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Abstract. This paper describes an algorithm for above-cloud
aerosol (ACA) retrievals from PARASOL (Polarisation and
Anisotropy of Reflectances for Atmospheric Science cou-
pled with Observations from a Lidar) Multi-Angle Polari-
metric measurements. The algorithm, based on neural net-
works (NNs), has been trained on synthetic measurements
and has been applied to the processing of one-year PARA-
SOL data. The algorithm makes use of three subsequent
NNs: (1) for the detection of liquid clouds, (2) for the re-
trieval of aerosol properties for ACA cases, and (3) an NN
forward model to evaluate the goodness-of-fit of the re-
trieval. The NN’s theoretical capability of retrieval is inves-
tigated by several synthetic data studies. It is shown that the
NN retrieve ACAOTssg (above cloud aerosol optical thick-
ness, at 550 nm), AE440-670 (Angstrém exponent, between
440 and 670nm), and SSAssg (single scattering albedo, at
550 nm) with an RMSE (root mean squared error) of ~ 0.1
on ACAOT550, ~ 0.4 on AE440_670 and ~ 0.04 on SSA550
in synthetic experiments. Finally, comparison between the
NN retrievals and adjacent PARASOL-RemoTAP clear-sky
retrieval in 2008 shows good agreement within the range ex-
pected from the synthetic study.

1 Introduction

Knowledge about above-cloud aerosol (ACA) is important
for understanding aerosol’s impact on Earth’s energy balance
and climate dynamics (Li et al., 2022). From a perspective of

aerosol-radiation interaction, it leads to large regional varia-
tions in the aerosol direct radiative effect (DRE; Lacagnina
et al., 2017; de Graaf et al., 2020; Wilcox, 2012). The sign
of the ACA’s DRE may differ from that of a clear-sky situ-
ation (de Graaf et al., 2023), which depends on a number of
factors including the cloud albedo, the aerosol type and its
level of absorption (Lenoble et al., 1982; Keil and Haywood,
2003; Peers et al., 2015; Kacenelenbogen et al., 2019). Fur-
thermore, when absorbing aerosols are located above stra-
tocumulus clouds, warming of the layers above the clouds
stabilizes the boundary layer, reducing entrainment rates and
fostering a moister boundary layer. This may ultimately re-
sult in an increased liquid water content and the preservation
of cloud cover (Johnson et al., 2004; Brioude et al., 2009).
However, uncertainties arise when aerosol and cloud prop-
erties are not adequately known, impacting ACA’s DRE es-
timation (de Graaf et al., 2020) and our understanding of
aerosol-cloud interaction (Arola et al., 2022). Therefore, ob-
taining better-retrieved properties for aerosols and clouds in
ACA scenarios is important for a comprehensive understand-
ing of the ACA’s effect on both radiation and clouds.
Satellite-based remote sensing plays a crucial role in quan-
tifying the aerosol direct effect (Myhre et al., 2009; Lacagn-
ina et al., 2015, 2017; Chen et al., 2022) and indirect ef-
fect (Gryspeerdt et al., 2017; Hasekamp et al., 2019b; Quaas
et al., 2020; Gryspeerdt et al., 2023; Rosenfeld et al., 2024;
Jia et al., 2024). For passive sensors, the largest informa-
tion content on aerosols is available from multi-angle, mul-
tiwavelength measurements of both radiance and polariza-
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tion (Mishchenko and Travis, 1997; Hasekamp and Land-
graf, 2007; Dubovik et al., 2019). This type of instrument
is referred to as a Multi-Angle Polarimeter (MAP) in this
study. Three versions of the POLarization and Directional-
ity of Earth Reflectances (POLDER) instrument have flown
since 1995. Only POLDER-3 on PARASOL has provided a
multi-year data set between 2004 to 2013. The instrument
3MI (Fougnie et al., 2018), which is an improved version
of POLDER, is scheduled to launch in 2025 on the Metop
SG-A satellite. The NASA PACE mission (Werdell et al.,
2019), which launched in February 2024, significantly im-
proves aerosol and cloud retrieval capabilities through ad-
vanced MAP measurements, in terms of accuracy as well as
spectral and angular sampling. PACE includes two polarime-
ters: SPEXone (Hasekamp et al., 2019a; Fu et al., 2025), pro-
viding hyperspectral measurements at five viewing angles,
and HARP-2, providing hyper-angular measurements at four
discrete spectral bands. PACE is the first mission in over a
decade to deliver advanced MAP data products for aerosols
and clouds.

Currently, measurements from satellite-borne MAP instru-
ments can be used to retrieve ACA properties, as the ACA
can significantly affect the reflected polarized radiance in
a certain range of scattering angles (Knobelspiesse et al.,
2015). Initially, Waquet et al. (2009, 2013a) developed a
method that retrieves above-cloud aerosol optical thickness
(ACAOT) and Angstrom exponent (AE) exclusively from po-
larization measurements. This was achieved using a look-up
table (LUT) approach combined with a decision tree strat-
egy. The method was then improved by including additional
total radiance measurements (Peers et al., 2015) to simulta-
neously retrieve the ACA single scattering albedo and the
cloud optical thickness (COT) of the cloud layer. Besides
MAP instruments, several ACA characterization approaches
have been developed for passive and active remote sens-
ing instrument like CALIOP (Cloud-Aerosol Lidar with Or-
thogonal Polarization), MODIS (Moderate Resolution Imag-
ing Spectroradiometer) and OMI (Ozone Monitoring Instru-
ment). The CALIOP sensor provides high-resolution ver-
tical profiles of aerosols and clouds by measuring attenu-
ated backscatter at 532 and 1064 nm, where extinction and
aerosol optical thickness (AOT) is derived from, and depo-
larization at 532 nm, which helps distinguish particle shape,
aiding aerosol classification (Winker et al., 2010; Omar et al.,
2009; Hunt et al., 2009). For MODIS and OMI, the “color
ratio” method, which utilizes the ratio between the measure-
ments at a shorter and a longer wavelength (470-860 nm for
MODIS and 354-388 nm for OMI), is applied to separate
AOT from COT (Torres et al., 2012; Jethva et al., 2013). The
OMI near-UV application demonstrated for the first time the
ACAQT retrieval capability based on satellite radiance mea-
surements. Several studies have shown inter-comparisons be-
tween the above data products (Jethva et al., 2014; Deaconu
et al., 2017).
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The use of Neural Networks (NNs) provides a promising
alternative for physics-based and LUT retrievals because of
the efficiency in computation and the possibility to take into
account the effect on the measured signal of different pa-
rameters (e.g., surface reflection) without explicitly retriev-
ing them (e.g., Yuan et al., 2024). NNs have been used suc-
cessfully in polarimetric remote sensing of aerosols by e.g.
Di Noia et al. (2017), Gao et al. (2021a), Segal-Rozenhaimer
et al. (2018), and Gao et al. (2021b), as well as for polari-
metric remote sensing of cloud microphysical properties by
Di Noia et al. (2019). This work aims at developing an ACA
detection and retrieval scheme for MAP instruments, and fo-
cuses on the POLDER-3/PARASOL instrument (hereafter
simply referred to as PARASOL) because it is the only MAP
with a long-term data set.

