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Abstract. There is a growing interest in estimating urban
CO2 emission from spaceborne imagery of the CO2 column-
average dry-air mole fraction (XCO2). Emission estimation
methods have been widely tested and applied to actual or
synthetic images. However, there is still a lack of objective
criteria for selecting images that are worth processing. This
study analyzes the performances of an automated method for
estimating urban emissions as a function of the targeted cities
and of the atmospheric conditions. It uses synthetic data ex-
periments with synthetic truth and 9920 synthetic satellite
images of XCO2 over 31 of the largest cities across the world
generated with a global adaptive-mesh model, the Ocean–
Land–Atmosphere Model (OLAM), zoomed in at high res-
olution over these cities. We use a decision tree learning
method applied to this ensemble of synthetic images to define
criteria based on these emission and atmospheric conditions
for the selection of suitable satellite images.

We show that our automated method for the emission esti-
mation, based on a Gaussian plume model, manages to pro-
duce estimates for 92 % of the synthetic images. Our learn-
ing method identifies two criteria, the wind direction’s spatial
variability and the targeted city’s emission budget, that dis-
criminate images whose processing yields reasonable emis-
sion estimates from those whose processing yields large er-
rors. Images corresponding to low spatial variability in wind
direction (less than 12°) and to high urban emissions (greater
than 2.1 kt CO2 h−1) account for 47 % of the images, and
their processing yields relative errors in the emission esti-
mates with a median value of−7 % and an interquartile range

(IQR) of 56 %. Images corresponding to a high spatial vari-
ability in wind direction or to low urban emissions account
for 53 % of our images, and their processing yield relative er-
rors in the emission estimates with a median value of −31 %
and an IQR of 99 %. Despite such efficient filtering, the ac-
curacy of the estimates corresponding to the former group of
images varies widely from city to city.

1 Introduction

Many of countries with the highest CO2 emissions report
their emissions to the United Nations Framework Conven-
tion on Climate Change (UNFCC) annually (UNFCCC,
2013). However, despite this monitoring of emissions and
the commitments made by nations to reduce them, the in-
crease in CO2 emissions continues year after year (Friedling-
stein et al., 2022). Many cities worldwide have commit-
ted to reducing their emissions, notably through joint ini-
tiatives such as the Covenant of Mayors (https://www.
globalcovenantofmayors.org/, last access: 7 January 2025)
or the C40 cities (https://www.c40.org/, last access: 7 Jan-
uary 2025). These cities compile self-reported inventories
(SRIs) based on economic data to verify the effective reduc-
tion in their emissions. Gurney et al. (2021) compared SRIs
of American cities to the Vulcan inventory (Gurney et al.,
2020). This comparison shows large differences between the
two datasets and highlights the inaccuracy in the emission
estimates in most of the SRIs. Quantifying city emissions us-

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://www.globalcovenantofmayors.org/
https://www.globalcovenantofmayors.org/
https://www.c40.org/


534 A. Danjou et al.: Satellite XCO2 images for urban CO2 emissions

ing satellite observations of CO2 concentrations above cities
could provide helpful information to decrease the uncertainty
in such inventories.

Observations of the CO2 column-average dry-air mole
fraction (XCO2) at the scale of a few square kilometers
from the two current Orbiting Carbon Observatory missions
(OCO-2 and OCO-3) have paved the way for quantifying
emissions from large (a few kt CO2 h−1) industrial (Cheval-
lier et al., 2022; Nassar et al., 2017; Zheng et al., 2019) and
urban (Lei et al., 2021; Reuter et al., 2019; Wu et al., 2018;
Ye et al., 2020) sources of CO2. Indeed, the accuracy of the
observations (less than 1 ppm (parts per million); Worden
et al., 2017; Taylor et al., 2020) is of the same order of mag-
nitude as the XCO2 enhancements of the plumes from these
sources, and their fine resolution (≈ 2×2km; Eldering et al.,
2017, 2019) allows them to capture detailed transects or im-
ages of the plumes. The Snapshot Area Map (SAM) mode of
OCO-3 provides “snapshot” images of about 80km× 80km
over the cities and thus 2D coverage of the XCO2 concentra-
tions (Kiel et al., 2021), contrary to OCO-2 and to the nom-
inal mode of OCO-3, which only sample XCO2 over a fine
swath (≈ 10km). Studies have used these SAMs to evaluate
transport model simulations (Kiel et al., 2021) or to calcu-
late local ratios between mole fractions of co-emitted species
(Lei et al., 2022; Wu et al., 2022). The first estimates of city
emissions based on these SAMs have been presented in con-
ferences. However, there is still a lack of systematic process-
ing of SAMs over cities to estimate the corresponding urban
emissions.

Studies such as Broquet et al. (2018), Danjou et al. (2024),
Pillai et al. (2016) and Kuhlmann et al. (2020) have used syn-
thetic data to evaluate the possibility of quantifying CO2 ur-
ban emissions from 2D XCO2 images, such as OCO-3 SAMs
or simulated XCO2 images from the future Copernicus
Anthropogenic Carbon Dioxide Monitoring (CO2M; Sierk
et al., 2021) and Global Observing SATellite for Greenhouse
gases and Water cycle (GOSAT-GW; https://www.nies.go.jp/
soc/doc/IWGGMS-18/O/2-6_Hiroshi_Tanimoto.pdf, last ac-
cess: 7 January 2025) missions. The quantification relies on
inverse modeling methods, some of which compare simu-
lations from complex transport models to satellite observa-
tions to estimate emissions. However, Feng et al. (2016)
and Lian et al. (2018) show that the Weather Research and
Forecasting (WRF) model (used by Lei et al., 2021, and
Ye et al., 2020, with OCO-2 data) simulates CO2 transport
poorly when the wind speed is low. Other emission estima-
tion methods, called hereafter computationally light meth-
ods, are based on simpler transport models (Gaussian plume;
Krings et al., 2011), mass balances (integrated mass enhance-
ment method; Frankenberg et al., 2016; Varon et al., 2019)
or direct flux estimation (cross-sectional method; Kuhlmann
et al., 2020; Krings et al., 2011; Varon et al., 2019, 2020).
Danjou et al. (2024) evaluated these methods and, again,
showed that the quantification of emissions in low-wind con-
ditions bears large errors. However, no established proce-

dures exist to properly select the cities and the satellite im-
ages for which the estimates are most accurate.

Schuh et al. (2021) use high-resolution simulations from
a single global adaptive-mesh model, the Ocean–Land–
Atmosphere Model (OLAM; Walko and Avissar, 2008a, b),
to rank the largest cities of the world as a function of the ratio
between the average amplitude of the XCO2 anthropogenic
signals over the city and the variability in the background
signal in the vicinity of the city. This classification provides
insights, a priori, into the cities for which the emission esti-
mates based on satellite images of their XCO2 plumes will
likely be the most accurate. This analysis is made possible
by OLAM’s ability to represent both the plumes of cities
around the world at high spatial resolution and the influ-
ence of large-scale variations in CO2 concentrations on local
variations in the background of these plumes. Danjou et al.
(2024) investigate a set of computationally light methods for
estimating CO2 emissions from a city using satellite images
capturing most of the atmospheric CO2 plume from this city.
Their study compares existing computationally light meth-
ods and their various parameterization options at each step
of the atmospheric plume detection and inversion process,
using simulated satellite images (i.e., synthetic images) of
XCO2 concentration generated with a meteorological atmo-
spheric transport model over Paris. It identifies the most suit-
able methods and configurations, among those tested, for the
estimation of Paris CO2 emissions. In parallel, it quantifies
the impact of the various sources of uncertainties associated
with each method at each step of the procedures. The error in
the emission estimates is most sensitive to the meteorolog-
ical conditions and more specifically to (i) the spatial vari-
ability in the wind direction and (ii) the homogeneity of the
background concentration field. However, their study consid-
ers only one city, Paris, corresponding to a specific range of
emissions, to a specific spatial extent and distribution of the
urban emissions, to a single type of local topography, to a
type of background concentration field, and to mid-latitude
meteorological conditions. Therefore, there is a need to gen-
eralize these results and to re-assess the distribution of the
error in the emission estimate (bias; interquartile range, IQR)
and the sensitivities of this error to the spatial variability in
the wind direction and in the background concentration field
by applying a similar analysis to multiple cities.

Wang et al. (2018) evaluate the ability to estimate emis-
sions from a large ensemble of urban areas (≈ 5000, whose
contours are defined based on objective criteria) and power
plants covering most of the global CO2 emissions, based on
synthetic XCO2 images similar to those of the future CO2M
mission, whose expected swath width is 250km and expected
resolution is around 2km× 2km (Sierk et al., 2021). How-
ever, their quantification of the emission uncertainties does
not account for the errors in atmospheric transport. Their
study only addresses the sampling (swath, cloud cover loss,
spatial resolution) and accuracy limitations of the XCO2 im-
agery. However, the uncertainty in the shape and position of

Atmos. Meas. Tech., 18, 533–554, 2025 https://doi.org/10.5194/amt-18-533-2025

https://www.nies.go.jp/soc/doc/IWGGMS-18/O/2-6_Hiroshi_Tanimoto.pdf
https://www.nies.go.jp/soc/doc/IWGGMS-18/O/2-6_Hiroshi_Tanimoto.pdf


A. Danjou et al.: Satellite XCO2 images for urban CO2 emissions 535

the plume (and thus the meteorology and the characteristics
of the cities) can also influence the results and thus the ability
to estimate the emissions of a city.

