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S1 Extended Introduction to Measurement Informed Inventories and Methane Emissions Measurement and15

Quantification Techniques

Recent studies employing various emissions measurement techniques indicate that existing emission inventories underesti-

mate actual methane emissions from the oil and gas sector (Johnson et al., 2017; Alvarez et al., 2018; Robertson et al., 2020;

Maasakkers et al., 2021; Plant et al., 2022; Shen et al., 2022; Lu et al., 2023; Tibrewal et al., 2024; Omara et al., 2024; Williams

et al., 2025a; Lu et al., 2022; Worden et al., 2022), with significant regional variations in the discrepancies between bottom-up20

inventories and measurement-based estimates (Ravikumar et al., 2025; Vallejo et al., 2024). A recent study found methane

emission loss rates ranging from approximately 0.75% to 9.63% of natural gas production across different regions of the US

(Sherwin et al., 2022). Despite variations in emission rate distributions among different oil and gas basins, recent research

indicates that the majority of methane emissions are originated from facilities that emit at rates lower than 100 kg/hr (Williams

et al., 2025b).25

Traditional approaches for detecting methane emissions often rely on human senses (auditory, visual, and olfactory (AVO) in-

spections) or portable sensors used in close proximity to potential sources. These include AVO inspections, EPA Method 21 (a

sensitive but labor-intensive EPA-approved method), and optical gas imaging (OGI), which uses infrared cameras to visualize

methane leaks (Xia et al., 2024).30

Advances in communication technologies, the Internet of Things (IoT), and reduced sensor costs have facilitated the devel-

opment of next-generation emission measurement (NGEM) technologies. Unlike traditional methods, NGEM technologies

operate at a distance from the source, attempting to remotely detect, localize, and quantify emission events. These technologies

operate from space (satellites), air (aircraft and UAVs), or the ground (fixed, mobile, and handheld sensors). Effective and35

efficient methane emission detection and quantification often requires a combination of measurement technologies, commonly

referred to as a multiscale measurement approach (Wang et al., 2022; Daniels et al., 2024).

Satellite and aerial remote sensing techniques can detect emissions from specific sources, with aerial methods capable of de-

tecting emissions as low as 1-3 kg/hr, while satellites have minimum detection limits of to approximately 200 kg/hr or higher40

(Sherwin et al., 2023). Simulation studies based on the Fugitive Emissions Abatement Simulation Toolkit (FEAST), suggest

that a minimum detection limit of 0.1–1 kg/hour is sufficient to capture almost all emissions from the oil and gas sector

(Ravikumar et al., 2018). Based on the results of this study, quantifying emissions below this threshold would not substantially

improve mitigation efforts.

45
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Satellite measurements offer remote detection of large methane releases, improving transparency and independent monitoring,

particularly in remote or under-studied areas. Although, their high detection thresholds and infrequent overpasses limit their

utility. Aerial platforms (piloted aircraft and UAVs) in general offer lower detection limits compared to satellites, but may

introduce spatial extrapolation errors when regional inventory development is the objective. Because a considerable portion

of methane emissions from oil and gas operations are intermittent, and snapshot methods only provide an instantaneous mea-50

surement (Santos et al., 0), they are unable to provide robust estimates of the total mass emitted from a detected plume due

to the inherent uncertainty in the required temporal extrapolation. In addition to higher detection limits, common limitations

of all snapshot measurement techniques are the lack of site-specific meteorological data and information on emission event

timing (e.g., duration and frequency of intermittent releases), which pose a significant challenge to the temporal extrapolation

of results.55

AERMOD (a Gaussian plume model) and CALPUFF (a Lagrangian puff model) are two air dispersion models commonly

used for regulatory purposes. AERMOD is the EPA’s recommended model for near-field applications (up to 50 km) (Houwel-

ing et al., 1999). This model relies on the assumption of steady-state conditions, which is often unrealistic in the presence

of variable wind conditions (Jia et al., 2023). Some of the previous studies employed longer time averaging of wind data to60

satisfy this steady-state requirement. However, this approach results in masking important short-term wind variations and as-

sociated concentration enhancements that are crucial for accurate dispersion modeling at scales relevant to oil and gas facilities.

CALPUFF has not been designated as an EPA-preferred model for near-field applications. However, it may be considered as an

alternative dispersion modeling method on a case-by-case basis for near-field applications involving complex winds (Wayland,65

2008). CALPUFF is often preferred for long-range transport and complex terrain.

Both AERMOD and CALPUFF have limitations when applied to methane dispersion in near-source applications, such as up-

stream oil and gas. These limitations stem from the models’ underlying assumptions and simplifications, which may not be

appropriate in tens of meters-long source-to-sensor distances and lack accurate capturing of the complex atmospheric processes70

governing methane dispersion in upstream facilities. In a recent attempt, (Jia et al., 2025) presented a computationally efficient

and scalable implementation of the Gaussian puff model for atmospheric dispersion. This model incorporates dynamic spa-

tiotemporal thresholding to achieve a shorter runtime, making it suitable for real-time applications and large-scale deployments.

