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Abstract. Vertically resolved thermodynamic cloud-phase
classifications are essential for studies of atmospheric cloud
and precipitation processes. The Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM) Ther-
modynamic Cloud Phase (THERMOCLDPHASE) value-
added product (VAP) uses a multi-sensor approach to clas-
sify the thermodynamic cloud phase by combining lidar
backscatter and depolarization, radar reflectivity, Doppler ve-
locity, spectral width, microwave-radiometer-derived liquid
water path, and radiosonde temperature measurements. The
measured pixels are classified as ice, snow, mixed phase, lig-
uid (cloud water), drizzle, rain, and liq_driz (liquid+-drizzle).
We use this product as the ground truth to train three ma-
chine learning (ML) models to predict the thermodynamic
cloud phase from multi-sensor remote sensing measurements
taken at the ARM North Slope of Alaska (NSA) observa-
tory: a random forest (RF), a multi-layer perceptron (MLP),
and a convolutional neural network (CNN) with a U-Net ar-
chitecture. Evaluations against the outputs of the THERMO-
CLDPHASE VAP with 1 year of data show that the CNN
outperforms the other two models, achieving the highest
test accuracy, F'1 score, and mean intersection over union
(IOU). Analysis of ML confidence scores shows that ice,
rain, and snow have higher confidence scores, followed by
liquid, while mixed, drizzle, and liq_driz have lower scores.
Feature importance analysis reveals that the mean Doppler
velocity and vertically resolved temperature are the most in-
fluential data streams for ML thermodynamic cloud-phase

predictions. Lidar measurements exhibit lower feature im-
portance due to rapid signal attenuation caused by the fre-
quent presence of persistent low-level clouds at the NSA
site. The ML models’ generalization capacity is further eval-
uated by applying them at another Arctic ARM site in Nor-
way using data taken during the ARM Cold-Air Outbreaks
in the Marine Boundary Layer Experiment (COMBLE) field
campaign. The models demonstrated similar performance to
that observed at the NSA site. Finally, we evaluate the ML
models’ response to simulated instrument outages and signal
degradation and show that a CNN U-Net model trained with
input channel dropouts performs better when input fields are
missing.

1 Introduction

Arctic clouds are one of the least understood elements of
the Arctic climate system, but they play a significant role in
regulating radiative energy fluxes at the surface, through the
atmosphere, and at the top of the atmosphere (Cesana and
Chepfer, 2012; Curry et al., 1996; Kay et al., 2008; Kay and
L’Ecuyer, 2013; Shupe and Intrieri, 2004). One major fac-
tor in this uncertainty is the thermodynamic phase of clouds,
which is crucial for understanding many cloud processes, in-
cluding ice particle production via the Wegener—Bergeron—
Findeisen process (Storelvmo and Tan, 2015), precipitation
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formation (Miilmenstidt et al., 2015), the evolution of the
cloud life cycle (Pithan et al., 2014), and also the response
of clouds to global warming (Tan et al., 2025). Ice parti-
cles and liquid droplets differ significantly in number, size,
shape, fall velocity, and refractive index, leading to vastly
different radiative properties for clouds with different ther-
modynamic structures (Shupe and Intrieri, 2004). Accurate
thermodynamic cloud-phase representations in climate mod-
els enhance the reliability of climate projections (Cesana et
al., 2024). In addition, thermodynamic cloud-phase classifi-
cation is often a prerequisite for retrieving cloud properties
from remote sensing data, as most retrieval algorithms are
designed for specific thermodynamic cloud phases and types
(Shupe et al., 2016, 2015; Platnick et al., 2017).

The thermodynamic cloud phase can be determined us-
ing either aircraft in situ measurements (McFarquhar et al.,
2011; Verlinde et al., 2007; Wendisch et al., 2019) or re-
mote sensing observations (Avery et al., 2020; Barker et al.,
2008; Hogan et al., 2003; Shupe, 2007; Turner et al., 2003).
Aircraft in situ measurements use captured particle images
from onboard probes to identify the thermodynamic cloud
phase based on the shape and size of cloud particles. While
in situ measurements offer thermodynamic cloud-phase iden-
tification, it is challenging to gather large aircraft datasets
under diverse environmental conditions, and these measure-
ments cannot provide routine or continuous daily data. Re-
mote sensing observations, however, offer long-term contin-
uous thermodynamic cloud-phase identification. Spaceborne
remote sensing, in particular, enables global-scale thermody-
namic cloud-phase classification, which can effectively con-
strain global climate models (Cesana and Chepfer, 2013; Tan
et al., 2016). High-resolution ground-based remote sensing
observations allow for detailed thermodynamic cloud classi-
fication, supporting studies of cloud processes, and the vali-
dation of high-resolution cloud-resolving model simulations
(Fan et al., 2011; Kalesse et al., 2016).

The Department of Energy (DOE) Atmospheric Radia-
tion Measurement (ARM) user facility deploys advanced
remote sensing instruments in climate-critical locations to
monitor atmospheric states and processes. To address the
need for accurate thermodynamic cloud-phase identification,
ARM developed the Thermodynamic Cloud Phase (THER-
MOCLDPHASE) value-added product (VAP) (Zhang and
Levin, 2024). Using the multi-sensor approach developed
by Shupe (2007), the THERMOCLDPHASE VAP combines
data from active remote sensing lidars, radars, microwave ra-
diometers, and radiosondes to determine the vertically re-
solved thermodynamic cloud phase at ARM sites. THER-
MOCLDPHASE data are available through ARM Data Dis-
covery for ARM’s North Slope of Alaska (NSA) atmospheric
observatory at Utqiagvik, Alaska (formerly Barrow), from
2018 to 2022, as well as six other ARM high-latitude ob-
servatories (2025). It is noted that multi-sensor thermody-
namic cloud-phase classification has been specifically devel-
oped for observations of Arctic clouds (Shupe, 2007). Since
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the algorithm does not include the classification of hail and
graupel, it has difficulties distinguishing these hydrometeor
types in deep convective cloud regimes over tropical and
mid-latitude regions.

Threshold-based algorithms for determining the thermo-
dynamic cloud phase, such as those used in the THERMO-
CLDPHASE VAP, have two major limitations. First, stan-
dard algorithms are static and do not improve with additional
data or generalize to new regions. For ARM to apply the
Shupe (2007) algorithm to sites other than the Arctic, where
it was originally developed, fine-tuning these thresholds and
rigorous quality testing are necessary before the data prod-
uct can be used. This limits how quickly the product can be
made available to scientists. Second, the realities of instru-
ment deployment to harsh, remote environments mean that
instrumentation can go offline periodically, and most conven-
tional algorithms are not able to adapt when data inputs are
missing. For ARM’s thermodynamic cloud-phase product,
the thermodynamic cloud phase cannot be accurately clas-
sified when one or more input data streams are missing.

Machine learning methods, in combination with conven-
tional methods, can improve thermodynamic cloud-phase
classification. ML algorithms’ performance generally im-
proves as they are trained with more data, and they can be
trained to adapt to data issues such as low quality or miss-
ing inputs. There are multiple years of ARM THERMOCLD-
PHASE VAP data from the NSA site, and the product con-
tains both the VAP and the individual data streams used to
derive it, making it an excellent source of training data for
the ML algorithms.

In this work, we develop three machine learning models
with increasing complexity: a random forest (RF), a multi-
layer perceptron (MLP) neural network, and a convolutional
neural network (CNN) with a U-Net architecture for clas-
sifying the thermodynamic cloud phase. We use the ARM
THERMOCLDPHASE VAP from the NSA site as ground
truth for training. In addition to evaluation of model perfor-
mance on NSA data, we evaluate the ML models’ general-
izability to another ARM site (ANX) and test each model’s
robustness against simulated instrument data loss.

