Atmos. Meas. Tech., 18, 5375-5391, 2025
https://doi.org/10.5194/amt-18-5375-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Atmospheric
Measurement
Techniques

Performance evaluation of multi-source methane emission
quantification models using fixed-point continuous

monitoring systems

David Ball, Umair Ismail, Nathan Eichenlaub, Noah Metzger, and Ali Lashgari

Project Canary, Denver, CO, USA

Correspondence: Ali Lashgari (ali.lashgari @projectcanary.com)

Received: 18 March 2025 — Discussion started: 31 March 2025

Revised: 24 July 2025 — Accepted: 5 August 2025 — Published: 16 October 2025

Abstract. Quantifying methane emissions from oil and gas
facilities is crucial for emissions management and accurate
facility-level greenhouse gas (GHG) inventory development.
This paper evaluates the performance of several multi-source
methane emission quantification models using the data col-
lected by fixed-point continuous monitoring systems as part
of a controlled-release experiment. Two dispersion model-
ing approaches (Gaussian plume, Gaussian puff) and two in-
version frameworks (least-squares optimization and Markov
chain Monte Carlo) are applied to the measurement data.
In addition, a subset of experiments are selected to show-
case the application of computational fluid dynamics (CFD)
informed calculations for direct solution of the advection—
diffusion equation. This solution utilizes a three-dimensional
wind field informed by solving the momentum equation
with the appropriate external forcing to match on-site wind
measurements. Results show that the Puff model, driven by
high-frequency wind data, significantly improves localiza-
tion and reduces bias and error variance compared to the
Plume model. The Markov chain Monte Carlo (MCMC)-
based inversion framework further enhances accuracy over
least-squares fitting, with the Puff MCMC approach showing
the best performance. The study highlights the importance of
long-term integration for accurate total mass emission esti-
mates and the detection of anomalous emission patterns. The
findings of this study can help improve emissions manage-
ment strategies, aid in facility-level emissions risk assess-
ment, and enhance the accuracy of greenhouse gas invento-
ries.

1 Introduction

Quantification of methane emissions from oil and gas fa-
cilities is crucial for facility-level emissions management
and accurate greenhouse gas (GHG) inventory development
(Sharafutdinov, 2024). Understanding the contribution of
different emission sources to overall site emissions allows
operators to improve asset risk management and prioritize
mitigation efforts. Currently, the US Environmental Protec-
tion Agency (EPA) and many other entities use bottom-up
GHG emissions inventories, which mainly rely on activity
rate and emission factors (Allen et al., 2024).

Several studies have highlighted major shortcomings of
bottom-up inventories (Riddick and Mauzerall, 2023; Rid-
dick et al.,, 2024a, b). In 2021, 70 % of methane emis-
sions came from facilities emitting less than 100kgh~!, with
30 %, 50 %, and approximately 80 % coming from facili-
ties emitting less than 10, 25, and 200kgh™!, respectively
(Williams et al., 2025), demonstrating that low-emitting fa-
cilities, particularly those below the detection limit of most
point-source remote sensing platforms, contribute signifi-
cantly to total oil and gas methane emissions. Therefore, it
is essential to employ approaches that accurately account for
the substantial impact of these small sources.

The substantial variability in methane emission inten-
sity across geographic regions, facility types, and opera-
tors necessitates a comprehensive characterization of emis-
sion events. Ideally, by applying methods that enable emis-
sion event detection, localization, and quantification (DLQ),
the distributions of rates, durations, and frequencies can be
inferred to provide a deeper understanding of site-specific
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emission patterns, and may bring to light any underlying is-
sues and aid in root cause analysis.

Direct measurement is essential for a more thorough char-
acterization of emission events. A wide variety of methods
can be used to collect various data related to methane emis-
sions. Fixed-point continuous monitoring systems (CMSs)
have been widely deployed to monitor emissions from oil
and gas production facilities for several years. These systems
were initially deployed as a means for emissions anomaly
detection, and as such, they were commonly referred to as
“smoke alarms” (Ijzermans et al., 2024; Gosse, 2023). They
were intended to provide timely alerts of elevated emissions
by processing raw concentration signals into alerts via a va-
riety of anomalous event detection algorithms, ranging from
static concentration thresholds to more sophisticated ap-
proaches employing signal processing and/or machine learn-
ing methods (Gosse, 2023). While anomaly detection is a
useful function of CMSs, providing additional information
regarding the source locations and magnitude of emission
events would enhance the actionable insights provided by
these systems. If these additional features can be developed,
validated, and proven to be reliable, some of the key benefits
that CMSs could offer include (i) providing a comprehen-
sive picture of site-level emissions for the entire period of de-
ployment, (ii) rapid detection of emissions ranging from rel-
atively low rates to super-emitting events, (iii) capturing both
short-duration/intermittent and continuous events, (iv) accu-
rate time-bounding of intermittent emission events, (v) pro-
viding equipment-specific emissions insights that can aid in
root cause analysis and provide strategically relevant infor-
mation for targeted mitigation efforts, and (vi) complement-
ing other measurement methods using a continuous stream of
site-specific data on emission estimates, direct concentration
measurements, and meteorology. To expand the application
of CMSs, it is crucial to improve the existing understand-
ing of its quantification performance, including its accuracy
and uncertainty. This will further demonstrate the value of
these systems as measurement tools that can not only detect
and time-bound anomalous emission events but also provide
insight into the total emissions originating from a given fa-
cility over time and the contribution of different sources to
the facility-level emissions.

Several studies have independently evaluated the efficacy
of CMSs in quantifying emissions, suggesting promising ad-
vancements in recent years (Bell et al., 2023; Ilonze et al.,
2024; Cheptonui et al., 2025). Although technologies have
demonstrated marked improvements in quantification accu-
racy, the algorithms behind these results are proprietary,
making it difficult to compare the results from different tech-
nologies of the same sensing modality. Proprietary DLQ al-
gorithms, while understandable in a competitive business en-
vironment, are often seen as black boxes, requiring different,
more involved methods to evaluate their uncertainties and en-
sure that their performance is fully understood across various
environments. In addition, evaluating methane emission so-
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lutions as a single package (combining measurement, data
collection strategy, and data processing) yields an insepara-
ble uncertainty value that reflects the combined uncertainties
from all three processes. This makes it impossible to differ-
entiate the uncertainty arising from the measurement (i.e.,
hardware), data collection (i.e., deployment strategy and sen-
sor configuration), and data processing (the application of
DLQ algorithms).

While extensive research exists addressing pollutant trans-
port (including long-range dispersion, localization, and
quantification at much larger scales for other applications)
(Chen et al., 2022; Schade and Gregg, 2022; Karion et al.,
2019; Peischl et al., 2016), relatively little literature focuses
on methane emission quantification using near-source point
sensor measurements, i.e., measurements within the bound-
aries of upstream oil and gas facilities. Most of the literature
employs existing dispersion modeling tools and methods,
such as AERMOD (Cimorelli et al., 2005) and CALPUFF
(Allwine et al., 1998), or quantifies single-source emissions
(Sharan et al., 2009; Zhang et al., 2019; Kumar et al., 2022;
Daniels et al., 2024a; Chen et al., 2023, 2024).

In a study published in 2019, a steady-state Gaussian
plume model (GPM) was employed to estimate emission
rates from point sources (Zhang et al., 2019). In this method,
the plume spread parameters are simplified for short dis-
tances, and a heuristic dispersion modifier is introduced to
account for non-ideal measurement conditions. This quan-
tification method is intended to be used in conjunction with
source localization techniques. A more recent study (Daniels
et al., 2024b) provides a framework (and open-source im-
plementation) for single-source detection, localization, and
quantification, with promising results for cases where only a
single emission source is present. However, the fact that the
algorithm only identifies a single source per emission event
renders the algorithm inapplicable to general use cases. Com-
prehensive reviews of advanced detection and quantification
methods can be found elsewhere (Hollenbeck et al., 2021;
Yang et al., 2023).