S2 Dispersion Models75

The following subsections provide brief overviews of the theory underpinning the dispersion models, followed by more specific

implementation details. Note that there are myriad small choices (e.g., stability class calculations, dispersion parametrization)
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that must be made in the data processing and algorithmic workflow when it comes to running these dispersion models. It is out-

side the scope of this study to enumerate and present results from every combination of valid choices. Instead, we will provide

clear justifications for the specific choices made in this study and demonstrate the efficacy of the models under these specific80

implementations. It should be noted that the impact of most of these higher-order decisions on the results is minimal, as they are

often different approaches of approximating the same underlying phenomena. For example, there are several commonly-used

functional forms and associated coefficients to describe how the dispersion of a gas plume scales with distance. While these

empirical formulae may look very different (e.g., some utilize power laws while others employ logarithms), they are generally

inferred by fitting these functional forms to the same underlying data, and result in similar general characteristics despite the85

sometimes dramatically different functional forms.

S2.1 Gaussian Plume

The commonly used Gaussian Plume model (GPM) provides a closed-form solution to the steady-state advection-diffusion

equation for a single point source emitting at rate Q from height H . As a steady-state model, GPM assumes constant wind90

speed, wind direction, and source rate over time. Pollution concentration, C at a given location (x, y, z) is calculated as:

C(x,y,z) =
Q

2πūσyσz
exp

[
− y2

2σ2
y

− (z−H)2

2σ2
z

− (z+H)2

2σ2
z

]
(S1)

In this coordinate system, x is defined as the downwind distance (aligned with the average wind velocity, the magnitude of

which is denoted by ū), y represents the crosswind distance (perpendicular to the wind direction), and z is the receptor height

above the ground. The dispersion coefficients σy and σz represent the horizontal and vertical spread of the plume, respectively.95

The rate at which plume spread increases with downwind distance is influenced by the stability class, a metric that represents

the degree of turbulence in the atmosphere. The approximation of dispersion coefficients can be achieved using various es-

tablished methods (Carruthers et al., 2009). The specific implementation details used for this study are presented later in this

Section. The concentration levels modeled by the GPM represent temporal averages that capture the statistics of the turbulent

dispersion by small variations in the wind field. As such, an appropriate averaging time must be chosen that is sufficiently long100

for small-scale turbulence effects to average out, but not so long that coherent changes in the wind direction occur.

It is important to note how different turbulent wavenumbers (k) affect a plume at different characteristic scales (L). For ref-

erence, k can be thought of simply as the inverse spatial scale of a turbulent eddy, k = 2π/Leddy , where Leddy represents the

characteristic length scale associated with a particular turbulent eddy. Turbulence scales where k > 1/L (i.e., when turbulent105

fluctuations are smaller than the length scale of the plume) cause plume dispersion. In other words, small-scale eddies disperse

the plume randomly in a way that is captured by σy and σz . If a turbulent eddy has wavenumber comparable to (or less) than

1/L, however, this results in meandering motions (or coherent changes in wind direction) for extended periods of time that do
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not result in statistical dispersion. In this case, the Gaussian Plume will fail to capture the effects of these variations if they are

averaged over.110

Many applications of the Gaussian Plume are tuned to model dispersion on long length scales (kilometers or greater), and

hence require long (> 30 minute) averaging periods. However, when GPM is applied to fenceline monitors placed around

facilities with scales of around 100 meters, much shorter averaging periods must be used. This ensures that turbulent eddies on

scales comparable to or larger than the source-sensor distance are captured temporally as coherent changes in wind direction,115

rather than being averaged over. As such, shorter averaging times (1-5 minutes) are more appropriate for near-source dispersion

modeling applications.

When employing Gaussian Plume models, any violation of the assumptions that go into the derivation of the GPM results in

unreliable concentration predictions from this dispersion model. These effects can be especially pernicious at low wind speeds.120

The underlying assumption of steady-state wind is often violated during low-wind conditions because the ratio between the

reference velocity scale of turbulence uref , which is typically taken as the root-mean-square of the horizontal wind fluctua-

tions u′
rms, scales with the mean wind speed used in Equation S1, i.e. uref

u ∼ 1. Practically, this implies that the underlying

assumption for a Gaussian concentration distribution is no longer valid. In addition, frequent and significant changes in wind

direction are more common at low wind speeds, making the application of GPM less optimal, as this model requires that the125

mean wind direction should align with the x (downwind) axis. Also note that since ū is in the denominator of Equation S1, in

low wind speed conditions, concentration predictions will become nonphysically high. Different corrections exist to the GPM

under low wind conditions. The approach by (Carruthers et al., 1994) reconstructs concentration under low wind conditions by

using a weighted average between a Gaussian-shaped plume state and a random-walk state in which the release spreads in all

horizontal radial directions.130

Many of the standard methods for computing the dispersion coefficients σy and σz rely first on an approximation of the Pasquill

atmospheric stability class (ASC) (Mohan and Siddiqui, 1998; Venkatram, 1996). Several approaches exist for ASC approxi-

mation, including using near-surface vertical temperature gradient (Randerson, 1984) or inferring them from estimates of solar

irradiation (based on cloud cover and time of day), and combining this information with wind speed to infer the stability class135

via a look-up table (Pasquill, 1961). The current study uses the statistics of the fluctuating horizontal wind field to estimate the

ASC at minute t by computing the circular standard deviation of horizontal wind direction (σθ) over the trailing 15 minutes

of wind data and mapping these values to a stability class via Tables 6-8a and 6-8b found in USEPA (2000). This method is

chosen over the other approaches because it utilizes a direct measurement of the degree of turbulence in the atmosphere via σθ

rather than exclusively indirect indicators (solar irradiation, wind speed, cloud cover).140

5



The majority of the methods for calculating dispersion parameters σy and σz as a function of downwind distance and stability

class provide comparable dispersion profiles that are approximated via different empirically-estimated functional forms and

associated coefficients (Randerson, 1984; R. P. Hosker, 1974). This study employs the “Martin Method” (first proposed in