2 Methods
2.1 Datasets and data pre-processing

This study leverages the THERMOCLDPHASE VAP,
produced at the ARM NSA atmospheric observatory
(https://www.arm.gov/capabilities/science-data-products/

vaps/thermocloudphase, last access: 2 September 2025), as
the training data. The ARM NSA site (71°19’N, 156°36' W)
is located on the northern Alaskan coastline (Verlinde et al.,
2016). It experiences a variety of cloud types throughout the
year, with predominantly ice clouds in winter, mixed-phase
clouds in spring and fall, and liquid clouds in summer
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(Shupe, 2011). The observatory is equipped with advanced
atmospheric observing instruments, including cloud radars,
depolarization lidars, radiometers, and radiosondes. These
instruments provide comprehensive data for describing
cloud and radiative processes at high latitudes. These data
have been used to improve the representation of high-latitude
cloud and radiation processes in Earth system models (Shupe
et al., 2015; Zheng et al., 2023; Balmes et al., 2023).

The classification algorithm used to create the THERMO-
CLDPHASE VAP exploits the complementary strengths of
cloud radar, depolarization lidar, microwave radiometer, and
temperature soundings to classify cloud hydrometeors ob-
served in the vertical column as ice, snow, mixed phase, lig-
uid, drizzle, rain, and liq_driz (liquid+drizzle). The liq_driz
class represents cases with liquid cloud and drizzle in the
same volume, whereas the drizzle class indicates drizzle that
has fallen below the cloud. In short, lidar backscatter is
sensitive to small cloud droplets with high concentrations,
while the lidar depolarization ratio can distinguish between
spherical (i.e., liquid) and irregularly shaped particles such
as ice crystals and snow. Radar reflectivity is dominated by
large particles such as ice particles, snow, or raindrops, while
higher-order radar moments provide more detailed informa-
tion on, for example, particle fall speed. Supplemental data,
such as the liquid water path from the microwave radiome-
ter and temperature profiles from radiosondes, can be used
to further refine thermodynamic cloud-phase identification.
Combining these complementary observations provides a re-
liable approach to identifying thermodynamic cloud phases.
An “unknown” label is assigned in cases when the thermo-
dynamic phase of the hydrometeor cannot be identified due
to missing input datasets or when the determined thermody-
namic cloud phase is inconsistent with our understanding of
cloud structures and physics based on past studies. The VAP
also includes a “clear” classification when no hydrometeors
are present. A full description of the method can be found
in Shupe (2007). While Shupe (2007) used lidar and radar
measurements to distinguish between clear and cloudy pix-
els, the THERMOCLDPHASE VAP applies the phase clas-
sification algorithm to cloudy pixels identified by the ARM
Active Remote Sensing of CLouds (ARSCL) VAP (https://
www.arm.gov/data/science-data-products/vaps/arscl, last ac-
cess: 2 September 2025) (Clothiaux et al., 2001). The AR-
SCL VAP provides cloud boundaries for up to 10 cloud lay-
ers by combining radar, lidar, and radiometer measurements.

The THERMOCLDPHASE VAP reads in micropulse
lidar (MPL) or high-spectral-resolution lidar (HSRL)
backscatter and depolarization ratio data from the Mi-
cropulse Lidar Cloud Mask (MPLCMASK) VAP (https:
/lwww.arm.gov/data/science-data-products/vaps/mplcmask,
last access: 2 September 2025) (Flynn et al., 2023) or HSRL
data (Goldsmith 2016), respectively; radar reflectivity,
mean Doppler velocity, and Doppler spectral width data
from the ARSCL VAP; liquid water path data from the
Microwave Radiometer Retrievals (MWRRET) VAP (https:
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/Iwww.arm.gov/data/science-data-products/vaps/mwrret,
last access: 2 September 2025) (Gaustad et al., 2011);
and temperature data from the Interpolated Sonde
(INTERPSONDE) VAP (https://www.arm.gov/data/
science-data-products/vaps/interpsonde, last access: 2
September 2025) (Fairless et al., 2021). The HSRL system
is deployed at only a few ARM observatories and ARM
mobile facility (AMF) field campaigns. When HSRL data
are available, the THERMOCLDPHASE VAP uses the
HSRL backscatter coefficients and LDR thresholds, as
outlined in Shupe (2007), to distinguish between liquid and
ice. The MPL system, on the other hand, is deployed at all
ARM fixed atmospheric observatories and in nearly all AMF
field campaigns. The THERMOCLDPHASE VAP uses the
gradient of MPL backscatter (MPLGR), following Wang
and Sassen, (2001), to distinguish between liquid and ice.
We employ the thermodynamic cloud-phase classification
data that utilize the MPLGR method to train ML models
so that the trained models can be readily extended to other
ARM observatories. Ultimately, the THERMOCLDPHASE
VAP then outputs seven hydrometeor-phase classifications
at 30 m vertical and 30 s temporal resolutions. The VAP and
the datasets used to produce it are publicly available through
ARM’s Data Discovery tool (https://adc.arm.gov/discovery/,
last access: 2 September 2025).

An example of multi-sensor remote sensing measure-
ments and thermodynamic cloud-phase classification from
the THERMOCLDPHASE VAP on 15 August 2021 at the
ARM NSA observatory is shown in Fig. 1. The day started
with a deep precipitating system with some embedded con-
vection before 09:00 UTC, with cloud tops reaching up to
8km and temperatures near the cloud top close to —40 °C.
KAZR radar signals can penetrate through the cloud and pro-
vide measurements of the cloud structure. Increased radar
reflectivity (Z.), downward motion (indicated by negative
mean Doppler velocity, MDV), and Doppler spectral width
(W) around 1 km suggest a transition from cold to warm pre-
cipitation (Fig. 1c, d, and e). Furthermore, the radar bright
band is observable at ~ 1 km when large falling ice crystals
start to become coated with melted liquid water (Fig. 1¢). Li-
dar signals, however, were quickly attenuated by warm rain-
drops near the surface, as shown in Fig. 1a and b. The large
liquid water path (LWP) retrieved from the microwave ra-
diometer and warm temperatures near the surface provide
support for this identification (Fig. 1f and g). As shown in
Fig. 1g, the THERMOCLDPHASE VAP identifies ice and
mixed-phase regions in the middle and upper portions of
the cloud system, with snow pixels occasionally present in
the middle layers. Below approximately 1 km, warm cloud
phases and precipitation, including liquid, drizzle, and rain,
are observed. Two additional, relatively shallower cloud sys-
tems with similar cloud-phase structures were observed be-
tween 10:00 and 13:00 and 15:00 and 19:00 UTC. Interest-
ingly, two mid-level thin liquid-layer clouds were observed
after each of the first two systems. However, due to warmer
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Figure 1. An example of multi-sensor remote sensing measurements of clouds and the thermodynamic cloud-phase classification from the
THERMOCLDPHASE VAP on 15 August 2021 at the ARM NSA site. Panels from top to bottom are the (a) MPL attenuated backscatter
(MPL B), (b) MPL linear depolarization ratio (MPL LDR), (¢) Ka-band ARM zenith radar (KAZR) equivalent reflectivity factor (Ze),
(d) KAZR mean Doppler velocity (MDV), (e) KAZR Doppler spectral width (W), (f) liquid water path (LWP) from the MWRRET VAP,
and (g) thermodynamic cloud-phase classification from the THERMOCLDPHASE VAP. Negative MDV values represent downward motions
toward the surface. The dashed lines in panel (g) are isothermal lines based on the ARM Interpolated Sonde INTERPSONDE) VAP.

cloud top temperatures, a lack of ice-nucleating particles
(INPs), or other processes, these liquid cloud layers did not
produce ice or produced ice that was immediately sublimated
right below the cloud base. Further cloud model simulations
could provide insights into these processes (Solomon et al.,
2018, 2011). After 18:00 UTC, a typical polar low-level stra-
tocumulus cloud with liquid droplets at the top and mixed-
phase pixels below is observed. Note that the low radar re-
flectivity that appears to be detached from the cloud below
between 20:00 and 22:00 UTC could be artifacts caused by
side-lobe impacts of the KAZR moderate sensitivity mode
(MD) (Silber et al., 2018). Accurately detecting and remov-
ing these radar artifacts are being investigated by the ARM
radar data team (Ya-Chein Feng, personal communication,
January 2025).

