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Abstract. Urban surveillance cameras offer a valuable re-
source for high spatiotemporal resolution observations of
near surface precipitation type (SPT), with significant im-
plications for sectors such as transportation, agriculture,
and meteorology. However, distinguishing between common
SPT - rain, snow, and graupel — present considerable chal-
lenges due to their visual similarities in surveillance videos.
This study addresses these challenges by analyzing both day-
time and nighttime videos, leveraging meteorological, opti-
cal, and imaging principles to identify distinguishing features
for each SPT. Considering both computational accuracy and
efficiency, a new deep learning framework is proposed. It
leverages transfer learning with a pre-trained MobileNet V2
for spatial feature extraction and incorporates a Gated Re-
current Unit network to model temporal dependencies be-
tween video frames. Using the newly developed 94h SPT
Surveillance Video (SPTV) dataset, the proposed model is
trained and evaluated alongside 24 comparative algorithms.
Results show that our proposed method achieves an accuracy
of 0.9677 on the SPTV dataset, outperforming all other rele-
vant algorithms. Furthermore, in real-world experiments, the
proposed model achieves an accuracy of 0.9301, as validated
against manually corrected Two-Dimensional Video Dis-
drometer measurements. It remains robust against variations
in camera parameters, maintaining consistent performance
in both daytime and nighttime conditions, and demonstrates
wind resistance with satisfactory results when wind speeds
are below Sms~!. These findings highlight the model’s suit-
ability for large-scale, practical deployment in urban envi-
ronments. Overall, this study demonstrates the feasibility of

using low-cost surveillance cameras to build an efficient SPT
monitoring network, potentially enhancing urban precipita-
tion observation capabilities in a cost-effective manner.

1 Introduction

Near surface precipitation type (SPT) refer to any atmo-
spheric particle consisting of liquid or solid water, which
are integral to precipitation processes and play a crucial role
in the water cycle and cloud microphysics (Pruppacher and
Klett, 1980). Despite SPT and ground conditions (i.e., snow
or rain on ground) are related, note that they are different.
The identification of SPT contributes to the improvement
of quantitative precipitation estimation algorithms and pro-
motes the understanding of precipitation microphysical pro-
cesses, thus providing scientific support for the improve-
ment of microphysics scheme of numerical weather predic-
tion. Common examples of SPTs include rain, snow, grau-
pel. They account for more than 90 % of the SPT and in-
fluence urban transportation, communication, electricity, and
other industries (Casellas et al., 2021a; Zhou et al., 2020).
Especially in winter, a weather process may contain multiple
SPTs and often co-exist or convert to each other. Given the
same amount of precipitation, the impacts of different SPTs
may vary considerably (Leroux et al., 2023). For example, if
5 mm of precipitation falls in 24 h, it is only light rain for the
liquid precipitation but heavy snow for the solid precipita-
tion, severely influencing social production and life. In win-
ter, when snow, rain, and graupel co-exist or alternate fre-
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quently, it is tough for forecasters to know the actual weather
conditions, which seriously affects the quality of forecasts
(Haberlie et al., 2015). Therefore, the accurate discrimina-
tion of the SPT, especially for the rain, snow, and graupel,
has significant scientific and practical value.

Nowadays, many countries and regions no longer observe
precipitation information manually (e.g., in January 2014,
China cancelled ground-based manual observation). Ground-
based Disdrometers (i.e., OTT Parsivel, Two-Dimensional
Video Disdrometer), airborne optical and electromagnetic
wave detection devices, and dual-polarization radars have
become the primary tools (Jennings et al., 2023). However,
(1) with the rapid development of urbanization, ground-
based disdrometers in urban areas face outstanding problems
such as high construction costs, difficulty in management
and maintenance, and low deployment density, resulting in
limited spatial representativeness of the SPT observations
(Arienzo et al., 2021). (2) The data collected by airborne
equipment is mainly used for validating and analysing sci-
entific experiments, which is challenging to apply on a large
scale and in real-time observation tasks (Schirmacher et al.,
2024). (3) Dual polarization radar can alternatively or simul-
taneously transmit and receive polarized waves in both hori-
zontal and vertical directions to obtain the echo information
in different directions of the target scatterer and thus iden-
tify the SPT in the cloud (Casellas et al., 2021b). However,
precipitation particles undergo a complex physical evolution
from high altitude to the ground, especially in urban areas,
where the temperature may have significant spatial differ-
ences, leading to large differences in the SPT between re-
gions (Speirs et al., 2017). In summary, existing techniques
have not effectively addressed SPT’s high temporal and spa-
tial resolution discrimination.

The development of the new observation method has re-
ceived much attention. Some researchers have adopted the
idea of “Citizen Science” by encouraging residents to report
precipitation they see to provide the actual value of the SPT
(Crimmins and Posthumus, 2022). Extensive investigations
have demonstrated the effectiveness of the citizen science-
based approach (Arienzo et al., 2021; Jennings et al., 2023),
which provides important insights for our study. According
to a survey by Comparitech (https://www.comparitech.com/,
last access: 12 May 2024), there are approximately 770 mil-
lion surveillance cameras worldwide. Surveillance video al-
lows 24/7 observation of the precipitation process and pro-
vides clues for SPT discrimination (Wang et al., 2023a). If
every surveillance camera is regarded as an observation site,
such a vast number of surveillance cameras provide a high
spatial resolution observation. At the same time, the surveil-
lance video is transmitted through fiber optic, 4G, and 5G
communication networks, enabling transmission back 15-25
surveillance images per second, which offer a high temporal
resolution sensing of SPT. Moreover, the SPT observation
mission can be deployed on existing surveillance resources,
showcasing the advantage of low operation and maintenance
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costs. Compared to the other citizen science-based approach,
the SPT observation network composed of surveillance cam-
eras offered a more objective record of the precipitation pro-
cess, which has the potential advantages of low cost, all-day,
and high spatiotemporal resolution.

However, extensive analysis and comparison experiments
have revealed that rain, snow, and graupel show greater simi-
larity in surveillance videos (e.g., graupel and rain, as well as
graupel and snow, are more similar in daytime surveillance
videos under different precipitation intensities, whereas at
nighttime, the distinguishing image features of the three are
much closer, making the distinction much more difficult (For
more details, see Sect. 3.1). This study focuses on the dis-
crimination of three SPT, i.e., rain, snow, and graupel par-
ticles via surveillance video, and develops a deep learning-
based SPT discrimination method. Considering that surveil-
lance cameras capture visible and near-infrared video dur-
ing daytime and nighttime, respectively, this study first an-
alyzes the video imaging model of three different particles
and compares their differences in surveillance video fea-
tures. Taking the above findings as a priori knowledge, a deep
learning-based SPT classification model is proposed. An effi-
cient convolutional neural network (CNN) called MobileNet
V2 is used to extract spatial features from surveillance im-
ages based on transfer learning. These features are stacked
together and fed to a gated recurrent unit (GRU) network,
which enables modeling the long-term dynamics of the SPT
in a video sequence. Then, a SPT surveillance video (SPTV)
dataset is constructed for the deep learning model training
and testing. Finally, the effectiveness of the proposed method
is evaluated on both the SPTV dataset and the real-world ex-
periments. To the authors’ knowledge, this is the first study
on graupel observation from surveillance video data. The re-
search findings can provide technical and data support for un-
derstanding the microphysical process of precipitation, im-
proving the microphysical calculation model of precipitation
and improving the accuracy of satellite/radar retrievals.

The rest of this paper is organized as follows. Following
this introduction, we present the related works in Sect. 2; and
explain the details of the proposed deep-learning model in
Sect. 3; and finally, we discuss the experimental results in
Sect. 4 and conclude in Sect. 5.

2 Literature Review

Visual perception is an effective way to distinguish SPT. Vi-
sual sensors, such as surveillance cameras, cell phones, dig-
ital cameras, and vehicle cameras, are considered potential
weather phenomena observers in existing studies. Consider-
ing the research theme, visual is primarily defined as opti-
cal images obtained from the ground. This does not include
data obtained from LiDAR, Radar, or similar technologies.
The authors divided the existing visual-based SPT identifica-
tion work into three categories: traffic surveillance cameras,
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¥ ¢  Direct measurement

Indirect measurement

Figure 1. Weather classification using traffic surveillance cameras.
Direct measurement methods focus on the image/video features ex-
hibited during the precipitation particle’s falling process, while in-
direct measurements involve snow or water accumulation on the
ground.

in-vehicle cameras, and user-generated visual data. It should
be noted that “weather” is a more generic and broad expres-
sion that includes rain, snow, fog, sunny or cloudy condi-
tions, etc. Meanwhile, “hydrometeor” or “precipitation type”
specifically refers here to rain, snow and graupel.