Martin (1976)) which utilizes power law functions to describe both the horizontal and vertical spread of the plume via:145

σy = axb

σz = cxd + f (S2)

where the parameters a,b,c,d and f depend on the ASC and can be found in a look-up table in Martin (1976). Using these

functional forms for the dispersion parameters, Equation S1 is applied to every minute of measurement data for every source-

sensor combination for the time period associated with a given controlled release experiment. This results in generating the

previously-described sensitivity matrix S, the elements of which represent the predicted concentration via Equation S1 (for a150

unit rate). In this matrix, columns correspond to individual sources and rows correspond to the location and height of a specific

measurement device at a specific time. Due to the failure of the GPM to accurately capture pollutant transport under low wind

speeds, concentrations from time periods with wind speeds of less than 0.5 meters per second are excised from the sensitivity

matrix.

155

Since GPM utilizes a closed-form algebraic solution (no time-marching is needed), it is computationally fast. Several hours of

measurement data can be processed via GPM and corresponding concentration predictions can be made for every source for

every sensor location in milliseconds when the calculations are vectorized properly.

S2.2 Gaussian Puff160

The Gaussian Puff model is a Lagrangian approach to approximating the solution to the advection-diffusion equation that makes

fewer assumptions than the Gaussian Plume. More specifically, this method can capture the relevant physical effects embedded

in spatially varying wind fields (i.e., it does not assume homogeneous wind fields), can handle time-varying emission rates

(does not assume steady-state emission rate), and also more properly account for low wind speeds and unstable conditions

when the wind vector rapidly changes (does not assume steady-state wind fields). Because of these features, Gaussian Puff165

is more broadly applicable than GPM and has fewer potential failure modes (e.g., low wind speeds and improper averaging

times). The Gaussian Puff method approximates advection and diffusion by emitting a series of “puffs” that are advected with

the wind field. The position of each puff, x, as a function of time is simply:
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x(t) = x0 +

t∫
0

u(x, t′)dt′ (S3)

where x0 represents the puff’s initial location (given by the emission point from which the puff originated). Note that the wind170

vector (u) used to advance the position of the puff can be a function of both position and time. When high-frequency spatial

information about the wind field is available (e.g., via multiple anemometers), these effects can be included in the evolution of

the puff positions to obtain a more accurate puff trajectory. In this method, puffs are emitted at some fixed interval ∆t from

each point source, with each puff containing total mass M =Qi∆t, where Qi represents the emission rate of source i from

which the puff was emitted. This mass is distributed across a three-dimensional Gaussian profile such that the concentration at175

a given point can be expressed via:

C(x,y,z, t) =
Q∆t

(2π)3/2σxσyσz
exp

[
− y2

2σ2
y

− (z−H)2

2σ2
z

− (z+H)2

2σ2
z

− x2

2σ2
x

]
. (S4)

Note that each coordinate (x,y,z) and associated dispersion coefficients (σ’s) are functions of time (the explicit time depen-

dence of these variables in Equation S4 is omitted for the sake of readability). In the implementation of the Gaussian Puff

algorithm used in this study, higher frequency temporal wind measurements are used to advance the positions of the puffs via180

Equation S3. More specifically, 1Hz sampled wind measurement are interpolated to the position of each individual puff using

a distance-weighted average with inverse square weights to approximate the wind field at a specific location at a specific time.

In principle, this should result in more physically accurate puff trajectories that account for both high-frequency spatial and

temporal variations. In other words, u(x, t) is computed via:

u(x, t) =

∑
iu(xi, t)/d

2
i∑

i 1/d
2
i

(S5)185

where u(xi, t) represents an anemometer measurement at time t from location xi and di is the Euclidean distance between the

puff location x and the location associated with a given anemometer measurement, xi. Note that in this study, each Canary X

device was equipped with an anemometer, so the distance-weighted average of 10 anemometers is used to advance the position

of the puffs. Wind measurements from 10 devices are highly redundant at such a small and simple facility; the horizontal

and wind directions measured by all the devices on the facility are highly correlated and differ by only a small amount. At190

more complex facilities where more spatial variation of the wind field may be expected (e.g., due to significant topographical

variations or obstructive complexity), then the use of multiple anemometers may be more advantageous. One puff is emitted

for every second of the simulation (i.e., ∆t= 1 second) and every puff’s position is advanced every second.
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In contrast to GPM, the Gaussian puff framework requires time advancement of each puff’s spatial positioning and associated195

modulation of the concentration profile of each as the simulation advances. This is further coupled with processing procedures

needed for the addition of new puffs and their proper accounting. Consequently, this makes the Gaussian Puff simulation for

an equal number of measurement hours much slower than the GPM.

S3 Computational Fluid Dynamics200

The choice of employing CFD simulations is motivated and constrained by two primary reasons: (i) a desire to perform three-

dimensional (3D), unsteady modeling of multi-scale emissions from oil & gas facilities where the underlying wind field is

directly modeled/resolved onto a computational grid while accounting for the complex effects induced by the presence of

obstructions, that are otherwise not included in the previously discussed dispersion models; and (ii) to have a numerical frame-

work that offers a graduated step up from the Gaussian models presented earlier while operating in effectively the same vein205

to permit a direct comparison of model performance.