Dispersion models and inversion frameworks are essen-
tial tools for translating ambient methane concentration mea-
surements (e.g., ppm readings) into source flux rates (mass of
pollutant emitted per unit of time). Forward-running disper-
sion models simulate how methane released from a source
disperses in the atmosphere based on a number of meteo-
rological variables including wind speed, direction, and at-
mospheric stability. On the other hand, inversion models
use mathematical techniques to estimate the source flux(es)
that would have resulted in the observed ambient concentra-
tions at the sensor location. This often involves solving an
optimization problem, where the inverse model adjusts the
source strengths and locations until the simulated concentra-
tions best match the observed amounts.

This paper aims to address the critical need for develop-
ing a more comprehensive understanding of the performance
and robustness of various multi-source methane quantifica-

https://doi.org/10.5194/amt-18-5375-2025



D. Ball et al.: Performance evaluation of multi-source methane emission quantification models

tion methods by evaluating the performance of several estab-
lished atmospheric dispersion modeling and inversion frame-
works within a controlled, multi-leak experimental setting
with synchronous emission sources and constant rates. This
study leverages data collected from a fixed-point CMS de-
ployed at a simulated oil and gas site with multiple simulta-
neous methane releases of varying magnitudes and locations.
The accuracy and reliability of these models are evaluated
with respect to several key metrics related to localization ac-
curacy and total-facility (i.e., source-integrated) quantifica-
tion accuracy.

Three key questions will be addressed in this study. (i) Un-
der an optimum sensor density and placement, how effec-
tively can a CMS pinpoint emissions to the correct equip-
ment group? (ii) What is the accuracy of the total site-
integrated emissions estimates for such CMS network? And
(iii) how well can an advanced CFD-based forward model
coupled with various inversion frameworks perform in pre-
dicting emission rates compared to traditional plume and puff
models?

Accurate emissions quantification using CMSs can en-
hance the reliability and robustness of GHG emissions in-
ventory development. Traditional inventory methods often
rely on activity data and generic emission factors, which
fail to capture the dynamic nature of emissions from indi-
vidual sources or facilities. By providing continuous, real-
time-measurement source-specific emissions, CMSs offer a
direct and empirically driven approach to quantify actual
emissions. High temporal resolution of the CMS measure-
ment allows for the identification and characterization of
gas releases, including the duration and frequency of emis-
sion events. In addition, accurate quantification offers a more
in-depth understanding of the magnitude of fugitive emis-
sions, intermittent events, and variations in operational per-
formance that are often missed by periodic or estimation-
based methods. Integrating CMS data into GHG invento-
ries leads to a more comprehensive understanding of emis-
sion sources, enables the tracking of emission reduction ef-
forts with greater confidence, and supports the development
of more granular and verifiable inventories, informing cli-
mate policies and tracking progress towards decarbonization
goals.

In this study selected quantification algorithms are evalu-
ated using the data from controlled-release experiments fea-
turing constant-rate emission events with known start and
end times. However, it is crucial to recognize that these
controlled-release scenarios are highly idealized, as they in-
volve constant release rates and simultaneous emissions from
all active sources. This idealization may impact the practical
applicability of these algorithms in more complex, real-world
conditions. A more in-depth evaluation of the performance of
fixed-point CMSs in complex emission environments is pro-
vided in a separate study (Ball et al., 2025).

This work offers a novel contribution by evaluating sev-
eral multi-source methane quantification techniques using

https://doi.org/10.5194/amt-18-5375-2025

5377

multi-leak, controlled-release data. Unlike previous stud-
ies that often rely on simulations, this study leverages a
fixed-point CMS to capture the complexities of overlapping
plumes from simultaneous releases. This approach provides a
unique opportunity to assess model accuracy and reliability
under semi-realistic field conditions representative of rela-
tively simple upstream oil and gas facilities. By emphasizing
the strengths of each technique, this study offers crucial in-
sights for improving methane emission quantification strate-
gies, including guidance for selecting appropriate dispersion
models and inversion tools, ultimately informing the devel-
opment of more effective methane mitigation in the oil and
gas industry.

2 Data

The data presented in this work are all collected with the
Canary X integrated device, which includes a tunable diode
laser absorption spectroscopy (TDLAS) methane sensor and
can additionally be mounted with an ultrasonic anemometer
(at least one of which is required for the sensor network to
perform quantification). The Canary X integrated monitoring
devices use TDLAS technology coupled with other neces-
sary components to serve as an loT-enabled stand-alone mon-
itoring device with high sensitivity to perform high-fidelity
measurement of methane concentrations, crucial for accu-
rately quantifying emissions in the field. The methane mea-
surement sensors have 0.4 ppm sensitivity, 2 % accuracy,
and a precision of <0.125 ppm with 60 s averaging. This in-
tegrated measurement device is capable of 1 Hz sampling, al-
though the measured quantities are often aggregated to 1 min
averages for the purposes of analysis and applying quantifi-
cation algorithms. Throughout this work, a note will be made
any time 1 Hz data are used for a specific piece of an algorith-
mic workflow: if not otherwise stated, quantities are assumed
to be minute-averaged aggregates.

Methane concentration measurements are complemented
with meteorological data collected on-site using RM
Young 2D ultrasonic anemometers. Manufacturer speci-
fications indicate the anemometers have an accuracy of
+2 % +0.3ms~! for wind speed and +2° for wind direc-
tion, with resolutions of 0.0l ms~! and 0.1°, respectively.
Methane concentrations and meteorological data are contin-
ually published to a cloud server using cellular networks.

The data were collected over 82d (February to April of
2024) as part of an independent, single-blind controlled-
release study performed at the Colorado State University
(CSU) Methane Emission Technology Evaluation Center
(METEQC) facility in Fort Collins, Colorado. METEC is a re-
search facility hosted by the CSU Energy Institute that fa-
cilitates the study of methane leaks from oil and gas infras-
tructure as part of the Advancing Development of Emissions
Detection (ADED) project, funded by the Department of
Energy’s National Energy Technology Laboratory (NETL).
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Ten Canary X integrated devices were installed within the
METEC site perimeter to measure ambient methane concen-
trations. All of the Canary X devices used for this study were
equipped with an anemometer. More details on the data col-
lected as part of the 2024 CSU METEC controlled-release
study can be found elsewhere (Cheptonui et al., 2025).

Controlled-release “experiments” at the METEC facility
include between one and five releases that are synchronously
turned on and off at the start and end of each unique exper-
iment. The rate of each source is held approximately con-
stant during an individual experiment. Experiment durations
ranged between 30 min and 8 h, while individual source rates
ranged from 0.081 to 6.75kgh™!. Figure 1 overviews the
number of active releases per experiment and source release
rates. The experiments are designed such that only one re-
lease point is active per equipment group at the METEC
facility. Each equipment group is composed of numerous
“equipment units” (i.e., individual tanks, wellheads, or sepa-
rators), and each equipment unit may have multiple potential
release points on it. In other words, each equipment group
has numerous potential release points, but only one is ever
active at a time for a given experiment. In this study, we focus
on the ability of the system to correctly detect, localize, and
quantify to the equipment group level. As such, the centroid
of each equipment group is computed, and these five coordi-
nate pairs (corresponding to the five equipment groups at the
facility) are used as the potential source locations as an input
to the localization and quantification (LQ) algorithms. The
heights of the release locations are unknown but assumed to
be 2 m tall for all sources except for the group of tanks in the
middle of the facility, for which a height of 4.5 m is assumed
and used as input to the LQ algorithms.

Figure 2 offers a visual illustration of the layout of the
controlled-release facility (left), including bounding boxes
around each of the five equipment groups (left) and sen-
sor locations (x’s). It also shows measurement data from
a randomly selected controlled-release experiment, includ-
ing concentration measurements from individual sensors (top
right) and the U and V components of the anemometer mea-
surements (with solid and dotted lines, respectively, bottom
right). The colors of the curves in the right panels here cor-
respond to the colored x’s in the left panels. This figure en-
capsulates all of the data necessary to run quantification al-
gorithms (sensor locations, source locations, concentration
time series data, and wind time series data).