The objective of our study is to resume the series of anal-
ysis from Wang et al. (2018), Schuh et al. (2021) and Dan-
jou et al. (2024) and deepen the evaluation of the conditions
corresponding to reliable estimates of urban CO2 emissions
using satellite XCO2 images. We aim to find thresholds for
specific criteria to place bounds on the precision of our emis-
sion estimation. To do this, we use a little more than a month
of simulations of local XCO2 scenes over large cities. These
simulations are generated with the global model OLAM and
are evaluated by Schuh et al. (2021). We use these simula-
tions to generate synthetic satellite images for the selected
cities, and we estimate their emissions by applying one of the
automated and computationally light inversion methods im-
plemented, tested and optimized by Danjou et al. (2024). By
using realistic simulations (as obtained from a global non-
hydrostatic atmospheric model with a maximum resolution
of a few kilometers) to derive the synthetic images and using
a method independent of the model used for the simulations
to estimate the emissions, we take into account realistically
the uncertainty in the meteorology, atmospheric transport and
background. As we are working with synthetic data, the er-
ror in the emission estimate is directly accessible by com-
paring the emissions estimated by the inversion method with
the synthetic true emissions used in the OLAM simulations.
The study of the emission estimation error for different cities
and weather conditions aims to support the identification of
criteria for discriminating between images, separating those
whose processing yields statistically reliable estimates from
those whose processing is statistically unreliable.

Such an analysis can help to identify optimal targets for
satellite targeting modes, for example, for OCO-3 SAMs, or,
when processing large datasets from future imagers such as
CO2M, help identify the portions of the data yielding im-
ages worth processing for plume detection and inversion. In
addition, our analysis can help to robustly assess the errors
associated with urban emission estimates as a function of
city type and atmospheric or observational conditions. At the
least, this analysis is expected to support the development of
tools to evaluate the reliability of the inversions.

Section 2 describes the derivation of the synthetic images
and the definition of the cities’ boundaries. Section 3 de-
scribes the inversion method used to make the emission esti-
mations for the main set of analyses in this study. The results
with the three other automated methods described in Dan-
jou et al. (2024) lead to similar conclusions, and their anal-
ysis is thus summarized in Appendix B. Section 4 describes
the learning method based on decision trees used to identify
the best discrimination criteria. Section 5 analyses the sensi-
tivities of the emission estimation error to the city type and
atmospheric or observational conditions and presents the re-
sults of the decision tree learning method. Section 6 discusses
the limitations of the analysis conducted in this study and an-

alyzes the distribution of the discrimination criteria for cities
in the world with more than 1 million inhabitants.

2 Simulations of XCO2 images over multiple cities

Section 2.1 describes OLAM and Sect. 2.2 the configuration
of the OLAM simulations used in this study. The derivation
of the synthetic images from those simulations is described
in Sect. 2.3. Section 2.4 details how we define the emissions
zones that we target for the inversions.

2.1 OLAM

The Ocean–Land–Atmosphere Model (OLAM) is a cou-
pled ocean–atmosphere general circulation model (Walko
and Avissar, 2008a, b) with a dynamical core that has been
used in the Dynamical Core Model Intercomparison Project
(DCMIP; Ullrich et al., 2017). The main feature of OLAM
is its hexagonal grid whose size is adaptive (see illustration
in Fig. 1), which makes it possible to apply high resolution
to the zones of interest (non-hydrostatic mesoscale) while
maintaining a coarse mesh over the rest of the globe (hydro-
static model). The adaptive horizontal grid allows, for exam-
ple, areas with complex local dynamics, such as mountain-
ous or coastal areas, to be modeled at high spatial resolution.
In our case, it allows us to realistically represent the urban
plumes of a large number of cities and the underlying large-
scale variations in CO2 while maintaining a global domain
and an affordable computation time. This would not be fea-
sible if using a global model with a regular grid. Over the
selected cities, the size of the mesh cells is approximately
9km2, and it is progressively enlarged until it reaches around
4× 104 km2 (e.g., for the largest cells over the oceans).

The transport modeled between the different regions uses
physical and dynamical schemes that vary according to the
resolution, in particular for submesh convection. Turbulent
diffusion is parameterized using the Smagorinsky model,
which depends directly on the resolution of the mesh. For the
submesh convection, the cumulus clouds, the precipitation
and the mixing are represented with a hybrid approach com-
bining aspects of both Grell and Dévényi (2002) and Grell
and Freitas (2014).

The model has 49 vertical levels (from 0 m a.s.l. to
37 km a.s.l.), 12 of them being in the first kilometer, which
supports reliable simulations in the lower layers of the atmo-
sphere, where the plumes are located. The vertical levels are
at constant altitude and can therefore cross the surface. The
fact that the levels can cross the surface helps avoid gradi-
ent errors on steep slopes that can be present in a pressure
coordinate (or hybrid) grid (Ullrich et al., 2017).

2.2 Simulation of CO2 transport

The atmospheric transport model OLAM is used to simu-
late the meteorological and CO2 fields needed to build our
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Figure 1. Illustration of the simulated XCO2 signal above Bengaluru on 8 August 2015 at 11:00 local time (a) and the horizontal grid
used for the simulation (b). The size of the illustration (≈ 240km × 240km) is 3 times the size of the synthetic images used in the study
(≈ 150km× 150km). The boundaries of the Bengaluru synthetic images are represented by the black line.

synthetic images. Those simulations are free-running. The
fluxes from the CarbonTracker 2017 global inversion sys-
tem (Peters et al., 2007) are used as model input for the
biogenic CO2 surface fluxes. Anthropogenic emissions from
the Open-Data Inventory for Anthropogenic Carbon dioxide
(ODIAC), which is a spatialized inventory (Oda et al., 2018),
are used to represent cities, industries and power plants. No
temporal profile is applied to the ODIAC data, which means
that the simulated anthropogenic emissions are constant over
the month. From these data, the model will simulate, on its
hexahedral grid, the wind, pressure, relative humidity and
temperature fields (necessary for the calculation of the plan-
etary boundary layer (PBL) height, via the calculation of the
potential temperature field and the Nielsen-Gammon et al.
(2008) formula) and the CO2 concentration fields in the at-
mosphere. The XCO2 fields are first calculated by the model
on the hexahedral grid. The fields are then horizontally re-
gridded to 1km× 1 km using rasterization techniques where
the center of the 1 km× 1 km grid cell is mapped to the hex-
ahedral grid average which contains it. While the mapping is
not strictly mass-conserving, the errors should be relatively
small. Furthermore, since this is a post hoc operation, er-
rors do not accumulate over the length of the simulation. The
simulations are performed for 31 cities. We retrieve the 2D
fields of XCO2 (i.e., vertical integration of the CO2 profiles
weighted by pressure levels) as well as the 3D fields of pres-
sure, wind, relative humidity and temperature on the regular
grid for all cities and their surroundings.

2.3 Generation of the synthetic images

The model output resolution of 1km× 1km is comparable
to that of the OCO-3 SAMs (1.25km× 2.5km; Eldering
et al., 2019) and that planned for CO2M. This resolution is
finer than the finest resolution of the model’s adaptive native

hexagonal grid (hexagons of ≈ 9km2). Therefore, the vari-
ations in the model variables (XCO2 field, wind field, etc.)
have a spatial resolution which is coarser than the 1km×1km
resolution of the model output grid, on which the analysis
will be conducted.

The simulations cover a little more than 1 month
(1 August–9 September 2015 (included)), providing hourly
XCO2 fields. For each day of the simulated period, we re-
tain the hourly fields of XCO2 between 10:00 and 17:00 local
time for our synthetic images. This simulated database corre-
sponds to a total of 9920 images interpolated at 1km× 1km
resolution. The spatial extension of the synthetic images is
restricted to a 150km square whose axes follow the merid-
ians and parallels and whose center is the barycenter of
the targeted city (in terms of CO2 emissions). This size is
halfway between that of the OCO-3 images and the expected
swath of CO2M in nadir mode. Finally, random noise of
0.7ppm standard deviation is added to the simulated XCO2
field to simulate the satellite data. This value corresponds
to the target accuracy for a single XCO2 measurement from
the CO2M mission, similar to the current precision of XCO2
measurements from OCO-2 (Worden et al., 2017). We do not
take clouds and the corresponding loss of XCO2 retrievals
into account when generating our synthetic images.

2.4 Defining the boundaries of the cities

The first task for urban emission estimation is to define the
targeted emission zone. As the aim of our quantification is
ultimately to help monitor actual emission reductions, we fo-
cus on the urban area corresponding to the most significant
emissions rather than the actual administrative boundaries of
the city. Consequently, the definition of the targeted emis-
sion zone is made regarding the size of plumes that can be
detected in a SAM and by identifying the highest-emission
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pixels from the spatialized inventories (using a concept simi-
lar to but a different and more straightforward approach than
Wang et al., 2019). Because the typical size of a SAM is
about 80km× 80km, we set the size of the targeted emis-
sion zone at roughly the size of a 20km radius disk. Thus,
the emission zone we target occupies around 20 % of a typi-
cal SAM and 6 % of our synthetic images.