The flow solver makes use of the finite-difference framework on a staggered Cartesian mesh and a fractional step approach,

alternatively known as the predictor-corrector method, to solve the low-pass filtered incompressible Navier-Stokes equation:

∂ũi

∂xi
= 0,

∂ũi

∂t
+

∂ũiũj

∂xj
=− 1

ρ0

∂p̃

∂xi
− ∂τij

∂xj
+ bδi3. (S6)210

Solution of the momentum equation requires inverting the following Poisson equation prior to the corrector step to enforce the

divergence-free condition on the 3D velocity field:

∂2(δp̃)

∂x2
i

=
ρ0
∆t

∂ũ∗
i

∂xi
. (S7)

Here, xi = (x,y,z) represents the horizontal (streamwise: x and spanwise: y) and the vertical z directions of the spatial coor-

dinate system used in the CFD simulations. The asterisk on the right of Equation S7 indicates the intermediate velocity field215

obtained after the predictor step and does not satisfy the continuity equation. Time advancement is accomplished via a Newton-

Raphson based iterative method and spatial derivatives in the momentum equation are discretized using central differences. The

overall numerical approach is globally second-order accurate in both space and time. Further details on the numerical approach

can be found in (Pierce, 2001). Physical obstructions are mapped onto the Cartesian grid via an immersed boundary method
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(IBM) (Kim et al., 2001). The tool allows the ingestion of a digital elevation model to reproduce the undulating surface to-220

pography of complex industrial sites for use in CFD simulations. The tool is parallelized using domain decomposition coupled

with the Message Passing Interface (MPI), and was employed successfully in the past to perform direct numerical simulations

of both equilibrium and non-equilibrium turbulent channels flows and boundary layers over explicitly resolved rough surfaces

on massively-parallel computing architectures (Ismail, 2023).

225

In Equations S6 and S7,˜represents the filtered fields whereas ui = (u,v,w), p and ρ are the instantaneous wind velocity,

pressure and density, respectively. The subgrid stress τij is modeled using the Smagorinsky approach: τij ≡ ũiuj − ũiũj =

−2νSGSS̃ij . The linear constitutive relation between τij and the filtered strain rate,

Sij ≡
1

2
(
∂ũi

∂xj
+

∂ũj

∂xi
) (S8)

embedded in the Smagorinsky approach is modulated by the eddy viscosity νSGS . The eddy viscosity is related to the local230

characteristic length and time scales using the following mixing-length type formulation: νSGS = (CS∆)2|S̃|, where |S̃|=√
2S̃ijS̃ij and ∆ is local characteristic length scale taken as ∆≡ (vol)1/3 (vol = local grid cell volume). We determine the

Smagorinsky constant CS using the dynamic procedure proposed by (Lilly, 1992). A wall model is included that promotes

the modulation of the boundary layer at high Reynolds numbers due to surface roughness. The wall model, following (Mukha

et al., 2019), imposes a no-slip condition for the horizontal velocity components and forces the computed wall shear stress by235

requiring the eddy viscosity be determined by,

νSGS =
u2
∗

[(ũP /hp)2 +(ṽP /hp)2]1/2
(S9)

The superscript p in equation S9 refers to the cell at a wall-normal distance hp from the surface. The filtered horizontal velocity

field at this height is used to estimate the local wall shear stress u2
∗ in the above equation using the ‘law of the wall’ for fully

rough surfaces: uest
∗ = κ

√
ũ2 + ṽ2/ln(hp/z0). The METEC facility is approximated as belonging to the open-terrain category240

and thus the roughness length z0 is chosen as 0.03 m. The von-Karman constant in the law of the wall is 0.4.

Contaminants like methane are treated as passive tracers and their transport is modeled by the following filtered advection-

diffusion equations:

∂c̃

∂t
+

∂c̃ũj

∂xj
=

∂πj

∂xj
+Sc. (S10)245
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Spatial derivatives in equation S10 are discretized by the Quadratic Upstream Interpolation for Convective Kinematics (QUICK)

scheme. In the filtered scalar transport equation (Equation S10), Sc(t) represents the point sources inside the fluid domain,

which are approximated as 3D Gaussian functions following the approach by (Ražnjević et al., 2022). While this equation is

written for a single tracer, the tool permits the inclusion of a user-specified number of scalar fields all of which, in princi-

ple, can have point sources of varying strength placed at arbitrary positions. The closure term due to the subgrid scalar flux250

πj is parametrized using the following gradient-diffusion procedure: πj ≡ c̃uj − c̃ũj =−νSGS/ScT (∂c̃/∂xj). The turbulent

Schmidt number ScT is fixed at 0.7 (Qian and Venkatram, 2011).

∂b

∂t
+

∂bũj

∂xj
= αb

∂2b

∂x2
j

(S11)

The effect of thermal buoyancy is modeled via the Boussinesq Approximation and the equation for conservation of energy is

instead replaced by the buoyancy variable: b≡ (θ′v/θv0)g (Van Heerwaarden et al., 2017). Here, θ′v , θv0 and g are the fluc-255

tuating potential temperature, the reference virtual reference potential temperature and the acceleration due to gravity. The

diffusivity coefficient for the buoyancy field αb is treated like ScT .

No-slip and impermeability conditions are applied on the bottom surface for the horizontal and vertical components of the

wind field, respectively. A zero-flux condition is used for the scalar fields at the lower surface. Periodic and zero-flux boundary260

conditions are imposed on the lateral boundary surfaces for velocity and scalar fields, respectively.