The paper is organized as follows: Sect. 2 introduces
the data used in the study, Sect. 3 describes the NN con-
figurations and the datasets used for the training, Sect. 4
investigates the performance of the NN on different syn-
thetic datasets, Sect. 5 shows the data processing of one year
(2008) PARASOL measurements and comparison with ad-
jacent PARASOL-RemoTAP clear-sky aerosol retrievals. Fi-
nally, Sect. 6 summarizes and concludes this paper.

2 Data description
2.1 PARASOL

PARASOL (Fougnie et al., 2007) provided multi-angle ob-
servations (up to 16 viewing angles per ground pixel) in
9 spectral bands (443, 490, 565, 670, 763, 765, 865, 910,
1020 nm) for intensity and 3 spectral bands for Stokes pa-
rameters Q and U (490, 670, 865 nm). The mission was op-
erational in the period 2004-2013 (until 2009 as part of the
NASA A-Train satellite constellation). The level 1 data are
provided on ~ 6 x 6km? sinusoidally grid. This study uses
PARASOL measurements from 6 spectral bands (443, 490,
565, 670, 865, 1020 nm) within latitude ranges from 60° S to
60° N and with at least 14 available viewing angles, as the
majority of PARASOL observations contain exactly 14 an-
gles. For measurements with more than 14 available angles,
a subset of 14 is selected.

2.2 PARASOL RemoTAP aerosol retrievals

In this study, PARASOL RemoTAP (Remote Sensing of
Trace Gas and Aerosol Products) aerosol retrievals provide
some of the aerosol and surface properties in the training set
and are also used for evaluation of the NN ACA retrievals
on real PARASOL measurements. The RemoTAP PARA-
SOL retrievals herein (Hasekamp et al., 2024) are based on
a parametric 3-mode aerosol description characterized by
three log-normal size distribution modes (Npodes = 3): one
fine mode and two coarse modes (dust and soluble). A de-
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tailed overview of RemoTAP can be found in Hasekamp et al.
(2024) and Lu et al. (2022).

2.3 Cloud phase from MODIS-Aqua cloud product

The MODIS cloud phase product used in this work is gen-
erated at 1 km (at nadir) spatial resolutions from MODIS-
Aqua L2 data product (MYDO06_L2, Platnick et al., 2015).
Five different cloud flags are categorized in the product: lig-
uid cloud, ice cloud, mixed cloud, uncertain and clear. In this
work, a pixel is marked as liquid phase cloud only when the
fraction of liquid-cloud-flagged 1 km-resolution MODIS pix-
els within a 6 km x 6 km PARASOL grid cell is larger than
80 %.

2.4 AERO-AC above cloud aerosol retrievals

AERO-AC (Waquet et al., 2020) is a global ACA data prod-
uct from PARASOL measurement, and it is used to com-
pare with the PARASOL-NN ACA retrievals in this paper. In
AERO-AC, the ACA properties are only retrieved in case of
homogeneous optically thick (COT > 3) liquid water clouds.
The algorithm proceeds to search for the best-fitting aerosol
model among all available models, including six fine modes
plus a bimodal non-spherical mineral dust particle model.
Pixels with partial cloud coverage and cloud edges are re-
moved. Cirrus above liquid water clouds are also filtered and
different quality criteria are applied to improve the products.

3 Methodology
3.1 General settings of the forward simulation

The NN training in this study utilizes synthetic measure-
ments of top-of-atmosphere radiance and degree of linear po-
larization (DoLP), as a function of wavelength and viewing-
solar geometries. The synthetic measurements are generated
by the RemoTAP forward model (Hasekamp and Landgraf,
2002, 2005; Schepers et al., 2014), which is a linearized ra-
diative transfer model employed in the RemoTAP retrieval
algorithm (Hasekamp et al., 2011; Fu and Hasekamp, 2018;
Fuetal., 2020; Lu et al., 2022; Fu et al., 2025). In the calcu-
lation of the synthetic measurements, liquid clouds are repre-
sented by spherical particles with a Gamma size distribution
(Hansen and Travis, 1974), and the refractive index of wa-
ter is taken from Hess et al. (1998). For ice clouds, hexago-
nal crystals with varying aspect ratios and surface distortions
are used as proxies for variable-complex-shaped ice crystals
(van Diedenhoven et al., 2020). The aerosol size distribution
follows three log-normal modes, as described in Lu et al.
(2022), where each mode is described by the effective radius
(refr), effective variance (vefr), complex refractive index (de-
pendent on wavelength), AOTss, fraction of spherical par-
ticles (fsph) and aerosol layer height (the central altitude of
the Gaussian distributed aerosol profile, FWHM, full width
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at half maximum, fixed at 2000 m). Here we should note that
the forward simulation of ACA scenes includes only fine and
dust mode aerosols, while the simulation of clear-sky scenes
considers also a soluble coarse mode. The spectrally depen-
dent refractive index m(}) per mode is parameterized by

m() =Y arm (), (1)

k=1

where m*() are prescribed functions of wavelength, for
which we use standard refractive index spectra for different
aerosol components, i.e., dust (Torres et al., 2007), water-
soluble, black carbon (d’Almeida et al., 1991), and organic
carbon (Kirchstetter et al., 2004). The Mie- and T-matrix-
improved geometrical optics database (Dubovik et al., 2006)
is used for the computation from aerosol microphysical prop-
erties to optical properties. The ocean reflection properties
are parameterized based on wind speed as described in Cox
and Munk (1954), and chlorophyll-a concentration as out-
lined in Fan et al. (2019). For land surface simulations,
the bidirectional reflectance distribution function (BRDF)
is parameterized using the Ross-Li model (Wanner et al.,
1995), while the bidirectional polarization distribution func-
tion (BPDF) is parameterized as in Maignan et al. (2009).