2.1 Traffic surveillance camera

During rainy and snowy weather, roads suffer from snow,
ice, and ponding, affecting transportation efficiency. Timely
weather information reports are significant for traffic warn-
ing, diversion, and management. However, with the limited
number of weather stations and delays in radar/ satellite-
based weather information release, some researchers ex-
ploited weather recognition from outdoor road surveillance
cameras (Li et al., 2014; Lu et al., 2014). As shown in Fig. 1,
these studies include two categories:

1. Indirect measurement mainly refers to detecting snow,
pounding, and road surface wetness from video to de-
duce the weather. Therefore, these methods mainly
focus on the information on the road surface rather
than precipitation processes; specifically, they focus on
whether there is snow on the ground rather than whether
it is snowing. For example, Shibata et al. (2014) used
the texture features of the surveillance images to quan-
tify the pattern and texture of the road surface and detect
road surface conditions (wet and snow) by surveillance
cameras from day to night (or low-light scenarios). Mor-
ris and Yang (2021) constructed a road extract method
by Mask R-CNN and then built a gradient-boosting
ensemble classifier to predict pavement wetness. Ra-
manna et al. (2021) used deep CNNs to label the road
surveillance images into five conditions and constructed
a dataset for deep learning models training. Exten-
sive experiments have shown that the EfficientNet-B4
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network-based system achieved optimal performance.
Landry and Akhloufi (2022) utilized the SVM and CNN
to extract snow areas in the image. They built a model
using surveillance cameras to estimate the percentage
of the snow-covered road surfaces. To reduce the diffi-
culty of model training and improve accuracy, Khan and
Ahmed (2022) introduced a transfer learning method
to apply several pre-trained CNN models for weather
and road condition classification tasks. Lii et al. (2023)
pre-processed the surveillance images through the road
segmentation network to obtain the binary images to
obtain the road image features. Subsequently, a convo-
lutional neural network, composed of overall network
branches and road network branches, was established
and used to extract the overall image area features and
focus on extracting the road weather features, respec-
tively. Askbom (2023) first used CNN-based deep learn-
ing to determine the weather condition (mainly focus-
ing on snow), then constructed a road condition classi-
fication deep learning network with the premise of road
area has been extracted by the U-Net model. Addition-
ally, in an innovative and impressive work, Carrillo and
Crowley (2020) integrated roadside surveillance images
and weather data from weather stations to improve the
performance of road surface condition evaluation. The
fusion of surveillance cameras and other observations
provides novel insights for road weather identification.

However, there is still a period between the occurrence
of rain or snow and the appearance of ponding or snow
on the road surface. Thus, these indirect measurements
are difficult to meet the needs of some applications with
high real-time requirements. Moreover, the above meth-
ods will not work for those surveillance cameras with no
road surface or other specific region as a reference in the
observed area.

. Direct measurement refers to identifying the SPT by the

captured information of falling raindrops, snowflakes.
For example, Zhao et al. (2011) classified weather con-
ditions into steady, dynamic, and nonstationary and em-
ployed four direction templates to analyze the max di-
rectional length of motion blur caused by rain streaks
or snowflakes. In this way, rain and snow can be distin-
guished from traffic cameras. After analysing the image
features of different weather conditions, Li et al. (2014)
adopted the decision tree to model the image features
captured during different weather conditions and built
an SVM classifier to predict the weather. Afterward,
Lee (2017) proposed a more straightforward method,
which used the histogram features of road images as
metrics to discriminate fog and snow in road surveil-
lance cameras. A serious CNN-based weather classifi-
cation effort has been implemented with the develop-
ment of a deep learning algorithm. Xia et al. (2020)
took the residual network ResNet50 as the basis and
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proposed a simplified model for weather feature extrac-
tion and recognition on traffic roads. Sun et al. (2020)
built a deeply supervised CNN to identify road weather
conditions through the road surveillance system. Dah-
mane et al. (2021) constructed a deep CNN to differenti-
ate between five weather conditions from traffic surveil-
lance cameras, such as no precipitation, foggy, and
rainy. Some advanced deep learning networks or meth-
ods like Attention and transformer were naturally intro-
duced, such as Dahmane et al. (2018), who used CNN to
identify rain, fog, and snow weather from road cameras
and applied on large-scale from day to night through
the learning transfer method. Wang et al. (2023b) built
a Multi-Stream Attention-aware Convolutional Neural
network to identify dust storm from city surveillance
cameras. Chen et al. (2023) built a deep learning model
that employs multiple convolutional layers to extract
features from weather images and a Transformer en-
coder to calculate the probability of each weather con-
dition based on these extracted features.

Compared to indirect measurements, direct measure-
ments do not require road surface conditions as a ref-
erence and thus have a broader range of applications.
That is, direct measure methods can also be deployed in
non-traffic surveillance cameras, which are also adopted
in this study.

2.2 In-vehicle cameras

Some researchers concentrated on recognizing weather con-
ditions from images captured by in-vehicle cameras. For
example, Kurihata et al. (2005) used image features from
PCA to detect raindrops on a windshield and to judge rainy
weather. Roser and Moosmann (2008) presented an approach
that employed SVM to distinguish between multiple weather
situations based on the classification of single monocular
color images. Considering that lighting conditions have a
significant impact on weather identification from vehicle-
mounted imagery, Pavlic et al. (2013) used spectral features
and a simple linear classifier to distinguish between clear and
foggy weather situations in both day-time and night-time sce-
narios to improve the visual perception accuracy degradation
of in-vehicle cameras in harsh weather and low light con-
ditions. Additionally, CNN-based deep learning algorithms
also have been employed (Dhananjaya et al., 2021; Triva
et al., 2022). From the perspective of hardware, Zhang et
al. (2022) mounted visible and infrared cameras in front of
the car to collect day-time and night-time road images. After
that, they proposed two single-stream CNN models (visible
light and thermal streams) and one dual-stream CNN model
developed to classify winter road surface conditions automat-
ically. Samo et al. (2023) argued that a single image may
include more than one type of weather. Then, they built a
multilabel transport-related dataset of seven weather condi-
tions and assessed different deep-learning models to address
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multilabel road weather detection tasks. In particular, sensing
the transition between these extreme weather scenes (sunny
to rainy, rainy to sunny, and others) is a significant concern
for driving safety and is less of a concern. For this, Konda-
pally et al. (2023) proposed a way to interpolate the interme-
diate weather transition data using a variational autoencoder
and extract its spatial features using VGG. Further, they mod-
elled the temporal distribution of these spatial features using
a gated recurrent unit to classify the corresponding transition
state. In addition, Aloufi et al. (2024) treated weather clas-
sification and object detection as a single problem and pro-
posed a new classification network, which integrated image
quality assessment, Super-Resolution Generative Adversar-
ial Network, and a modified version of the YOLO network.
This work adds dust storm weather recognition, which has
yet to be considered in previous research.

However, weather visual data collected by In-vehicle cam-
eras and that of surveillance cameras remain different. Take
snow as an example, snow images captured by different vi-
sual sensors are presented in Fig. 2. Surveillance cameras
are usually shot from an overhead view, while the in-vehicle
cameras are mainly from a horizontal view. Different shoot-
ing angles result in images with different backgrounds. These
efforts take a different perspective than surveillance cameras
for weather recognition and provide substantial theoretical
and methodological references and guidance for our study.

2.3 User-generated visual data

Here, the user-generated visual data means the pic-
tures/videos taken by visual devices other than surveillance
cameras (i.e., cell phones, digital cameras, and web cam-
eras). Nowadays, with rapid dissemination on the Internet
and social media platforms, visual data with spatial (geotags)
and temporal (timestamps) information can collectively re-
veal weather information around the world. Based on this,
researchers could collect user-generated visual data from the
Internet or social media platforms for weather condition clas-
sification purposes. For example, Chu et al. (2017) used the
random forest classifier to build a weather properties esti-
mator; Zhao et al. (2018) propose to treat weather recogni-
tion as a multi-label classification task and present a CNN-
RNN architecture to identify multi- weather-label from im-
ages; Wang et al. (2018) combine the real-time weather data
with the image feature as the final feature vector to iden-
tify different weather; Guerra et al. (2018) explored using
super-pixel masks as a data augmentation technique, con-
sidering different CNN architectures for the feature extrac-
tion process when classifying outdoor scenes in a multi-class
setting using general-purpose images. Ibrahim et al. (2019)
proposed a new framework named WeatherNet for visibility-
related road condition recognition, including weather condi-
tions. WeatherNet takes single-images as input and used mul-
tiple deep convolutional neural network (CNN) models to
recognise weather conditions such as clear, fog, cloud, rain,
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Figure 2. Snow captured by different visual sensors: (a) snow captured by a traffic surveillance camera (Sun et al., 2020), (b) snow captured
by an in-vehicle camera (Triva et al., 2022), (c) snow captured by a mobile phone camera (Xiao et al., 2021). Taking snow as an example, a
comparison reveals the visual feature differences of precipitation events captured by these three different types of visual data.

and snow. Togacar et al. (2021) used GoogLeNet and VGG-
16 models to extract image features and use them as input
to construct a spiking neural network for weather classifica-
tion; Xiao et al. (2021) proposed a novel deep CNN named
MeteCNN for weather phenomena classification. Mittal and
Sangwan (2023) extracted features using a pre-trained deep
CNN model and used transfer learning techniques to build
a weather classification framework to save the time and re-
sources needed for the system to work and increase the reli-
ability of the results.