To define the boundaries of an emission zone, we first
set its center at the barycenter of anthropogenic emissions
within the synthetic image. We then restrict the analysis to
a disk of 50km radius around this center. The size is arbi-
trarily fixed at 2.5 times the 20km long targeted emission
zone radius. Within this 50km radius disk, we select only
a fraction (1/2.52) of the pixels, keeping those for which
the emissions are the highest. This fraction is explained by
our choice to work with target areas of about π × 202 km2,
i.e., 1/2.52 of the surface of the 50km radius disk in which
this selection is performed. In order to form a spatially co-
herent set, we extend the selected area to all pixels within
5km of one of the pixels retained by this first selection. This
enlargement allows us to avoid complex cuttings of the city
and to obtain groups of pixels where emissions are statisti-
cally high. The last two steps include (i) the selection of the
sole cluster of pixels located above the city center and (ii) the
addition of pixels not categorized as belonging to the target
area but completely surrounded by the target area. The final
target area covers an area between 1333km2 (Lahore) and
2063km2 (New York), which corresponds to 6 %–9 % of the
spatial coverage of our synthetic images and 20 %–33 % of
the spatial coverage of most OCO-3 SAM images. We will
call this targeted emission zone “the city” hereafter. More
details and illustration can be found in Appendix A.

3 Inversion method

The complete description of the inversion method and the
details and justifications for its specific configuration and im-
plementation can be found in Danjou et al. (2024). We make
the assumption that the configurations chosen in the frame-
work of their study remain optimal for other cities. This as-
sumption seems justified, as the chosen methods for each
steps differ from the discarded methods based on objective
criteria. This section only gives an overview of the different
steps and the adaptations (compared to the reference configu-
ration from Danjou et al., 2024) that were made in the context
of this study.

The inversion method is based on the comparison of the
urban plume detected in the image to a straight Gaussian
plume. This comparison requires many preliminary steps.
(i) The boundaries of the urban area whose emissions we
want to estimate are defined. The method used here to de-
fine these boundaries is described in Sect. 2.4. (ii) The plume
boundaries are defined by the pixels located above the city
and those in the cone downwind of the city within an angle of

45°. The wind direction used to define the orientation of the
cone is the average wind direction in the PBL over the entire
image (from the OLAM simulation). Once the boundaries
of the plume are known, we (iii) estimate the background
concentration, i.e., the XCO2 signal in the plume which is
not generated by the city emissions. This background con-
centration is extrapolated from the XCO2 values of pixels
outside the plume using a Gaussian kernel. The difference
between the XCO2 concentration in the synthetic image and
the estimated XCO2 background leads to an estimate of the
plume enhancement generated by the city emission. We then
(iv) calculate the central axis of the plume using a degree 5
polynomial regression with the pixels in the plume, weighted
by the estimated XCO2 signal from the city. Using this cen-
tral axis of the plume, we (v) delineate the area of the plume
that will be used for the Gaussian plume optimization (anal-
ysis area). This area is located between 1 times the approxi-
mate radius of the city (≈ 20km) and 1.5 times the approx-
imate radius of the city (≈ 30km) along the central axis of
the plume (the justification for these distances is given later
in the paragraph). At this stage, we have extracted the esti-
mated XCO2 signal from the city and we have determined
the pixels that we will use for the optimization. We (vi) esti-
mate the effective wind W , i.e., the wind driving the XCO2
plume from the city, using the averaged wind within the PBL
and within the analysis area. Finally, (vii) we estimate the
emissions by inverting the following formula as defined by
Krings et al. (2011):

1�gp(x,y)=
F

√
2π · |W | · σy(x)

e
−

y2

2·σy (x)2 , (1)

where the x and y axes follow the directions parallel and per-
pendicular to the effective wind, F is the city emission esti-
mate, and 1�gp is the CO2 mass enhancement of the plume
in the atmospheric column per unit area. The term σy(x) ac-
counts for the horizontal extension of the source. We take
σy(x)= a · (x+ (

r
4a )

1/0.894)0.894 as in Krings et al. (2011),
where a is the Pasquill stability parameter (Pasquill, 1961)
and r the city radius.

To estimate the emission budget, we perform minimiza-
tion of the mean square differences between the mass per
unit area simulated by the Gaussian model (1�gp) and the
“observed” mass per unit area. The observed mass per unit
is calculated from the XCO2 signal from the city derived
in step (iii) using 1�(x,y)=

MCO2
Mdry air

·1XCO2obs(x,y)×

10−6
×
Ps, dry air(x,y)

g
, where g is the Earth’s gravity (in ms−2),

Ps, dry air is the dry-air surface pressure (in Pa), Mdry air and
MCO2 are the molar mass of dry air (28.97gmol−1) and CO2
(44.01gmol−1), and 1XCO2obs is the observed plume en-
hancement (in ppm).

The emission budget F , the Pasquill parameter a, the city
radius r and the orientation of the axis (i.e., the wind direc-
tion) are free parameters in Eq. (1) that are optimized dur-
ing this minimization. The initial values are for a, the value
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given by the Pasquill (1961) table corresponding to the me-
teorological conditions at the time of the image acquisition;
for the orientation of the reference frame, the direction of
the average wind in the PBL (noted θ init); and for the ra-
dius of the city, the average radius of the city (noted r init)
defined as the square root of the city surface divided by π .
The choice of the initial value of the emission budget (noted
F init) is more critical. Indeed, setting an initial value close
to the exact value (let alone the exact value) might artifi-
cially improve our results. Instead, we take a random number
from a beta distribution (with α = 1.35, β = 2.5 and a scaling
factor of 5) multiplied by the actual emission of the central
urban area. We normalize the variables for the optimization

as follows: X =
(
F−F init

F init , a
120 ,

(θ−θ init)
π/4 , r−r

init

r init/2

)T
. We further

impose bounds on these variables during optimization (the
bounds are shown without the normalization for clarity):
F ∈ [−F init,+∞], a ∈ [0,240], θ ∈ [θ init

−π/4,θ init
+π/4]

and r ∈ [0.5 · r init,1.5 · r init
]. These bounds are fixed to avoid

unrealistic results (e.g., detected plume direction perpendic-
ular to the wind, high CO2 uptake from the city).

The methods used for steps (ii) to (vii) are those defined as
optimal by Danjou et al. (2024). Step (i) has been redefined in
Sect. 2.4, and step (v) has been slightly adapted. We choose
to make the analysis area (step v) closer (and smaller) than
in their study. The new analysis area is located between the
edge of the city (≈ 20km) and 1.5 times the radius of the
city (≈ 30km) along the plume centerline, whereas it was
located between the edge of the city (≈ 20km) and 2 times
the radius of the city (≈ 40km) along the plume centerline
in Danjou et al. (2024). The conclusions on the sensitivity
of the inversions to the analysis area in Danjou et al. (2024)
indicate that the closer the analysis area is to the city, the
better the estimate.

4 Analysis of the sensitivities of the emission estimation
error to observation conditions: general principles

To identify the main criteria of classification of the images
based on the performances of the emission estimation, we
analyze the sensitivity of the emission estimation error to the
different variables characterizing the observation conditions
and the inversion. Thus we can see which variables are in-
fluencing the emission estimation error the most and define
criteria, based on those variables, determining whether a syn-
thetic image is suitable for emission estimation.

We test here two types of variables: (i) predictable vari-
ables, used to determine the most favorable conditions for the
inversion, which aggregate information about weather con-
ditions and city characteristics, and (ii) diagnostic variables,
used to evaluate the inversion results, which aggregate im-
age diagnostics and inversion diagnostics. The sensitivities
of the emission estimation error to the predictable variables
in the first instance and to the diagnostic variables in the sec-

ond instance are analyzed separately and in the same way.
The two types of variables are analyzed separately as they
can answer two different questions. The predictable variables
can be used before the inversion to determine if an image will
give a reliable emission estimate and is thus worth acquiring
and inverting. The diagnostic variables are accessible only
after the acquirement of the image and the inversion and can
thus just give an indication of the reliability of the emission
estimate. The analysis described below is therefore applied
to each of the two groups.

As a starting point, we examine separately the relationship
between each variable of the chosen group (predictable or
diagnostic) and the error in the emission estimate. This pre-
liminary analysis provides a first overview of the variables to
which the error is sensitive. After this first step, we analyze
all the relationships between the variables and the error to
identify the one or two variables to which the error is most
sensitive. This identification is performed using a decision
tree, the depth of which determines the number of variables
identified. The decision tree directly defines thresholds for
these variables; following a strict interpretation of the algo-
rithm, these thresholds can be used in a binary way to define
whether a synthetic image is suitable for emission estima-
tion. In a more general way, these thresholds can be used as
an indicative criterion to evaluate the synthetic images and
the corresponding urban emission estimation. These identi-
fied variables, together with their respective thresholds, can
be used to indicate the level of error in an estimate obtained
during an inversion.