The surface (land and ocean) properties for the NN train-
ing are from randomly picked pixels of RemoTAP global re-
trieval for the year 2008. The cloud properties are generated
randomly. The aerosol properties are randomly generated
values or randomly picked from RemoTAP global retrieval in
2008, depending on the task of different NNs (the details are
in Appendix Tables Al, A2 and A3). The geometry combi-
nation (solar zenith angle, SZA, viewing zenith angle, VZA
and relative azimuth angle, RAA) are randomly picked from
real PARASOL solar-viewing geometries in 2008. Only the
measurements with a minimum of 14 angles are considered
(see above) for the NN training, in order to evade from a
variable-sized input vector to the NN or, as an alternative, an
input vector with missing data.

3.2 Neural Network training

This work focuses on retrieving the properties of aerosols
which are located above a liquid cloud layer, and the retrieval
process is depicted in Fig. 1. Three NN are used in the pro-
cess: (1) NN cloud mask, to select pixels covered by a liquid
cloud, (2) NN for aerosol retrieval and (3) NN surrogate ra-
diative transfer model (hereafter referred to as NN forward
model). The NN forward model is used to efficiently com-
pute the goodness-of-fit at low computational cost, which is
essential for identifying cases where the 1D radiative trans-
fer model breaks down-particularly in scenes with low cloud
heterogeneity. Under such conditions, the plane-parallel as-
sumption introduces a positive bias in ACAOT retrievals due
to errors in polarized radiance modeling in the cloud bow
region (Cornet et al., 2018). These angular inconsistencies
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Figure 1. A flowchart of the NN ACA retrieval process. Three NNs
(in the purple rectangles) are used in the process: NN for cloud
mask, NN for ACA retrievals and NN forward model. MODIS cloud
phase data are used to screen out the residual thin cirrus above liquid
clouds. The aerosol retrieval will be discarded if any of the follow-
ing situations happen: (1) NN liquid cloud fraction < 0.8, (2) NN
ice cloud fraction > 0.2, (3) MODIS suggests the cloud phase is not
liquid, or (4) the goodness-of-fit ( X2) > 5.

are revealed through discrepancies in the fit between forward
model and real measurements (Stap et al., 2015, 2016). Ad-
ditionally, MODIS cloud phase flags are used to mask cases
with thin cirrus above liquid cloud (see above).

The first NN (cloud mask) takes intensity, DoLP, and view-
ing geometries (SZA, VZA, RAA and scattering angle) as
input and outputs liquid cloud fraction and ice cloud frac-
tion separately. The independent pixel approximation (IPA)
is used to generate partly cloudy cases in the training set, as
described in Yuan et al. (2024). The training set consists of 8
million samples including 20 % cloud-free pixels, 10 % fully
covered by liquid cloud, 10 % fully covered by ice cloud, and
the other 60 % partly covered by a mix of liquid cloud and
ice cloud. The total cloud fraction is uniformly distributed
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in a square space (probability density function: f(x) = x?)
with more cloud fractions close to 1. This setting reduces the
cloud mask’s ability when CF < 0.8 but makes it more sen-
sitive at almost fully cloudy cases (cases of interest). The ra-
diative contribution of aerosol and surface properties is also
taken into account, as described by Yuan et al. (2024). In the
training set of this cloud mask NN, 20 % of the samples rep-
resent the situation where the aerosol layer is located above
the cloud top, in order to improve NN’s ability to produce lig-
uid and ice cloud fractions in areas of interest for this study.
A pixel will be further processed, if this NN outputs a liquid
cloud fraction > 0.8 and an ice cloud fraction < 0.2, and the
MODIS cloud flag also indicates this pixel is covered by lig-
uid cloud. Here, the MODIS cloud flag is important to screen
out cases where a thin cirrus is above liquid clouds, which
are challenging to be identified by PARASOL measurements
alone.

The aerosol retrieval NN takes the input of MAP measure-
ments (i.e., radiance and DoLP), together with the observa-
tion geometry. It produces both fine mode and dust mode
aerosol properties and underlying liquid cloud properties.
Here we use a bi-modal aerosol description, where the size
distribution is characterized by two log-normal modes, com-
prising one fine mode and one coarse mode representing dust.
The state vector of the fine mode includes reff, Vett, fsph,
aerosol column number (Nyer), and refractive index coeffi-
cients (o ), which correspond to the standard refractive index
spectra of inorganic aerosol (real part), black carbon (imag-
inary part) and organic carbon (imaginary part). The state
vector of the dust mode (consisting of non-spherical dust) in-
cludes reft, Vetf, Naer and a coefficient for the imaginary part
of the dust refractive index. The parameter fph is fixed to 0
and oy of the dust refractive index real part is fixed to 1. The
liquid cloud properties included in the state vector are COT,
cloud layer height (CLH), and the liquid droplet refr and vegy.
To better represent the real situations, the fine-mode fraction
(fraction of fine mode AOT5sg over the total AOTss0) is ran-
domly taken from PARASOL-RemoTAP clear-sky retrievals,
while the total ACAOTss0 is randomly generated by a log-
uniform distribution between 0 and 2. It should be noted that
the coarse soluble mode is not considered in this step as it
is usually below the cloud layer. An overview of the distri-
bution for the different state vector elements of the training
set are given in Table A2. The intensity and DoLP, as a func-
tion of wavelength and viewing angle, are compressed us-
ing a principal component analysis (PCA) before the train-
ing. A total of 25 principal components are retained for radi-
ance (which contains 99.99 % explained variance) and 33 for
DoLP (which comprise 99.14 % explained variance). Differ-
ent from the training set of the cloud mask NN, the training
set of aerosol retrieval NN only contains ACA samples.