In contrast, as shown in Fig. 2, user-generated visual data
differs significantly from surveillance images/videos in terms
of resolution, clarity, background content, etc., and the image
characteristics of weather conditions may also differ. There-
fore, there are considerable differences in the algorithm de-
sign ideas and result accuracy for determining the weather
from web images and surveillance images.

Table 1 presents a comparison of surveillance camera-
based weather classification/recognition algorithms. Since
ordinary surveillance cameras differ in the images captured
during daytime and nighttime, the working time is divided
into daytime and nighttime (low-light scenarios are catego-
rized as nighttime). Moreover, the weather types that can be
recognized/classified are also listed. Combined with previous
review and analysis, we can summarise:

— In terms of working time: Existing studies mainly focus
on weather condition in daytime, while that of nighttime
is given little attention.

— In terms of weather: It can be found from Table 1 that
the existing works have not yet paid attention to the dis-
tinction of graupel, which is more challenging due to its
similarity to rain and snow particles.

— In terms of methodology: mainstream classification
methods have shifted from traditional machine learning
methods to deep learning methods. For data-driven deep
learning methods, a wealthy and high-quality training
dataset is the foundation for deep learning model con-
struction. We are pleased to see some datasets for road
weather being released (Karaa et al., 2024; Bharadwaj et
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al., 2016; Guerra et al., 2018). However, existing meth-
ods are primarily focused on single-image information.
Compared to images, videos, which contain temporal
dependencies between image frames, are seldom used,
although this will help improve the accuracy of recog-
nition results.

3 Methodology

Previous meteorological studies have explored the size,
shape, brightness, and terminal velocity (mainly referring to
the terminal velocity of particles during free fall near sur-
face) of rain, snow, and graupel, providing an essential foun-
dation for analyzing their visual characteristics. It is impor-
tant to emphasize that in this study, graupel, also known as
snow pellets, refers specifically to solid particles ‘“‘consist-
ing of crisp, white, opaque ice particles, round or conical in
shape and about 2-5 mm in diameter” according to the World
Meteorological Organization terminology (WMO, 2017). In
this study, no mixed phase precipitation is considered. After
analyzing a large number of surveillance videos, the distinc-
tions between rain, snow, and graupel particles can be pri-
marily summarized in terms of brightness and shape from
the perspective of video observations. To enhance clarity, we
present a comparison of these precipitation types in both vis-
ible and near-infrared video footage.

— Brightness: Ordinary surveillance cameras take visible
light video during the day and near-infrared video at
night. Therefore, the brightness of the particles differs
in the day and night-time images/videos. In the daytime,
rain and graupel particles have strong forward reflec-
tions of visible light and appear brighter than the back-
ground. In contrast, snow appears in white; at night, the
brightness of the three particles is similar, with little dif-
ferentiation, as shown in Fig. 3.

— Shape: Due to the long exposure time of surveillance
cameras, rain, and graupel particles have a large de-
formation in surveillance images, usually appearing as
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Table 1. Comparison of surveillance camera-based weather classification/recognition studies.

Working time ‘ Weather can be recognized

Cloudy

Daytime  Nighttime ‘ Rain  Snow Foggy Sunny Dust Storm  Others

v

Zhao et al. (2011)

Shibata et al. (2014)

Liet al. (2014)

Lee (2017)

Dahmane et al. (2018)
Carrillo and Crowley (2020)
Xia et al. (2020)

Sun et al. (2020)

Ramanna et al. (2021)
Dahmane et al. (2021)
Morris and Yang (2021)
Landry and Akhloufi (2022)
Khan and Ahmed (2022)
Lii et al. (2023)

Askbom (2023)

Chen et al. (2023)

Wang et al. (2023b)

LA Ak
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Snow

Rain

Graupel

Figure 3. Comparison of rain, snow, and graupel in day and night surveillance images (Particles are labelled by red circles). Differences
in image features such as brightness, color, and trajectory exhibited by rain, snow, and graupel in daytime visible light and nighttime near-
infrared images, due to their varying optical properties, interactions with light, and terminal fall speeds.

lines. These lines describe the trajectories of rain and
graupel particles. However, as shown in Fig. 3, me-
teorological studies have pointed out that, in general,
the speed of graupel particles (Heymsfield and Wright,
2014; Kajikawa, 1975) is greater than that of rain
(Montero-Martinez et al., 2009). In combination with
the imaging principles of the camera, the trajectory of a
graupel particle is longer than that of a raindrop par-
ticle of the same size in the same surveillance cam-
era. Moreover, rain has a greater number concentration
value (the number of particles per unit volume) (10—
10* m~3) than graupel (1-10 m~3) (Zhang, 2016). That
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is to say, the number of raindrops in the surveillance im-
ages is denser compared to graupel. And snow particles
have less shape change due to their slower falling speed
(< 1 ms~1) (Vazquez-Martin et al., 2021). Overall, the
length of rain is wider and shorter than that of graupel,
while snow is the shortest.

The analysis shows that distinguishing snow is relatively
straightforward, given the significant differences in bright-

ness,

shape, and terminal velocity when compared to that

of rain and graupel. However, the primary challenge of this
study lies in differentiating between rain and graupel. While
there are notable differences in their number concentrations,
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rain and graupel share similar speeds, shapes, and brightness,
which complicates accurate differentiation. Traditional hand-
crafted features fall short in capturing the subtle distinctions
between rain and graupel particles, making it necessary to
employ deep learning features. Furthermore, accurate clas-
sification requires not only spatial features from images but
also temporal features from video sequences.

In practical applications, the timeliness of precipitation
data extracted from surveillance videos is essential to en-
sure the value of the data. With the widespread availability of
high-definition, full high-definition, and ultra-high-definition
surveillance cameras, video resolution is continuously im-
proving, leading to rapid increases in surveillance data vol-
ume. In this context, where numerous cameras generate mas-
sive amounts of real-time data, it is vital to consider not only
memory and computational resources but also the speed and
efficiency of the SPT recognition algorithm, alongside accu-
racy, for effective processing.

3.1 SPT classification model construction

In this section, surveillance video-based SPT identification
is approached as a video classification task. To balance accu-
racy, computational speed, and computational load in design-
ing the SPT classification algorithm, a deep learning model
that integrates MobileNetV2 and GRU is proposed. First,
a pre-trained MobileNetV2 model based on ImageNet is
adapted for spatial feature extraction using a transfer learning
strategy, enabling it to capture differences between surveil-
lance images from various SPT events. These features are
then fed into a GRU network to model the long-term dynam-
ics of the surveillance video sequence. The structure of the
surveillance camera-based SPT identification system is illus-
trated in Fig. 4. The surveillance video is divided into 5s
segments. Within each segment, sequences of 5, 10, and 15
frames are selected and fed into the spatial feature extraction
module (the effect of sequence length on the classification re-
sults is discussed in Sect. 4.4). The extracted feature vectors
are then input into the temporal model for precipitation type
classification.

3.1.1 Spatial feature extraction model

As analyzed previously, the primary distinctions between
rain, snow, and graupel in surveillance images are reflected
in their brightness, shape, and number concentration. The
role of the spatial feature extractor is to identify and cap-
ture these differences from surveillance images captured dur-
ing both daytime and nighttime conditions. MobileNetV2, a
lightweight framework, is widely used for visual object clas-
sification, recognition, and tracking tasks, offering an effec-
tive trade-off between accuracy and model efficiency in terms
of size and computational speed. These advantages align well
with the requirements for spatial feature modelling of var-
ious SPT particles, making MobileNetV2 the chosen back-
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bone for the spatial feature extraction model. MobileNetV?2
builds upon MobileNetV1 and is based on two primary com-
ponents: the inverted separable convolution (ISC) block and
the inverted residual (IR) block.

— ISC block: This block utilizes a 1 x 1 convolution with
batch normalization and a ReLLU6 activation function
(1 x 1 R-Conv) to expand the number of channels in the
input feature map. It then calculates the feature maps
through depth-wise convolution (DW), after which the
number of channels is reduced using a linear 1 x 1 con-
volution.

— IR block: Built upon the ISC block, this block reduces
the stride of the DW convolution to 1, maintaining the
feature map size before and after processing. It also in-
corporates a shortcut connection between each residual
block, similar to the residual network structure (He et
al., 2016). This setup allows the feature maps following
the 1 x 1 linear convolution (1 x 1 L-Conv) to be added
to the input feature maps, completing the calculation of
the residual feature maps. The structures of the ISC and
IR blocks are shown below.