4.1 Preliminary analysis

To quantify the sensitivity of the error in the emission esti-
mate to a specific meteorological variable or a variable diag-
nosed by image processing or by inversion, we order our syn-
thetic images according to the values of the variable. For the
analysis with predictable (diagnostic) variables, we separate
our set of 9920 (4259) synthetic images (see Sect. 5.2.1) thus
ordered into subsets of 496 (213) synthetic images (5 % of
the total number). For example, when considering the mean
wind in the PBL (i.e., a predictable variable), the first subset
will include 496 synthetic images corresponding to the 496
smallest values of the mean wind in the PBL. The second
subset will be composed of the 496 images corresponding
to the values of the mean wind in the PBL ranked between
the 497th and the 992nd position. The last group of images
will include 496 synthetic images corresponding to the 496
largest values of the mean wind in the PBL. We then plot the
error distribution for these subsets as a function of their rank
to see if a significant trend is observed.

The simulations we use are based on an inventory of an-
thropogenic emissions with no temporal variations. As a re-
sult, the variables related to the emissions and the shape or
topographical environment of the city have no temporal vari-
ability and therefore take only 31 values. Our study of the
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sensitivity of the error to these variables is therefore based
directly on the analysis of the error distribution as a function
of the value taken by the variable of interest.

4.2 Analysis with the decision tree learning algorithm

In this study, we seek to better understand the relationship
between the input variables (predictable and diagnostic vari-
ables) and the reliability of an emission estimate. For this, we
train an explainable machine learning algorithm to predict
the relative error in the emission estimate given some input
variables (described in Sect. 4.3), like the variability in the
wind direction or the emission budget, and then study which
variables are determined to be relevant by the algorithm. We
choose a regression decision tree for this, as they work by
learning simple decision rules and therefore are highly inter-
pretable while able to find non-linear relationships between
the inputs and the target variable.

4.2.1 Description of the decision tree learning
algorithm

A decision tree is constructed following a recursive process:
at each step, the algorithm splits the data into two subsets
following a binary rule applied to a single variable, finding
the split that best reduces a particular loss function applied
to the target variable. Each subset is split further into two
until some stopping condition is reached (see Fig. 2 for illus-
tration). This algorithm therefore splits the input space into
regions, where each region corresponds to a similar value of
the target variable (i.e., the error in the emission estimation
in our case). We use the regression tree implementation from
the scikit-learn library (Pedregosa et al., 2011) with a squared
error loss and impose conditions on the algorithm to prevent
overfitting (creating over-complex trees that do not general-
ize well): we set the maximum depth of the tree to 2 (i.e., two
levels of binary splits), and we impose the condition that the
leaves must contain at least 10 % of the training set. The
training set (at the root node) is described in the following
paragraphs.

4.2.2 Description of our method for determining the
decision criteria

A simple approach is to use the total set of synthetic im-
ages (9920 synthetic images in the case of the analysis of
predictable variables, ≈ 4259 synthetic images in the case
of diagnostic variables) as the input set for the decision tree
learning method. As the maximum depth of the tree is 2, we
obtain at most four subsets (see illustration of that case in
Fig. 2) and select the one with the smallest mean absolute
error (MAE) in the emission estimate. This subset is consid-
ered the subset of synthetic images best suited for emission
estimation, and the rest of the synthetic images are consid-
ered less well suited. We then study the distribution of the
error for this set as well as the pair of criteria that led to this

partition. In doing so, we have no information on the stabil-
ity of the criteria and thresholds with respect to the starting
set. This is problematic, especially since the city features can
only take 31 values for the 9920 images, which increases the
risk of overfitting.

To overcome this problem and to get an idea of the sta-
bility of the criteria, we create 100 sets of synthetic images
each composed of random samples of 10 % of our total set
of synthetic images. We apply the learning algorithm to each
of the 100 sets. We look at the subsets corresponding to each
leaf and select the one with the smallest MAE. The deci-
sion path that leads to this leaf gives us the pair of criteria
that we retain. This gives us 100 pairs of criteria. We analyze
the redundancy of the criteria across these 100 pairs and the
stability of the threshold values of the pair with the highest
occurrence. The different threshold values found for the pair
with the highest occurrence are applied to determine, for each
pair, a subset of synthetic images for which the emission es-
timates are accurate. The distribution of the criteria obtained
with the 100 sets of images, as well as the error distributions
of these subsets of synthetic images, is studied to determine
the reliability of the criterion threshold values.

4.3 List of variables

We tested 15 predictable variables (8 characterizing the
weather and 7 characterizing the city) and 10 diagnostic vari-
ables (1 being an image diagnostic and 9 being inversion di-
agnostics). A detailed list is provided in Table 1. Examples
and justification for our choice are provided in the following.

To characterize the meteorological conditions, we have,
for example, retained the wind speed in the PBL and the spa-
tial variability in the wind direction (calculated as the circular
variance of the 3D wind field in the PBL at the observation
time), two variables whose influence on the accuracy of the
emission estimation has been highlighted in previous studies
(Danjou et al., 2024; Feng et al., 2016). We have also looked
at commonly used quantities characterizing the wind (diver-
gence, vorticity, etc. of the wind in the PBL). To character-
ize the city properties, we looked at spatial variables (its size,
the topographic variability in the surroundings, its symmetry)
and variables representing the characteristics of the urban
emissions (emission budget given by the inventory, emission
density). In our synthetic data experiments, the analysis is
based on values of the predictable variables that are extracted
from the model, i.e., on the “true” values for all predictable
variables. When using real satellite images (which is out
of scope of this study), meteorological variables can be de-
rived from weather products such as ERA5 (Hersbach et al.,
2018). City characteristics can, as in this study, be calculated
from gridded inventories such as ODIAC and from databases
on urban land cover and population/socio-economic activi-
ties such as GRUMP (Center For International Earth Sci-
ence Information Network-CIESIN-Columbia University et
al., 2011). The analysis will then rely on estimates bearing
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Table 1. List of variables of interest divided by analysis group and type. The operators 〈X〉E , σ(X)E , q90(X)E and q10(X)E denote the
mean, the standard deviation, and the ninth decile and the first decile of the variable X in the set E, respectively. The sets “a.z.”, “plume”,
“plume”, “city” and “synth. image” designate the set of pixels in the analysis zone, in the plume, out of the plume and above the city and
all the pixels of the synthetic image, respectively. The reference frame used for the calculation of divergence, vorticity, stress, wind shear
and topographic variability is the orthogonal frame with its center at the center of the city and with its horizontal axis being the mean wind

direction in the PBL.
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Figure 2. Illustration of how a decision tree works. The decisions (orange ellipses) and the conditions (pink rectangles) are called tree nodes.
The first condition, through which the tree is entered, is called the root node; the terminal nodes (the decisions, represented by orange ellipses)
are the tree leaves. Nodes that are not leaves are called internal nodes. The path followed by an individual (i.e., the conditions that have been
tested for that individual) to arrive at a leaf is called a decision path. The length of a decision path is equal to the number of conditions tested
on that path (i.e., the number of internal nodes traversed). The tree depth is the length of the longest decision path. The input synthetic image
will follow the decision path in bold and will be classified in the bold leaf.

uncertainties, which could decrease the potential to identify
suitable observation conditions. We note here that during our
evaluations, the thresholds given in Sect. 5.2 will be com-
pared to crude estimates when dealing with actual satellite
data, a possible source of errors in the classification.

To characterize the complexity of the background XCO2
field in the image, we use the spatial variability in the XCO2
concentration. This variable has been highlighted by Danjou
et al. (2024) as being correlated to the error in the emission
estimation. Indeed, a high variability in the background leads
to an estimation of the background concentration (step iii of
the inversion method) that is less accurate and thus to an er-
ror in the plume enhancement estimation and in the emis-
sion estimation. This is the only variable diagnosed directly
in the image among the list of diagnostic variables investi-
gated here. With real data, the size of the image and its spa-
tial coverage may have an influence on the accuracy of the
emission estimate. In this case, including this size in the list
of diagnostic variables would make sense. However, this is
not the case as we are working with synthetic data and all
our images have the same size. Reproducing this variability
in the coverage of real data is outside the scope of this study.
The diagnostics of the inversion robustness include the size
of the plume, the residual error after the optimization with
the Gaussian plume, the curvature of the central axis of the
plume, and the ratio between the estimated amplitude of the
city signal and the variability in the signal outside the plume.
Unlike predictable variables, the calculated values for the di-

agnosed variables are directly inferred from the observations
with real data. Therefore we will not have classification er-
rors due to this. However, the values taken by the variables
might have incorrect distributions in this theoretical study.
For example, the distribution we use to simulate the mea-
surement noise in our simulations is much simpler than ac-
tual measurement errors.