The NN for forward calculation is designed to reproduce
the MAP measurements from the viewing geometries and
the retrieved properties, including aerosol properties of both
fine mode and coarse mode and the liquid cloud proper-
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ties. To make the forward model flexible in viewing geome-
tries, it is trained separately per viewing direction and with
the uniformly random-generated SZA, VZA and RAA. For
each aerosol retrieval, the NN should be applied 14 times
to simulate a MAP measurement at 14 viewing angles. The
goodness-of-fit criterion is calculated as:

2y I~ —F)?
= Z . )
where 7 is the total channel of measurements, and y;, F; re-
spectively stands for the satellite measurements and the NN
reproduced measurements at the ith channel. For the PARA-
SOL measurements in this study, a total of 126 channels are
used including 6 wavelengths for intensity and 3 wavelengths
for DoLP with 14 viewing angles per wavelength. The noise
o; is the estimated absolute noise of each channel. Here we
use a relative noise of 0.02 for the intensity and an absolute
noise of 0.012 for DoLP.

It should be noted that the NN forward model is not a com-
plete forward model. It only works for pixels fully covered
by a liquid cloud without any radiative contribution from the
surface and is designed only for the purpose of goodness-of-
fit assessment for ACA retrievals. The performance of NN
forward model on holdout set is shown in Fig. 2. The bias of
both intensity and DoLP is close to zero. The rstd (relative
standard deviation) of intensity is 0.7 % and the std (standard
deviation) of DoLP is 0.0025. Both of them are below the
instrument measurement noise, which suggests the NN for-
ward model is good enough to replace the full physical model
(RemoTAP) in estimating goodness-of-fit.

To increase numerical efficiency and reduce memory us-
age during the training process, we choose the “neural
network ensemble” approach (Hansen and Salamon, 1990;
Ganaie et al., 2022). In our approach, the whole training set is
equally and randomly divided into several parts (further sep-
arated into training set, 90 % samples, and holdout set, 10 %
samples), and an individual NN is trained on each part of
the training set. The final output is the average of the outputs
from all the ensembles. Here, three ensembles are used for
liquid cloud mask NN, 16 ensembles for the aerosol retrieval
NN, and six ensembles for the NN forward model. The num-
ber and size of ensembles is determined by the performance
on synthetic validation sets.

For the cloud mask and retrieval NN, we add measurement
noise to the training set as a form of regularization (Bishop,
1995). The measurement noise is modeled as a Gaussian ran-
dom number with a zero mean and a standard deviation of
1 %-3 % relative noise for intensity and 0.012 absolute noise
for DoLP.

In this study, Pytorch (version 1.11.0, https://pytorch.org/,
last access: 11 October 2021) is used to implement the NN,
which are structured as multi-layer perceptrons (MLPs). The
training process employs the backpropagation (BP) algo-
rithm (Rumelhart et al., 1986) and batch training with a batch
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size of 12 000. The performance of NN in this paper shows
little sensitivity to batch size, so a larger batch size is chosen
for larger convergence rate (De et al., 2017). The Adam op-
timizer (Kingma and Ba, 2014) is used to minimize the root
mean square error (RMSE) loss function. The architecture
of the NN used in this work consists of three hidden lay-
ers. We used the settings (y = 0.001, g1 = 0.9, > =0.999,
e = 107®) suggested by Kingma and Ba (2014), where y is
the initial learning rate. For computational efficiency, ReLU
is chosen to be the activation function. The liquid cloud mask
NN has 64 neurons in each layer, the aerosol retrieval NN
has 128 neurons and the NN forward model has 192 neu-
rons. The detailed statistical distribution of the training sets
can be found in the Appendix Tables A1, A2 and A3.

4 Synthetic experiments

To test the compatibility of the algorithm for different aerosol
conditions, we apply the NN to three datasets: (1) based on a
uniform distribution of the fine-mode fraction between 0 and
1, as a baseline, (2) fine mode dominated cases only (fine-
mode fraction > 0.7), and (3) dust mode dominated cases
only (fine-mode fraction < 0.3). Details on the statistical dis-
tribution of the datasets can be found at Appendix B1. Fig-
ure 3 shows the scatter plot of ACAOTssg, AE440-670, and
SSAssg on the three datasets. The AE is calculated using
ACAQOT at 440 and 670 nm.

The retrievals are filtered by a retrieved liquid cloud frac-
tion > 0.8, ice cloud fraction < 0.2, and the goodness-
of-fit x2 of the retrieval <5, all of which can be ob-
tained from the NN for cloud mask and the NN forward
model. For AE440_¢70 and SSAssg, an additional mask of
retrieved ACAOTssg > 0.2 is applied. The RMSE is 0.11
for ACAOTSss0g, 0.42 for AE440-670, and 0.05 for SSAss50 in
the mixed dataset. In the fine-dominated dataset, it is 0.11
for ACAOT, 0.55 for AE, and 0.05 for SSA. For the dust-
dominated dataset, the RMSE is 0.12 for ACAOT355¢, 0.40 for
AE440-670, and 0.03 for SSAssg. Potentially, the NN could be
improved by adding more extreme cases to the training set,
and this will be a subject of future work.

Additionally, retrieval simulations have been performed on
five fully liquid-cloud-covered datasets to investigate the de-
pendence of the retrieval capability on the optical thickness
of the underlying liquid cloud. The datasets have the same set
of aerosol, cloud, and surface properties (varied within each
dataset) but each set has a different (constant) liquid COT be-
tween 3 and 40. Each dataset has a total of 10000 samples
for both land and ocean. Details on the statistical distribution
of the datasets can be found at Appendix Table B2.

Figure 4 shows the RMSE (over the 10000 retrievals for
each COT value), and fraction of successful retrievals as a
function of the liquid COT. The retrievals are masked by a
retrieved liquid cloud fraction larger than 0.8, an ice cloud
fraction smaller than 0.2 (both of which are from the NN

Atmos. Meas. Tech., 18, 5415-5434, 2025
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Figure 2. Scatter plot of intensity and DoLP at 565 nm from NN forward model. The bias of both intensity and DoLP is close to zero. The
rstd of intensity is 0.7 % and the std of DoLP is 0.0025. Both of them are below the instrument measurement noise, which suggests the NN
forward model is good enough to replace the full physical model (RemoTAP) in estimating goodness-of-fit.

cloud mask at original 6 x 6km? resolution) and a goodness-
of-fit mask from the NN forward model. The AE449_¢70 and
SSAj5sq retrievals are additionally masked by ACAOTssg >
0.2. For samples with COT < 5, 80 % ocean pixels and al-
most all land pixels are screened by the cloud mask and
goodness-of-fit mask. When the COT is larger than 10 over
ocean and 20 over land, the fraction of successful retrievals
(that can pass the cloud mask and goodness-of-fit mask) is
larger than 80 %. For retrievals over land, we see that the
RMSE decreases with increasing COT when COT < 20 and
then stays constant. This behavior can be explained by the
fact that for COT < 20 the measurement is still affected to
some extend by the underlying surface which causes a large
RMSE. Over ocean, an opposite effect is observed (except
for very small COT), because the contribution from the ocean
is relatively small and a smaller COT would enhance the rel-
ative contribution of the aerosol signal compared to the cloud
signal.