As our focus is on near-surface pollutant dispersion, we do not construct the entire boundary layer. Instead, the ceiling of the

domain is capped at 200 m, and a no-flux condition is imposed at this height. The horizontal mesh is uniformly spaced with a

resolution of 1.5mx1.5m. The mesh is stretched vertically to accommodate the ground-imposed anisotropy: the grid spacing265

at the ground is 0.2 m, and is gradually relaxed to 2 m towards the top boundary, with the maximum expansion ratio between

successive grid points in the z direction remaining below 1.10.

We further leverage the periodicity and uniform grid spacing in the horizontal direction to perform a discrete Fourier transform

of the Poisson equation (Equation S7) into a set of linearly independent 1D modified Helmholtz equations that are then solved270

using the tridiagonal algorithm. Figure S1a shows the 3D digital elevation model (DEM) of the METEC facility after it is

mapped onto the Cartesian grid. The positions of the virtual sensors are highlighted using purple spheres. It should be noted

that the METEC site exhibits an effectively flat surface, that justifies its earlier classification as open terrain: the only significant

obstructions are the three tanks at the center of the facility that have a height of ∼ 4m.

275
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(a)

(b) (c)

Figure S1. (a) Visualizing the 3D surface terrain after mapping the digital elevation model of the facility onto the CFD mesh. The color

map indicates the local elevation z in meters and the magenta spheres identify the position of the point sensors. (b,c) Comparison of the

minute-averaged computed wind speed and direction at the virtual NE sensor height from the CFD simulations with onsite observations for

two experiments: one from (b) Feb. 08, 2024 and another from (c) April. 11, 2024.

Preliminary simulations were performed to dissect the signal detected at virtual sensor stations both with the effect of the DEM

included and without it, and found negligible value in modeling the tanks as obstacles for the present scenario. The downwash

effects presumably induced by the obstacles typically extend less than 5 times the mean obstacle height (LEONARDI et al.,

2003). The closest sensors to the tanks are however at least over 20m from the centroid of the tanks. Regardless, the simulations
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presented later in this investigation include the effect of the 3D DEM.280

A novelty of these CFD simulations rests in the use of facility-specific wind measurements collected by an on-site anemometer

to reconstruct the horizontally-averaged boundary layer profile. This in turn is employed to interpolate the horizontal forcing

terms needed at each time step on the right-hand side of the u and v components of the momentum equation and the buoyancy

transport equation. This approach bears some resemblance to the method used by (Wiersema et al., 2020) for their forced285

microscale simulations. The on-site measurements by the anemometer are combined with the local estimate of the Obhukov

lengthscale L provided by the High-Resolution Rapid Refresh (HRRR) atmospheric forecasting model (Dowell et al., 2022).

Vertically varying mean velocity and thermal buoyancy profiles mapped to the parametric equations of the Monin-Obhukov

similarity theory (MOST) are constructed using L and onsite measurements referenced earlier at the sensor height as inputs.

The MOST matching profiles that are used to infer the forcing term are periodically updated during the course of the simulation290

using time-evolving onsite information. This allows the simulated boundary layer to respond to changing on-site conditions

while still retaining the resolved component acquired from solving the filtered momentum and buoyancy transport equations.

The time traces of the instantaneous and minute-averaged horizontal wind speed (WS =
√
U2 +V 2) and wind direction

(WD = 270◦−tan−1(V/U)) on the virtual north-east (NE) sensor from simulations of two different cases are compared with295

onsite measurements in Figures S1b and S1c. It is evident that the simulations are able to faithfully reproduce the varying

wind field as measured by onsite monitors. The wall-normal variation of the mean wind speed for three selected test cases is

presented in Figure S2a. The three cases are chosen such that each of them falls within the stable (red), neutral (blue) and un-

stable (green) regimes based on extracted L from the HRRR model. The gray profiles represent several instantaneous transects

extracted from the simulations. The qualitative trend of the vertical variation in mean wind speed reproduced by the simulations300

under different atmospheric stability regimes compares favorably with the results reported by (Bre, 2018).

To further demonstrate that the CFD simulations are indeed reproducing eddies representative of the expected turbulence cas-

cade, Figure S2b compares the mean one-dimensional power spectrum EWS of the horizontal wind speed for the neutral test

case presented in Figure S2a. Since our simulations are performed using a constant time step of ∆t= 0.1s, the WS at the305

virtual sensor locations is averaged up to the resolution of 1Hz before computing the power spectrum to allow a one-to-one

comparison with the power spectrum computed via onsite measurements. Figure S2b identifies a five-order reduction in energy

across the range of frequencies captured in this simulation case. The presence of the turbulence cascade with a distinct iner-

tial subrange of scales was identified using Kolmogorov’s -5/3 power law (Pope, 2000). The inset of Figure S2b presents the

premultiplied power spectrum fEWS for the same simulation. There is a decent qualitative correspondence with the fEWS310

reported by (Schalkwijk et al., 2014) from their year-long LES of an ABL. Specifically, the range of frequencies that can be

classified as being part of the so-called spectral gap extends below the 1-minute level, which is typically above the general

upper limit of frequencies typically assumed for the validity spectral gap. Additionally, there is a precipitous drop in spectral
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(a)

(b)

Figure S2. (a) Variation of the mean wind speed in the vertical z direction for three representative cases from the CSU METEC study

dataset: stable (red), neutral (blue) and unstable (green). Gray lines indicate instantaneous traces for each of the three cases. (b) Power

spectrum profiles of the horizontal wind speed from the simulation for the neutral case in (a) compared against spectral profiles of the

measured on-field data at 2m height. The inset shows the premultiplied power spectrum for this simulation case.

power for the range of scales above 0.05Hz, which is in agreement with the simulation by (Schalkwijk et al., 2014). These

features in the CFD simulations give confidence that the more salient pieces of flow physics relevant to the turbulent dispersion315
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of gas are being captured numerically.