5 Results

5.1 Preliminary analysis

When we apply our inversion method to our 9920 synthetic
images, we obtain an emission estimate in 92 % of the cases
(i.e., for 9119 synthetic images): in 8 % of the cases, the op-
timizer used for the minimization described in Sect. 3 does
not converge. The bias (defined by the median) of the error
distribution in the emission estimate is −16 % of the emis-
sions, and the spread of this distribution (IQR) is 78 % of the
emissions. Reducing the bias and spread of this distribution
is essential in order to obtain usable emission estimates. Dan-
jou et al. (2024), in their synthetic data study on the city of
Paris, defined an image discrimination criterion based on the
spatial variability in the wind direction, with a threshold of
7° (empirically defined). When we apply this filter, we re-
ject 46 % of the 9119 synthetic images and obtain a much
less biased distribution of the error (5 % of the emissions)
and slightly less spread (64 % of the emissions). However,
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Figure 3. Sensitivity of the emission estimation error to two dis-
criminant variables: the estimated effective wind speed (blue) and
the spatial variability in the wind direction (orange). Panel (a) shows
the evolution of the error distribution as a function of the quantile
of the variable of interest: the solid line indicates the median, the
dotted lines the first and third quartiles, and the highlighted area
the quantiles at 15.9 % and 84.1 %. Panels (b) and (c) show the
values taken by the variables of interest for the different quantiles.
Note that the x axis is plotted in the direction of decreasing spatial
variability in wind direction (i.e., inverse axis) and increasing wind
speed.

despite the application of this criterion, the variability in the
error distribution remains large across cities. After filtering,
the error distribution for the city of Lahore (largest MAE in
the emission estimate) shows a bias of −21 % and a spread
of 154 % of the emissions, while that for Moscow (smallest
MAE in the emission estimate) shows a bias of −3 % and
a spread of 26 %. This confirms that, although the criterion
defined in Danjou et al. (2024) is relevant, our filtering step
does not seem to be sufficient to select the synthetic images.
The strong disparity in the error distributions between cities
suggests that the error in the emission estimation is sensitive
to the city characteristics (topography or city-specific atmo-
spheric conditions) and/or to the city emissions (spatial dis-
tribution, magnitude, etc.)

Emissions are strongly underestimated when the wind is
weak or when the spatial variability in the wind direction is
strong (see Fig. 3). These two variables are also strongly cor-
related here (Spearman correlation of−0.75). The results are
more accurate (lower bias and IQR) when the meteorologi-
cal conditions favor the ventilation of the emitted CO2 in a
narrow and straight plume, i.e., with a high wind speed and
a low variability in the wind direction, but when the emitted
CO2 accumulates above and in the vicinity of the city in a
diffuse plume with high values of XCO2 or forms a plume
with a complex structure, the results of the emission estima-
tion show an important bias (see Fig. 3).

The error in the emission estimation also shows sensitiv-
ities to other variables characterizing the observation con-
ditions; sensitivities to the emission budget, to the ratio be-

tween the average anthropogenic signal and the variability in
the background signal, or to the difference between the opti-
mized inversion angle and the average wind direction in the
PBL are also visible (see Appendix B2).

The error in estimating emissions therefore shows sensitiv-
ities, sometimes complex, to several variables, with some be-
ing related, again in complex ways. Because of those intricate
sensitivities, the simple analysis conducted in this subsection
is insufficient to determine the optimal set of variables and
thresholds for defining the most optimal discrimination cri-
teria for the synthetic images. This justifies the use of a more
complex learning method. The supervised learning method
described in Sect. 4.2 will enable us to determine the dis-
crimination criteria more objectively, despite the covariances
among the variables.

5.2 Application of the decision tree method

5.2.1 Application for predictable variables

This first analysis, using the decision tree learning method
described in Sect. 4.2.1, is based on the results of the in-
version of the 9119 synthetic images produced by our inver-
sion method. We focus on the discrimination criteria given
by our learning method with 100 different samples, as de-
scribed in Sect. 4.2.2. For 82 of the 100 samples, the pair of
criteria given by our learning method is the spatial variability
in the wind direction and the emission budget, i.e., favoring
large emissions and low variability in the wind direction. For
the remaining 18 samples, the wind direction variability ap-
pears nine times in the criterion pair and the emission bud-
get seven times. The other variables appearing in the pairs of
criteria for the 18 samples are the spatial variability in emis-
sions in the city (five occurrences), spatial variability in the
wind speed (four occurrences), mean PBL height (two oc-
currences) and the length of the minor axis of ellipse (two
occurrences). For six samples, the pair of criteria is in fact
a singleton, indicating that one variable is significantly more
important than all the remaining variables. The spatial vari-
ability, in the wind direction and the emission budget, thus
stands out very strongly.

We will now study in detail the threshold values taken
for the spatial variability in the wind direction and the
city’s emission budget for these 82 pairs of criteria. The
distribution of the threshold applied to the spatial variabil-
ity in the wind direction is characterized by a median of
12° and an IQR of 5°. Of the total inversions, 10 % are
found between the bounds formed by the quartiles of this
distribution (9 and 14°). The distribution of the thresh-
old applied to the emission budget is characterized by a
median of 2.1 kt CO2 h−1 = 5.1 Mt C yr−1 and an IQR of
0.7 kt CO2 h−1. Of the total situations, 22 % fall between the
bounds formed by the quartiles of this distribution (2.6 and
1.9 kt CO2 h−1). The distribution of the thresholds are there-
fore spread out (see Fig. 4). For a given pair of criteria among
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the 82 retained, the subset giving the lowest error is that
formed by images whose spatial variability in wind direction
is below the threshold given by the decision tree and whose
emission budget is above the threshold given by the decision
tree. The 82 subsets are homogeneous in terms of the me-
dian of the error distribution (−7 % [−6%, −8%]) and the
IQR (55 % [52 %, 58 %]). This is less the case for the sub-
sets’ size (45 % [36 %, 52 %] of the 9119 synthetic images).
For comparison, other studies such as Wang et al. (2019) or
Lespinas et al. (2020) have found lower thresholds applied
to the emission budget (2 and 0.5 Mt C yr−1, respectively),
leading to more precise estimates (uncertainties of less than
20 %). But these studies, which both follow the same formal-
ism, include fewer sources of error in their framework (per-
fectly known background concentration, simplistic simula-
tions of the urban plumes), which explains our higher thresh-
old and uncertainties.

For the following analysis, we take the medians of the
threshold distributions of our 82 retained pairs as the thresh-
olds for these two criteria. The subset formed by the synthetic
images respecting these two criteria is characterized by a me-
dian error in the estimated emissions of −7 % of the city’s
emissions and an IQR of 56 % and includes 47 % of the 9119
synthetic images. The subset formed by the synthetic images
that do not respect these two criteria is characterized by a me-
dian error in the estimated emissions of −31 % of the city’s
emissions and an IQR of 99 % and includes 53 % of the 9119
synthetic images. The criteria therefore allow us to isolate
the synthetic images that are most suitable for inversion, as
the synthetic images that do not pass the criteria give highly
biased estimates.

The discrimination criterion based on the spatial variabil-
ity in the wind direction reduces the bias and the IQR of the
error distribution, while the criterion based on the emission
budget only reduces the IQR. Indeed, by applying only the
discrimination criterion based on the spatial variability in the
wind direction, we obtain a bias in the error of −5 % and an
IQR of 68 % for the subset passing the criterion (−31 % and
99 %, respectively, for the synthetic images not passing the
criterion). Applying only the discrimination criterion based
on the emission budget gives us, for the subset of synthetic
images passing the criterion, a bias of −16 % and an IQR of
66 % (−17 % and 110 %, respectively, for the synthetic im-
ages not passing the criterion). Thus the criterion based on
the spatial variability in wind direction is a selection crite-
rion (the synthetic images that do not pass the criterion are
considered unusable), and the criterion based on the emission
budget is a discrimination criterion (the synthetic images that
do not pass the criterion will give a less accurate emission es-
timate).

5.2.2 Application for diagnostic variables

In this section, the set of synthetic images used for the anal-
ysis is the set of synthetic images (47 % of our previous set)

passing the criteria regarding the spatial variability in the
wind direction and regarding the emission budget defined in
Sect. 5.2.1.

The pair with the highest occurrence (42 out of the 100
pairs) is the ratio of the average anthropogenic signal and the
variability in the background signal to the spatial variability
in the XCO2 concentration outside the plume. For the other
samples, we obtain 20 different pairs. The spatial variability
in the XCO2 concentration outside the plume is also used in
the calculation of the estimated signal-to-background ratio.
The two variables have a correlation of 0.34. We thus choose
to reduce the tree depth to 1 and remove the ratio between
the average anthropogenic signal and the variability in the
background signal from our list of variables of interest. The
choice of which variable to remove between the two is made
based on the number of occurrences across the pairs (54 for
the ratio between the average anthropogenic signal and the
variability in the background signal, 77 for the XCO2 signal
variability).

In this new configuration, 72 samples out of 100 give the
variability in the XCO2 signal as a criterion. The distribu-
tion of threshold values found for this criterion has a median
equal to 0.72 ppm and an IQR of 0.02 ppm. Of the synthetic
images in the test set, 19 % fall within the bounds formed
by the quartiles of this distribution. By taking the median
of this distribution as the discrimination criterion, we obtain
two subsets which contain 30 % and 70 %, respectively, of
the tested set and are characterized by biases in the estima-
tion of emissions of −6 % and −7% and IQRs of 74 % and
50 %. This discrimination criterion reduces the IQR but not
the bias. However, the accuracy of this criterion is question-
able: 50 % of the values taken by the signal variability outside
the plume are between 0.70 (which corresponds to the mea-
surement noise) and 0.73 ppm. A slight variation (0.01 ppm)
in this separation criterion has a strong impact on the error
distributions of the two subsets. Moreover, the modelization
of the instrument noise (which has an important impact on
the signal variability outside of the plume) is oversimplistic
in our work. We therefore choose not to retain this criterion.