For the purposes of this study, the known release start and
end times are used to segment out the relevant measurement
data for each experiment; detecting and time-bounding each
unique experiment is outside the scope of this work. There-
fore, by applying several selected quantification algorithms
to data from individual experiments, this study evaluates how
well the quantification algorithms perform on constant-rate
emissions events with known start and end times. It is impor-
tant to note that these controlled-release scenarios are highly
idealized, featuring constant release rates and simultaneous
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emissions from all active sources, which may limit the practi-
cal application of these algorithms. However, it is still useful
to evaluate the efficacy of various quantification algorithms
under idealized setups to lay the groundwork for future de-
velopment and studies in which these underlying assump-
tions and simplifications will be relaxed to more accurately
reflect real-world conditions.

3 Methodology

This section, along with the Supplement, details several dis-
persion models and inversion frameworks as options to quan-
tify methane emissions based on ambient concentration mea-
surements using fixed-point CMSs.

3.1 Dispersion models

Two distinct methods, the Gaussian plume and Gaussian puff
models, for predicting concentrations at receptor locations
given a set of sources and associated rates are detailed in the
Supplement. The theoretical and fundamental aspects as well
as the underlying assumptions of each method are described,
and in-depth discussions of various aspects of implementa-
tion to establish a robust foundation for their use are offered.
In addition to these two most commonly used forward dis-
persion modeling methods, a more novel approach, a CFD-
informed calculation, is included in the Supplement, which
directly solves the advection—diffusion equation with a three-
dimensional wind field informed by solving the momentum
equation with the appropriate external forcing to match on-
site wind measurements. All of these three methods rely on
(or are derived from) the advection—diffusion equation, also
commonly referred to as the scalar transport equation. For an
incompressible flow with homogeneous and isotropic diffu-
sion, this equation can be written as

%+u(x,t)-VC—DV2C=Q(x,t), (1)
where C represents the concentration, u is the wind vector
(which may vary as a function of both space and time), D is
the diffusion coefficient, and Q represents emission sources
(which can also vary as a function of both space and time).
It is important to note that unless the treatment of the wind
field, u, explicitly accounts for chemical buoyancy, the re-
sulting solution of the advection—diffusion equation will not
capture this effect.

For the purposes of this study, we will focus on cases
with constant emission rates, i.e., Q(x,t) = Q(x). Inversion
frameworks to infer time-varying source rates will be ad-
dressed in future work. Furthermore, we will focus on emis-
sions from discrete point sources, where the sizes of the ori-
fices of the controlled-release systems are on the order of
centimeters, which is much smaller than source-receptor dis-
tances on the order of ~10m. As such, the constant-rate
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source function Q(x) can be expressed as the summation of
discrete point sources of varying rates:

Q(x) =) 0i8(x —x1)8(y — y)8(z — 20). @
i=1

Here, Q; represents the emission rate of the ith source,
(xi, yi, zi) represent its three-dimensional coordinates, and &
is the Dirac delta function. For the rest of this work, x and y
will be reserved for describing horizontal coordinates, while
z will refer to height.

Two important features to note about this equation are
its scale invariance and linearity. All the terms on the left-
hand side of Eq. (1) are linear in C, and all of the operators
(time derivatives, gradients, dot products, and scalar mul-
tiplication) can be distributed across addition. As a result,
the solution to the advection—diffusion equation with a set of
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constant-rate sources can be expressed simply as the sum of
the solutions to the partial differential equations associated
with each individual source. In other words, the solution to

aC
5o TuG,n-VC - DV’C =

D 0is(x —x)8(y — yi)8(z — z1) 3)

i=1

can be expressed as C = ) _,C;, where C; is the solution
to the advection—diffusion equation applied to the ith point
source:

aC;
8_[l +u(x,f) VC, — szci =

Qid(x —x)8(y — ¥i)d(z —zi). 4
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Finally, note that all of the terms on the left-hand side of
Eq. (4) are linear with respect to C and the operators com-
mute with scalar multiplication: the result of this is that C
and Q; are directly proportional to one another. Therefore,
the solution for an arbitrary emission rate can be obtained
by solving this equation once for a unit impulse and then
normalizing the concentrations accordingly. This can also be
thought of as solving the equation for C/Q; and then multi-
plying it back in the desired rate.

Due to the linear scaling of concentrations with rate and
additive nature of discrete point sources, predicted concen-
trations can be expressed via a simple linear system that sums
up the concentration from every source via b =S Q. Here, b
represents a vector of simulated concentrations, Q is the vec-
tor of source rates, and S is the “sensitivity matrix” that de-
scribes the transport of gas from every source to every virtual
measurement point. Each row of this matrix corresponds to a
simulated methane measurement at a given time and location
under measured meteorological conditions. Each column of
the sensitivity matrix corresponds to a source that is being
modeled. The material provided in the Supplement describes
how this sensitivity matrix is calculated for three different
dispersion models for later use in the inversion process.

3.2 Inversion frameworks

The primary objective of an inversion framework is to uti-
lize ambient concentration measurements represented as the
mass of a pollutant per unit volume of air (e.g., parts per
million) to estimate the locations and rates of the emission
sources as the mass of pollutant per unit time (e.g., kgh™!).
The output of dispersion modeling can be expressed as a sen-
sitivity matrix, S, representing the response of every sensor
to every potential source. Under the simplifying assumptions
of constant emission rates and linear scaling between emis-
sion rate and concentration predictions (as implied by Eq. 1),
inferring the source rates can be expressed as an optimization
problem that seeks the vector @ that minimizes an objective
function of the residuals:

ménf (SQ-b), &)

where S Q depicts the predicted concentration vector calcu-
lated by summing the contribution of all emission sources Q
at the measurement locations and times corresponding to the
measured concentration vector, b.

Selecting an appropriate inversion framework involves
balancing computational cost with desired accuracy and con-
trol, which all depend on the application’s objective. The
Supplement presents details on two contrasting options, rep-
resenting extremes in computational complexity, including a
computationally efficient least-squares optimizer along with
a more computationally expensive Markov chain Monte
Carlo (MCMC) approach. The MCMC inversion method ap-
proximates the full posterior distribution function in the high-
dimensional parameter space of rate vector @ with more
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granular control over prior information and the selected ob-
jective function.

It should be emphasized that these are only two of many
available methods for performing rate inference, which in-
clude genetic algorithms and stochastic variational inference,
among many others. Rather than implementing an exhaustive
list of inversion solvers, this section aims to apply two exam-
ple inversion frameworks, spanning a range of complexity,
to demonstrate the impact of method selection on the perfor-
mance of emissions quantification algorithms, as evaluated
using several key metrics. Note that there is no one-size-fits-
all “best” framework for this problem. The optimal solution
will depend on practical constraints (e.g., computational re-
sources and required latency) and desired outcomes, such as
a highly responsive leak detector that prioritizes detecting
emission events of various sizes (even at the cost of false
positives), or focusing on accurate estimation of cumulative
emissions, even if some smaller leaks are potentially over-
looked or “rolled up” into a smaller number of larger-rate
emission points.

3.3 Evaluative metrics

This study aims to answer the following questions. (i) How
well can a CMS, under favorable network configuration
conditions (high sensor density), localize emissions to the
proper equipment group? (ii) How accurate are the total
site-integrated emissions estimates? (iii) Can an advanced
CFD-based forward model, where the wind field is first
resolved, outperform the canonical plume and puff mod-
els in predicting the concentration field at CMS stations
and site-integrated emission rates for these relatively simple
controlled-release experiments when combined with differ-
ent inversion frameworks? To this end, the error metrics and
evaluation of a given set of rate estimates in comparison to
the “ground truth” are tailored to address these specific ques-
tions. Although the focus of this study is to investigate the
accuracy of different combinations of the forward-inversion
frameworks, a more direct comparison of forward models us-
ing known emission rates and locations is investigated by
computing several statistical error metrics on the predicted
and measured concentrations across all forward models in
the Supplement.