S4 Inversion Frameworks

S4.1 Least-Squares Optimization

The commonly used method of least-squares optimization (LSQ) seeks to minimize the sum of the squared differences between320

observed and predicted values (residuals). In this application, using the sensitivity matrix S and the measured concentrations

b, this optimization problem is formulated as:

min
Q

N∑
i

(SQ− b)2 :Q ∈ R+ (S12)

where there are N measurements and Q cannot be negative. In this context, the system is consistently over-determined, with the

sensitivity matrix S having more linearly independent rows (measurements) than columns (sources). The physical interpreta-325

tion of this system being overdetermined is that there is sufficient sensor coverage, wind variability, and duration of experiment

to provide enough information to enable robust emission rate estimation for every source.

However, under unfavorable atmospheric conditions (such as a sustained wind direction with low variability due to horizontal

turbulence during an emission event), linear independence is not guaranteed. In such cases, even with a large number of mea-330

surement data rows, the lack of linear independence may lead to an under-determined system. Furthermore, there may be cases

when the wind never carries emissions from a specific source, i, towards a sensor. In this case, the ith column of S will entirely

consist of zeros. As a result, any arbitrary rate for source i would equally satisfy the measurement data.

The data collected for this study exhibits sufficient wind variability, high enough sensor density, and long enough event duration335

to ensure that the system is always overdetermined. For example, a 30-minute experiment (the shortest duration in this study)

that is monitored by 10 sensors generates 300 sensor minutes of data (S has 300 rows). In an extremely unlikely scenario with

minimal wind variability, 95% of the rows of S may not be linearly independent, and the rank S is still 15, substantially larger

than the five sources. Future work will explore the required information density and distribution to make robust emission rate

estimates for CMS deployments that more closely resemble real-world conditions, encompassing sensor density, placement,340

and source count.

In practice, adding a degree of regularization that encourages sparsity in the inferred rate vector can significantly improve the

detection and localization statistics. It will also prevent unrealistically high emission rates by requiring stronger evidence (in the
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goodness of fit) before assigning a high rate. For this purpose, a standard Lasso regression is implemented which incorporates345

an L1 norm penalty on the rate vector in the optimization problem:

min
Q

N∑
i=1

(SQ− b)2 +

M∑
j=1

α|Qj | :Q ∈ R+ . (S13)

This approach introduces a hyperparameter α that penalizes nonzero rate entries with a magnitude proportional to the rate.

Consequently, the solver prioritizes sparser solutions, assigning high-rate values only when they lead to a significant improve-

ment in data fitting, thereby avoiding unphysically high rate estimates.350

S4.2 Markov-Chain Monte-Carlo

While a computationally complex and expensive approach to a linear optimization problem may seem unnecessary, it offers

distinct benefits for specific applications, warranting its inclusion. In the context of the current study, this approach offers three

key advantages. Unlike simpler optimizers like LSQ which is constrained to only minimizing the sum of squared residuals, the355

use of various error evaluation functions is permitted in this approach. Second, this method offers greater control over the use

of prior information in the context of a rate inference. This enables more explicit promotion of sparsity, rate regularization, and

even the incorporation of operational or independently gathered data to further inform estimates. For instance, SCADA data

combined with emissions factors can generate time-dependent priors, favoring higher rates when a known equipment piece is

in operating mode. Finally, a full posterior distribution approximation is crucial for continuous estimators. These estimators360

compute rates as a function of time on streaming data. They recursively take in the last known rate estimate and combine it with

new incoming data to make an updated rate estimate. The posterior distribution of a given timestep can be used as the prior

information in the subsequent timestep. This approach enhances emission rate estimation accuracy during periods of limited

information. Prior information can be used to propagate source-specific rates through these periods until the proper signal is

delivered from the given source to the system (the CMS observes a given source). A full description of a continuous state365

estimator employing a recursive Bayesian framework is beyond of the scope of this paper and will be addressed in future work.

In the context of a Bayesian parameter inference problem, Markov-Chain Monte-Carlo technique (MCMC) constructs a

Markov chain by drawing samples from a probability distribution and performing acceptance/rejection sampling. This chain

samples the posterior distribution of the model parameters with a frequency that is proportional to the posterior probability.370

The objective is to estimate the posterior probability density function P (D|Q) of rate vector Q, given some input data D. This

can be achieved by Bayes’ theorem:
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P (Q|D) =
P (D|Q)P (Q)

P (D)
(S14)

where P (D|Q) is the likelihood, representing how well the data fits a given set of model parameters, P (Q) is the prior, and

P (D) is the evidence. Note that P (D) is inconsequential in the context of the existing problem, because this calculation only375

considers relative probabilities between different Q when performing acceptance sampling, and P (D) does not depend on

Q, so it cancels out. As evident in Equation S14, the likelihood function and the prior must be defined in order to run this

calculation. An appropriate prior to promote sparsity is the spike and slab prior, with a higher probability (the spike) at zero

rate. The distribution of nonzero rates can be specified as β(Qi):

P (Q) =
∏
i

S(Qi) (S15)380

S(Qi) =

H if Qi = 0

β(Qi) if Qi > 0
(S16)