5.3 Study of the results by city

Of the 31 cities, 5 (Bogota, Lima, Los Angeles, Mexico City
and Tehran) have more than 90 % of synthetic images that do
not pass the selection criterion based on the spatial variability
in wind direction. We therefore have fewer than 30 images
that pass the selection criterion for these cities and choose
to set them aside. All these cities are located in basins or at
the foot of high mountain ranges, which explains the high
spatial variability in wind direction for the vast majority of
observations.

Of the remaining 26 cities, 7 have their emission budget
below the threshold of the emission budget criterion (see
Fig. 5) and should therefore have low-accuracy estimates.
Paris is one of these cities in our simulations, with emissions
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Figure 4. Distributions of the spatial variability in wind direction (a) and city emissions (b). The distribution of the criterion values is in
orange, and that of the simulations is in blue. The dotted black line indicates the median threshold found and the grey area the discarded
subset.

Figure 5. Distribution of the error in the emission estimates (boxplot) for the synthetic images passing the selection criterion based on the
spatial variability in the wind direction (> 12°). The orange bars show the number of synthetic images used. The dashed line separates the
cities according to the discrimination criterion based on the city’s emission budget, with, on the left, the cities passing the criterion (emissions
< 2.1 kt CO2 h−1) and, on the right, the cities not passing it. The cities are ranked in descending order according to their emission budget.

of 1.8 kt CO2 h−1 for the target area. The error distribution
of the emission estimate for the city of Paris has a bias of
2 % and an IQR of 83 % for the synthetic images passing
the selection criterion based on the spatial variability in the
wind direction (86 % of the synthetic images). These results
are close to those obtained in Danjou et al. (2024) with the
synthetic images of Paris generated by WRF: the distribution
of the error in the emission estimate had a bias of 4 % and
an IQR of 74 %, and 57 % of the synthetic images passed
the criterion defined in the cited work. The IQR is larger in
this study, and the number of images passing the criterion is
higher. This can be explained by the fact that the criterion
was stricter in Danjou et al. (2024) (< 7° compared to < 12°
in this study) and that the selected months are not the same
(December–April compared to August in this study).

We can see (Fig. 5) that the spread of the error in the emis-
sion estimation generally increases with decreasing emis-
sion budgets. However, this criterion alone is not sufficient

to classify the cities. In particular, the bias varies consider-
ably from one city to another, even when their emissions are
similar. Only eight cities (Bengaluru, Buenos Aires, London,
Moscow, Ningbo, Paris, Riyadh and Seoul) have a distribu-
tion of error in their emission estimates with a bias of less
than 10 %. Our selection allowed us to roughly filter out the
worst situations for estimating emissions with our method,
but it has not yet allowed us to fully understand the error
dependencies. We want to point out that these errors are sig-
nificant, even with many images (≈ 320) per city and our
filtering. Future studies should consider how best to use the
emission estimates provided by satellite image analysis.
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6 Discussion

6.1 Limitations of the study

Some potential sources of error not considered here (the
complexity of measurement error, loss of data due to –
among other things – cloud cover and aerosols) have already
been discussed in Danjou et al. (2024) and are therefore not
detailed here.

A major difference between the simulations in this study
and those in Danjou et al. (2024) is the lack of temporal vari-
ability in the emissions used. In reality, the plume is gener-
ated by the emissions that occurred up to a few hours before
the satellite overpass, and inventories show significant daily
cycles, in particular related to traffic and industrial activity.
When analyzing real data, our analysis zone may correspond
to emissions that occurred, for example, 3 h before the ac-
quisition time, and comparing the emission estimate to the
emissions at the acquisition time of the synthetic image in-
troduces an additional error. Additional uncertainties due to
the emission temporal variability might affect real case stud-
ies. In practice, Danjou et al. (2024) showed that the analysis
zones correspond to emissions that are very recent (less than
2 h) in most cases. Thus, carrying out this study with variable
emissions should not significantly alter our results, assuming
that the emissions of a given city remain similar within 2 h
in the middle of the day (no morning and evening traffic rush
hours). However, the issue of temporal variation in emissions
arises with real data when we compare our emission esti-
mates with inventories. For cities without hourly emission
budgets (or if the comparison is made with an inventory that
does not vary on an hourly basis), we will have an additional
source of error, this time coming from the estimated emission
budget of the inventory.

We also note here that one of the criteria is based on the
city’s emission budget, which may be problematic when us-
ing real data. Indeed, including an a priori value from an in-
ventory to rank the cities means that ranking errors might
result in additional uncertainties if the city’s inventory esti-
mates are incorrect.

6.2 Distribution of the discrimination criteria for the
cities with more than 1 million inhabitants

This section focuses on the number of cities passing the dis-
crimination criteria for a non-negligible part of the year. We
are interested in cities with more than 1 million inhabitants
in 2018, according to UNDESA (2018).

The spatial variability in wind direction is calculated as the
pressure-weighted circular variance of wind in the PBL in a
150km square centered on the city center given by UNDESA
(2018). For the analysis conducted in this subsection, the me-
teorological data (3D wind field, pressure field, PBL height)
come from the ECMWF ERA5 product (Hersbach et al.,
2018) at 0.25° resolution for the year 2020. We calculate this

variability for each day at 10:00, 13:00 and 16:00 local time.
These different times are chosen to sample possible times of
OCO-3 overpasses. For each city, we calculate the propor-
tion of these “observations” for which the spatial variability
is above 12°. We can see in Fig. 6a that for the vast majority
of cities (93 %), this proportion is above 50 %. The distribu-
tion of the spatial variability in the wind direction is different
from the one we have with OLAM, where more cases are
rejected. An explanation may be the much lower sampling
of ERA5 (around 25km against around 3km for OLAM in
the neighborhood of the cities of interest), which smoothes
the wind direction variations and thus leads to smaller values
of the spatial variability in wind direction. Nevertheless, we
can see that, based on this variable, the least suitable cities
for emissions monitoring are located in Asia and America.

City emissions are evaluated with the ODIAC product for
the year 2019 and using the definition of city boundaries de-
fined in Sect. 2.4. Among cities with more than 1 million
inhabitants, only 40 % pass this criterion (Fig. 6b).

Cloud cover is also a factor limiting the number of images
that can be acquired and is not considered in this study. The
database of Wilson and Jetz (2016) gives the frequency at
which clouds cover a point on the globe. This dataset inte-
grates 15 years of twice-daily remote-sensing-derived cloud
observations at 1km resolution. We are interested in the an-
nual average of this frequency to have an order of magni-
tude of the days not observable due to clouds. We can see
in Fig. 6c that the cloud frequency is, for most cities, be-
tween 40 % and 80 %, whatever the continent. The seasonal
distributions of cloud cover and spatial variability in wind
direction are not taken into account in this analysis.

Finally, the proportion of the water surface in the vicin-
ity is also important for our measurements. The difference in
reflectivity between terrestrial and aqueous surfaces results
in very heterogeneous measurement quality. OCO-3 SAMs
partially overlooking aqueous surfaces (e.g., coastal cities)
include a large fraction of excluded pixels. For the analysis
of this subsection, we define a city neighborhood as the area
within 30km of the city edge as defined with the method de-
scribed in Sect. 2.4. For most cities (77 %), this proportion is
less than 25 % (Fig. 6d).

To give an idea of the current ability to quantify urban
CO2 emissions using satellite imagery, we look at the dis-
tribution of cities with emissions greater than 2.1 kt CO2 h−1

and with less than 25 % sea surface in their vicinity. We add
an index of how often we can measure them by multiplying
the proportion of cloud-free days by the proportion of days
where the spatial variability in wind direction is greater than
12°. We can see in Fig. 6e the proportion of cities per con-
tinent that pass the criteria and can be measured on average
every other day, 1 d per week and 1 d per month (1/30 d).
Very few African cities (4 out of 57) pass our criteria, mainly
due to their low emissions. The proportion of cities passing
all three criteria (emissions, sea in the vicinity, frequency of
observation) does not change with the frequency threshold.
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Figure 6. Average annual cloud frequency over the period 2000–2014 derived from the satellites Terra and Aqua (Wilson and Jetz, 2016)
and location of cities with more than 1 million inhabitants (top panel). (a–d) Distributions for cities of different continents of the frequency
of the synthetic observation with spatial variability in wind direction of less than 12° (a); of the emissions (b); of the mean annual cloud
frequency (c); and of the proportion of sea surface in the neighborhood of the city (d), defined as the area within 30km of the city. Panel (e)
shows the percentage of cities per continent passing the emission budget criterion; having less than 25 % of their neighborhood covered by
the sea; and for which the frequency of observations allowed a priori by the cloud cover and the threshold applied to the spatial variability in
the wind direction is 1 out of 2 d (light orange), 1 d per week (orange) and 1 d per month (dark orange).