Figure 6 presents the architecture of the existing Mo-
bileNet V2 backbone model. Here, we set the input size of
the MobileNet V2 to 512 x 512 x 3, and output seven groups
of feature maps of different sizes, from 112 x 112 x 32 to
7 x 7 x 160, to the temporal feature extraction model for fea-
ture fusion processing.

Transfer learning involves leveraging knowledge from one
task to inform another, eliminating the need for feature ex-
tractors to be trained from scratch. This approach accelerates
training, reduces the risk of overfitting, and enables the con-
struction of accurate models more efficiently. Previous re-
search has shown that pre-trained models, developed using
extensive datasets like ImageNet, offer an excellent foun-
dation for new tasks where dataset size is limited. Conse-
quently, the final two layers of MobileNetV2 were removed
and replaced with global average pooling (GAP), batch nor-
malization (BN), and temporal feature extraction layers (de-
tailed in Sect. 3), including GRU layers. Finally, the pre-
trained MobileNetV2, fine-tuned on the ImageNet dataset,
was adapted through transfer learning to extract spatial fea-
tures of SPT from surveillance images.

3.1.2 Temporal feature extraction model

Another critical indicator for differentiating between rain,
snow, and graupel particles is their varying falling veloci-
ties, as illustrated in Fig. 7 (Zhang, 2016). While such differ-
ences are challenging to detect in single images, they become
much more pronounced in video sequences. Consequently,
the temporal feature extractor builds upon the spatial feature
extractor by capturing the temporal dependencies between
adjacent frames, thereby enabling the modeling of falling ve-
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Figure 4. The structure of the surveillance camera-based SPT identification system. Frames are selected from the surveillance video and
fed into the spatial feature extraction module. The extracted spatial feature vectors are then aggregated and input into a temporal feature
extraction module composed of GRUs, enabling the differentiation of SPT.
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Figure 5. The structure of the inverted separable convolution (ISC) block and inverted residual (IR) block.

locities for rain, snow, and graupel particles. Recurrent Neu-
ral Networks (RNN), Long Short-Term Memory (LSTM),
and Gated Recurrent Units (GRU) are widely recognized net-
works for learning temporal dependencies, effectively lever-
aging contextual information. This capability is particularly
valuable in tasks such as natural language processing, video
classification, and speech recognition. RNNs apply recurrent
operations to each element in a sequence, where the current
computation is influenced by both the current input and pre-
vious states. However, traditional RNNs are prone to the van-
ishing and exploding gradient problems, which limit their ef-

Atmos. Meas. Tech., 18, 5457-5484, 2025

fectiveness in capturing long-term dependencies, confining
them mostly to short-term dependencies. To address these
limitations, variants such as LSTM and GRU were intro-
duced. These networks are specifically designed to capture
long-term dependencies. The GRU, a streamlined version of
LSTM, features fewer parameters, making it more efficient
in terms of memory usage and computational speed. A GRU
consists of three primary components: the update gate, the
reset gate, and the current memory gate.
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Figure 6. The structure of MobileNet V2 backbone network. The spatial feature extraction module, based on MobileNet V2, is initially
trained on the ImageNet dataset to leverage its large, diverse image data for general feature extraction. Subsequently, transfer learning is
applied, and the model is fine-tuned on our constructed PPSV dataset, allowing it to adapt to the specific characteristics of precipitation-

related images in our study.

— Update gate: Controls the extent to which previous in-
formation is retained and carried forward to future states

(Eq. ).

— Reset gate: Determines the amount of past information
that should be discarded (Eq. 2).

— Current memory gate: Computes the current state by in-
tegrating the previous hidden state with the current input
(Eq. 3). The final memory is determined as described in
Eq. (4).

2 =0 (W, [hi—1, ]+ b;) (H
re =0 Wy -[hi—1,x:]1+by) (2
h; = tanh(W - [ry5h;—1, x,]1+ D) 3)
hy = —z)%hi—1 +Zt*ﬁt 4)

where, W,, W,, and W are learnable weight matrices, h,_| is
the previous hidden state, x; is the input vector, o and tanh
are the sigmoid and tanh activation function, * represents the
Hadamard product, and b,, b, and b are biases.

After extracting spatial features, they are input into a GRU
layer with 93 hidden units to capture temporal dependencies.
The outputs from the GRU layer are concatenated and passed
through a dense layer. Following the dense layer, a batch nor-
malization layer is applied, which is subsequently connected
to a fully connected output layer. This final layer uses a Soft-
Max activation function to classify the SPT event from the
surveillance video sequence. The spatial feature map has an
input shape of 1280 x N, where N represents the length of
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Figure 7. Comparison of terminal velocities of different particles.
The differences in fall velocities among different precipitation par-
ticles (rain (Atlas et al., 1973), snow (Brandes et al., 2007), graupel
(Kajikawa, 1975; Magono and Lee, 1966)) serve as an important
basis for constructing our temporal feature extraction module. It is
important to note that this study primarily focuses on solid graupel
particles.

the video sequence utilized for temporal dependency model-
ing. The impact of different values of N on the accuracy of
SPT classification is analyzed in Sect. 4.4.

3.2 Dataset building

For training and testing the deep-learning model, a new
SPTV dataset was constructed. As illustrated in Fig. 8,
20 surveillance cameras were deployed at the National
Benchmark Climate Station in Nanjing, Jiangsu, China. Of
these, videos from 17 cameras (IDs 4 to 20) were utilized

Atmos. Meas. Tech., 18, 5457-5484, 2025
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Figure 8. Overview of the study area. Due to space limitations, we only present the scenes captured by three surveillance cameras. The use
of a variety of 20 surveillance cameras deployed in different places ensures the dataset’s diversity and generalizability, enhancing the model’s

applicability and reliability in real-world scenarios.

to build the dataset, while the remaining 3 cameras (IDs 1
to 3) were reserved for real-world precipitation observation
experiments, as discussed in Sect. 4.5.

Considering the broad range of potential applications, the
deployed urban surveillance cameras exhibit substantial vari-
ation in parameters, including resolution (960 x 720, 1280 x
960, 1920 x 1080, 2592 x 1944), focal length (4, 6, 8, 12 mm),
and frame rate (15, 20, 25 fps). This diversity ensures that the
collected video data reflects real-world surveillance condi-
tions, thereby minimizing the gap between the performance
of the deep-learning model on the SPTV dataset and its ap-
plicability in real-world scenarios.

After a long period of observation (starting from
March 2023 and ending in July 2024), we captured a huge
amount of surveillance video data for different SPTs. During
this period, we captured extreme precipitation surveillance
videos such as snowstorms with intensities of 27 mmh~!
and heavy rainfalls of 195 mmh~'. These rare and precious
precipitation scenarios play an important role in improving
the generalization and diversity of our dataset. Finally, about
94 h of surveillance videos from day to night were selected
and categorized into four categories: rainfall, snowfall, grau-
pel, and no precipitation. The videos were divided into seg-
ments, each of which was 5s in length, with a frame rate
ranging from 15-25fps, and were saved in .mp4 format.
More details can be found in Table 2.

In addition, the Two-Dimensional Video Disdrometer (2-
DVD), a professional precipitation measurement instrument,
works in synchronization with the surveillance cameras to
provide the true value/label of the SPT for the surveillance
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Table 2. Description of the SPTV dataset. Each video clip with

length of 5s.
Day-time Night-time Note
No 6903 7378
precipitation
Rain 11183 11249  From0to 195 mmh~!
Snow 8086 7938  From 0to 27 mmh~!
Graupel 7272 7692 From 0 to 23 mmh~!

videos. Simultaneous observations by researchers are also
conducted, and their observed data are used to refine the
2DVD measurements, ensuring the accuracy of the true val-
ue/label of SPT. The precipitation intensity values are calcu-
lated every minute. Therefore, the values in Table 2 refers
to the precipitation intensity during a 1 min period, not an
hourly intensity. The maximum distance between the 2DVD
and the camera is 1 km, which ensures that the SPT observed

by the two is the same.

4 Experiment and discussion

4.1 Experimental environment

Our experiments were performed on a workstation with
Ubuntu 11.2.0 (Linux 5.15.0-25-generic) for the operating
system. More specifications are as follows:

— 4x Intel Xeon Silver 4216 CPU@2.10 GHz (32 cores);

https://doi.org/10.5194/amt-18-5457-2025
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— 8x NVIDIA GEFORCE GTX2080Ti graphics cards
equipped with 11 GB GDDR6 memory;

— 188 GB RAM;
— Python 3.9.16;

— TensorFlow 2.4.1, Scikit-learn 1.2.1, and Keras 2.4.3 li-
braries;

— CUDA 11.8 and CUDNN 8
4.2 Evaluation metrics

To evaluate the SPT classifiers, we selected 3 different estab-
lished metrics: the balance accuracy, weighted precision, and
weighted recall. The balance accuracy metric (Accuracy) is
described as:

~ TP;
Accuracy = — —

niz Si

&)

where TP; and S; stand for the number of True Positive and
sample size of class i, respectively.