Atmos. Meas. Tech., 18, 5393-5414, 2025

The various input fields for the VAP are listed in Table 1.
These inputs have different units, can differ in scale by or-
ders of magnitude, and may include extreme outlier values.
To facilitate training of the neural networks, which can be
sensitive to input scaling, each input was range limited and
then re-scaled to an approximate range between —2 and 2.
The range limiting was chosen to only cut off erroneous or
missing data points (the ARM datasets assign missing data a
value of —9999) and restricts the inputs to a physically plau-
sible range. The scaling values were determined manually
based on histograms of the training dataset and are detailed
in Table 1. Additionally, the MPL backscatter and MWRRET
LWP variables were log-scaled because these observations
span several orders of magnitude. Training data were limited
to periods where all instruments were operational, and in-
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Table 1. The formulas used to normalize the input data for the MLP and CNN models. The clip function is used to constrain the values in an
array within a specified range. For example, clip(x, x7, x;,) = {x7, (x < x7);x, (x) < x < xy); x5, (x > x)}.

Variable Units Lower Upper  Full normalization formula
bound bound
MPL backscatter (MPL ) Counts/us 1 x 1078 1x10* (log(clip(x, 1 x 10781 x 104)) +6)/8
MPL linear depolarization ratio (MPL dep) = NA 0 1 clip(x,0,1) x2—1
Radar reflectivity (Ze) dBz =70 70 (clip(x, —70,70) +20)/30
Radar mean Doppler velocity (MDV) ms~! -8 8 clip(x+0.5,-8,8)/2
Radar spectral width (W) ms~! -1 4  clip(x x5,—1,4) -0.5
Radar linear depolarization ratio (radar dep) NA -20 20 clip(x +20,-20,20)/6
MWRRET liquid water path (LWP) g m—2 0.1 2000  (log(clip(x,0.1,2000)) —3)/2
Temperature profile (7') °C —100 50  (clip(x, —100,50) +30)/30

stances where the VAP output was labeled “unknown” were
excluded from the training process. Based on 1 year of data
from 2021 at the NSA site, 5.9 % of cloud hydrometeors were
classified as unknown.

2.2 Machine learning models
2.2.1 Random forest

A random forest (RF) is a meta-estimator that fits multiple
decision tree classifiers using a best-split strategy on various
sub-samples of the dataset. The individual tree’s predictions
are then averaged to improve predictive accuracy and con-
trol over-fitting (Breiman, 2001). The RF model uses an en-
semble of 100 decision trees and operates on individual pix-
els (1.6 million samples), unlike the CNN, which processes
time-height images. We used the Scikit-learn library (Pe-
dregosa et al., 2011) to train a random forest classifier, which
took less than 2h to train using CPUs. The RF was trained
using a standard scaler to re-scale the input variables and ex-
cluding any pixels marked as “unknown” in the VAP. A to-
tal of 90 RF configurations were tested, with the best model
determined by considering training accuracy, validation ac-
curacy, and validation F'1 score (precision) (Eq. 1). Cate-
gorical accuracy evaluates the overall percentage of correct
predictions but can be biased in imbalanced datasets. Preci-
sion measures the proportion of correct positive predictions
out of all positive predictions made. A higher precision in-
dicates fewer false positive predictions. Recall evaluates the
proportion of actual positive instances correctly identified. A
higher recall indicates fewer false negative predictions. The
F'1 score is the harmonic mean of precision and recall, which
is defined as

F1=2TP/(2TP + FN + FP). 1

The F1 score provides a balanced measure of both precision
and recall. The best model used 40 trees, with 107 samples
used to train each tree, and was trained with a maximum of
2 features used for each split, a maximum depth of 20, and
no restriction on the maximum number of leaf nodes. Our
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initial experiments with the RF model showed that its perfor-
mance did not change substantially with hyperparameter ad-
justments, and the best validation performance was achieved
using the default Scikit-learn hyperparameters.

2.2.2 Neural network

We also trained a conventional multi-layer perceptron
(MLP)-style neural network. The MLP is a supervised learn-
ing algorithm that can learn a non-linear, continuous, and
differentiable mapping between the input data and the target
classifications (Bishop, 2006). The MLP takes the 8 normal-
ized input values (Table 1), has 5 hidden layers with recti-
fied linear unit (ReLLU) activation functions and 100 neurons
each, and has a 7-neuron output layer that applies a softmax
activation function. Like the RF model, the MLP operates
pixel by pixel to generate phase classifications. The MLP was
also trained using the Scikit-learn library (Pedregosa et al.,
2011) with the same dataset used to train the RF, which was
standardized as well. A total of 41 variants of the MLP were
tested with a robust scalar, quantile transformer, or standard
scalar applied directly to the data. The best was trained using
the Adam optimizer with an adaptive learning rate initialized
at 0.001, a batch size of 200, and a categorical cross-entropy
loss function. Training was terminated after 134 epochs due
to early stopping. The validation fraction was 0.2.

2.2.3 Convolutional neural network

Deep convolutional neural networks (CNNs) are powerful
machine learning models originally developed for computer
vision and image processing tasks (Krizhevsky et al., 2017;
LeCun et al., 1998; Heaton, 2018). CNNs learn convolu-
tional kernels that can efficiently represent information about
spatial structures in their input fields and are translation-
ally equivariant models, making them optimal for image-
recognition and segmentation tasks. Both RFs and CNNs
have demonstrated effectiveness in labeling radar and lidar
data for the classification of radial velocity and precipitating
hydrometeors (Lu and Kumar, 2019; Veillette et al., 2023).

Atmos. Meas. Tech., 18, 5393-5414, 2025
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Ronneberger et al. (2015) introduced the “U-Net”, a CNN
architecture designed for image segmentation that maps an
input image to pixel-level class labels, and several improved
although more complex variants have been developed since
its introduction (Huang et al., 2020; Zhou et al., 2018). U-Net
and its variants are broadly applicable to both classification-
and regression-style image-to-image mapping problems and
have now been adapted for a wide range of use cases in the
atmospheric sciences (Galea et al., 2024; Geiss and Hardin,
2021; Lagerquist et al., 2023; Sha et al., 2020; Weyn et al.,
2021; Wieland et al., 2019). Here, we use a CNN similar to
the original U-Net that has been modified for the thermody-
namic cloud- and precipitation-phase retrieval task as shown
in Fig. 2. The U-Net was implemented using the TensorFlow
Keras Python library (Chollet, 2015) and trained to ingest
inputs of size 128 x 384 x 8 and produce a 128 x 384 pixel-
level phase classification mask. Missing instrument data val-
ues are filled with a value of —9999 prior to dataset normal-
ization, as specified in Table 1. This means that, after nor-
malization, they will be mapped to the lowest allowed value
for the corresponding input field by the clip function. On the
other hand, if the ground truth labels for any batch of data
are missing or classified as unknown, the entire batch is dis-
carded and not used to train the model. The 128 x 384 x 8
input shape corresponds to samples that are 1h in duration,
12 km in height, and have eight input fields, respectively. The
U-Net was trained using the Adam optimizer with an ini-
tial learning rate of 0.001, a batch size of 16, and categorical
cross-entropy loss. Training was terminated when the mean
intersection over union (IOU) reached a maximum value af-
ter epoch 10. IOU is defined per class as

10U = TP/(TP + FN + FP), 2)

where TP, FN, and FP represent true positives, false nega-
tives, and false positives, respectively. The mean IOU is cal-
culated by averaging the IOU of each class and is not biased
by the class imbalance.

An ablation study was used to determine the optimal U-
Net design. This involved altering one design choice at a
time, retraining the model, and evaluating the model’s per-
formance on the validation data (evaluating on cloudy pixels
only, no clear sky). We tested cases with and without dropout
layers, channel-wise dropout layers (applied only to the input
tensor to simulate instrument dropouts), and batch normal-
ization layers. We also ran experiments varying the number
of convolutional layers in each block, the number of chan-
nels in the convolutional layers, the type of activation func-
tions, and the class weights used during training (Ioffe and
Szegedy, 2015; Srivastava et al., 2014). During the ablation
study, the U-Nets were evaluated using several metrics, in-
cluding categorical cross-entropy computed only on cloudy
regions, training loss (categorical cross-entropy computed on
all regions), mean IOU, and categorical accuracy. The cate-
gorical accuracy is averaged over all pixel classifications and,
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because of class imbalances, is more representative of model
skill on the most common classes.