The result of an individual rate calculation (i.e., a spec-
ified dispersion model and inversion framework applied to
data from an individual “experiment”) will be rate vector Q,
where each element of the vector represents the estimated
rate associated with equipment group i. For a given exper-
iment, the ground-truth rate vector can be equivalently ex-
pressed and will be denoted as Q’. For the remainder of this
document, any primed values will indicate the actual ground-
truth release information, while unprimed values represent
the estimated quantities.
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3.3.1 Localization metrics

A binary classification scheme is employed to provide a
proxy for localization accuracy. In this approach, a given rate
vector @ is processed into a binary vector (D) representing
the emission status of a given equipment group. If the rate of
a given element is 0, then the associated binary element is set
to O (not emitting), and if the rate is nonzero, the associated
binary element is set to 1 (emitting):

1
b=

These binary values are then compared to the ground-truth
binary values and classified as true positives (TPs), false pos-
itives (FPs), false negatives (FNs), and true negatives (TNs).
A TP occurs when both the estimated and actual binary ele-
ments are 1 (the equipment group was emitting and properly
estimated as emitting). FP indicates that the estimated binary
element is 1 but the actual is O (an equipment group was es-
timated to be emitting but was not). FN occurs when the es-
timated binary is O and the actual is 1 (the equipment group
was emitting but was not estimated to be emitting), and a
TN indicates that both binary elements are O (the equipment
group was not emitting and was not estimated as emitting).
These designations effectively represent the capability of the
system to parse out information from the concentration mea-
surements and localize that source to the correct group. For
each experiment, the number of correctly identified sources
(i.e., the addition of TNs and TPs) is computed to give a lo-
calization score (L):

if Ql' >0
if 0; =0. ©)

M (1 ifD;=D"
LZZ{ 0 ifD;#D. ™
Jj=1 . J

A perfect localization score, Ny—s5, is achieved when the
emission status of each equipment group is correctly identi-
fied (as a TN or TP), resulting in a value of L that equals the
number of equipment groups in the experiment (the length of
Q). In addition, the total number of false positives and false
negatives is recorded for each quantification approach (dis-
persion model plus inversion method) across all experiments.
This enables an analysis of each system’s tendency to either
overpredict or underpredict the number of active sources as a
function of dispersion models and inversion frameworks.

3.3.2 Quantification metrics

The metrics in this section are developed to evaluate the ac-
curacy of total site emissions quantification using CMSs by
comparing estimates to the ground-truth total emissions from
the facility. First, total emissions estimates for every single
experiment are calculated. The rate vectors for a given ex-
periment are summed before error metrics are computed such
that the total emission estimate during an experiment ( Qo)
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is simply

Qui=) 0, ®)
J

A set of quantities are then calculated across all experiments.
First, the mean error (E), which is a direct measurement of
the system’s bias (i.e., the mean of the error distribution of
facility-level quantified rates), is computed as follows:

_ 1 ¥
E==2 Qo Qu ©)
i=1

where N is the total number of experiments. As a proxy for
the uncertainty of the rate estimates, the mean absolute error
(|E)) is then calculated. It is a measure of how far off in total
the emissions estimates are on average (+|E|kgh™!):

_ 1 &
El =5 D100~ Q- (10)

i=1

Analogous quantities (the mean percent error and mean ab-
solute percent error) are computed for the normalized error
((Qrot — O1o)/ O1op) to better account for low-rate experi-
ments that have less influence on the raw unnormalized error
metrics, denoted Ee; and | E|rel. Finally, the fraction of rate
estimates that are within a factor of 2 of the actual rate (F2)
is computed via

1 if —05 < Qo-Cu g
> .

tof

F2=—

N 1)

‘= | 0 else.

In addition to these summary statistics of the error distribu-
tion, the total cumulative estimated emission (in terms of to-
tal mass) is calculated across all experiments. The cumulative
emission at time ¢ is determined by aggregating total emis-
sions through experiments up until that time is computed via

N;
Ct)=)_ QuAt, (12)

i=1

where At; is the duration of experiment i. The cumulative
error, AC =C(ty) — C’(tf), is reported at the end of a set
of experiments (i.e., the end of the last experiment). Note
that the cumulative error should be very similar, although not
identical, to the mean error multiplied by the total duration of
the experiments, as this metric accounts for the duration of
each unique experiment, whereas the mean of the raw error
distribution does not factor in experiment duration.

To aid in the understanding of these metrics, an illustrative
example of these evaluative metrics applied to a single exper-
iment from the study is shown in Fig. 3. This figure shows an
image and two tables that summarize the output of the sys-
tem (rate estimates for each equipment group) alongside the
ground-truth release rates (top table) and computes the rel-
evant evaluative metrics for this single experiment (bottom
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Figure 3. Example experiment to illustrate the evaluation of the output of the system with respect to ground-truth rates. The image on the left
shows each equipment group’s estimate classified as either a TP, FP, EN, or FP. The upper table summarizes the estimated rates, the actual
rates, and the detection classification, while the lower table applies the evaluative metrics described above to the data from the upper table.

table). During this experiment, there were three active re-
lease sources: the tanks (group 4T), the western separators
(group 45), and the eastern separators (group 5S). The west-
ern and eastern wellheads (groups 4W and 5W, respectively)
were not emitting. The quantification estimates are shown in
the second column of the top table, while the ground-truth re-
lease rates are shown in the third column of the top table. The
final column shows the classification of the estimate as either
a TP, FP, FN, or FP as previously described. The table on
the bottom shows the relevant evaluative metrics applied to
the estimated and ground-truth rates in the top table. We see
that for this example experiment there were two true positives
(the system accurately identified that both the 4S and the 5S
groups were emitting), one false negative (the system missed
that the tanks were emitting), one false positive (the system
assigned a small but nonzero rate to the 4W group, which
was not emitting), and one true negative (the system accu-
rately identified that the SW group was not emitting). These
statistics are summarized in the bottom table, along with the
overall localization score, which in the case was 3 (i.e., the
emission status of three out of the five equipment groups was
correctly identified). The total estimated and actual facility-
level emission rate is shown in the bottom table as Q and Q’
(these are computed as the sum of the “Estimated Rate” and
“Actual Rate” columns, respectively). In this example, the es-
timated facility rate is 1.73 kg h~1, while the actual emission
rate is 1.83, representing an error of —0.1kg h=! (E) and a
relative error of —0.055 (i.e., —5.5 % error, E). In terms
of the other quantification-related metrics (F2 and AC), this
experiment’s estimated facility-level rate is within a factor of
2 of the actual rate (so it would positively contribute to the
fraction of estimates that were within this factor, when sum-
ming over all experiments), and the contribution to the cu-
mulative error from this experiment would simply be EAf,
where At is the duration of this experiment. The duration of
this particular experiment is 30 min, so the contribution to
AC is —0.05kg.
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4 Results

Section 4.1 details the application of each unique combina-
tion of the Puff and Plume dispersion models and inversion
framework to the set of 347 experiments. Due to the high
computational cost of performing CFD across the entire set
of experiments, only a small number of representative cases
are computed, the results of which are discussed further in
Sect. 4.2. The evaluation metrics associated with each com-
bination of Plume/Puff/CFD and LSQ/MCMC are then com-
puted and discussed.