5 Application on PARASOL data

5.1 Comparison between PARASOL-NN above cloud
aerosol retrievals and adjacent RemoTAP clear-sky
aerosol retrievals

The ACA retrievals are evaluated with nearby RemoTAP
clear-sky aerosol retrievals in 2008 (Hasekamp et al., 2024)
within the same 1°x 1° grid cell. If a grid cell con-
tains at least 3 ACA retrievals and at least 3 clear-sky
aerosol retrievals, then the comparisons are made by tak-
ing the average of the retrieved aerosol properties for
both ACA and clear-sky aerosol retrievals, respectively.
Figure 5 shows the PARASOL-NN ACA and RemoTAP
clear-sky aerosol retrievals in mid-Africa, 4 August 2008.
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In general, it shows large ACAOTs50 (~ 1) of strongly-
absorbing (SSAssg < 0.85), fine-mode-dominated aerosols
(AE440-670 > 1.5), which is typical in this region, as is also
observed in Waquet et al. (2013a) and Chauvigné et al.
(2021). In the PARASOL-NN retrieval, the ACAOTss5q is
smaller than the adjacent clear-sky AOTs50, because part of
the aerosols are located below the clouds. The ACA seems
to be slightly smaller in size (larger AE440-¢70) and more ab-
sorbing (lower SSAssp) than the nearby clear-sky retrievals.
This is expected, because the total column aerosol (as re-
trieved in the clear-sky case) is more influenced by non-
absorbing coarse sea salt particles, which are mostly located
below the cloud.

The whole year global comparison between the ACA re-
trievals and the matching clear-sky retrievals is shown in
Fig. 6. For AOTs50, there is a root-mean-square difference
(RMSD) between the ACA and clear-sky aerosol retrievals
of 0.155. This is larger than the RMSE for the synthetic ex-
periment (~ 0.10) but we should keep in mind that the clear-
sky RemoTAP retrievals do not provide an exact reference.
In the first place, the retrieval error in the RemoTAP clear-
sky retrievals (based on AERONET validation) is ~ 0.10
over land and ~ 0.05 over ocean (Hasekamp et al., 2024).
Second, we will in general expect a lower ACAQOTss¢ than
the adjacent clear-sky AOTssp, because part of the aerosol
may be located below the cloud, which explains the negative
bias in the ACAOT5s50. However, we also find cases where
the ACAOT 55 is higher than the adjacent clear-sky AOTssg,
which suggests the ACA retrievals may still be contaminated
by cirrus, despite the NN cloud mask and the MODIS cloud
phase mask. It can also be noticed that the RMSD of fine
mode AOTjss( is smaller than the total AOTss50, and there is
less overestimated pixels as well. This may be explained by
the fact that coarse sea-salt, that has largest concentrations
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Figure 3. Scatter plots of ACAOTs5 (a, d, g), AE440_670 (b, €, h), and SSAs5( (c, f, i) on three synthetic datasets, where one contains both
fine-mode-aerosol-dominated cases and dust-mode-aerosol-dominated cases (a, b, ¢) while others contain only fine-mode-aerosol-dominated
cases (d, e, f) or dust-mode-aerosol-dominated cases (g, h, i). The x-axis is the truth of the property and the y-axis is the NN retrieval. The
color of each scatter point stands for the number of retrievals (density) on the point. The mean absolute error (MAE), bias, number of
retrievals (npix), correlation coefficient (corr) and coefficient of determination (Rz) are also given in the plots.

below the cloud, are excluded in the fine mode comparison.
For AE440-670, the RMSE (0.429) in Fig. 6 is similar to the
RMSE found in the synthetic experiment (Fig. 3), despite
the fact that the AE440-670 error on the clear-sky retrievals
is ~ 0.37 over land and ~ 0.25 over ocean (Hasekamp et al.,
2024). For SSAss50, the RMSD (0.0586) is somewhat larger
than in the synthetic experiment, but in general, the results
suggest that the intrinsic aerosol properties (AE and SSA)
are more comparable for ACA and adjacent clear-sky aerosol
retrievals than the AOT, although the correlation of SSAssg
is low (0.37). To demonstrate the necessity of the goodness-
of-fit mask, the comparison without goodness-of-fit mask is
shown in Fig. S4 in the Supplement, it can be seen the per-
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formance of ACAOT550, AE440-670 and SSAss50 become sub-
stantially worse.