The weighted precision metric (Precision) can be calcu-
lated as follows:

" TP;

Precision = Zl m*ri ©6)
=

where FP; is the number of False Positive of class i and r;
is the ratio between the number of samples of class i and the
total number of samples.

The weighted recall (Recall) is calculated as follows:

" TP;
Recall = Z ———— %7 @)
— (TP; +FN;)

4.3 Model training details

The SPTV dataset was split into training, validation, and
test datasets according to the ratio of 7:2: 1. Training and
validation sets were employed to construct the deep learn-
ing model. To analyze the performance of the proposed
method, some classical CNN models with ImageNet pre-
trained weights such as: DenseNet 121 (Huang et al., 2017),
EfficientNet BO (Tan and Le, 2019), Inception V3 (Szegedy
et al., 2016), and ResNet 50 (He et al., 2016) are used to ex-
tract the spatial features of precipitation images, while some
commonly used neural networks for temporal signal analysis
like RNN, LSTM, 1D-CNN (Kiranyaz et al., 2021), and Bi-
LSTM (Huang et al., 2015) are employed to extract the tem-
poral features of precipitation surveillance videos, respec-
tively. In terms of realization, transfer learning is exploited,
and the last layer of each spatial extraction architecture (i.e.,
the fully connected (FC) and Softmax layers) was deleted
and replaced with two layers: GAP and BN, to extract the
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deep spatial features based on transfer learning. Second, the
spatial features were sent to temporal feature extraction net-
works listed above. The Softmax function was used as a clas-
sifier to identify SPT. Thus, a total of 25 deep-learning algo-
rithms are constructed and compared. The hyper-parameters
deep-learning models were set as listed in Table 3.

4.4 Experiments on the SPTV dataset

Given the length of the input frames on the temporal feature
extraction, we evaluated the performance of different algo-
rithms when screening 5, 10, and 15 frames per second from
the video clips for comparison. The results of different num-
bers of frames per second (NFS) as input to temporal feature
extraction are shown in Tables 4, 5, and 6, the bold black
entries indicate relatively better performance.

The results indicate that when the number of frames
(NFS) is set to 5, the accuracy of our proposed method
closely aligns with those of the DenseNet 121+GRU, ResNet
50+LSTM, and MobileNet V2+1D-CNN models. When
the NFS is increased to 10, the performance of our pro-
posed method, DenseNet 1214-Bi-LSTM, Inception V3+Bi-
LSTM, and ResNet 50+GRU converges, showing minimal
differences in classification accuracy, which ranges from
0.960 to 0.967. However, with NFS at 15, the accuracy of
our proposed method surpasses that of DenseNet 121+GRU
and ResNet 504-1D-CNN models, though it slightly declines
to approximately 0.949 to 0.957.

The observed improvement in deep learning model per-
formance when increasing NFS from 5 to 10 frames can be
attributed to the enriched temporal features provided by the
additional frames. These features enhance the models’ abil-
ity to differentiate between various SPTs. Nonetheless, when
the NFS reaches 15 (equivalent to 75 frames per video clip),
the lengthier temporal sequences challenge the RNN and 1D-
CNN architectures, resulting in reduced classification accu-
racy. In contrast, the GRU architecture, with its more com-
pact structure and computational efficiency, facilitates faster
aggregation during training on the SPTV dataset, allowing it
to sustain high accuracy even with longer NFS. Our proposed
algorithm demonstrates classification accuracies of 0.9671,
0.9677, and 0.9577 across the three experimental settings,
thereby exhibiting consistently superior stability compared
to other methods.

To further assess model performance, confusion matrices
are utilized as visual tools, elucidating the relationship be-
tween actual and predicted classifications. Figure 9 presents
the confusion matrices for our proposed deep learning mod-
els on the SPTV dataset, detailing SPT discrimination capa-
bilities (confusion matrices for comparison models are pro-
vided in Appendix A). In these matrices, columns denote true
labels, while rows represent predicted classifications by dif-
ferent algorithms. Additionally, violin plots in Fig. 10 quan-
tify the SPT classification performance across models, pro-
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Table 3. Hyper-parameters for deep-learning models.

Table 4. Comparison of SPT recognition by different deep-learning algorithms (NFS = 5). The bold entries indicate relatively better perfor-

Spatial feature extractor

Temporal feature extractor

Hyper-parameters Value

Learning Rate 0.001

Batch Size 32

Number of Epoches 100

Dropout Rate 0.5

Filters [64, 128, 256, 512]
Activation Functions ~ ReLU

Weight Initialization  He Initialization

Hyper-parameters Value
Learning Rate 0.001
Batch Size 32
Number of Epoches 100
Dropout Rate 0.5
Activation Functions ~ Sigmoid

Weight Initialization
Loss Function

Glorot Initialization
Mean Squared Error

mance.
RNN LSTM GRU 1D-CNN Bi-LSTM
DenseNet 121 Accuracy 0.9479 0.8856  0.9656 0.9295 0.9334
Precision  0.9428 0.8874 0.9639  0.9278 0.9335
Recall 0.9415 0.8903 09617  0.9322 0.9341
EfficientNet BO  Accuracy 0.9051 0.9508 0.9253 0.9550 0.9558
Precision  0.8993  0.9522  0.9245 0.9408 0.9574
Recall 0.9072 0.9498 0.9208 0.9558 0.9497
Inception V3 Accuracy  0.8887 0.9448 0.9237 0.9418 0.9442
Precision  0.8693 0.9414 0.9201 0.9373 0.9485
Recall 0.8921 09431 09199  0.9487 0.9471
ResNet 50 Accuracy  0.9390 0.9660 0.9581 0.9287 0.9558
Precision  0.9302 0.9599 0.9517 0.9189 0.9576
Recall 0.9323 09674 0.9585 0.9207 0.9511
MobileNet V2 Accuracy 0.9576  0.9496  0.9671 0.9610 0.9440
Precision  0.9526 0.9469 0.9597 0.9624 0.9487
Recall 0.9513 0.9502 0.9634  0.9626 0.9398

viding further insight into the comparative strengths of each
approach.

Overall, the classification accuracy of above listed algo-
rithms is slightly higher for “no precipitation” and “snow”
conditions compared to “rain” and “graupel.” The confu-
sion matrices indicate that the primary source of misclas-
sification among the algorithms lies in differentiating be-
tween “rain” and “graupel” events. This issue arises due to
the distinct shape, color, and falling velocity of snow parti-
cles, which starkly contrasts with rain and graupel, thereby
making snowy conditions easier to classify. As discussed in
Sect. 3, both “rain” and “graupel” share similar visual and
temporal characteristics in both daytime visible and night-
time near-infrared videos, posing significant challenges for
the classification algorithms.

Furthermore, Fig. 9 illustrates occasional misclassification
between “no precipitation” and other SPTs. Upon analysing
the SPTV dataset, it was observed that these errors typically
occurred during low-intensity precipitation events, where
only a minimal number of rain, snow, or graupel particles

Atmos. Meas. Tech., 18, 5457-5484, 2025

were present. While the 2-DVD device — known for its high
sensitivity — can detect such subtle precipitation events, cap-
turing these minute particles in surveillance videos remains
challenging, particularly when affected by lighting condi-
tions and external environmental factors within the camera’s
field of view.

Our proposed method effectively balances temporal and
spatial features in precipitation surveillance videos, achiev-
ing classification accuracies for “no precipitation,” “rain,”
“snow,” and “graupel” of 0.9454, 0.9652, 0.9657, and
0.9439, respectively, at NFS = 5. The accuracies improve
to 0.9713, 0.9795, 0.9775, and 0.9438 at NFS =10, and
0.9811, 0.9519, 0.9532, and 0.9445 at NFS = 15. These re-
sults demonstrate our algorithm’s consistently high and bal-
anced accuracy across all SPTs, with NFS = 10 being the
optimal setting. This configuration has been adopted for real-
world precipitation observation experiments, as detailed in
Sect. 4.5.
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Table 5. Comparison of SPT recognition by different deep-learning algorithms (NFS = 10). The bold entries indicate relatively better

performance.
RNN LSTM GRU 1D-CNN Bi-LSTM
DenseNet 121 Accuracy 09104 0.9376  0.9507 0.9483 0.9620
Precision  0.9115 0.9336 0.9487  0.9402 0.9643
Recall 09127 09258 0.9512  0.9477 0.9601
EfficientNet BO  Accuracy 0.9247 09274 0.9368  0.9516 0.9335
Precision  0.9202 0.9243 0.9402  0.9475 0.9278
Recall 0.9253 09148 0.9335 0.9514 0.9238
Inception V3 Accuracy 0.8962 0.9336  0.9498 0.9476 0.9641
Precision  0.9012 0.9345 0.9464  0.9427 0.9578
Recall 0.8913 09402 0.9352  0.9453 0.9622
ResNet 50 Accuracy 0.9152  0.9306 0.9651  0.9526 0.9521
Precision  0.9158 0.9267 0.9645  0.9516 0.9502
Recall 09127 09317 0.9661  0.9548 0.9544
MobileNet V2 Accuracy 09108 0.9211 0.9677 0.9433 0.9546
Precision  0.9121 0.9217 0.9644  0.9423 0.9549
Recall 0.9098 09159 0.9758  0.9409 0.9601