4.1 Localization and quantification using Gaussian
models

The results obtained by employing each combination of the
Gaussian dispersion model and each inversion (LSQ and
MCMC) framework across all 347 controlled-release exper-
iments are presented in this section. Table 1 details the sum-
mary statistics for each combination. In general, the more
complex combinations (i.e., Puff over Plume and MCMC
over LSQ) result in better error statistics across the major-
ity of metrics. These improvements are especially prevalent
in the localization-related statistics (Nz_s and L) and the
variance of quantification errors (e.g., |E| and F2). For ex-
ample, consider the combination of the GPM (Plume) and
least-squares (LSQ) fitting as the simplest combination. In
this case, the number of experiments where the emission
status of each equipment group are all correctly identified
(Np=5) is 85 (out of 347). When applying the same LSQ in-
version framework but increasing the complexity of the dis-
persion model to the Gaussian puff (Puff), this number goes
up to 116. In contrast, holding the dispersion model con-
stant (Plume) but applying the MCMC inversion results in
this number increasing to 149. Finally, when using the more
sophisticated Puff dispersion model and MCMC inversion,
the number of cases where all five equipment groups’ emis-
sion status is correctly identified increases to 184.
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Table 1. Summary statistics of all four combinations of dispersion model and inversion calculation.
Method TP FP FN TN E |E| Nq=s) L F2 Ey |Ele AC
Plume LSQ 713 404 62 556 -0.1 1.13 8 366 73 0.13 0.63 —135.02
Puff LSQ 718 319 57 641 —-0.02 0.96 116 392 79 0.13 0.54 —55.89
Plume MCMC 729 242 46 718 —0.11 0.87 149 417 8 0.12 048 —117.44
Puff MCMC 743 192 32 768 0.02 0.8 184 4.35 89 0.13 0.42 12.44
. The improv§ment in 'localization statistics .when employ- e | o
ing the Gaussian puff instead of the Gaussian plume can 1751 =2 puffLSQ
be explained by the difference in the fidelity of the tempo- = i —
ral modeling of the dispersion. The GPM computes minute- :
averaged velocity fields, which are assumed to be spatially . !
homogeneous (an assumption that underpins the derivation € 100 !
of the Gaussian plume), and uses this singular mean value S s
to approximate the dispersion of gas on minute-averaged H-_
timescales. In contrast, the Gaussian puff model directly in- 50 e
tegrates the spatially and temporally varying wind field on 5 : """""""""
much finer timescales (using 1 Hz wind data), resulting in E I'..T,T.T.T..!
more accurate dispersion trajectories that take into account 5 1 B 3 ! 3 6

the spatial and temporal variation of the wind field.

Improvement in localization statistics when going from
the simple LSQ fitting to the MCMC inversion is a direct
consequence of the more aggressive sparsity promotion em-
ployed in the MCMC algorithm and more sophisticated post-
processing of the iterative five-dimensional chain of rate vec-
tors and associated probabilities. This results in a signifi-
cantly smaller number of false positives and also a noticeable
decrease in the number of false negatives. This highlights the
importance of choosing the appropriate inversion framework
for the desired outcome. For instance, if over-localizing (pro-
ducing nonzero emissions where no emissions were occur-
ring) is not a concern for the application at hand and only a
rough estimate of cumulative emissions is desired, then using
the simple LSQ inversion may be appropriate. If, however,
the localization output is being used to guide manual detec-
tion and remediation efforts (e.g., optical gas imaging (OGI)
inspections), then reducing the potential search area via more
accurate localization is of critical importance. Therefore, a
framework that produces fewer false positives (while main-
taining a low false-negative count) may be worth the addi-
tional computational cost.

Histograms of the number of correctly identified emitters
(L) for all four combinations of the dispersion model and in-
version framework are shown in Fig. 4. Note that the number
of cases with poor localization results (where only one or two
of the equipment groups’ emission status is identified as cor-
rect) is significantly lower for the MCMC inversion than the
LSQ. Employing a combination of Puff and MCMC results
in only 12 (out of 347) experiments with poor localization
(localization scores smaller than 3), whereas the combination
of Plume and LSQ has 66 cases with poor localization. This
highlights the advantage of employing an inversion frame-
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Number of Correctly Identified Emitters (L)

Figure 4. Histograms of the number of correctly identified emit-
ters across all four combinations of dispersion model and inversion
calculation.

work with more aggressive and controllable sparsity promo-
tion. The majority of this improvement is driven by reducing
the false-positive count, which is achieved by more strictly
penalizing nonzero rates.

Figure 5 shows the actual vs. estimated facility-integrated
rates across all 347 experiments for all four combinations of
the dispersion model and inversion framework on a logarith-
mic scale. The black dashed line indicates the parity (y = x)
relation. The bounding dotted black lines show a factor of
2 above and below parity (y = 2x and y = 0.5x) for refer-
ence. Note that there is significantly less scatter in the red
dots about the dashed black line than there is any other color,
indicating that the combination of Puff MCMC yields the
tightest distribution of rate estimates about the parity line.
This is supported by the F2 statistic from Table 1, which
shows that the combination of the Puff MCMC quantifica-
tion algorithm has the highest percent of estimates within a
factor of 2 and the smallest absolute relative error, |E |l

Figure 6 shows the actual vs. estimated facility-integrated
rates across all 347 experiments for various combinations of
the dispersion model and inversion framework all together on
a linear scale. In this panel, linear fits to the data are shown
with the slope and associated R? shown in the legend. The
linear fits indicate that the quantification estimates that uti-
lized Puff have slopes closer to 1 (0.87 and 0.89 for the Puff
LSQ and Puff MCMC, respectively) compared to the quan-
tification estimates that utilized the Plume (0.8 and 0.82 for
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Figure 5. Actual vs. estimated facility emissions for 347 experi-
ments on a logarithmic scale. The dashed black line depicts the par-
ity relation (x = y). The dotted lines indicate a factor of 2 lower and
higher than the parity relation.

Plume LSQ and Plume MCMC, respectively). It is worth not-
ing that the slope of this line is not a direct measurement of
the bias. This is because these linear fits are generally com-
puted by minimizing the squared error, and as such, a single
outlying event with a relatively high error can have an out-
sized effect on the inferred slope. The slopes of these lines
are more directly related to the average signed squared er-
ror than the bias. This being said, the slopes of these lines
are often interpreted as a rough proxy for the bias of a sys-
tem and, as such, are worth considering with the appropriate
context. The trends evident in the linear fits across different
quantification estimates are mirrored in the two evaluation
metrics that best relate to the bias of the system in Table 1:
the average error, E, and the cumulative error, AC. More
specifically, these quantities show the lowest bias (closest to
0 values) for the estimates from the Puff models, which is
reflected in Fig. 6 (the linear red fit for the quantification es-
timates using Puff MCMC and orange for the Puff LSQ that
has slopes in the parity plots that are the closest to 1).

The coefficient of determination (R?) is shown for each
linear fit in the right panel of Fig. 6. Similar to how the
slope, while related, does not directly measure bias, R? re-
flects the variance of the distribution about the linear fit. In
other words, it can be used as an indicator for the statistics
from Table 1 related to the variance of the error distribution
(F2, |E|, |E|re1). Similar trends are evident in the R? values
inferred from the linear fits, with the coefficient of determi-
nation of the linear fit getting closer to 1 for increasing com-
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Figure 6. Actual vs. estimated facility emissions for 347 experi-
ments on a linear scale. The dashed black line depicts the parity
relation (x = y). The lines correspond to the linear fit to each quan-
tification method’s respective actual vs. estimated pairs. The slopes
of these lines and the associated R2 value are shown in the legend
of the right panel.
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Figure 7. Error histograms for each quantification method across
all controlled-release experiments.
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Error histograms for these four quantification calculations
are shown in Fig. 7 to illustrate that the near-zero-error
peak is significantly higher for the combination of Puff and
MCMC than it is for any of the other quantification methods
and drops off more quickly towards higher error. The Plume
LSQ results show the most high-error rate estimates, and the
Plume MCMC combination generally shows a marginal im-
provement over the Puff LSQ. The box-and-whisker plots of
the relative error distribution associated with each quantifi-
cation method are presented in the Supplement.
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Table 2. Table of statistical significance in error distribution differ-
ences between every combination of quantification method.