Ultimately, the best U-Net configuration performed the
best across all four metrics (lowest cloudy cross-entropy
and all-sky cross-entropy and highest mean IOU score and
categorical accuracy). The best results with the CNN were
achieved with no channel-wise dropout layers; 2 convolu-
tions in each block with the first followed by a dropout layer
and the second followed by a batch normalization layer; 64,
64, 64, 128, 128, and 256 channels in the convolutional lay-
ers (where the ordering represents depth in the U-Net); leaky
ReLU activation functions following the dropout and batch
normalization layers; and no class weighting. These design
choices resulted in a mean IOU score of 0.810 on the test-
ing dataset, about 0.1 larger than the results of other model
configurations we tested. This also resulted in a training loss
of 0.018, which was 0.025 less than the other configurations.
Notably, the U-Net configuration with channel-wise dropout
layers was the second-best model, with an IOU score of
0.528 and training loss of 0.054. We note that these results
are based on testing with complete inputs; however, when
the U-Net is evaluated with simulated instrument outages, the
versions that were trained with channel-wise dropout applied
to the inputs performed better (details in Sect. 4). The results
for all the ablation tests are documented in the Supplement.

2.3 Training dataset

A total of 3 years of data at the ARM NSA site, from 2018-
2020, were used for training and validation, and 1 year of
data, from 2021, were used for testing. For the MLP and
RF models, a subset of 40000 pixels from the 3 years of
training data selected randomly were used for each cloud
phase and 10 000 pixels for each cloud phase for validation.
For the CNN model, the first 80 % of data from 2018-2020
were used for training and the remaining 20 % for validation.
The input fields were organized as three-dimensional arrays
time x height x channel samples. The seven unique cloud-
phase classifications produced by the THERMOCLDPHASE
VAP were used as targets (the eighth was clear sky and was
not used). The training time for each model is reported in Ta-
ble 2. The RF and MLP ran on CPUs, while the CNN was
trained using GPU. For this reason, the MLP and CNN train
in comparable time, around ~ 110 min, though the CNN re-
quires more computation. Meanwhile, the RF trains an order
of magnitude faster, around 12 min. Inference time was in-
consequential for all three models, which can each classify a
day of data within a few seconds.

The different methods of training set construction and in-
put format used by each of the models create different class
imbalances and inherently complicate a direct comparison
between models. For the RF and MLP models, an equal
number of samples of each of the cloud-phase types was
used to train and validate the models because they operate
at a pixel level. Meanwhile, the CNN processes full time—
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Table 2. Model performance metrics for the three machine learning
models on the test dataset.

Model  Accuracy Precision® Recall*  F1score* I10U*
(%)

CNN 95.7 0.890 0.894 0.891 0.811

MLP 85.7 0.760 0.905 0.815 0.704

RF 87.2 0.789 0.913 0.837 0.735

* Using a macro-average across classes.

height images, and its performance will be biased towards
the most common pixel types (ice is the most common class
observed at NSA). These challenges are inherent to the dif-
ferent ML models; for example, the RF cannot be trained on
the huge dataset the CNN uses due to computational con-
straints. In the future, the CNN could potentially be trained
with a class-weighted loss function to ensure that the model
can identify the minority classes with greater accuracy, but
class weighting does not have the exact same effect as rebal-
ancing the class frequency, particularly when the class imbal-
ance is large. Balancing the class distribution ensures that the
model receives gradients of a similar scale from each class
at approximately the same frequency throughout training. In
contrast, altering the class weights results in predominantly
small gradients from the majority classes, with occasional
large gradients from minority classes. Therefore, achieving
optimal performance is likely not as straightforward as se-
lecting class weights that are inversely proportional to class
frequency and will likely require fine-tuning of hyperparam-
eters. Recent research has reported better results with combo
loss (Taghanaki et al., 2019) rather than weighting schemes
in similar applications (Xie et al., 2025).

3 Results

Once the ML models were trained and validated, they were
applied to 1 year of multi-sensor remote sensing measure-
ments from 2021 to predict the thermodynamic cloud phase
(THERMOCLDPHASE-ML). The predicted phase classifi-
cations were compared to the VAP to evaluate the perfor-
mance of the three ML models.

3.1 Applying trained ML models to remote sensing
measurements

Figure 3 provides an example of thermodynamic cloud-phase
classifications from the three ML models compared with
the THERMOCLDPHASE VAP on 15 August 2021 at the
ARM NSA site. Among the predictions from the three ML
models, the CNN demonstrates the best agreement with the
THERMOCLDPHASE VAP, capturing nearly identical ther-
modynamic cloud-phase structures. The MLP and RF mod-
els also show good agreement with the VAP but tend to
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Figure 2. An illustration of the most effective U-Net architec-
ture tested, showcasing both its encoding and its decoding paths
along with their channel dimensions. Given two-dimensional eight-
channel inputs 128 x 384 x 8, where the eight channels are the
variables in Table 1 and a cloud mask, the model produces a
128 x 384 x 8 output, where each channel represents the softmax
probability of a pixel belonging to one of the eight cloud-phase
classes.

overestimate mixed-phase pixels in the ice-dominated high
clouds between 00:00-09:00 and 15:00-18:00 UTC and un-
derestimate ice-phase pixels in the low-level clouds between
15:00-23:00 UTC. Notably, the ML models provide confi-
dence scores for their predictions, where higher scores indi-
cate greater certainty. For the CNN and MLP models, the raw
model output is a softmax probability score for each phase
class. For the RF, confidence is calculated using the mean
of the predictions of trees in the RF. As shown in Fig. 3e—
g, the CNN consistently generates higher confidence scores
compared to the MLP and RF models. Regions with low
confidence scores from the MLP and RF models often cor-
respond to areas where these models misclassify thermody-
namic cloud phases. As shown in Fig. 3e-g, all ML mod-
els exhibit significantly lower confidence scores within the
melting layer — a region characterized by rapid transitions in
particle phase, shape, and fall speed. While this zone is criti-
cal for understanding cloud regime shifts, it remains difficult
to resolve. Improving detection in this region will require a
refined training dataset specifically focused on the melting
layer, which remains an active area of research (Brast and
Markmann, 2020; Xie et al., 2025). In Fig. S1 in the Supple-
ment, we plot confidence score bins versus accurate classifi-
cations for the 2021 data. The MLP and RF models’ accuracy
linearly increases with higher confidence. For the CNN, ac-
curacy increases linearly for confidence scores above 40 %.
There is a local maximum in accuracy for low confidence
scores between 20 %—30 %. For these cases, there are sev-
eral orders of magnitude fewer data points, and the majority
of correctly classified cases are ice. Because NSA is dom-
inated by ice, classifying a non-clear-sky pixel as ice, even
with low confidence, has a high chance of being correct for
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Figure 3. Thermodynamic cloud-phase classifications from the three ML models and their comparisons against the THERMOCLDPHASE
VAP on 15 August 2021 at the NSA site. (a—d) Time—height plots of thermodynamic cloud-phase classifications from the VAP, as well as
from CNN, MLP, and RF model predictions, respectively; (e-g) confidence scores of thermodynamic cloud-phase classification predictions
from the three ML models; (h—k) histograms of thermodynamic cloud-phase distributions; and (l-n) normalized confusion matrices for each

model. Panel (a) is identical to Fig. 1g.

this dataset. At the pixel level of the thermodynamic cloud-
phase classification, Fig. 3h indicates that the day was dom-
inated (volume-wise) by ice-phase pixels, followed by lig-
uid and mixed-phase pixels. Small numbers of snow, drizzle,
and liq_driz pixels were also identified. The histogram plots
of ML-predicted thermodynamic cloud phases in Fig. 3i—k
show that the CNN produces a histogram closely matching
the VAP. In contrast, the MLP and RF models tend to under-
estimate ice-phase pixels while overestimating liquid, mixed-
phase, and lig_driz pixels.
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Figure 31-n provide a more detailed evaluation of thermo-
dynamic cloud-phase classifications from the three models
through confusion matrices. The multi-class confusion ma-
trix is a 7 x 7 grid with a row and column for each of the
cloud phases. Each row represents the class reported by the
VAP, and columns show the class predicted by ML. Cor-
rect predictions (true positives) are found along the diago-
nal, while misclassifications are in the off-diagonal elements.
The sum of the columns ideally would equal 1; a sum greater
than 1 indicates an over-classification of pixel type. On this
day, liquid, mixed-phase, drizzle, and snow pixels were ac-
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curately identified by all three ML models, with accuracies
exceeding 0.8. While the CNN model also accurately clas-
sified ice-phase pixels, the MLP and RF models frequently
misclassified them as liquid or mixed-phase pixels. This case
has pixel percentages above 5 % for all cloud-phase types
and has high accuracy for all types, including liq_driz and
rain pixels. In cases consisting predominately of ice clouds,
relatively low accuracy for liq_driz and rain pixels is reported
compared to other categories, with the CNN performing the
worst, likely due to the extremely low occurrence of these
pixel types and an overzealousness in predicting ice.