Here, H represents the height of the spike. The relative magnitude of H compared to the characteristic value of β(Qi), defines

the strength of the sparsity bias in the rate inference. The function β(Qi) can be defined using any other prior information

available. For the present study, a constant value of β(Qi) = 1 is employed, and H is set to 5. In other words, the algorithm

favors zero rates over nonzero rates by a factor of 5, without imposing any additional prior on the nonzero distribution. A385

likelihood function is then defined using a standard approach of employing the chi-squared statistic via:

P (D|Q) = exp
[
−χ2/2

]
(S17)

where

χ2(S,Q,b) =

N∑
i

(SQ− b)2

σ2
i

. (S18)

Here, S, Q, and b represent the sensitivity matrix, rate vector, and measurement vector, respectively and σi denotes the uncer-390

tainty associated with each measurement-prediction combination. In principle, σi can be a function of the particular dispersion

model’s error characteristics under certain conditions (i.e., a function of wind speed, stability class, etc.)
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A range of sampling schemes with various complexity levels be can employed for approximating P (Q|D). Examples include

Metropolis-Hastings, Gibbs, and Hamiltonian (see Dunson and Johndrow (2019) for a recent review and history of MCMC395

sampling schemes). In this study, we implement the basic Metropolis-Hasting algorithm. A concise description is outlined here

for clarity.

First, a random rate vector is chosen as an initial starting point. Next, a random step is taken in the rate vector. The defined

likelihood and prior functions are applied to both the old Q and the new Q to compute the ratio of new to old posterior prob-400

ability. Then, a random number between 0 and 1 is generated. If this value is less than the ratio of the new to the old posterior

probabilities, the new sample is accepted and added to the chain. Otherwise, the sample is rejected and the old rate estimate

is retained as the most recent sample. This iterative process continues until pre-defined stopping criteria are met, which may

include a maximum number of iterations, convergence of the distribution, or other criteria.

405

The result of this calculation is a “chain” of rate vectors that can then be analyzed further for the given purpose. Means or

medians across marginalized distributions can be determined to infer the most common or best-fit rate values for each source.

In addition, the standard deviations or inner-quartile ranges of the marginalized distributions can be calculated as a measure

of uncertainty per source, and the covariance between different source rate estimates can be computed to gain a deeper un-

derstanding of the underlying distribution. For example, closely located sources may demonstrate a negative covariance. This410

indicates that the algorithm recognizes the need for rate allocation to one of the sources, but struggles to differentiate them. In

this example, an equivalent data fit can be achieved by distributing the rate arbitrarily between these two sources.

Further processing of the rate estimates based on the covariances between sources can be applied to promote sparsity or to

highlight potential instances of source confusion or mislocalization. It can effectively act as a quality control measure to flag415

rate inferences that may be error-prone. In this work, the best-fit rate from a Markov chain of rate vectors is inferred by com-

puting the median of each element of Q. If the median is 0 (more than 50% of the samples for a given source are at 0 rate),

that source rate is set to 0. If the median value is nonzero, then the zero-rate samples are excised and the median of the “slab”

portion of the distribution is recomputed as the best-fit rate.

420

S5 Evaluation of Forward Model Accuracy

In general, it is expected that the more accurate forward model for concentration predictions should result in the best quantifi-

cation estimates. This Appendix tests whether this is indeed the case. To directly compare the accuracy of the three dispersion

modeling techniques (Plume, Puff, CFD), each forward model is applied to actual release rates and locations. Predicted and
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measured concentrations are then compared using several error metrics. A random set of 60 experiments are chosen for this425

analysis. This limited subset is used due to the high computational cost of running CFD against all 347 experiments.

S5.1 Metrics

In order to compare the predicted concentration estimates against the measurement data, we apply the following performance

metrics suggested by Chang and Hanna (2004) for this exact purpose. More specifically, the normalized mean squared error

(NMSE), fractional bias (FB), geometric mean bias (MG), geometric variance (VG), normalized standard deviation (NSD),430

and the fraction of predictions within a factor of x (Facx). Mathematically, these are expressed as

NMSE =
(Xo −Xp)2

XoXp

, (S19)

FB =
2(Xo −Xp)

(Xo +Xp)
, (S20)

MG= exp(lnXo − lnXp), (S21)

V G= exp((lnXo − lnXp)2), (S22)435

NSD =
σp

σo
. (S23)

In these equations, Xo represents the observed concentration, Xp refers to the predicted concentrations (computed via SQ′,

where S is the sensitivity matrix associated with a given model and Q′ is the actual rate vector), and σ is the standard deviation

of either the observed of predicted values. Facx is simply the fraction of predicted values that are within a factor of x of the

measurements. In order to compensate for the fact that a few outliers can significantly impact the NMSE and FB, MG and VG440

are introduced using logarithmically-scaled data to offer error statistics that are less sensitive to a small number of outliers. For

the purposes of computing MG and VG, measurement/prediction concentration pairs where at least one of the values is less

than 1 ppm are removed from the calculation. This prevents contamination of mean MG and VG by predictions/measurements

by sensors upwind of the source or under conditions when the predictions/measurements are near the instrument sensitivity.

In other words, the MG and VG statistics are computed only on prediction/measurement pairs for which both “agree” that the445

sensor in question is receiving an appreciable amount of signal from a source. This helps balance the statistics from being

skewed by an overabundance of Xo = 0,Xp = 0 cases, which are the majority of sensor readings.
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S5.2 Results

The results of applying all three forward models to the same subset of 60 experiments and computing the metrics defined in

S5.1 are shown in Figure S3.450

Figure S3. Comparison of the mean measures of the model skill for the Gaussian plume (orange), Gaussian puff (blue) and CFD (green)

techniques for the selected 60 experiments.