5.2 Comparison between PARASOL-NN and
AERO-AC above cloud aerosol retrievals

Figure 7 depicts the comparison of ACAOT¢79 and AE be-
tween PARASOL-NN and AERO-AC at 1° x 1° grid for the
whole year 2008. The RMSD on ACAOT is 0.094, which
is close to 0.107 from synthetic experiments. However, the
correlation coefficient on ACAOT is relatively low (~ 0.5),
and especially at large ACAOTg7¢ values from AERO-AC,
PARASOL NN algorithm retrieves much lower values. The
RMSD on AE is 0.8, which is much greater than in syn-
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thetic experiments (~0.4) and the comparison to adjacent
clear-sky retrievals (~ 0.6). For large AE (> 1.5, as pre-
dicted by PARASOL-NN), the two data products agree well,
but for smaller AE (< 1.5 predicted by PARASOL-NN)
the overall agreement is poor. Specifically, there is a group
of pixels where AERO-AC predicts values close to ~ 1.7).
This group of pixels can be explained by a low ACAOTjgg5
(< 0.1, retrieved by AERO-AC), where the AERO-AC al-
gorithm assumes only fine-mode aerosols in the retrieval.
Panel ¢ of Fig. 7 shows a comparison where we filter out
cases with AERO-AC ACAOTgg5 < 0.1 (in addition to the
filter ACAOTs5509 < 0.2 already applied for both AERO-AC
and PARASOL-NN). For this comparison, the RMSD is re-
duced from 0.8 to 0.5 and the correlation coefficient im-
proved from 0.5 to 0.75. Also, clearly the lower limit of
~ 0.4 in the AERO-AC AE is visible. Besides the reasons
mentioned above, the discrepancy may also be caused by
the fact that the AE from PARASOL-NN is calculated be-
tween 440 and 670 nm while that from AERO-AC is be-
tween 670 and 865 nm. To further interpret the differences
between our PARASOL-NN algorithm and AERO-AC, we
also compared AERO-AC to nearby RemoTAP clear-sky re-
trievals (see Fig. S8). From this comparison it follows that
the ACOATg79 from AERO-AC is in general larger than the
nearby clear-sky AOTg79, with some very large ACAOTg79
values (> 2) when the clear-sky AOTg79 is < 0.5. This
seems to suggest a tendency in AERO-AC to overestimate
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ACAOQOTg70, given that the ACAOT cannot be larger than the
total column AOT. The comparison for the AERO-AC AE to
clear-sky retrievals shows a similar pattern as the comparison
with the above-cloud AE from the PARASOL-NN, although
at larger AE the latter agreement is better than the agree-
ment with clear-sky AE. The relatively large AE differences
between AERO-AC and NN ACA retrievals (as well as the
large AE differences between AERO-AC and PARASOL-
RemoTAP clear-sky retrievals) may be related to differences
in aerosol model assumptions. AERO-AC relies more on spe-
cific aerosol model assumptions under certain conditions,
whereas PARASOL-NN and PARASOL-RemoTAP use the
same continuous range of aerosol properties for all retrievals.
On the other hand, the PARASOL-NN seems to slightly un-
derestimate AE in fine mode dominated cases, based on the
synthetic experiments (Fig. 3). Moreover, it should be kept in
mind that the different wavelength pairs are used for the AE
calculation, which may cause discrepancies in the AE value
(see Fig. S9).

5.3 Distribution of the ACA events’ frequency and the
ACA properties in 2008

Figure 8 shows the global seasonal average of ACAOTssg
and the number of ACA events in spring (March-May),
summer (June—August), autumn (September—November) and
winter (December, January and February) on the 1° x 1° grid.
The average of ACAOTssg is calculated only when at least
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Figure 5. ACAOTs5¢ and clear-sky AOTs5q (a, b, ¢), AE440_670 (d, e, f) and SSAs50 (g, h, i) in mid-Africa, 4 August 2008. The left
column (a, d, g) shows both the ACA and the clear-sky aerosol retrievals. The middle column (b, e, h) is the ACA retrievals and the right
column (¢, f, i) is the clear-sky aerosol retrievals. In this case, the ACA (mostly smoke) has a larger AE440_¢70 and smaller SSAss5¢ than the

adjacent clear-sky aerosols (smoke and sea salt).

25 valid PARASOL retrievals are found in the grid cell. The
number of ACA events in a cell is defined as the total number
of “good” retrievals where ACAOT is larger than 0.1.

The results in Fig. 8 agree well with the major ACA re-
gions from previous studies (Waquet et al., 2013b; Jethva
et al., 2018), which include: (1) Tropical Southeast Atlantic,
primarily consisting of biomass burning aerosols. (2) North
Pacific, mainly containing industrial pollutants. (3) “Dust
Belt” (5—40° N), where mineral dust particles are commonly
detected above clouds in this latitudinal band.

The spatial occurrence of ACA events varies largely
among each season. In the western coast of mid-Africa, the
ACA events occur more in summer and autumn, while in
spring and winter, not many events are observed. In the west-
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ern coast of North America, although the events are detected
for all the seasons, fewer events occurred in autumn and win-
ter compared with the other seasons. The events in southeast-
ern China can also be observed for almost all the seasons with
somewhat less events in summer and autumn.

When looking into the global seasonal average of
ACAOQTs50, we can find two regions with significantly heavy
ACA load: the western coast of mid-Africa (mainly summer
and autumn, ACAOTSss¢ > 0.5), western coast of Morocco in
north Africa (during summer, ACAOTs50 > 0.5) and north-
eastern China (during spring, ACAOTss59 ~ 0.2), and these
regions are also observed to have a large number of ACA
events. In contrast, for some regions with frequent ACA
events, such as the western coast of North America, the sea-

Atmos. Meas. Tech., 18, 5415-5434, 2025
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sonal average ACAOT is relatively low (ACAOT ~ 0.1). This
agrees well with the analyses by Waquet et al. (2013b) in the
same year 2008.

We also investigated the annual average of AE and SSA,
as is shown in Fig. 9. The AE and SSA are calculated where

Atmos. Meas. Tech., 18, 5415-5434, 2025

ACAOQOTs50 > 0.2. Compared with ACA events in other ar-
eas, events around the western coast of mid-Africa exhibit a
different characteristic: aerosols have a high AE (indicating
smaller particles) and a low SSA (indicating more absorbing
components). The high AE and low SSA is an expected fea-
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produces an ACAOT (at 550 nm) larger than 0.1.

ture of the smoke in mid-Africa (Mallet et al., 2024). We have
to remark that our AE in regions between 45-60° N and 45—
60°S is ~ 0.8, which differs largely from ~ 1.8 in Waquet
et al. (2013b), despite the good agreement of our above cloud
AE with the adjacent clear-sky AE in these latitudes. This
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is because in regions between 45-60° N and 45-60°S, the
ACAOQTgg5 retrieved by the AERO-AC algorithm are likely
too low to support reliable aerosol type identification, and
only fine-mode ACAOT and AE retrievals are performed.

Atmos. Meas. Tech., 18, 5415-5434, 2025
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6 Conclusions

This paper presents an NN-based approach to detect and re-
trieve properties of aerosol located above a uniform liquid
cloud layer from multi-angle, multi-wavelength polarimetric
measurements. The proposed approach is based on a cascade
of three NNs trained on synthetic measurements. Separate
NN have been trained for the subtasks of liquid cloud detec-
tion, ACA retrieval, and forward modeling for goodness-of-
fit calculation. This approach is designed to perform aerosol
retrievals for pixels with large liquid cloud cover (CF > 0.8).