3.2 Analyses of ML model performance

Given that the confidence score reflects the uncertainty of
ML predictions, it is essential to analyze confidence scores
and their relationship to accuracy for different thermody-
namic cloud phases. Figure 4 presents a comprehensive sta-
tistical analysis of ML model confidence scores based on
1 year of data from 2021 at the NSA site. Overall, the con-
fidence scores for thermodynamic cloud-phase predictions
peak near 100 %, which is promising. Among the phases,
predictions for ice, rain, and snow generally exhibit higher
confidence scores across all three ML models. The ice phase,
in particular, is reliably predicted — especially by the CNN
model — due to the availability of key information such as
the lidar backscatter and depolarization ratio, radar reflectiv-
ity, mean Doppler velocity and spectral width, and tempera-
ture (Shupe, 2007). The rain and snow phases, representing
large particles in warm and cold conditions, respectively, can
be identified using key information such as radar reflectiv-
ity, mean Doppler velocity, and temperature. In contrast, the
confidence scores for the liquid-phase predictions are lower
than those for the ice, rain, and snow phases. While the lig-
uid phase can theoretically be reliably determined using li-
dar backscatter and depolarization ratio measurements, lidar
signals are often quickly attenuated by low-level clouds, as
illustrated in Fig. 1a and b. Under such conditions, identi-
fying liquid-phase pixels becomes challenging when relying
solely on radar reflectivity and spectral width data (Silber et
al., 2020). The mixed, drizzle, and liq_driz phases have even
lower confidence scores, likely due to the inherent difficulties
in extracting their distinguishing characteristics from avail-
able measurements. Among the three ML models, the CNN
achieves the highest confidence scores across all thermody-
namic cloud phases. The MLP model exhibits confidence
scores comparable to those of the RF model for the liquid,
ice, mixed, drizzle, and liq_driz phases but shows signifi-
cantly lower confidence scores for the rain and snow phases.

Figure 5 shows the frequency of thermodynamic cloud
phases at the NSA site, as derived from the THERMOCLD-
PHASE VAP (labeled “VAP”), and predictions from the three
ML models using 1 year of testing data. Due primarily to the
low polar temperatures, the NSA site is primarily dominated
by the ice phase, followed by mixed, snow, and liquid phases.
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Warm phases, including drizzle, liq_driz, and rain, occur
much less frequently and are mostly confined to the summer
season (Shupe, 2011). Comparing the ML predictions with
the THERMOCLDPHASE VAP, the CNN closely matches
the VAP’s percentage distribution of thermodynamic cloud
phases. In contrast, both the MLP and the RF models predict
lower percentages for the ice phase but higher percentages
for the liquid, mixed, drizzle, and liq_driz phases, consistent
with the case observed in Fig. 3h-k.

Figure 6 presents the confusion matrices for the three mod-
els computed on the testing set. All models achieved over
80 % accuracy for each cloud phase. The correct prediction
percentages are close for the three ML models, except that
CNN has a dramatically higher correct prediction for ice than
the other two ML models. The CNN correctly identified ice
99 % of the time. However, it occasionally misclassified lig-
uid (8 %), mixed (12 %), and drizzle (1 %) as ice. Because
there are so few total instances of these phases (Fig. 5), these
misidentifications did not contribute much to reducing the
overall accuracy of the model. However, to do a true com-
parison of the models to the best of our ability, we retrained
the RF and MLP models on a random sample of 1.6 million
pixels from the training dataset (using the same number of
samples as the class-balanced training and the same inputs
and normalizations used by the CNN), where the distribu-
tions of phases match closely with the overall phase distri-
bution in the VAP. We examined how the “imbalanced” RF
and MLP compared to the CNN (Fig. S2). Focusing on the
prediction of ice, the “balanced” RF and MLP models only
misclassify liquid and mixed phases as ice 4 % and 5 % of
the time, respectively (Fig. 6), while the “imbalanced” RF
misclassifies liquid and mixed phases 25 % and 22 % of the
time, and the “imbalanced” MLP misclassifies them 22 %
and 21 % of the time (Fig. S2). Regarding the performance
of the “imbalanced” models on the warm cloud phases, for
drizzle, the CNN correctly identifies it 83 % of the time, the
imbalanced RF 86 %, and the imbalanced MLP 81 %. Com-
pared to the balanced RF (90 %) and MLP (88 %), the imbal-
anced datasets perform worse on this metric.

The performance of the three ML models was statistically
evaluated using performance metrics listed in Table 2. These
metrics include categorical accuracy, precision, recall, F'1
score, and mean 1OU (Eq. 1). Here, we calculated the test
accuracy as the percentage of pixels that match the VAP.
Precision, recall, F'1 score, and IOU are calculated for each
phase class and reported as an average across the classes to
reduce bias due to class imbalance. These metrics provide
us with information to evaluate the performance of the three
ML models in classifying thermodynamic cloud phases on a
pixel-by-pixel level.

Table 2 shows that each model agreed with the THER-
MOCLDPHASE VAP in more than 85 % of the utilized sam-
ples. The CNN achieved the highest test accuracy, F'1 score,
and mean IOU. The RF model performed slightly better than
the MLP across these metrics but was significantly outper-
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Figure 5. Percentage distributions of thermodynamic cloud phases
from the THERMOCLDPHASE VAP (labeled “VAP”) and predic-
tions from the three ML models, based on 1 year of data from 2021
at the NSA site.

formed by the CNN. We hypothesize that the CNN’s su-
perior performance is due to its ability to evaluate the in-
put time-height arrays (sections of data covering 11km in
height by 1 h) holistically rather than on a pixel-by-pixel ba-
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thermodynamic cloud-phase predictions from the three ML models

sis. This approach allows the CNN to leverage information
from neighboring pixels and potentially assess larger-scale
features, such as cloud shape, to improve classification accu-
racy.

Another aspect of evaluation is the performance of the
models with respect to altitude. Figure 7 presents vertically
resolved F'1 scores and mean IOU scores for the ML models,
overlaid on a stacked histogram of thermodynamic cloud-
phase category occurrences based on the VAP. Vertically re-
solved cloud phases converge toward ice-only clouds due to
the extremely cold environment at higher altitudes. A peak in
liquid-phase occurrence is observed around ~ 1 km, which
may be due to the prevalence of low-level polar stratiform
mixed-phase clouds with a thin liquid layer at the top in the
VAP (Zhang et al., 2010; Silber et al., 2021; Zhang et al.,
2017) or due to the artifacts caused by the KAZR MD mode
(MD) side lobe, as discussed in Sect. 2.1. The F'1 scores and
mean IOU are consistent with altitude until 8 km, after which
they start to increase across the three ML models, primarily
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due to the higher frequency of the ice phase at greater al-
titudes and the fact that the ice phase is more reliably pre-
dicted by all three ML models, as shown in Fig. 4b. The
CNN consistently achieves significantly higher F'1 scores
than the MLP and RF models at altitudes below ~ 6 km. This
is attributed to the greater diversity of thermodynamic cloud
phases at lower altitudes and the CNN’s strong performance
across all phases, as shown in Fig. 4.