It is evident considering the results in Figure S3 that increasingly complex dispersion modeling (Plume, Puff, CFD, in that

order) results in uniformly and monotonically improving error metrics. In other words, it is the case for each of these 5 metrics

that the Puff outperforms Plume, but is outperformed by CFD. More specifically, the NMSE for the CFD model shows an

improvement of 45% and 25% over the plume and puff models, respectively. To further illustrate this, Figure S4a shows the

ratio of NMSEcfd/NMSEpuff for the 60 experiments, and demonstrates that the CFD outperforms the Puff model in terms455

of NMSE for 72% of cases and a lower MG in 63% and 86%, of the experiments when compared to the puff and plume models,

respectively. A large (>> 1) NMSE indicates that the associated error distribution is more likely to be lognormal than normal

(Chang and Hanna, 2004)).The higher values of geometric variance (VG) for the plume model indicate that the lognormal

distribution of the error has comparatively much larger scatter than both puff and CFD, which show much more comparable

variance in error, as is evident in Figure S4a, showing that 95% of the experiments have NMSEcfd/NMSEpuff within a factor460

of 2.
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Both fractional bias (FB) and mean geometric bias (MG), are indicators of systematic error. Considering these metrics across

all dispersion models, we see that the models generally underestimate the measured concentrations, although the magnitude of

the bias decreases with increasing complexity of the forward model. The systematic underestimation of concentrations across

all three approaches indicates a combination of two potential underlying issues: first, that the simulated plumes are overly465

diffusive, resulting in smaller than actual concentrations. Second, it is also possible that there are more complex wind dynamics

that are not being properly captured by any of the dispersion models which could result in concentration enhancements on

sensors that the dispersion models think are being “missed” by the plume. Either one of these effects could plausibly cause

a systematic underestimation of concentrations. With this said, it is evident that the CFD is more properly capturing salient

features in the plume physics that result in substantially better concentration predictions, however there is still significant room470

for improvement.

In order to further understand the predictive capabilities of the CFD dispersion model under different atmospheric stability

classes, we stratified the experiments by stability class and computed the error metrics in each ASC. In general, we found that

CFD consistently outperforms the puff model for experiments falling in the unstable and neutral ASC regimes. The relative

performance of the CFD is the poorest for the stable regime: CFD only outperformed the Puff in 54% of these cases. It is475

worth noting that while the dispersion profiles in the plume and puff models are determined by the ASC alone, the structures

produced by CFD simulations are far more complex and depend on interactions between particular details of the modeling

approach including the local grid resolution, the dynamic balance between thermal and momentum forcing, and potentially

many other factors. As such, it is difficult to pin down the exact physical reasons why the CFD modeling results in such an

improvement.480

Of all the metrics shown in Figure S3, FAC4 shows the lowest progressive improvement from plume to puff to CFD; in fact,

the FAC4 value for the CFD (0.71) is nearly identical to that for puff (0.70). This is due to the well recognized challenge of

combining observed and simulated plumes both in time and space. As Weil et al. (1992) note, variations in wind direction of 20-

40 degrees may result in complete failure of overlap of simulated and observed plume despite manifesting similar magnitudes

and shapes. Nevertheless, the current FAC4 results show a favorable comparison with the FAC2 and FAC5 numbers reported485

by Wiersema et al. (2020) from their microscale and multiscale CFD simulations of the Join Urban 2003 experiment, which

modeled the single-point release of a tracer in an urban environment. The relative comparison across the following three

performance metrics: NSD, correlation coefficient R and normalized root mean square error (NRMSE), which are related by

the law of cosines, can be performed using the single diagram method of Taylor (2001). An ideal case for these metrics would

be located on the horizontal axis at the origin of the polar plot shown in Figure S4b. For the current experiments, it is clear490

that both puff and CFD vastly outperform the plume model, the CFD slightly edging out puff with near identical correlation

coefficient R but an appreciably lower NSD.
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(a) (b)

Figure S4. (a) NMSEcfd/NMSEpuff from the experimental dataset for CFD. The shaded region indicates the range of cases within a

factor of 2 of the scenario with NMSE=1. (b) Visualizing the model performance metrics via the single nomogram method proposed by

Taylor (2001). Each dot corresponds to the mean value across all experiments used in the CFD dataset. Colors in (b) follow the labeling

identified in figure S3.

S6 Relative Error Distribution Associated With Quantification Methods

Figure S5 shows box-and-whisker plots of the relative error distribution associated with each quantification method. In this

Figure, the orange lines show the median of the relative error distribution while the blue-shaded region shows the two inner495

quartile regions (IQR) of the distribution, encompassing the middle 50% of the data. The whiskers indicate the first and third

quartiles, extending to 1.5 times the IQR, and the circles denote data points outside this range, representing outliers. Several

key features are apparent in this figure. First, the Plume-based quantification methods (first and third columns) show a tendency

toward lower median relative errors suggesting a more pronounced low bias compared to Puff-based models. This observation

is consistent with the E and ∆C statistics represented in the main manuscript. Second, the IQR narrows when transitioning500

from the LSQ inversion methods to MCMC, indicating less scatter in the relative error distributions for the MCMC inversion

method. This trend is also reflected in the F2 statistic from the main manuscript. Finally, the combination of Puff MCMC has

a smaller upper range of percent errors, with the maximum relative error being around 300%, compared to all of the other

methods that have outlying relative error points above 400%.

505
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Figure S5. Box and whisker plots of relative error distributions for 4 different quantification methods.
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