We evaluated the approach on different synthetic datasets.
The experiment on three datasets (containing both fine- and
dust-mode-dominated aerosol, only fine-mode-dominated
aerosol and only dust-mode-dominated aerosol) indicates the
NN have the ability to retrieve AOT and SSA from both fine-
and dust-mode-dominated aerosol, as well as mixed scenes
with an RMSE between 0.10-0.12 for AOTs550 and 0.03-0.05
for SSAs5s0. The NN are also capable to retrieve AE440-670
with an accuracy that allows separation between fine-mode
and dust dominated cases (with an RMSE between 0.40—
0.55). The experiments on synthetic data sets with different
liquid cloud optical thickness analyze the theoretical sensi-
tivity of the ACA retrieval. Over land, RMSE decreases as
COT increases up to 20, then remains constant, likely due to
surface influence at lower COT. Over ocean, RMSE shows
the opposite trend (except at very low COT), as the relatively
small contribution of the ocean surface makes aerosol signals
more prominent compared to cloud signals at low COT.

The NN-based approach has been applied to a year of
PARASOL data. The retrieved aerosol properties (AOTss0,
AE440-670, and SSAss50) are compared with adjacent clear-
sky RemoTAP-PARASOL aerosol retrievals in the same
1° x 1° grid yielding an RMSD of 0.155 for AOTss¢, 0.429
for AE440_670 and 0.0586 for SSAss59. The PARASOL-NN
ACA retrievals are also compared with the AERO-AC data
product (Waquet et al., 2020) and demonstrate reasonably
consistent ACAOTg7g retrievals throughout 2008 with an
RMSE of 0.095. In contrast, AE values differ more signif-
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icantly (RMSD = 0.8), which might be related to the fact
that AERO-AC is based on a limited number of aerosol mod-
els, while the PARASOL NN considers a continuous range
of aerosol properties. Particularly in areas where AERO-
AC yields ACAOTgg5 < 0.1, AERO-AC only retrieves fine-
mode ACA properties (RMSD on AE decreases to 0.5 if we
filter pixels with ACAOTges < 0.1). On the other hand, the
PARASOL NN seems to slightly underestimate AE in fine
mode dominated cases, based on the synthetic experiments.
The seasonal global average of the retrieved ACAOTs50 and
the number of ACA events are also analyzed, and the results
show frequent ACA events and a larger mean ACAOT in
mid-Africa and North Africa on the western coast in summer
and autumn months, while frequent events in other regions
are also observed (e.g., southeastern China in autumn) with
a relatively small averaged ACAOT, which agrees well with
the analysis by Waquet et al. (2013b) in the same year 2008.
We also observed a distinctively larger AE and a smaller SSA
on the western coast of mid-Africa, as a result of the smoke
there. However, it has to be noted that our AE in regions be-
tween 45-60° N and 45-60° S is smaller than that from the
previous research (Waquet et al., 2013b), although the AE
of the ACA in these regions agrees well with the AE of the
adjacent clear-sky aerosol AE.

Based on the experiments above, it can be concluded that
NNs with input of measurements from satellite-borne multi-
angular polarimetric instruments are able to retrieve ACA
information, and the NN-based surrogate forward model,
just like the full-physical model, can provide goodness-of-
fit mask to filter unphysical retrievals (e.g. due to imper-
fect cloud mask or challenging aerosol/cloud/surface com-
binations). The proposed approach could be applied for an-
alyzing data from newly developed multi-angle polarime-
ters. By modifying instrument-specific parameters, such as
the number of viewing angles, spectral channels, and noise
configurations during NN training, it can be tailored for ex-
isting on-orbit instruments like SPEXone (Hasekamp et al.,
2019a; Fu et al., 2025) and HARP2 aboard NASA’s PACE
satellite (Werdell et al., 2019). It can also be adapted for
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future instruments, e.g., the 3MI (Fougnie et al., 2018) on
the ESA/EUMETSAT Metop SG-A satellite and the Multi-
Angle Polarimeter (MAP) on the Copernicus CO2M mission
(Spilling and Thales, 2021), both scheduled for launch in the
coming years.

Appendix A: Statistical distributions of the training
data sets for the different NNs

Table A1l. Details of the statistical distributions of the aerosol and cloud parameters used to generate the training datasets for cloud mask
NN. Distribution of “RemoTAP” means properties are randomly taken from 2008 PARASOL-RemoTAP L2 database.

parameter min max mean distribution
wind speed (ms~!) 0.1 87 752 RemoTAP
chl-a concentration 0.001 10 192 RemoTAP
Li-sparse 0 0.35 0.14 RemoTAP
Ross-thick 0 1.4 041 RemoTAP
Maignan bpdf 0.2 10 3.02 RemoTAP
brdf scaling coefficient (443 nm) 0 0.40 0.06 RemoTAP
brdf scaling coefficient (490 nm) 0 045 0.10 RemoTAP
brdf scaling coefficient (565 nm) 0 0.50 0.17 RemoTAP
brdf scaling coefficient (670 nm) 0 0.65 0.23 RemoTAP
brdf scaling coefficient (865 nm) 0 0.80 0.33 RemoTAP
brdf scaling coefficient (1020 nm) 0 090 037 RemoTAP
effective radius of liquid cloud (um) 3 25 14 uniform
effective variance of liquid cloud 0.03 035 0.19  uniform
cloud optical thickness of liquid cloud 1 40 10.6  log-uniform
cloud layer height of liquid cloud (km) 1 8 5.5 uniform
effective radius of ice cloud (um) 10 60 30 uniform
cloud optical thickness of ice cloud 1 100  21.5 log-uniform
cloud layer height of ice cloud (km) 8 17 9.5 uniform
aspect ratio of ice cloud crystals 0.179 5592 1.57 log-uniform
distortion of ice cloud crystals 0.1 0.7 0.4 uniform
aerosol effective radius of fine mode 0.02 0.57 0.14 RemoTAP
aerosol effective variance of fine mode 0.01 0.8 020 RemoTAP
aerosol optical thickness of fine mode 0 458 0.67 log-uniform
aerosol effective radius of dust mode 0.7 6.12 1.89 RemoTAP
aerosol effective variance of dust mode 0.01 0.8 0.58 RemoTAP
aerosol optical thickness of dust mode 0 395 0.60 log-uniform
aerosol effective radius of soluble mode 0.7 6.12 324 RemoTAP
aerosol effective variance of soluble mode 0.01 0.8 059 RemoTAP
aerosol optical thickness of soluble mode 0 395 0.60 log-uniform
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Table A2. Details of the statistical distributions of the aerosol and cloud parameters used to generate the training datasets for NN ACA
retrieval. Distribution of “RemoTAP” means properties are randomly taken from 2008 PARASOL-RemoTAP L2 database.