3.3 Input feature importance

To identify which input features are most influential in de-
termining cloud phase and to provide additional context for
model performance, we calculate permutation feature impor-
tance (Breiman, 2001) for the three ML models by cloud-
phase class. We assess the permutation importance of an in-
put feature, defined as the model’s recall score for a specific
phase category on the test set minus its recall score result-
ing from shuffling the values of the input feature (randomly
reordering their positions within the column), which effec-
tively removes its relationship with a specific phase category.
A significant difference between recall scores indicates that
the feature is important, while little or no change suggests
the feature has minimal importance. This is done for each
phase class, and the recall score is used specifically because it
shows the reduction in the models’ ability to positively iden-
tify specific thermodynamic phases. This process is repeated
for the CNN, MLP, and RF models and is reported in Fig. 8.

Overall, input features from radar measurements (Fig. 8b,
f, and j), including Z., MDV, and W, and radiosonde tem-
perature measurements (Fig. 8d, h, and 1) are the most signif-
icant for classifying thermodynamic cloud phases across all
three models. In contrast, input features from lidar measure-
ments (Fig. 8a, e, and i) and the MWRRET LWP (Fig. 8c,
g, and k) are less influential, probably because lidar signals
are quickly attenuated by persistent low-level clouds at the
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Figure 7. Vertically resolved ML model F1 scores and mean IOU
scores, overlaid on a stacked histogram of the frequency of the ther-
modynamic cloud-phase categories. A height bin size of 0.5 km is
used to calculate the vertical profiles of mean IOU and F'1 scores.
Noise around 7.5-10km is likely due to phase extinction and low
pixel count.

NSA site (Shupe et al., 2011; Zhang et al., 2017), and LWP
provides only column-integrated information rather than de-
tailed vertical profiles. Future work may want to explore the
feature importance restricted to pixels that were observed by
both radar and lidar to reevaluate the lidar’s importance.
The colors in Fig. 8 represent different phase categories
and enable feature importance to be assessed for each cate-
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gory. The main focus of permutation feature importance is
the relative importance of the features instead of their ab-
solute values. This is because the sum of the importance is
not necessarily meaningful, given that feature interactions
and the non-additive nature of the method can affect the re-
sults. For the CNN model, radar Z., MDV, and MPL S are
identified as the three most important input features for de-
termining the liquid phase. This aligns with the logic used
in threshold-based algorithms by Shupe (2007) for liquid-
phase identification. As shown in Fig. 8a, lidar backscatter
shows notable importance in the CNN model. While the li-
dar backscatter and depolarization ratio offer direct and re-
liable indicators of liquid-phase presence, radar-based vari-
ables — such as reflectivity, mean Doppler velocity, and spec-
tral width — can also contain useful signatures of liquid-phase
clouds (Luke et al., 2010; Yu et al., 2014; Kalogeras et al.,
2021; Schimmel et al., 2022), as evidenced in Fig. 8b, f, and j.
The lidar measurement’s lower feature importance relative to
radar measurements was also observed on days with single-
layer, low-level liquid clouds (Fig. S3). For the ice phase,
input feature importance is generally lower, likely because
the ice phase can be independently identified using multiple
input features. As a result, even when one input feature is
missing, the ice phase can still be accurately classified us-
ing the remaining features. The key features for identifying
the mixed phase are Z., MDV, and W. For drizzle, liq_driz,
and rain, Z., MDV, and temperature are the most important,
likely due to the complexity of distinguishing these phases,
requiring multiple measurements. Z. is the primary feature
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for snow identification, followed by MDV and temperature,
consistent with Shupe et al. (2016), where snow identifica-
tion relied on Z. and temperature. The importance of MDV
for snow may result from its covariance with Z.. The input
feature importance for the other two models (Fig. 8b and c)
is generally similar to that of the CNN model. Broadly, the
feature importance in Fig. 8 aligns with physical intuition
and with the logic used by Shupe (2007), indicating that ML
models successfully captured the relationships between re-
mote sensing measurements and the thermodynamic cloud
phases.

3.4 Application to another ARM site: COMBLE

To assess the generalization capability of the ML mod-
els, we applied them at a different ARM mobile facility
(AMF) observatory. The ARM Cold-Air Outbreaks in the
Marine Boundary Layer Experiment (COMBLE) field cam-
paign deployed an AMF at a coastal site in Andenes, Norway
(69.141° N, 15.684° E; referred to as the “ANX" site), from
December 2019 to May 2020 (Geerts et al., 2022). The cam-
paign aimed to investigate the relationships between surface
fluxes, boundary layer structure, aerosol properties, cloud
and precipitation characteristics, and mesoscale circulations
during cold-air outbreaks (CAOs) over open Arctic waters
(Geerts et al., 2022). A key focus was to enhance the un-
derstanding of thermodynamic cloud phases and their evolu-
tion during CAOs. The deployment at the main site included
all remote sensing measurements required to run the THER-
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MOCLDPHASE VAP, as well as the input features needed
for the ML models. However, MPL data were missing until
11 February 2020. Consequently, the THERMOCLDPHASE
VAP between 11 February and 31 May 2020 was produced
for this site shortly after the field campaign and has since
been utilized in recent studies to analyze cloud-phase struc-
tures over the polar regions (Lackner et al., 2024; Van We-
verberg et al., 2023; Xia and McFarquhar, 2024).

We evaluated the models’ ability to classify thermody-
namic cloud phases for a CAO event identified on 25 Febru-
ary 2020. Figure 9 presents thermodynamic cloud-phase
classifications from the THERMOCLDPHASE VAP and the
three ML model predictions and evaluations of ML model
performance against the THERMOCLDPHASE VAP. Con-
vective cloud structures and production of heavy snowfall
during the CAO can be clearly observed from the time—
height plot of thermodynamic cloud phases in Fig. 9a. ML
model predictions compare well with those of the THERMO-
CLDPHASE VAP (Fig. 9b—d). A figure with the data streams
used to create the VAP (similar to Fig. 1) is available in the
Supplement (Fig. S4). All three models captured the time
period accurately, with ice and snow dominating the ML-
classified thermodynamic cloud phases. Interestingly, there
are some “unknown” phase pixels at the beginning of the
day from the THERMOCLDPHASE VAP, where the static
algorithm was unable to resolve the cloud phase because the
phase identification is inconsistent with our understanding
of cloud physics based on past studies. Large Z. and cold
temperatures suggest that these pixels are snow, yet they ex-
hibit falling velocities exceeding 2.5ms™!. Snow typically
has low terminal velocities due to its small mass density and
large surface area. However, during the CAO event’s strong
convective conditions, snow velocities may increase signif-
icantly in intense downdraft regions. The three ML models
consistently predicted “snow” in this region, which is con-
sistent with surrounding pixels, demonstrating an advantage
of using ML models for cloud-phase classifications.

Both the CNN and the MLP have high confidence scores
that are generally greater than 90 % for ice and snow pix-
els but significantly lower confidence scores for liquid- and
mixed-phase pixels. Indeed, it is challenging to reliably dis-
tinguish liquid- and mixed-phase pixels from ice-phase pix-
els when they are embedded in ice-dominated clouds (Shupe,
2007; Silber et al., 2021). The lower model performance at
ANX compared to at NSA is likely due to the more com-
plex convective cloud structures associated with cold-air out-
breaks (CAOs) at ANX (Geerts et al., 2022). The RF has
lower confidence scores, except for ice-phase pixels at high
altitudes after 12:00 UTC. The histogram plots in Fig. 9i—
k show that all three ML models produce histograms that
closely match the VAP, with the MLP and RF models slightly
over-predicting the liquid category and under-predicting the
ice category. The confusion matrices in Fig. 91-n confirm
that all three ML models predict the dominant ice and snow
phases reasonably well, with accuracies exceeding 0.85. The
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Table 3. Model performance metrics for the three ML models on
the dataset from COMBLE at ANX.