Indeed, for those cities the emission budget, not the cloud
cover or the spatial variability in the wind direction, is the
discrimination criterion. America and Europe show similar
results: most cities are rejected by our emission criterion, and
the high cloud cover (often more than 50 %) does not allow
for observations at least every other day. On the other hand,
the number of observable cities does not increase when the
threshold applied to the frequency of observation is raised
from 1 d per week to 1 d per month. The observable cities in
America and Europe (30 cities out of 119 and 14 cities out of
58) can provide approximately one observation per week if
there are daily overpasses. Asian cities, due to higher emis-
sions, show a higher proportion of cities passing the criteria.
Very few cities (16 out of 273) are observable on average ev-
ery other day. Again, the proportion of cities passing the cri-
teria varies little between a threshold of 1 d per week and 1 d
per month (101 and 109 cities out of 273, respectively). Aus-
tralia stands out: only five cities have more than 1 million in-
habitants. For this continent, the distribution of the variables
we are interested in is fairly homogeneous, which places the
cities at the limit of observability with the criteria on emis-
sions and the proportion of sea surface in the vicinity (all the
cities are coastal).

Asia and Australia stand out, with 37 % (102 cities) and
40 % (2 cities) of cities passing the criteria. Indeed, those
cities, according to the ODIAC dataset, are more likely to
have emissions above our threshold. They are followed by
America and Europe, with 25 % of cities for both (i.e., 30
and 14 cities). Due to their lower emissions compared to
other continents, African cities seem more difficult to moni-
tor (only 7 % pass our criteria, i.e., four cities). These conclu-
sions remain valid for satellite imagers with characteristics
close to those required for CO2M (2km× 2km resolution,
0.7ppm) and should be revisited for future satellites with dif-
ferent viewing geometry or ground tracks.

6.3 Other potential criteria

Wind speed is often cited as having an impact on the
magnitude of error when quantifying greenhouse gas emis-
sions of local sources using satellite imagery (Varon et al.,
2018, 2020; Nassar et al., 2022). As we have seen, using
a criterion based on wind speed is relevant, as low wind
speeds are often associated with high spatial variability in
wind direction. These situations give rise to poorly venti-
lated plumes with complex structures whose corresponding
emissions are difficult to calculate. This study’s decision tree
learning method indicates that the criterion based on spatial
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variability in wind direction is more accurate than a criterion
based on wind speed with the set of images used here. How-
ever, this might be different when using real data. Indeed,
the horizontal resolution of the weather product used here is
very high around the cities of interest (≈ 3km horizontally),
higher than that of, for example, the ECMWF ERA5 “hourly
data on pressure levels” product (≈ 25km). The vertical res-
olution is of the same order here and in the abovementioned
ERA5 product (49 and 37 vertical levels). With wind data at
a resolution comparable to that of ERA5, the spatial variabil-
ity in wind direction will be underestimated when the typical
size of the horizontal variations is between 3 and 25km and
the accuracy of the criterion will be lower. A criterion based
on wind speed might then be more relevant, as this variable
is less sensitive to the resolution.

Another criterion often associated a priori with error in
emission estimation is the ratio between the average anthro-
pogenic signal and the variability in the background signal
(Schuh et al., 2021). This ratio quantifies the visibility of the
plume and indicates how easy it is to quantify the emissions.
We have seen that the error in emission estimation shows a
high sensitivity to this variable (Sect. 5.1 and Appendix B)
and is apparent in our decision tree analysis for diagnostic
variables (Sect. 5.2.2). However, this dependence of the er-
ror on the ratio of the average anthropogenic signal to back-
ground variability is slightly less important in our analysis
than the dependence on the background variability. The rele-
vance of the background variability as a criterion has already
been discussed in Sect. 5.2.2. A priori, we might have ex-
pected the error’s dependence on this ratio to be greater than
its dependence on background variability. However, this de-
pendence has already been partly filtered out by our analysis
of the predictable variables, with the criterion based on the
emission budget.

A last criterion often put forward is the detection limit of
the satellite (or of the inversion technique), often given in
terms of mass of gas emitted per unit of time, e.g., Ehret
et al. (2022) and Lauvaux et al. (2022), or in terms of the
signal-to-noise ratio, e.g., Kuhlmann et al. (2019). However,
these papers focus on the detection of plumes from the mea-
sured XCO2 (or XCH4) signal. In our case, we have a priori
knowledge of the location of the source and the wind direc-
tion. This allows us to define, with good precision, the plume
limits (see Sect. 3) and thus to avoid a detection step. Future
studies might introduce a filtering step to automatically de-
tect plumes from unknown sources, which can significantly
increase the uncertainties for such non-identified sources.

7 Conclusions

This study analyses the performance of an automatic process
for estimating urban emissions from XCO2 satellite images.
This process is independent of the targeted cities: it is ap-
plied identically to all of them. The methods used are low in

computation time (on the order of a minute to process an im-
age) and flexible, which enables us to process a database of
around 10 000 images with a high convergence rate (8 % of
the image). This study, therefore, contributes to the develop-
ment of standard and automated methods for the operational
monitoring of urban emissions with satellite observations.

Our analysis, using a decision tree learning method, of the
variations in the error in the emission estimation as a func-
tion of the targeted cities and atmospheric conditions shows
that the spatial variabilities in the wind direction and the
city’s emission budget are the two main criteria, among those
tested, to select the most suitable images for city emission es-
timates based on XCO2 satellite imagery. This analysis with
a learning method also provides precise and objective thresh-
olds based on these criteria supporting the selection of im-
ages.

The threshold, of 12°, applied to the variability in the wind
direction within the image area allows us to reduce both the
bias and the spread of the distribution of the emission esti-
mation error, which reflects the uncertainties which should
be encountered when tackling actual images. The threshold
of 2.1 kt CO2 h−1 applied to the emission budget reduces the
spread of the error in the emission estimate. The applica-
tion of these two criteria simultaneously allows us to sep-
arate the synthetic images into two sets: the first, grouping
47 % of the synthetic images, for which the distribution of
the error in the estimation of emissions has a bias (median)
of −7 % of the emissions and a spread (IQR) of 56 % and
the second for which the distribution of the error has a bias
of −31 % and a spread of 99 % of the emissions. However,
parts of the subset of results from individual cities show bi-
ases in emission estimates of over 10 %, despite our filters.
These significant remaining biases raise the question of the
current reliability of the results obtained for a single given
city. Future work should focus on determining the types of
information that can be reliably derived considering the cur-
rent error estimates (e.g., annual emission budget, trend de-
tection) along with the required number of images/plumes,
following Kuhlmann et al. (2019). In parallel, applying this
sensitivity analysis to actual satellite data, similarly to the
analysis of synthetic images used in our study (e.g., OCO-3
SAMs), would help in evaluating and to refining the criteria
derived here.

This study provides objective criteria for selecting the
most suitable satellite images for our urban plume inver-
sion method. However, these criteria are derived from ex-
periments with synthetic data, based on atmospheric model
simulations and inventories. Even though the realism of these
simulations and inventories has been previously evaluated
against actual observations, there is a need to confirm the
robustness of these criteria and of the corresponding thresh-
old values, with applications to real satellite images. Our
study, nevertheless, directly supports the interpretation of fu-
ture inversion results using XCO2 satellite images such as the
OCO-3 SAMs.
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Appendix A: Boundaries of the target areas

Here we give a more detailed description of the way we have
defined the cities’ boundaries.

1. Convert the coordinates from longitude and latitude to
the metric system, using the “pyproj” Python package.

2. Set the city center as the barycenter of anthropogenic
emissions within the synthetic image:(
xcenter
ycenter

)
=

1∑
inv(xi,j ,yi,j )

·

(∑
inv(xi,j ,yi,j ) · xi,j∑
inv(xi,j ,yi,j ) · yi,j

)
,

with (xi,j ) and (yi,j ) being the coordinates of inventory
cells encompassed by the synthetic image (or the
coordinates of the pixels in the synthetic image, as
synthetic-image pixels and inventory cells are the same
in our case).

3. Restrict the analysis to a disk of 50km
radius around this center: Dtarget =

{(xi,j ,yi,j )/

√
(xi,j − xcenter)2+ (yi,j − ycenter)2 <

50km}.

4. Select the pixels for which the emissions are the highest:

S1 = {(xi,j ,yi,j )/inv(xi,j ,yi,j ) >
Q16(Dtarget) and (xi,j ,yi,j ) ∈Dtarget}, where Q16
is the 16 % quantile (1/2.52

= 0.16).

5. Expand the selection by 5 pixels (i.e., 5 km) in every
direction:

S2 = {(xi,j ,yi,j )/∃(xk,l,yk,l) ∈ S1 and (|k− i|<

5 or |l− j |< 5)}.

6. Select the sole cluster above the city center: the function
label of the Python package “scipy.ndimage” is used
to label the different clusters of S2, and we keep the one
that encompasses the city center.

7. Add pixels not categorized as belonging to the selected
cluster but being completely surrounded by it, using the
same function as above applied to pixels not labeled as
the retained cluster.

The resulting boundaries for each city are illustrated in
Fig. A1. Our method gives compact results, of similar sizes,
and captures the core emissions of the cities we are studying.

Appendix B: Extension of the study to other inversion
methods

Section B1 describes the inversion methods and their differ-
ences with the method described in the main text. Section B2
and B3 are constructed according to the same model as that
described in Sect. 5.1 and 5.2, with the preliminary analy-
sis (independent of the decision tree) in Sect. (5.1) and the
analysis of the decision tree method results in Sect. 5.2.