Methods KS statistic ~ p value
Puff LSQ/Plume LSQ 0.08 0.208
Plume MCMC/Plume LSQ 0.14 0.003
Plume LSQ/Puff MCMC 0.17  0.00009
Plume MCMC/Puff LSQ 0.1 0.086
Puff LSQ/Puff MCMC 0.13 0.007
Plume MCMC/Puff MCMC 0.12 0.019

A pairwise Kolmogorov—Smirnov (KS) test was employed
to statistically test the significance of the differences in rel-
ative error distributions among the four quantification meth-
ods for all six combinations of distributions. Table 2 presents
the results of the KS statistic and associated p value for
the two error distributions from each combination of quan-
tification methods. The KS statistic represents the maxi-
mum difference between cumulative distribution functions.
It can be used as a measure of distribution similarity, with
a smaller value indicating greater similarity in distributions.
The p value represents the probability of the two sample dis-
tributions being drawn from the same underlying probability
distribution. Unsurprisingly, the highest degree of distinction
between relative error distributions is observed between the
Plume LSQ method and the Puff MCMC method — the two
methods that are, respectively, identified as the worst- and
best-performing method.

The pairwise comparison of Plume LSQ and Puff MCMC
error distributions has a KS statistic of 0.17, the highest of
any other combination, as well as the lowest p value of
0.00009. It indicates that the null hypothesis that the two
samples could be drawn from the same underlying distribu-
tion can be rejected to a very high degree of certainty. In
contrast, the two LSQ-based inversions have a significantly
smaller KS statistic, indicating that the two distributions are
more similar than any of the other combinations listed in Ta-
ble 2. A p value of 0.208 indicates a substantially higher
probability that the two samples could have been drawn from
the same underlying distribution.

It worth noting that four out of the six combinations of
distributions have statistically significant differences (p val-
ues < 0.05). The other combination that was not different to
a high degree of statistical significance is the Plume MCMC
and Puff LSQ methods, showing a KS statistic of 0.1 and
a p value of 0.086. The error metrics related to quantifica-
tion accuracy indicate improved error distributions for the
higher-fidelity modeling/inversion choices (Puff over Plume
and MCMC over LSQ). Any quantification method that com-
bines a high-performing model (e.g., Puff for dispersion
modeling or MCMC for inversion analysis) with a lower-
performing one (Plume for dispersion modeling or LSQ for
inversion analysis) yields an intermediately performing algo-
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Figure 8. Scatter plot of Plume LSQ versus Puff MCMC relative
errors. Red dots denote experiments where the Puff MCMC out-
performed the Plume LSQ calculation, while blue dots denote the
opposite.

rithm, resulting in relatively comparable error distributions
when considering the Puff LSQ/Plume MCMC combination.
Figure 8 further illustrates the improvements that can be
realized by employing more sophisticated dispersion mod-
eling and inversion frameworks by comparing the relative
error associated with each experiment for the Plume LSQ
against the Puff MCMC emissions quantification methods.
The dashed black line depicts x = y, denoting equal errors,
and the points are colored corresponding to whether they fall
above the line (higher error from Puff MCMC colored in
blue) or below the line (higher error from Plume LSQ col-
ored in red). The number of experiments for which the Puff
MCMC method outperformed the Plume LSQ was 244 out
of 347. In other words, the Puff MCMC rate inference was
superior to the simpler Plume LSQ 70 % of the time.

4.2 The application of CFD-driven localization and
quantification for a subset of experiments

Compared to the plume and puff forward models, perform-
ing CFD simulations is considerably more computationally
expensive, especially when the simulations target resolving
the relevant scales embedded inside the surface layer. This
cost increases further when setting up the sensitivity matrix,
which is the required input for the inversion frameworks.
This requires solving five additional scalar transport equa-
tions where for each equation only one of the five emission
sources at the ADED facility is actively emitting at a unit
rate. Therefore, quantification and localization estimates us-
ing the CFD framework as the forward model were accom-
plished for a small subset of experiments. As such, four ex-
periments are randomly selected. The CFD framework de-
scribed in the Supplement is applied to generate sensitivity
matrices for each of the four experiments. Then, the inver-
sion process is performed using LSQ and MCMC, and the
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error metrics described in Sect. 3.3 are computed. Table 3
highlights the results of the comparison among the three for-
ward models, indicating the performance improvement re-
alized when employing CFD compared to both Plume and
Puff. Only the MCMC results are shown in this table for clar-
ity. Note that the Plume and Puff results presented in this sec-
tion are also derived from the same four selected experiments
to permit a fair comparison.

Table 3 indicates comparable localization statistics (TP,
FP, FN, TN, and Z) for the CFD and Puff models. How-
ever, quantification statistics for the CFD models show sig-
nificant improvements over the other dispersion models: E
for CFD is —0.14, while the Plume and Puff are 0.58 and
0.6, respectively, a factor of ~4 farther from 0. Similarly,
the average absolute error, |E|, is substantially better (0.28
compared to 0.58 and 0.92 for Plume and Puff, respectively).
Relative metrics also show analogous improvements.

Figure 9 shows parity plots for all dispersion models using
the MCMC and LSQ inversion frameworks on the left and
right, respectively. This figure further emphasizes the perfor-
mance advantage that CFD-based quantification offers over
the Plume and Puff models. While there are some instances
where either the Plume or Puff performs better than the CFD,
the CFD-based inversion shows an obviously better fit to the
parity line than the other methods, on average. As discussed
in the Supplement, these improvements result from the CFD
approach’s ability to reproduce the underlying unsteadiness
and the near-surface complex flow effects with greater accu-
racy and detail.

5 Discussion

The development of multi-source methane emission DLQ al-
gorithms is essential for accurate detection and quantification
of oil and gas methane emissions. In these facilities, multiple
emissions from different sources, varying in magnitude and
location, can occur due to the complex infrastructure and op-
erational processes. The shortcomings of single-source mod-
els in disentangling the overlapping plumes from these mul-
tiple leaks can lead to significant errors in both the estimated
emission rates and the identified leak locations. Multi-source
approaches, on the other hand, enable the independent quan-
tification and localization of each individual leak. This ca-
pability is crucial for effective facility-level risk assessment
and mitigation strategies, as it allows operators to prioritize
repairs and address the most significant emission sources.
In addition, a comprehensive understanding of the temporal
and spatial distribution and magnitude of simultaneous leaks
provides a more comprehensive picture of overall site emis-
sions, which is critical for regulatory compliance and accu-
rate emissions inventory development.

Multi-source methane emission DLQ algorithms require
advanced dispersion and inversion methods that account for
different aspects of short-range plume transport and inver-
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sion. This study represents an initial step toward developing
more sophisticated solutions to enable multi-source methane
emissions DLQ. However, several simplifying features were
implemented in this work, primarily imposed by the data
constraints inherent in these specific controlled-release stud-
ies. Key simplifications include (i) facility complexity level,
(1) lack of terrain complexity, (iii) lack of complex, time-
varying baseline emissions, (iv) constant emission release
rates, (v) synchronous emission events during each experi-
ment, and (vi) absence of higher-rate (> 10kg h~1) releases.
Furthermore, the focus of this work was on the localization
and quantification of constant-rate sources for known emis-
sion start and end times: the detection and time-bounding of
emission events were not a part of this study.

CSU’s METEC could be a good representation of rela-
tively simple real-world operational upstream oil and gas
facilities. However, other types of facilities, including mid-
stream sites, may be more congested, representing an addi-
tional complexity level in terms of the number of sources,
higher and more fluctuating baseline emissions, emission
patterns, and obstructive complexity that may render certain
dispersion models inapplicable. Also, the METEC facility is
located in an area with fairly simple terrain. However, facili-
ties in other regions with more complex terrain, such as Ap-
palachia, can present other challenges related to natural ob-
stacles. This aspect may require the consideration of alterna-
tive dispersion modeling techniques that account for the im-
pact of complex terrain and obstacles, such as the CFD simu-
lations informed by on-site wind measurements presented in
this study.

