of 1-D clouds that require further investi-
gation. Our analysis considered relatively homogenous ma-
rine stratus clouds over ocean with an optical thickness of at
least 3. Thus, we could ignore uncertainty related to surface
albedo because the portion of the top-of-atmosphere signal
due to surface reflectance is negligible. Future work observ-
ing clouds over land or optically thin or broken clouds over
ocean will need to investigate how surface reflectance im-
pacts the retrieval of a droplet profile. Without polarized ra-
diance measurements, we were unable to retrieve the effec-
tive variance and, therefore, assumed a narrow monomodal
distribution. While this likely leads to uncertainty in the re-
trieved effective radius, a narrow distribution is a reason-
able assumption based on the results of multiple studies that
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showed that the presence of drizzle has only modest impacts
on the retrieval of effective radius at different wavelengths
(Painemal and Zuidema, 2011; Zhang et al., 2012; Zinner et
al., 2010). Future work will also explore effective variance
assumptions.

We did not investigate the retrieval sensitivity to solar
and viewing geometry, but future studies should include this.
Platnick (2000) demonstrated that the retrieval of effective
radius for vertically inhomogeneous clouds depends on the
solar-viewing geometry by showing that weighting functions
increasingly sample the upper region of the cloud as viewing
angle increases. Accordingly, we expect our droplet profile
retrieval to estimate larger values at cloud top and bottom as
viewing angle increases, if the cloud under observation has
a nonhomogeneous vertical droplet profile. In addition, the
bispectral retrieval uncertainty of effective radius is larger
for small droplets because of non-unique reflectances for the
two channels used; the effect is more pronounced for low so-
lar zenith angles. However, photons have a deeper average
penetration depth with low solar zenith angles, potentially
leading to a set of weighting functions with a higher degree
of orthogonality. The balance between these two opposing
effects should be investigated.

The optical depth over which the droplet size at cloud base
can be retrieved is limited by the uncertainty of the measure-
ments and the forward model. Changes in the spectral re-
flectance due to a change in droplet size at cloud base were
often below the MODIS measurement uncertainty for opti-
cally thick clouds. Figure 4 illustrates that CPF measurement
uncertainty, which is lower than the estimated change in re-
flectance at every spectral channel used in this analysis, will
improve the retrieval of droplet size at cloud base. Further-
more, Fig. 9 shows a 3.75 pm reduction in the region of cost
function minima along the cloud bottom radius dimension
when total uncertainty is reduced from 3 % to 1 %. These re-
sults underscore the importance of higher accuracy from the
next generation of space-borne spectrometers and the need
for more accurate forward models. The results of this study
suggest that a reduction in radiometric and forward model
uncertainty is a more significant factor for retrieving droplet
profiles than increasing the number of spectral bands.

Code and data availability. The retrieval
veloped for this paper is freely available on GitHub
(https://doi.org/10.5281/zenodo.17242872, last access:
7 August 2025). The MODIS LIB and geolocation
files (https://doi.org/10.5067/MODIS/MYDO021KM.061,
MCST, 2017a, last access: 7 August 2025;
https://doi.org/10.5067/MODIS/MODO021KM.061, MCST,
2017b, last access: 7 August 2025), and the L2
files (https://doi.org/10.5067/MODIS/MODO06_L2.061,
Platnick et al., 2017a, last access: 7 August 2025;
https://doi.org/10.5067/MODIS/MYDO06_1.2.061,  Platnick et
al., 2015, last access: 7 August 2025) used for retrieving droplet
profiles are described within the previously mentioned GitHub

algorithm de-
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repository and freely available at NASA’s Level-1 and Atmosphere
Archive & Distribution System Distributed Active Archive Center
(LAADS-DAAC), hosted at NASA’s Goddard Space Flight Center
(GSFC): https://ladsweb.modaps.eosdis.nasa.gov/ (last access:
7 August 2025). The VOCALS-REx data used for comparison
with the multispectral retrievals are similarly defined within the
GitHub repository. These data are maintained by the National
Center for Atmospheric Research Earth Observing Laboratory
Field Data Archive (NCAR EOL) and are freely available at
https://doi.org/10.5065/D60863M8 (NSF NCAR Earth Observing
Laboratory, 2011, last access: 7 August 2025).
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