Model  Accuracy Precision® Recall*  F1 score* I0U*
(%)

CNN 92.5 0.841 0.777 0.805 0.69

MLP 80.4 0.684 0.827 0.725 0.594

RF 81.1 0.703 0.806 0.726  0.597

* Using a macro-average for each output class.

three models all showed lower accuracy for the liquid phase
(< 0.7), which is a minority category in this sample. In ad-
dition, both the MLP and the RF showed good predictions
of the mixed-phase pixels, while the CNN showed a much
lower accuracy in predicting mixed-phase pixels for this day.
Overall, the CNN outperformed the MLP and RF models in
terms of accuracy when predicting the dominant categories
but performed worse than the other two models when pre-
dicting the minority categories.

Model performance metrics for the entire study period
in which the THERMOCLDPHASE VAP was produced at
ANX are reported in Table 3. ANX plots, in the same for-
mat as those produced for NSA (Figs. 4, 5, and 6), are pre-
sented in Figs. S5, S6, and S7. Every performance metric
using ANX as a test dataset (accuracy, precision, recall, F'1
score, and IOU) is reduced in comparison to NSA (Table 3).
The NSA test dataset comprised 12 months of data, and the
ANX dataset comprised 4 months of data (February—May).
Differences emerge when comparing the PDFs of confidence
scores for the cloud-phase predictions for the three models.
The CNN model behaved similarly at both sites, likely be-
cause the CNN incorporates information from neighboring
pixels and because of the prevalence of ice at both locations,
and for all phases predictions peaked at 100 % confidence
(Fig. S5). The RF model also peaks at 100 % for all phases,
except for liquid and liq_driz, which peak at 90 % and dis-
play a secondary local maximum at 40 %. The MLP diverges
the most, with only the PDF of ice classification confidence
peaking at 100 %. The PDFs for all other phases for the MLP
model are more symmetrical and peak between 50 %—60 %.
In addition, all three models reported higher false negatives
for drizzle, liq_driz, and rain (Fig. S7). Comparing frequency
distributions of cloud phases, ANX and NSA are similar as
they are both high-latitude locations. Ice accounts for ~ 60 %
of all cloud phases detected, followed by mixed, snow, and
liquid (Fig. S6).

4 Data dropout experiment (improving threshold
algorithm)
One advantage of using machine learning models for ther-

modynamic phase classification is that, unlike the VAP, they
can still provide classifications in missing data scenarios. To
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assess model robustness against missing inputs, we tested
our models by systematically removing either a single vari-
able or all variables from a specific instrument to simulate
scenarios where the instrument was offline. We also trained
a variant of the U-Net designed to be resilient to missing
data by including a layer to drop out random input channels
with a likelihood of p =0.125 during training, referred to as
“CNN-ICD” (input channel dropouts). The CNN-ICD model
was the second-best-performing CNN in the ablation study
in Sect. 2.2.3, when all input channels were used, but the ad-
dition of the input channel dropout during training makes it
far more robust in missing data scenarios.

Atmos. Meas. Tech., 18, 5393-5414, 2025

We tested our models on a year’s worth of data in 2021
at the NSA site. For each test, we evaluated the IOU score
for each cloud-phase type over the year, the overall mean
(with respect to phases) IOU score, and the total accuracy.
Table 4 shows the results for the CNN-ICD model. Results
for the other models are in the Supplement (Tables S2—S4,
Fig. S8). The two instruments that had the greatest effect on
accuracy were the radiosonde temperature and the radar data
streams. For instance, for 2021, the accuracy of the CNN
dropped from 95 % to 88 % without temperature data (mean
IOU dropped from 0.81 to 0.37), and the accuracy of the RF
dropped from 86 % to 74 % (IOU 0.72 to 0.28) (Tables S2
and S4). The CNN-ICD model, in comparison with temper-
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Table 4. Performance of the CNN-ICD model in the data dropout study.

CNN-ICD model results Intersection over union (IOU) score

Model Missing data stream/ Liquid Ice Mixed Drizzle Liquid Rain Snow Mean Total
instrument drizzle IOU  accuracy

(%)

CNN-ICD  Control 0.441 0.875 0.530 0426 0429 0.849 0.808 0.622 88.4

CNN-ICD  Micropulse lidar, all 0.535 0.894  0.555 0412  0.546 0.844 0.890 0.668 90.2
data streams

CNN-ICD  Micropulse lidar, 0467 0.877  0.553 0362 0463 0.850 0.860 0.633 88.7
backscatter

CNN-ICD  Micropulse lidar, linear 0.469 0.877  0.508 0.407 0.448 0.841 0.819 0.624 88.6
depolarization ratio

CNN-ICD  Microwave, radiometer ‘ 0.436 0.876  0.533 0.438 0.440 0.850 0.802 0.625 88.5

CNN-ICD  Radar, all data streams ‘ 0.180 0.800  0.001 0.103 0.244 0.003 0.204 0.219 76.8

CNN-ICD Radar, linear 0.432 0.869  0.525 0.388 0411 0.849 0.799 0.611 87.9
depolarization ratio

CNN-ICD  Radar, mean Doppler 0.347 0.891 0.374 0.488 0467 0.694 0.836 0.585 89.2
velocity

CNN-ICD Radar, reflectivity ‘ 0374 0.870  0.445 0450  0.500 0.770 0.109 0.502 84.3

CNN-ICD Radar, spectral width ‘ 0.459 0.879  0.470 0.600 0316 0.802 0.873 0.629 88.9

CNN-ICD Radiosonde, temperature ‘ 0.143  0.883  0.367 0450 0456 0.788 0.809 0.557 88.5

ature, dropped from 88 % to 85 % accuracy and 0.62 to 0.55
10U, so while its control case performs worse, it is the least
affected by data outages. It is also worthwhile to note how
and where the cloud-phase classification failed without cer-
tain instruments. Dropping the MWR data had a minimal
effect on model performance for all four models. However,
without the radar mean Doppler velocity, the CNN, for ex-
ample, had trouble distinguishing between rain and drizzle in
liquid clouds. This is because Doppler velocity is key for de-
termining whether a liquid particle is falling (Shupe, 2007).
Another example is temperature, without which the model
has trouble distinguishing solid from liquid water phases.
Table 4 shows that the CNN-ICD model performs
well even with missing data, generally achieving a mean
IOU > 0.5 and accuracy > 75 %. We hypothesize that with
the addition of the two-dimensional dropout layers, which
mimic instrument dropouts, it had greater elasticity to adapt
to missing data and thus will be more robust to these events.
When all input fields are available, we achieved the best re-
sults without the addition of these layers. Interestingly, in
some cases the CNN-ICD model has greater accuracy and
a better IOU score if some of the instrument data streams are
missing, such as the linear depolarization ratio for the lidar
and radar. This could indicate that some of the data streams
give conflicting phase information or add input noise, in
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which case their inclusion actually makes the model less ro-
bust. We do not see this with the other models however.
Figure 10 demonstrates how each model responds to the
absence of temperature data from the interpolated sonde on
15 August 2021 at the NSA site. These temperature data
were identified as one of the most important input features
for all the ML models in Fig. 8. On this day, deep clouds
were observed at the beginning and end of the day and low-
level clouds during the middle of the day. Due to elevated
surface temperatures, the low-altitude clouds were predom-
inantly composed of warm classes. This case serves as an
excellent example for the data dropout experiment, as it in-
cludes all thermodynamic cloud phases. When all input fea-
tures are available, the four ML models demonstrate strong
performance compared to the THERMOCLDPHASE VAP
(Fig. 10a—e). When temperature data are removed, all mod-
els show reduced performance (Fig. 10f-i), with the CNN-
ICD model exhibiting the smallest reduction in performance.
It accurately identifies mid- and high-level cloud phases but
misclassifies liquid, drizzle, and rain as ice, mixed phase, and
snow, particularly for low-altitude cloud pixels at the begin-
ning and end of the day when temperature data are missing
(Fig. 10f). Interestingly, the CNN-ICD model still correctly
identifies low-altitude warm cloud classes between 03:00 and
20:00 UTC. The CNN, MLP, and RF models also correctly
classify thermodynamic cloud phases for mid- and high-level

Atmos. Meas. Tech., 18, 5393-5414, 2025
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Figure 10. Example of how each model responds to missing temperature data from the interpolated sonde on 15 August 2021 at the NSA
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MLP, and REF, respectively; (f-i) thermodynamic cloud-phase classifications from the four ML models when temperature data are dropped
out from the input features; and (j—-m) the differences in thermodynamic cloud-phase classifications between model predictions with and

without temperature data for the four ML models.

cloud pixels but frequently misclassify liquid, drizzle, and
rain as ice, mixed phase, and snow for low-altitude cloud
pixels throughout the day (Fig. 10g and h). The responses
of each ML model to the removal of other input features are
detailed in different rows in Figs. S9 and S10. Overall, the
CNN-ICD model performs the best in the absence of data,
followed by the CNN model and the MLP and RF models,
which perform roughly equally.