B1 Inversion methods

Three other inversion methods have been investigated by
Danjou et al. (2024) and tested here: one based on the opti-
mization of a rotating Gaussian plume model (denoted GP3),
one based on flux estimates of plume cross sections (denoted
CS) and one based on a CO2 mass balance in the plume (in-
tegrated mass enhancement method, denoted IME). Details
of these methods can be found in Danjou et al. (2024). Con-
cerning the pre-processing steps (i to vi; cf. Sect. 3), those for
the method based on a rotating-plume model are the same as
those described in Sect. 3 for the straight-plume model. For
the other two inversion methods (CS and IME), the steps of
defining the analysis area and estimating the effective wind
(steps v and vi) are different: the analysis area is the plume
area within 1 times the radius of the city along the central
axis of the plume, and the effective wind is estimated with
the wind tangent to the central axis of the plume in the anal-
ysis area according to Danjou et al. (2024). The Gaussian
plume method used in the main body of the article will now
be referred to as GP2 for clarity.

B2 Preliminary analysis

When we apply the CS, IME and GP3 inversion methods to
our 9920 images, we get a result in over 98 % of the cases
for each of the three methods. At first sight, the error dis-
tribution of the emission estimate seems less biased for CS
and IME (bias less than 10 %) than for GP2 and GP3 (bias
between −13 % and −16 %). The IQRs of the error distribu-
tions are, however, larger for CS and IME (90 %–91 %) than
for GP2 and GP3 (78 %–86 %). When we discard synthetic
images for which the spatial variability in the wind direction
is above 7° (as prescribed in Danjou et al., 2024), the un-
derestimation of the emissions by the GP2 and GP3 methods
disappears: the error distributions have bias of between−5 %
and 7 % for the inversions based on GP2 and GP3, as well as
for those based on CS and IME. The IQR of the distributions
also decreases: it is 75 %–76 % for the inversions based on
CS and IME and between 64 % and 67 % for those based on
GP2 and GP3. After filtering, we are left with 53 % of the
images. For CS, IME and GP3, like the results presented for
GP2 in Sect. 5.1, the relative error in the emissions shows
strong disparities between the cities, even after applying the
Danjou et al. (2024) filtering based on the spatial variability
in the wind direction. Here we will detail the sensitivities of
the error in the emission estimate to the variables of interest.
This qualitative study is much reduced in Sect. 5.1 to keep
the message concise and clear in the main body of the arti-
cle.

The emissions are strongly underestimated when the wind
is weak or when the spatial variability in the wind direction
is strong (see Fig. B1a and b); the results are more accurate
(lower bias and IQR) when the meteorological conditions fa-
vor the ventilation of the emitted CO2 in a straight plume
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Figure A1. Illustration of the target areas selected for the inversions. The emission maps are taken from ODIAC. In blue are the boundaries
of the areas we are targeting. The frame of the figures coincides with the area covered by the 150km square synthetic images described in
Sect. 2.3.

that is not very diffuse, i.e., with high wind speed and low
variability in the wind direction, but when the emitted CO2
accumulates over and in the vicinity of the city in a diffuse
plume with high XCO2 values or forms a plume with a com-
plex structure, the results contain significant errors.

Figure B1c shows a sensitivity of the error in the emission
estimate to the actual emission budget. Despite noise, we can
see that the IQR of the error decreases when the emissions
increase. Cities with important emissions have a plume that
stands out more strongly from the background signal and al-
lows a more accurate emission estimation.

The sensitivity of the error to the ratio of the average an-
thropogenic signal to the variability in the background signal
is shown in Fig. B1d for the estimated anthropogenic signal
and in Fig. B1e for the actual anthropogenic signal. This ac-
tual signal-to-background ratio is close to that used by Schuh

et al. (2021). The error sensitivities to these two ratios are
similar when this ratio is high, i.e., when the signal from the
city differs most strongly from the variability in the back-
ground signal. In this case, the estimated anthropogenic sig-
nal is close to the real anthropogenic signal. The sensitivities
of the error to these two ratios are, however, different when
these ratios are low. This can be explained by different rea-
sons for the low ratios. For the estimated background ratio,
poorly defined plume boundaries lead to an overestimation
of the background signal and thus to a low estimated anthro-
pogenic signal and an underestimation of emissions. For the
actual background ratio, low emissions result in a weak an-
thropogenic signal that is difficult to discern and thus to a
higher uncertainty in the emission estimate.

Finally, the error in the emission estimate is very sensitive
to the radius of the city optimized during the inversion for the
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Figure B1. Sensitivity of the emission estimation error to different variables of interest. For each panel, the main plot shows the evolution
of the error distribution as a function of the quantile of the variable of interest: the solid line indicates the median, the dotted lines the first
and third quartiles, and the highlighted area the quantiles at 15.9 % and 84.1%. The small inset panel shows the values taken by the variables
of interest for the different quantiles. Panel (c) is an exception: as we have only one value of emission budget per city, we plot the evolution
of the error distribution as a function of the rank of the city regarding the variable of interest. The optimized radius shown in panel (g) is a
parameter of the Gaussian plume models (see Sect. 4.3) and is therefore not calculated for the other methods.

inversions based on a Gaussian plume (GP2 and GP3; see
Fig. B1g). However, when we discard synthetic images for
which the spatial variability in the wind direction is above 7°
as prescribed in Danjou et al. (2024), this sensitivity almost
disappears. Indeed, when the spatial variability in the wind
direction is large, a dome, or at least a very diffuse plume,
forms over the city and disturbs the optimization of the city
radius.

The error in the emission estimate thus shows sensitivi-
ties to several variables, some of which are correlated. These
sensitivities can be complex, and it is difficult at this stage
to determine, on the basis of these sensitivities, which of the
variables are the most discriminating regarding the error in
the emission estimation and thus to determine the optimal
criteria for discriminating the synthetic images.

B3 Application of the decision tree method

B3.1 Application for predictable variables

The application of our learning tree method to inversions
with GP3 gives very similar results to those described for
GP2 in Sect. 4.2. The pair of criteria that emerges is the same
(spatial variability in wind direction and emission balance),
with a slightly higher number of occurrences (95 for GP3, 82

for GP2). For the inversions with CS and IME, the same pair
of criteria is also found but with a lower number of occur-
rences (53 and 63, respectively).

The distributions of threshold values for the criteria are
similar for all methods. The medians of the thresholds found
for the spatial variability in wind direction are 10° for the
GP3 method, 10° for the CS method and 11° for the IME
method. For the emission budget, they are 1.9 kt CO2 h−1

for the GP3 method, 2.0 kt CO2 h−1 for the CS method and
1.9 kt CO2 h−1 for the IME method.

The bias (< 10 %) and IQR (between 52 % and 70 %) of
the emission estimate for the subsets of synthetic images
passing the criteria, as well as the size of these subsets (be-
tween 36 % and 55 %), are similar for the different inversion
configurations. The subsets that do not pass the discrimi-
nation criteria show differences depending on the inversion
configuration. The results with GP3 are similar to those with
GP2 in terms of bias and the IQR of the error in the emission
estimate and plume size, but for CS and IME, the biases are
smaller (between 6 % and 12 % in absolute value for CS and
IME, between −25 % and −37 % for GP2 and GP3) and the
IQRs are larger (higher than 120 % for CS and IME, lower
than 107 % for GP2 and GP3).
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Figure B2. Distribution of the error in the emission estimates (boxplot) for the synthetic images passing the selection criterion based on the
spatial variability in the wind direction (> 12°). The orange bars show the number of synthetic images used. The dashed line separates the
cities according to the discrimination criterion based on the city’s emission budget, with, on the left, the cities passing the criterion (emissions
> 2.1 kt CO2 h−1) and, on the right, the cities not passing it. The cities are ranked in descending order according to their emission budget.

B3.2 Application for diagnostic variables

In this section, the set of synthetic images used for the anal-
ysis is the one formed by the synthetic images passing the
criteria on wind direction variability and on the emission bal-
ance. The inversion methods (GP3, IME, CS) are tested sepa-
rately. For all these methods, no pair of criteria has more than
40 occurrences when the tree depth is set to 2. We therefore
also reduce the tree depth to 1. Plume size appears as the
main criterion for IME and CS, with 44 and 42 occurrences,
respectively. As this criterion appears for less than half of the
samples, we do not consider it as sufficiently relevant. For
GP3, the error in the optimization appears as the main crite-
rion, without standing out here either (42 occurrences). We
therefore choose not to retain these criteria.

B4 Study of the results by city

As the threshold distributions are similar for all inversion
methods, we choose to use the same threshold values as those
found for the GP2 method (cf. Sect. 5.2.1). We have the
same five cities (Bogota, Lima, Los Angeles, Mexico City
and Tehran) for which more than 90 % of the synthetic im-
ages do not pass the selection criterion based on the spatial
variability in the wind direction.

As with the GP2 method, we can see (see Fig. B2) that the
spread of the error generally decreases when the emission
budget increases. However, again, this parameter does not
fully explain the disparity of the results between cities.
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