parameter min max mean distribution
effective radius of liquid cloud (um) 3 25 14 uniform
effective variance of liquid cloud 0.03 0.35 0.19  uniform
cloud optical thickness of liquid cloud 3 40 14.3  log-uniform
cloud layer height of liquid cloud (km) 0.4 4 2.2  uniform
aerosol effective radius of fine mode 0.02 0.57 0.14 RemoTAP
aerosol effective variance of fine mode 0.01 0.8 0.20 RemoTAP
above cloud aerosol optical thickness of fine mode 0 2 0.26 log-uniform
aerosol effective radius of dust mode 0.7 6.12 1.89  RemoTAP
aerosol effective variance of dust mode 0.01 0.8 0.58 RemoTAP
above cloud aerosol optical thickness of dust mode 0 2 0.26 log-uniform

Table A3. Details of the statistical distributions of the aerosol and cloud parameters used to generate the training datasets for NN forward
model. The range of aerosol effective radius and effective variance for both fine mode and dust mode is smaller than that for the retrieval,
because here it takes no extreme cases into account, which is relatively rare.

parameter min max mean distribution
effective radius of liquid cloud (um) 3 25 14 uniform
effective variance of liquid cloud 0.03 0.35 0.19  uniform
cloud optical thickness of liquid cloud 3 40 143 log-uniform
cloud layer height of liquid cloud (km) 0.4 4 2.2 uniform
aerosol effective radius of fine mode 0.03 0.3 0.15  uniform
aerosol effective variance of fine mode 0.1 0.3 0.20  uniform
above cloud aerosol optical thickness of fine mode 0 2 0.26 log-uniform
aerosol effective radius of dust mode 0.8 3.0 1.9  uniform
aerosol effective variance of dust mode 0.4 0.8 0.6  uniform
above cloud aerosol optical thickness of dust mode 0 2 0.26 log-uniform
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Appendix B: Statistical distributions of the synthetic
datasets for testing

Table B1. Details of the statistical distributions of the aerosol and cloud parameters used to generate the datasets for experiment of fine
mode, dust mode seperate and together. Distribution of “RemoTAP” means properties are randomly taken from 2008 PARASOL-RemoTAP
L2 database.

parameter min  max mean distribution
effective radius of liquid cloud (um) 3 25 14 uniform
effective variance of liquid cloud 0.03 0.35 0.19  uniform
cloud optical thickness of liquid cloud 3 40 14.3  log-uniform
cloud layer height of liquid cloud (km) 0.4 4 2.2 uniform
aerosol effective radius of fine mode 0.02 057 0.14 RemoTAP
aerosol effective variance of fine mode 0.01 0.8 0.20 RemoTAP
above cloud aerosol optical thickness of fine mode (if exists) 0 2 0.26 log-uniform
aerosol effective radius of dust mode 0.7 6.12 1.89 RemoTAP
aerosol effective variance of dust mode 0.01 0.8 0.58 RemoTAP
above cloud aerosol optical thickness of dust mode (if exists) 0 2 026 log-uniform

Table B2. Details of the statistical distributions of the aerosol and cloud parameters used to generate the datasets for sensitivity analysis of
underlying liquid cloud optical thickness. Distribution of “RemoTAP” means properties are randomly taken from 2008 PARASOL-RemoTAP
L2 database. COT of liquid cloud (distribution “special”) is constant in each experiment for sensitivity tests. “N/A” means not applicable.

parameter min  max mean distribution
wind speed (m sfl) 0.1 87 7.52 RemoTAP
chl-a concentration 0.001 10 1.92 RemoTAP
Li-sparse 0 035 0.14 RemoTAP
Ross-thick 0 1.4 0.41 RemoTAP
Maignan bpdf 0.2 10  3.02 RemoTAP
brdf scaling coefficient (443 nm) 0 040 0.06 RemoTAP
brdf scaling coefficient (490 nm) 0 045 0.10 RemoTAP
brdf scaling coefficient (565 nm) 0 0.50 0.17 RemoTAP
brdf scaling coefficient (670 nm) 0 0.65 0.23 RemoTAP
brdf scaling coefficient (865 nm) 0 0.80 0.33 RemoTAP
brdf scaling coefficient (1020 nm) 0 0.90 0.37 RemoTAP
effective radius of liquid cloud (um) 3 25 14 uniform
effective variance of liquid cloud 0.03 0.35 0.19  uniform
cloud optical thickness of liquid cloud 3 40 N/A  special
cloud layer height of liquid cloud (km) 0.4 4 2.2 uniform
aerosol effective radius of fine mode 0.02 0.57 0.14 RemoTAP
aerosol effective variance of fine mode 0.01 0.8 0.20 RemoTAP
above cloud aerosol optical thickness of fine mode 0 2 0.26 log-uniform
aerosol effective radius of dust mode 0.7 6.12 1.89 RemoTAP
aerosol effective variance of dust mode 0.01 0.8 0.58 RemoTAP
above cloud aerosol optical thickness of dust mode 0 2 0.26 log-uniform
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Data availability. The MODIS MYD_06 is from
https://doi.org/10.5067/MODIS/MYDO06_1.2.061 (Platnick
et al., 2015). The PARASOL level-1 data can be downloaded
from http://www.icare.univ-lillel.fr/parasol/products (CNES/I-
CARE, 2018). The RemoTAP aerosol retrieval results used in the
article can be found at https://public.spider.surfsara.nl/project/
spexone/others’PARASOL/DATA/POLDER_0.1x0.1_NPge2/
(Hasekamp et al., 2024). The AERO-AC data can be found at
https://doi.org/10.25326/82 (Waquet et al., 2020).
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