Baseline emissions often depend on many factors, includ-
ing facility type, site-specific operational activities, facility
size, facility age, maintenance practices, and many other con-
siderations. The measurement data collected during the 2024
CSU METEC study did not include any baseline emissions.
However, the magnitude of baseline emissions as well as the
magnitude of their fluctuations can significantly impact the
application of any DLQ solution.

The 2024 CSU METEC study featured only constant emis-
sion release rates within each experiment, with simultaneous
activation and deactivation of the emitting sources at the ex-
periment’s start and end times. Consequently, for each exper-
iment, the facility alternated between a sterile “off” state and
an “on” state with constant emission rates. These simplified
and known patterns of emissions constitute “prior” informa-
tion that algorithms can, in principle, exploit. In addition, the
experimental design required an event-based quantification
reporting. This approach may be less practical and as a re-
sult not suited for real-world applications. In the presence of
asynchronously changing time-varying source rates (as ex-
pected at operational sites), event-based quantification will
not properly capture the relevant features in emission time
series. As a result, the 2024 CSU METEC controlled-release
testing performance may not fully generalize to the com-
plex emission patterns prevalent in real-world operational
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Table 3. Table of error metrics across all dispersion models, including CFD, using MCMC inversion applied to the smaller subset of experi-

ments that CFD was performed on.

Method TP FP FN TN E N(1=5) L F2 Erl  |Elel AC
Plume MCMC 7 8 1 4 058 1 275 1.0 028 028 1.67
Puff MCMC 8 3 0 9 0.6 2 425 1.0 03 045 1.56
CFD MCMC 8 3 0 9 -0.14 1 425 10 -006 0.3 —0.61
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Figure 9. Parity plots for all three dispersion models using MCMC (a) and LSQ (b) for the small sample of CFD-computed experiments.

settings. It should be noted that to address these concerns,
the CSU METEC has developed a more advanced testing
protocol that more accurately replicates the complex emis-
sions found at operational facilities, including simulating op-
erational background emissions.

The release rates employed for the controlled releases in
this study are not sufficiently high for chemical buoyancy to
be relevant. However, for large emission events (e.g., super-
emitters > 100kgh™') neglecting the chemical buoyancy
will lead to an overestimation of concentration enhancements
for a given source rate and hence an underestimation of the
release rate in the inversion of measurements to rate. Future
work with higher rate controlled releases will explore how
different approaches to approximating the effects of chemical
buoyancy affect the resulting quantification estimates from
CMSs.

The current study focuses on a small subset of dispersion
models and inversion frameworks that are well established
and commonly used for emissions quantification. This de-
liberate choice was driven by a key objective: to provide
a transparent comparison of the performance of method-
ologies commonly used in atmospheric dispersion modeling
and emission quantification. Applying these methods to mea-
surement data with high-quality ground-truth releases helps
quantify the uncertainty associated with rate estimates. In
principle, by applying these same algorithms across different
sensor configurations, specific hardware, and sensing modal-
ities (e.g., metal oxide vs. TDLAS), the uncertainties asso-
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ciated with algorithms could be disentangled from the un-
certainties inherited from specific deployment strategies and
hardware specifications.

In this study, the Gaussian models (Plume and Puff) were
selected for their computational efficiency and widespread
application, providing a baseline for comparison. At the op-
posite end of the complexity spectrum, the CFD modeling
was selected for its capability to provide a high-resolution,
3D representation of atmospheric dispersion. This method
can capture complex flow patterns that alternative models of-
ten overlook. As a result, the CFD modeling allows for de-
tailed simulations of plume behavior, particularly in scenar-
ios involving complex terrain or variable wind fields, where
accurate representation of turbulent mixing is crucial. More-
over, CFD models can offer additional benefits to integrate
facility-specific data, like site-specific temperature measure-
ments, enabling a more tailored and accurate simulation
compared to alternative dispersion models. The MCMC in-
version framework was chosen as a more computationally in-
tensive alternative to LSQ for its ability to handle complex,
non-linear problems and provide the full high-dimensional
posterior probability distribution, which can enable recursive
Bayesian estimation for at-scale continuous deployment of
these systems (i.e., non-event-based quantification).

Note that the landscape of dispersion modeling and inver-
sion frameworks is far more extensive. The exploration of
alternative and often more complex methods, such as La-
grangian stochastic models or more sophisticated computa-
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tional fluid dynamics (CFD) approaches, could offer valuable
insights into the behavior of emissions under complex terrain
or highly variable atmospheric conditions. However, for fa-
cilities with relatively simple setups and emissions patterns,
improvements to the results by employing more sophisticated
techniques may be marginal. Therefore, the selection of the
most appropriate approach for quantification depends on the
objectives and expected accuracy levels.

While a detailed analysis of how meteorological condi-
tions affect the accuracy of the detection, localization, and
quantification algorithms is deferred to a future study, there
are several expectations that can be provided based on the
underlying physics of gas dispersion and assumptions uti-
lized by Gaussian models that may provide some insight into
how they will perform under certain conditions. For instance,
the utility of these systems may be significantly decreased
during time periods with extremely high wind speeds. This
is because the measured concentrations scale inversely with
wind speed, so if the wind speed is sufficiently high such
that the measured concentration enhancements are within
noise of the measurement device, then the system’s reliabil-
ity in terms of converting these concentration enhancements
to localized source rates will be significantly inhibited and
in some cases impossible. The precise wind speed cutoff for
this depends on the characteristic source—sensor distances,
release rates, atmospheric stability, and the sensitivity of the
hardware. In addition to high wind speeds having the poten-
tial to negatively impact the performance of CMS-based es-
timates, extended periods of time with extremely low wind
speeds can also pose challenges. In the plume-based imple-
mentation presented in the Supplement, measurement data
points with corresponding wind speeds of less than 0.5 ms™!
are excised from the analysis due to the Plume’s inappli-
cability under these circumstances. In practice, this means
that if there is a period of time when the wind speed is al-
ways less than this threshold, then the plume model, as im-
plemented and presented here, will not be able to quantify
emissions from this time period. In contrast, the puff-based
model can capture these low-wind-speed time periods; how-
ever, the standard dispersion coefficients that are employed
may not be as accurate during extremely low wind speed con-
ditions, when gas pools in place, and as such, the accuracy of
puff-based quantification estimates will likely be negatively
impacted. Finally, time periods with little variability in wind
direction are prone to source confusion (see, e.g., Ball et al.,
2025), and as such, the accuracy of the system during these
time periods will be negatively impacted. Future work will
more quantitatively explore how the output of CMS-based
quantification estimates is affected by these various meteo-
rological conditions.

These results represent something of a best-case scenario
in terms of the relative simplicity of the facility as well as the
overdense network of sensors that is deployed for this study.
In general, the accuracy of the system will likely decrease
with lower sensor density. How, exactly, the performance is
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affected by varying the number of sensors and their configu-
ration will likely depend on the details of the specific facility
(number and layout of emission points) as well as the typical
variability in the wind direction. In general, we expect the
impact of sensor density on DLQ accuracy to be independent
of specific model choices (in terms of inverse solvers and for-
ward models). However, future research should explore more
quantitatively how the sensor deployment strategy, in terms
of both density and configuration, affects the accuracy of var-
ious DLQ algorithms from CMSs.

Several more in-depth analyses of the performance of
these systems and associated and algorithms are possible
with these data: generating detection curves as a function
of emission rate and inference of 90 % detection limits, in-
vestigating the per-group detection statistics, rerunning algo-
rithms with different subsets of the underlying sensor data,
and investigating how well the system is able to detect small
leaks in the presence of larger simultaneous emissions, as
well as the impact of emission duration on the DLQ statistics.
While the focus of this paper was on some relatively simple
evaluative statistics related to the total site-level emissions,
as well as detection and localization accuracy, these more in-
depth analyses will be investigated in future work.