Figure 11 shows how the CNN-ICD model responds to
the removal of different variables for predicting thermody-
namic cloud phases for the same case shown in Fig. 10.
Consistent with the input feature analysis shown in Fig. 8,
removing the MPL B, MPL dep, radar dep, LWP, and all
MPL variables has a minimal impact on the performance of
the CNN-ICD model. When Z is missing, the model some-
times fails to distinguish between liquid and drizzle for low-
altitude cloudy pixels throughout the day and between ice
and snow for mid- and high-level cloud pixels at the end of
the day (Fig. 11c). Without radar W, the model sometimes
fails to identify mixed-phase pixels for mid-level clouds, al-
though they are only present for short periods in this exam-
ple (Fig. 11e). Dropping out radar MDV causes the model
to sometimes fail to distinguish between rain and drizzle
between 03:00 and 06:00 UTC (Fig. 11f). Dropping out T
causes the model to sometimes fail to distinguish between
ice and liquid at the beginning of the day and between ice
and drizzle at the end of the day (Fig. 11g). Overall, drop-
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ping out individual radar variables (including Z., MDV, W),
all radar variables simultaneously, or temperature data had
the largest effect on predicting thermodynamic cloud phases.
This general result is also true for the other ML models for
this case study, which are detailed in Figs. S9 and S10. This
result shows general agreement with the feature importance
results presented in Sect. 3.3.

5 Summary and conclusions

The ARM THERMOCLDPHASE VAP offers vertically re-
solved thermodynamic cloud-phase classifications using the
multi-sensor approach developed by Shupe (2007), which
combines lidar backscatter and depolarization ratio, radar re-
flectivity, Doppler velocity and spectra width, liquid water
path, and temperature measurements. This study leveraged
multiple years of the VAP product as the ground truth to
train and evaluate three ML models for identifying thermo-
dynamic cloud phases based on multi-sensor remote sensing
data collected at the ARM NSA observatory. The models are
an RF, an MLP, and a CNN with a U-Net architecture. In-
put features for the three ML models include MPL 8 and
MPL dep, radar Z., MDYV, W, and radar dep, MWR-derived
LWP, and radiosonde 7'. An ablation study was conducted to
find the optimal configuration of the CNN model. A total of
3 years of data at the ARM NSA site, from 2018-2020, were
used for training and validation, while 1 year of data, from
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2021, were used for testing. The input fields were organized
as three-dimensional arrays (time x height x channel), with
the channel dimension containing the nine individual ARM
data stream inputs. The seven unique cloud-phase classifi-
cations produced by the THERMOCLDPHASE VAP were
used as target variables.

The three trained ML models were applied to
1 year of multi-sensor remote sensing measurements
from 2021 to predict the thermodynamic cloud phase
(THERMOCLDPHASE-ML). The accuracy of these
predictions was evaluated against the outputs of the THER-
MOCLDPHASE VAP. Evaluations included a detailed
1d case study and year-long statistical assessment using
performance metrics such as categorical accuracy, precision,
recall, F'1 score, and mean IOU. Among the ML models,
the CNN demonstrated superior performance, achieving the
highest categorical accuracy, F'1 score, and mean IOU. This
success is likely attributed to its holistic evaluation of input
time-height arrays rather than the pixel-by-pixel approach
used by the MLP and RF models. The CNN’s success may
also be due to site dependency, as NSA is ice dominated, and
this model best predicts ice. The evaluations were further
extended to data from an ARM AMF observatory during the
ARM Cold-Air Outbreaks in the Marine Boundary Layer
Experiment (COMBLE) field campaign at a coastal site in
Andenes, Norway.

We also demonstrated three possible advantages of using
ML models for thermodynamic cloud-phase classification,
including the following:
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1. ML models provide confidence scores for their predic-
tions, with higher scores indicating greater certainty.
Statistical analysis of 1 year of ML classification data
reveals that predictions for ice, rain, and snow generally
exhibit higher confidence scores, followed by the lig-
uid phase. The mixed, drizzle, and lig_driz phases show
lower confidence scores. Among the three ML models,
the CNN produced the highest confidence scores across
all thermodynamic cloud phases.

2. ML models enable feature importance analysis to iden-

tify the input features most influential in determining
thermodynamic cloud phases. Analyzing the calculated
permutation feature importance for the three ML mod-
els reveals that radar moments — specifically Z., MDV,
and W — as well as temperature, are the most significant
features for classifying thermodynamic cloud phases.
In contrast, input features from lidar measurements and
MWRRET LWP were found to be less influential.

3. ML models can predict thermodynamic cloud phases

even when one or more input datasets are missing. To
evaluate this capability, we conducted data dropout ex-
periments by systematically removing either a single in-
put variable or all variables from a specific instrument
to simulate scenarios where the instrument was offline.
We also trained a CNN U-Net model with input channel
dropouts during training (referred to as CNN-ICD), hy-
pothesizing that the inclusion of channel-wise dropout
layers would mimic real instrument dropouts and en-
hance the model’s ability to adapt to missing data, thus
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making the model more robust. Overall, the CNN-ICD
model performs better than the others when input fields
are missing, followed by the standard CNN and MLP
models, with the RF model performing the worst. Drop-
ping out radar variables, including radar Z., MDYV, and
W and all of them together, as well as dropping out tem-
perature data, had the largest negative impacts on pre-
dicting thermodynamic cloud phases for all models.

We utilized thermodynamic cloud-phase classifications from
the THERMOCLDPHASE VAP as the ground truth. How-
ever, the VAP, which employs empirical threshold-based
algorithms, can misclassify thermodynamic cloud phases
(Shupe, 2007). Therefore, we do not expect the trained ML
models to produce better thermodynamic cloud-phase classi-
fications than the THERMOCLDPHASE VAP in most cases.
Instead, we demonstrated the feasibility of using ML models
to predict thermodynamic cloud-phase classifications with
accuracy close to the VAP while adding additional infor-
mation, such as confidence scores and feature importance.
Furthermore, ML models can extend classification to sce-
narios where some instruments are offline, which are typi-
cally problematic for the VAP, and can produce reasonable
classifications in specific cases when the VAP algorithm can-
not. The ML models demonstrate elasticity in their ability to
classify cloud phase, such as when the VAP was unable to
classify snow in the COMBLE case study. Even so, we note
that CNNs have limited interpretability and are less physics-
informed than a hand-crafted retrieval. There are other more
advanced segmentation algorithms than U-Nets that could be
tested in future studies, e.g., U-Net++ (Zhou et al., 2018;
King et al., 2024) and vision transformers (Springenberg
et al., 2023). Furthermore, feature or saliency map analysis
could offer valuable insights into whether the CNN focuses
on physically meaningful regions of the data and represents
a promising direction for future work to enhance the inter-
pretability of model predictions and aid future model devel-
opment (Haar et al., 2023). Our next step will involve creat-
ing a multiple-year, expert-labeled dataset of thermodynamic
cloud phases to train ML models. The goal is to have an ML
model that ultimately predicts better thermodynamic cloud
phases than models derived from empirical threshold-based
algorithms. It is important to note that the definition of ther-
modynamic phases depends on instrument sample volume
and detection limit (Korolev and Milbrandt, 2022). The seven
thermodynamic cloud-phase categories used in this study are
empirical and might not precisely represent true thermody-
namic cloud phases in nature. Therefore, we also plan to ex-
plore using unsupervised machine learning schemes for clas-
sifying thermodynamic cloud phases, using the THERMO-
CLDPHASE data only as a reference of comparison in future
work.
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