Table 6. Comparison of SPT recognition by different deep-learning algorithms (NFS = 15). The bold entries indicate relatively better

performance.
RNN LSTM GRU ID-CNN Bi-LSTM
DenseNet 121 Accuracy  0.9291 0.8821 0.9490  0.9067 0.9265
Precision 0.9322 0.8689 0.9347  0.8874 0.9202
Recall 09107 0.8778 0.9426  0.8955 0.9178
EfficientNet BO  Accuracy 0.8857 0.9105 0.9320  0.9012 0.9272
Precision 0.8656 0.9047 0.9189  0.9036 0.9178
Recall 0.8645 0.8993 0.9275  0.8998 0.9302
Inception V3 Accuracy 0.9124 09271 09225  0.9254 0.9404
Precision 09111 0.9215 0.9057 09114 0.9287
Recall 0.9074 09303 09154  0.9233 0.9444
ResNet 50 Accuracy 0.9087 0.8952 0.9385 0.9554 0.9248
Precision  0.8954 0.9012 0.9346  0.9547 0.9301
Recall 09111 0.8872 0.9245  0.9504 0.9287
MobileNet V2 Accuracy 0.8938 0.9275 0.9577  0.9189 0.9350
Precision 0.8952 0.9245 0.9542  0.9105 0.9374
Recall 0.8911 09147 0.9553  0.9233 0.9326

4.5 Real-world experiments

Next, we evaluate the performance of the proposed method in
real precipitation scenarios. The 2-DVD measurements, cali-
brated through simultaneous observations by researchers, are
used as the true value to validate the effectiveness of the ver-
ification method. Here, six precipitation events are selected,
including three types of precipitation scenarios: rain, snow,
and shrapnel from day-time to night-time, and the duration
of each precipitation event is 2h. More details about each
precipitation event are presented in Table 7. Considering the

https://doi.org/10.5194/amt-18-5457-2025

impact of wind on the trajectory and falling speed of precip-
itation particles, we have taken further measures to enhance
the robustness and accuracy of the model. Specifically, we
installed an anemometer next to the surveillance camera to
capture real-time changes in wind speed and direction. This
measure provides the model with relevant wind field data to
better account for wind interference when predicting SPT.
Since the orientation of the surveillance camera is generally
fixed, the wind direction data collected by the anemometer
can be combined with the camera’s viewpoint to calculate
the relative orientation of the wind to the camera lens.

Atmos. Meas. Tech., 18, 5457-5484, 2025
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Table 7. Precipitation duration of real-world experiments.

Date (UTC+38)
Rain Day-time 12 July 2024, 08:00-10:00 a.m.
Night-time 19 July 2023, 01:30-03:30 a.m.
Snow Day-time 18 December 2023, 09:00-11:00 a.m.
Night-time 18 December 2023, 09:30-11:30 p.m.
Graupel Day-time 22 February 2024, 12:30-03:30 p.m.
Night-time 15 December 2023, 10:00-12:00 p.m.

Three surveillance cameras (ID: 1, 2, and 3, as shown in
Fig. 8) are used for real-world precipitation observation ex-
periments. The key parameters of these three EZVIZ C5 se-
ries cameras are as following:

— image resolution: 2592 x 1944, 1920 x 1080, 1280 % 960;
— focal lengths: 4, 6, and 8 mm;
— frame rate: 15, 20, 25 fps;

The three selected surveillance cameras simultaneously
recorded the same precipitation event, although each cam-
era captured a different scene. This arrangement supports the
stability analysis of the deep learning algorithm. The field of
view of the three cameras is shown in Fig. 11.

In line with the findings presented in Sect. 4.4, surveil-
lance videos were processed by the model with a 5 inter-
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val between frames, capturing 10 frames per second (NFS =
10) for temporal feature extraction. The classification per-
formance for various SPTs from Camera_1 is illustrated in
Fig. 12, while the results from Camera_2 and Camera_3 are
provided in Appendix B. In practical applications, the occur-
rence of false alarms significantly reduces the effectiveness
of SPT recognition system. Therefore, the “no precipitation”
label was also included in the evaluation. More detailed ex-
perimental results can be found in Table 8.

In real-world precipitation observation experiments, the
proposed method achieves an average classification accu-
racy of 0.9301. Specifically, under daytime conditions, the
method achieves classification accuracies of 0.9171, 0.9670,
0.8785, and 0.9744 for “no precipitation”, “rain”, “snow”,
and “graupel”, respectively. Under nighttime conditions, the
corresponding classification accuracies are 0.9112, 0.9225,
0.8667, and 0.9705. Overall, the classification accuracies for
“rain” and “graupel” are comparatively lower, which aligns
with the results observed in the SPTV dataset. Upon further
analysis, many misclassifications occur when precipitation
intensity is low, often being misidentified as “no precipita-
tion”. This is likely due to the fact that under low precip-
itation intensity, the number concentration of the precipita-
tion particles is small, making them difficult to detect in both
daytime and nighttime videos. This issue is also supported
by the data shown in Fig. 12 and Appendix B, where low-
intensity precipitation events are hard to identify. As anal-
ysed in Sect. 4.4, the validation data used in this study mainly
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Figure 12. Real-world SPT classification in camera_1: (a) Day-time rain, (b) Night-time rain, (¢) Day-time snow, (d) Night-time snow,
(e) Day-time graupel, (f) Night-time graupel. The black curve represents the precipitation intensity readings from the 2-DVD. The meanings
of the lines represented by different colors are as follows: green: rain; red: snow; brown: graupel; yellow: no precipitation.

comes from the 2-DVD, which captures falling precipitation
particles using a linear array scanning method, offering a
high sensitivity to precipitation particles (Kruger and Kra-
jewski, 2002). This allows the 2-DVD to detect precipitation
events even at low particle concentrations, while such events
may be missed in the surveillance video due to frame rate
limitations or lighting conditions. This discrepancy leads to
misclassification of some precipitation events as “no precip-
itation”. Moreover, as our method employs frame skipping
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when feeding video frames into the deep learning network
(NFS = 10), the probability of missing precipitation particles
is further increased. Using more video frames as inputs to the
deep learning model is a feasible approach. This would in-
crease the temporal capture of precipitation particles, thereby
reducing the likelihood of misclassification. However, this
approach would also lead to an increase in model complexity
and computational delay. Therefore, while optimizing the in-
put data strategy, a balance needs to be found between model
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Table 8. Identification accuracy of the proposed method for real-world SPT.

X. Wang et al.: Surveillance Camera-Based Deep Learning Framework

Camera_l Camera_2 Camera_3 Average

Rain Day-time 0.9252 09174 0.9086 0.9171
Night-time 0.9151 0.9134 0.9052 0.9112

Snow Day-time 0.9673 0.9657 0.9581 0.9637
Night-time 0.9534 0.9606 0.9625 0.9588

Graupel Day-time 0.8756 0.8675 0.8923 0.8785
Night-time 0.8581 0.8583 0.8836 0.8667

No Precipitation  Day-time 0.9874 0.9781 0.9578 0.9744
Night-time 0.9785 0.9672 0.9657 0.9705

Average 0.9326 0.9285 0.9292 0.9301

accuracy and computational efficiency to ensure real-time
performance and stability in practical applications.

As analysed in Sect. 3, it is evident that the visual char-
acteristics of rain, snow, and graupel differ between day-
time and nighttime surveillance videos. Especially, during
nighttime, present additional challenges due to varying light
sources such as streetlights, vehicle headlights, and other
ambient lighting interferences, which can significantly im-
pact image features of SPT. Despite these variations, the re-
sults indicate that the proposed algorithm performs consis-
tently well under both day and night conditions. This robust-
ness underscores the algorithm’s ability to effectively capture
and distinguish the spatiotemporal features of various SPTs
across complex illumination scenarios, making it highly suit-
able for SPT recognition tasks throughout the entire day. Fur-
thermore, these findings suggest that exploring the distinc-
tions between different SPTs from both spatial and temporal
dimensions provides a reliable benchmark for future model
enhancements. This also lays a solid foundation for refining
deep learning models to improve their generalization ability
across diverse real-world surveillance conditions.