It is worth noting that while the puff model, driven by
high-frequency spatially informed wind measurements, out-
performed the plume across all metrics, the decision of which
model to employ should be informed by the needs of the spe-
cific application. For instance, in many cases, high-frequency
wind data may not be available, which may render some of
the advantages of the puff model moot. Additionally, with
the same inversion framework, the plume model’s overall
quantification estimates were not dramatically worse than
the puff: for instance, when comparing the Plume+MCMC
and Puff+MCMC models, the fraction of estimates within a
factor of 2 was only 4 % lower, and the mean relative abso-
lute error was only 6 % higher when using the plume model.
Additionally, the cumulative mass estimate, while showing
more negative bias than the puff model, was only off from
the true cumulative mass by about 5 %. In many cases, such
as deployment of these algorithms at scale, especially on fa-
cilities without high-frequency wind data (or at extremely
simple facilities with no obstructions where the wind field
is more homogeneous), the additional computational cost of
employing the puff model may not be worth the marginal
gains. In cases with more complex wind fields, available
high-frequency wind data, and a need for accurate localiza-
tion, then the puff model should likely be implemented.

Future research should prioritize the evaluation of vari-
ous quantification methods to refine our understanding and
improve the accuracy of emission estimates across diverse
operational settings with more complex operational emis-
sions scenarios. This could include more complex facility
layouts with a larger number of sources and obstacles, higher
baseline emissions with increased fluctuations, more compli-
cated emission patterns (e.g., time-varying emission rates),
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and case studies located in various regions to account for at-
mospheric diversity. This highlights the value of conducting
more controlled-release studies to generate datasets that are
representative of various real-world scenarios.

This study underscores one of the primary applications of
CMSs as long-term integration of emissions for accurate es-
timates of the total mass emitted. These long-timescale esti-
mates enable the detection of anomalous emission patterns,
such as an increased weekly averaged facility-level emission
rate, potentially indicating anomalous events such as a per-
sistent fugitive leak or higher-than-average operational emis-
sions. Future research will examine the impact of sensor den-
sity and configuration on quantification accuracy.

6 Conclusions

This paper presents algorithms for inferring constant-rate
emissions from temporally distinct emission events from
multiple synchronized emission points. The Gaussian plume
(Plume), Gaussian puff (Puff), and a CFD-based approach
are detailed and coupled with two inversion frameworks, in-
cluding a simple least-squares estimator with L1 regulariza-
tion (LSQ) and a Markov chain Monte Carlo MCMC)-based
approach with a spike-and-slab prior. Each combination of
the forward model and inversion framework is applied to a set
of multi-source constant-rate controlled-release experiments.
A set of evaluation metrics is presented to investigate the per-
formance of each quantification method for the localization
and quantification accuracy. This approach demonstrates the
functional dependence of selected key metrics on both for-
ward and inverse modeling techniques.

In general, utilizing Puff, driven by high-frequency 1 Hz
wind data and accounting for the spatial inhomogeneity of
the wind field, results in significantly improved localiza-
tion statistics when compared to Plume-based estimates. The
Puff-based estimates also exhibit a closer-to-zero bias than
the Plume-based estimates and reduced variance in the er-
ror distribution. Similarly, employing the more sophisticated
MCMC-based inversion results in better localization and
quantification estimates compared to the simple LSQ fitting.
These differences are most stark when comparing the Puff
MCMC (most complex) approach to the Plume LSQ (sim-
plest). More specifically, when considering the localization
statistics, the number of experiments for which the algo-
rithm correctly identifies the emission status of all of the five
groups, N(;—s) in Table 1, increases from 85 to 184 (out
of a total of 347 experiments) for the Plume LSQ and Puff
MCMC approaches, respectively. Similarly, the mean quan-
tification error improves from —0.1 to 0.02kgh~!, a 5-fold
reduction in bias, while the fraction of estimates that were
correct to within a factor of 2 (a commonly used statistic to
assess the variance of the error distribution) increases from
73 % to 89 %.
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Under ideal CMS deployment (high sensor density and
near-optimal placement), relatively simplified emissions sce-
narios (constant emission rates, synchronous emissions
events during each experiment), and a relatively simple (flat
terrain, few obstructions) facility, quantification algorithms
applied to data from point sensors can achieve low-bias
emissions estimates, leading to accurate long-term estimates
of total site emissions. While these systems can achieve
near-zero bias, significant uncertainties remain in individual
event-based emission rate estimates; the best-performing al-
gorithm studied here (Puff MCMC) still had an average ab-
solute relative error of 42 %. Therefore, emissions estimates
for any given short time frame should be interpreted with
caution, considering that there is significant uncertainty asso-
ciated with an individual estimate. However, for cumulative
metrics, all models performed reasonably well: as shown in
Table 1, the cumulative mass errors for the Plume LSQ, Puff
LSQ, Plume MCMC, and Puff MCMC were —135, —55,
—117, and 12kg, respectively, out of a total of 2284 kg ac-
tually emitted, corresponding to percent errors in cumulative
mass estimates of —6 %, —2 %, —5 %, and 0.5 %, respec-
tively. This demonstrates that CMSs, under the conditions
present during this testing (sensor deployment and configu-
ration, release rates and patterns, environmental conditions),
are capable of highly accurate cumulative emission estima-
tion, even when using lower-fidelity and simple models such
as the Gaussian plume and simple least-squares-based rate
inference.

This investigation provides further evidence and confir-
mation that advanced three-dimensional dispersion modeling
approaches, e.g., the large-eddy simulation (LES) type com-
panion CFD numerical experiments carried out in this inves-
tigation, can consistently predict more accurate time-varying
concentration profiles than plume and puff models across a
variety of surface meteorological conditions. This, however,
requires “nudging” of the momentum and buoyancy trans-
port equations to ensure agreement with the local observa-
tions of wind speed and direction. While it may be overly
restricting, the spectral profiles presented in the Supplement
depict a decent agreement with the spectral content of on-
site anemometers. The current results show that while all
three models underestimate the concentration field as indi-
cated by fractional bias (FB), normalized mean squared error
(NMSE) for the CFD model was 25 % lower than the puff
model. More significantly, the CFD outperformed the puff
and plume in 72 % and 89 % of selected experiments, respec-
tively, in predicting the observed concentration traces. The
results obtained via the CFD-based forward model coupled
with the two inversion approaches for four of the selected ex-
periments are equally encouraging. As evident in Fig. 9, the
CFD-based estimates of the inferred emission rates are no-
tably closer to the parity line. Separately, both the absolute
and relative error metrics in Table 3 show a marked improve-
ment by the CFD MCMC combination over the other two ap-
proaches, with the mean error E of the test-aggregated emis-
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sion rate showing a near 4-fold improvement. While there is
room for improvement as it is a topic of active research and
these simulations are certainly more expensive in terms of the
computational cost, the CFD results discussed herein offer a
proof-of-concept of employing such unsteady tools for use
in conjunction with CMS networks on operational and ex-
perimental sites. Such advanced tools are expected to find in-
creasing value in setups with numerous obstacles (e.g., power
plants and compressor stations), undulating terrain, complex
emission profiles, higher release rates, and elevated release
points, as well as under scenarios where an operational site
is only metered by two to three continuous monitoring sen-
sors and may not even have an on-site anemometer, thus re-
quiring the use of forecasting tools like the Weather Research
and Forecasting (WRF) Model as a surrogate for the on-site
anemometer(s).

Crucially, the current study demonstrates the signifi-
cant gains in quantification accuracy achievable with ad-
vanced emissions quantification methodologies using fixed-
point continuous monitoring systems, particularly for long-
timescale cumulative mass estimates, validating their poten-
tial for reliable facility-level emissions management.
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