Based on the previous introduction to camera parameters,
the three surveillance cameras used in this study have dif-
ferent fields of view, image resolutions, and frame rates.
In particular, differences in frame rates often imply varia-
tions in exposure time, leading to discrepancies in the cap-
tured images of the same precipitation particle, such as rain-
streak length and width. This increases the challenge of dis-
tinguishing GPH. Despite the significant differences in cam-
era parameters, our algorithm demonstrates consistent per-
formance across all devices, exhibiting remarkable stability.
This robustness can be attributed to two key factors. First, the
self-constructed SPTV dataset is derived from a large num-
ber of real-world urban surveillance scenarios captured by
cameras with varying parameters. Second, the results indi-
cate strong generalization capability, thereby enhancing sta-
bility in cross-camera observations. Our method effectively
integrates the temporal and spatial (image) characteristics of
different SPTs, combining spatiotemporal-based features in
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a unified framework. This resilience to variations in cam-
era parameters makes our approach particularly suitable for
large-scale practical applications, as urban surveillance cam-
eras typically exhibit substantial configuration differences.
The demonstrated robustness ensures reliable performance
across diverse surveillance environments, enhancing the ap-
plicability of our proposed algorithm in real-world scenarios.

The influence of wind on precipitation particles mainly
lies in altering their movement direction and falling speed,
which, in turn, affects their representation in the camera’s
field of view. To investigate this, we examined the impact
of wind speed and direction on the performance of the SPT
recognition method. As shown in Fig. 12, surveillance cam-
eras capture 2D images to represent a 3D space, meaning that
wind causes particles to enter the camera’s field of view from
the front, rear, left, or right. The left and right directions are
symmetrical, so particles entering from these two directions
exhibit similar characteristics in the image or video. This is
because wind from the left or right does not significantly af-
fect the projected shape of the particles. Furthermore, since
the directions are symmetrical, the paths, speeds, and varia-
tions of particles entering from these directions present sim-
ilar features in the image. In contrast, particles entering from
the front and rear exhibit different visual effects when pro-
jected onto the image plane. This difference is due to varia-
tions in the camera’s focal length, field depth, and distance.
Particles entering from the front appear to grow larger in
the video, whereas those from the rear appear smaller. This
phenomenon arises from the pinhole imaging principle fol-
lowed by the monitoring camera, where objects closer to the
camera appear larger in the field of view, and those farther
away appear smaller. Thus, particles from the front and rear
present distinct characteristics in the image, following the
“near large, far small” imaging rule. As shown in Fig. 13, we
categorized particle’s relative direction to surveillance cam-
eras (orientation of the surveillance camera as 0°) into four
classes:
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Surveillance
camera
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Figure 13. The definition of particle’s relative direction to surveillance cameras.

Normal: Particles fall vertically and enter the camera’s
field of view, showing typical image/video features.

— Side direction: Particles enter from the left or right, pre-
senting similar characteristics due to symmetry.

— Front direction: Particles enter from the front, with their
size changing according to the distance from the cam-
era.

— Rear direction: Particles enter from the rear, with their
size decreasing as they move farther away.

Since the orientations of the three surveillance cameras are
known, the relative wind direction of camera can be calcu-
lated by:

A8 = (By — 0:)mod360 8)

where, 6,, represents the wind direction provided by the
anemometer, 6, represents the orientation of the surveillance
camera.

As shown in Fig. 13, the particle’s relative direction to
the camera can be determined based on the value of A6, as
follows: Side direction: Af € [45, 135) U [225, 325); Front
direction: A0 € [325,45); Rear direction: A6 € [135,225).
Next, we have statistically analyzed the recognition accu-
racy of SPTs under different wind speeds and directions. The
data in the figure represent the average values from the three
surveillance cameras. Considering that wind speeds ranging
from 0 to 1 ms~! cause minimal tilting of the precipitation
particles, these cases are classified as “Normal” and are not
separately reported.

Overall, wind negatively impacts the classification accu-
racy of SPT, with its influence becoming more pronounced as
wind speed increases. In particular, distinguishing between
rain and graupel presents greater challenges under windy
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conditions, as the model’s classification accuracy deterio-
rates significantly with increasing wind speed. Nevertheless,
when wind speed is below 5 ms~!, the proposed method still
achieves an accuracy of approximately 0.8 for rain-graupel
classification, indicating that the method remains effective
within this wind speed range. In comparison, when wind
speed is below 6 m s~ !, the proposed model maintains a clas-
sification accuracy above 0.9 for snow under different wind
directions, demonstrating high reliability. Furthermore, the
influence of particle direction (i.e., wind direction) is also
significant and follows certain patterns. For instance, the
classification accuracy for particles arriving from the side di-
rection is higher than for those coming from that of front
or rear directions. This may be because side-entering parti-
cles produce clearer projections in the images, providing the
model with more distinguishable features and thereby im-
proving classification accuracy. In contrast, particles arriving
from the front or rear exhibit greater variability in their image
representation due to differences in viewing angles and dis-
tances (as shown in Fig. 13), leading to a reduction in classi-
fication accuracy. In summary, the proposed method demon-
strates a certain degree of robustness against wind, particu-
larly when wind speed is below 5ms™!, where it continues
to perform reliably and effectively mitigates the impact of
wind on precipitation particle classification.

In addition to the discussion on algorithm accuracy, com-
putational complexity is also a critical factor in practical ap-
plications. Specifically, when scaling from a single camera to
a large-scale surveillance network, the overall computational
complexity may increase exponentially, significantly impact-
ing system efficiency and resource consumption. Therefore,
evaluating and optimizing the algorithm’s computational cost
while maintaining identification accuracy is essential for en-
suring feasibility in real-world deployments. Here, two cru-
cial metrics for evaluating the complexity and practicality
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Figure 14. The influence of wind speed and direction on the accuracy of SPT classification.

of deep learning models for SPT identification are Float-
ing Point Operations (FLOPs) and Parameters (Rump et al.,
2008; Carr and Kennedy, 1994). FLOPs denote the total num-
ber of floating-point operations required to execute a net-
work model once, reflecting the computational demand dur-
ing a single forward propagation. This metric is widely used
to assess a model’s computational efficiency and processing
speed. Meanwhile, Parameters encompass the total number
of parameters within a model, as well as those that require
training, which indicates the GPU memory resources needed
for model training. A detailed comparison of FLOPs and Pa-
rameters across various deep-learning models is presented
below, models with relatively lower Parameters and FLOPs
are highlighted in bold black and underlined.

As shown in Tables 9 and 10, our proposed method ex-
hibits significantly lower Parameters and FLOPs values com-
pared to deep learning models based on alternative spatial
feature extraction frameworks. While the GRU, which is
used as our temporal feature extraction framework, presents a
slightly higher complexity than RNN, LSTM, and 1D-CNN,
it offers a clear advantage in terms of accuracy. This in-
creased complexity is offset by the improved performance,
demonstrating the ability of GRU to better capture the tempo-
ral dependencies inherent in SPT observation tasks. In sum-
mary, the proposed method represents an optimal choice for
large-scale deployment and SPT observation applications.
It not only achieves superior accuracy but also ensures ef-
ficiency in both the SPTV dataset and real-world experi-
ments, outperforming other algorithms in terms of both com-
putational resource usage and recognition performance. This
makes it highly suitable for practical, large-scale applications
where both accuracy and efficiency are paramount.
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4.6 Discussion

In our years of video data collection and real-world exper-
iments, we have found that under certain conditions, our
method may fail. For example,

— when raindrops adhere to the camera lens, the image
becomes blurred, which affects the image quality and
leads to inaccurate SPT identification. Since surveil-
lance cameras are typically exposed to the external en-
vironment, this issue occurs not only during the day but
also at night, as shown in Fig. 15a and b. In particular,
under windy conditions, raindrops are more likely to at-
tach to the lens, increasing the blurriness and unclear
nature of the image. This not only affects the resolution
of precipitation particles but also makes it difficult to
accurately classify SPTs.

— Strong winds may also cause camera shake, blurring
precipitation images in the surveillance field of view.
Under strong wind conditions, the movement trajecto-
ries of precipitation particles become unstable, and rain
droplets, snowflakes, and other particles may be scat-
tered by the wind, as shown in Fig. 15c. This not only al-
ters their fall paths but may also cause the precipitation
patterns to become unclear, increasing the complexity
of algorithmic interpretation.

— High air humidity during precipitation events is also a
contributing factor. When humidity increases, particu-
larly during continuous rainfall or wet weather, water
droplets or mist tend to condense on the camera lens,
leading to blurred images, as shown in Fig. 15d. This
phenomenon is commonly observed during early morn-
ings or at night when humidity levels are higher, and it
may also occur during sudden precipitation events. The
accumulation of moisture prevents the lens from clearly
presenting the shape and movement trajectories of pre-
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Table 9. The Parameters of deep-learning models. The bold entries indicate relatively better performance.

5475

RNN LSTM GRU 1D-CNN Bi-LSTM
DenseNet 121 Total 7048781 7048811 7048801 7048785 7048803
Trainable 6965 133 6965163 6965153 6965137 6965155
EfficientNet BO  Total 4063657 4036387 4063677 4063661 4063679
Trainable 4021641 4021671 4021661 4021645 4021663
Inception V3 Total 21825325 21825355 21825345 21825329 21825347
Trainable 21790893 21790923 21790913 21790897 21790915
ResNet 50 Total 23610253 23610283 23610273 23610257 23610275
Trainable 23557133 23557163 23557153 23557137 23557155
MobileNet V2 Total 2272077 2272107 2272097 2272081 2272099
Trainable = 2237965 2237995 2237985 2237969 2237987
Table 10. The FLOPs of deep-learning models. The bold entries indicate relatively better performance.
RNN LSTM GRU ID-CNN  Bi-LSTM
DenseNet 121 30213894 30213918 30213910 30213877 30213927
EfficientNet BO 17203088 17203112 17203104 17203071 17203121
Inception V3 88144876 88144900 88144892 88144859 88144909
ResNet 50 95565102 95565126 95565118 95565085 95565135
MobileNet V2 9880644 9880668 9880660 9880627 9880677

cipitation particles, further complicating the identifica-
tion process.

— Lightning can also affect the performance of surveil-
lance cameras. As shown in Fig. 15e, the intense light
from lightning and the rapidly changing environmental
conditions can interfere with the camera’s automatic ex-
posure system, leading to overexposure or underexpo-
sure, or even uneven exposure in the image. This strong
light and the rapid changes in the scene can disturb the
normal functioning of the algorithm, resulting in mis-
judgment or loss of precipitation images, especially in
thunderstorms with frequent lightning.

— Additionally, dust on the lens can also affect image
quality, though this impact is smaller compared to rain-
drops or humidity. When dust accumulates on the lens,
the image may become slightly blurry, but it won’t cause
significant distortion like raindrops or fog, as shown in
Fig. 15f. However, in cases of severe dust accumula-
tion, it may affect the separation of SPT from the back-
ground, thus impacting the accurate recognition of SPT.

In practical applications, manually cleaning each camera lens
is resource-intensive and difficult to implement on a large
scale, particularly in large-scale surveillance networks. Cur-
rently, advanced image denoising and deblurring techniques
have been developed in the field of computer vision, which
can improve image quality to some extent by removing blur
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and enhancing the clarity of surveillance footage (Wang et
al., 2020; Li et al., 2021). However, these techniques are
primarily designed for conventional monitoring tasks, espe-
cially for object detection, such as monitoring people, ve-
hicles, and other targets. In these applications, precipitation
particle images are often considered “noise”, causing details
and shapes of the precipitation particles to become blurred
or even completely lost. This loss of information is critical
for particle type classification, which negatively impacts SPT
recognition tasks. To address this issue, two feasible solu-
tions are proposed:

Develop a dedicated video/image quality recognition
model: This model could evaluate image clarity and identify
abnormal images caused by raindrop attachment, lens blur,
high humidity, and other factors leading to degraded image
quality. When the system detects that the image quality is in-
sufficient, it can discard low-quality images. The main func-
tion of this model would be to preprocess the input videos or
images, determining whether their quality is clear enough to
meet the requirements of SPT identification tasks.

Incorporate low-quality images as a new class in the train-
ing dataset: By adding low-quality images as a new category,
the model can learn how to recognize quality issues in precip-
itation images and make corresponding judgments. Specifi-
cally, this new class could be labelled as “low-quality im-
age” or a similar label, representing images that are affected
by raindrops, mist, lens stains, or other factors that degrade
their quality. In this way, the model can not only recognize

Atmos. Meas. Tech., 18, 5457-5484, 2025
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Figure 15. Different types of surveillance image quality degradation: (a) Drop attachment on lens at night, (b) daytime drop attachment on
lens, (c¢) wind caused image blurred, (d) mist caused lens blurred, (e) lightning-induced exposure anomalies, (f) dust caused image blurred.
These special cases can be regarded as scenarios where our proposed method fails to work.

normal SPTs but also effectively differentiate which images
cannot be accurately classified due to quality issues, thereby
improving the accuracy and reliability of the results.

Mixed-phase precipitation holds significant importance in
meteorology, particularly prominent during the winter season
(Jennings et al., 2023). Surveillance videos capture precipi-
tation particle groups, and under mixed precipitation condi-
tions, variations in the proportions of solid and liquid parti-
cles lead to significant differences in image and video fea-
tures. Firstly, the image features of mixed precipitation are
not merely a simple superposition of single-particle images;
optical effects such as refraction and reflection between parti-
cles further alter the visual characteristics (Mishchenko et al.,
2002), increasing the complexity of visual feature modeling.
Additionally, in mixed precipitation, the considerable fluctu-
ations in the overall fall velocity of the precipitation particle
group captured in the videos pose challenges to the tempo-
ral feature modeling based on existing single-phase particle
fall theoretical formulas (e.g., Fig. 7). While this study es-
tablishes a basis for mixed-phase precipitation recognition,
the present algorithm, which is largely constructed around
the microphysical characteristics of single-phase precipita-
tion (e.g., color, particle size, fall velocity), still exhibits
notable uncertainty in accurately identifying mixed-phase
events. In future work, we plan to introduce a “mixed precip-
itation” category or further subdivide it into multiple types
such as “rain-snow mixture” and “snow-graupel mixture” to
more accurately reflect the complexity of SPTs. Meanwhile,
considering the scarcity of mixed precipitation surveillance
video samples, we plan to expand the dataset and optimize
the algorithm to improve the model’s accuracy and stability
in recognizing various precipitation types in practical appli-
cations, thereby enhancing its practical value and potential
for broader deployment.
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5 Conclusions

In this study, we focus on identifying three SPTs —rain, snow,
and graupel — using surveillance cameras. We analyse their
distinguishing characteristics in both daytime and nighttime
videos to inform our classification approach. To balance pre-
cision, latency, and efficiency requirements in real-world ap-
plications, we employ a MobileNet V2 network with transfer
learning to extract image and spatial features, followed by
a GRU network to capture temporal information, enabling
high-accuracy SPT discrimination. For training and testing,
we constructed the SPTV dataset, a SPT video dataset to-
talling approximately 94 h. To evaluate the performance of
our proposed deep learning model, we compared it against 24
alternative deep-learning models. Experiments on the SPTV
dataset show that the proposed algorithm achieves an op-
timal accuracy of 0.9677 when NFS = 10. Although some
comparative algorithms demonstrate slightly lower accuracy,
our method exhibits significantly reduced computational and
time complexity, making it highly suitable for practical de-
ployment. Furthermore, six real-world experiments yielded
an average accuracy of 0.9301, with comparable perfor-
mance during both daytime and nighttime, demonstrating the
algorithm’s stability even when faced with varying camera
parameters. Moreover, our method demonstrates a certain de-
gree of wind resistance, achieving satisfactory performance
when wind speed is below 5ms~!. This robustness makes
our method a viable solution for large-scale, all-day, high-
accuracy SPT observation tasks.

Currently, the method faces limitations in distinguish-
ing between rain and graupel, with the recognition accu-
racy for graupel reaching only 0.8726 in real-world appli-
cations. Enhancing graupel discrimination accuracy is a key
area for future improvement. Additionally, addressing chal-
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lenges such as reducing misclassifications in “no precipita-
tion” conditions and improving the system’s ability to de-
tect failure cases in special scenarios will be essential for
increasing reliability and applicability in diverse real-world
environments. To further improve the recognition of vari-
ous SPTs, the SPTV dataset will be expanded to include hail
and mixed precipitation surveillance videos, thereby enhanc-
ing the model’s accuracy and robustness in practical applica-
tions.

Appendix A

The Confusion matrixs of different deep learning algorithms
are presented as follows:

Table A1. Confusion matrix of different deep learning algorithms (NFS = 15).
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Table A2. Confusion matrix of different deep learning algorithms (NFS = 10).
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Table A3. Confusion matrix of different deep learning algorithms (NFS = 5).
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Appendix B

Real-world SPT identification by surveillance camera_2 and
camera_3 is shown as below.
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Figure B1. Real-world SPT identification by surveillance camera_2 and camera_3: (a) Day-time Rain of camera_2, (b) Day-time Rain
of camera_3, (c¢) Night-time Rain of camera_2, (d) Night-time Rain of camera_3, (e) Day-time snow of camera_2, (f) Day-time snow of
camera_3, (g) Night-time snow of camera_2, (h) Night-time snow of camera_3, (i) Day-time graupel of camera_2, (j) Day-time graupel
of camera_3, (k) Night-time graupel of camera_2, (1) Night-time graupel of camera_3. (green: rain; red: snow; brow: graupel; yellow: no
precipitation; The black curve represents the precipitation intensity readings from the 2-DVD).
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Data availability. Given the sensitivity of urban surveillance
data, we release partially anonymized experimental videos
(with people and vehicles masked) and example visible- and
near-infrared clips of rain, snow, and graupel, available at
https://doi.org/10.5446/71534 (Wang, 2024).

Video supplement. Example visible- and near-infrared clips of
rain, snow, and graupel, available at https://doi.org/10.5446/71534
(Wang, 2024).
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