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Abstract. The Earth Cloud Aerosol and Radiation Explorer
(EarthCARE) mission, a joint effort between the European
Space Agency (ESA) and the Japan Aerospace Exploration
Agency (JAXA), aims to advance our understanding of
aerosols, clouds, precipitation, and radiation using a com-
prehensive payload of active and passive sensors. A key
component of the payload is the 94 GHz cloud profiling
radar (CPR), which provides the first-ever Doppler veloc-
ity measurements collected from space. Accurate knowledge
of the CPR antenna pointing is essential for ensuring high-
quality CPR Doppler velocity measurements. This study fo-
cuses on the geolocation assessment and antenna mispoint-
ing corrections during EarthCARE’s commissioning phase
and beyond, using Earth’s surface Doppler velocity measure-
ments collected over the first 9 months of the mission. While
the instrument footprint is proven to be properly geolocated
within about 100 m, surface Doppler velocity observations
reveal mispointing trends influenced by solar illumination
cycles and thermoelastic distortions on the antenna. Correct-
ing these effects significantly reduces biases, ensuring bet-
ter Doppler velocity measurements, essential for understand-
ing cloud microphysics and dynamics. The results, validated
through the analysis of Doppler velocities in ice clouds, un-
derline the critical role of pointing corrections for the success
of the EarthCARE mission.

1 Introduction

The Earth Cloud Aerosol and Radiation Explorer (Earth-
CARE) mission (Wehr et al., 2023), a joint satellite mis-
sion by the European Space Agency (ESA) and the Japan
Aerospace Exploration Agency (JAXA), was successfully
launched on 28 May 2024. The mission aims to deliver
groundbreaking observations of aerosols, clouds, precipita-
tion, and radiation, advancing our understanding of their
properties and intricate interactions that will help improve
climate models and weather forecasting (Illingworth et al.,
2015). As the most sophisticated ESA Earth Explorer mis-
sion to date, the EarthCARE satellite is equipped with two
active (radar and lidar) and two passive (spectral and broad-
band) radiometer sensors. The onboard radar is a high-
sensitivity 94 GHz cloud profiling radar (CPR) with Doppler
capabilities, enabling the first-ever collection of Doppler ve-
locity measurements from a spaceborne radar system (Kol-
lias et al., 2014; Battaglia et al., 2020).

During the commissioning phase, which included the first
6 months following its launch, several activities were per-
formed to finalize and ensure the proper operation of the
satellite’s payloads according to the mission requirements.
These activities include ground segment checks for data ac-
quisition, processing, and distribution, as well as the verifica-
tion of health and functionality, in-orbit calibration, charac-
terization, and performance verification of the instruments.
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The experience gained by the successful CloudSat mis-
sion by the National Aeronautics and Space Administration
(NASA), the Canadian Space Agency (CSA), and the US Air
Force (USAF) (Stephens et al., 2002) and its cloud profiling
radar (Tanelli et al., 2008) provided a wealth of information
on how to address several aspects of the initial CPR evalua-
tion during the commissioning phase. This includes methods
to calibrate CPR science data using the ocean surface nor-
malized radar cross section (Tanelli et al., 2008; Battaglia
and Kollias, 2015a) and the CloudSat-derived climatology of
ice clouds (Battaglia and Kollias, 2015b); ground clutter re-
moval (Burns et al., 2016); and path-integrated attenuation
(PIA) estimation (Haynes et al., 2009).

On the other hand, the EarthCARE CPR Doppler velocity
measurements are new. The quality of these measurements is
affected by three main factors (Kollias et al., 2022): intrinsic
noise due to the signal decorrelation (spectral broadening)
introduced by the platform motion, residual errors in correct-
ing Doppler velocity biases introduced by non-uniform beam
filling (NUBF) (Tanelli et al., 2002; Kollias et al., 2022; Sy
et al., 2014), and outstanding biases and errors due to uncer-
tainty in the CPR antenna pointing characterization (Tanelli
et al., 2005; Battaglia and Kollias, 2015b). The treatment of
the two first terms (spectral broadening and NUBF) in the
CPR L2a data products is described in Kollias et al. (2023).
Here, we focus on two critical activities related to the third
term, conducted during the commissioning phase and extend-
ing a few months beyond: the geolocation and the assess-
ment of the off-nadir antenna pointing angle along the or-
bital track, especially important to determine the quality of
the Doppler velocity measurements.

A comparable pointing characterization has been docu-
mented in the Aeolus mission, launched in August 2018,
which was the first satellite to provide global wind profiles
using Doppler wind lidar (Kanitz et al., 2019; Reitebuch
et al., 2020). Aeolus exhibited complex, seasonally modu-
lated wind biases caused by thermoelastic deformations of
its primary mirror. These deformations were driven by vari-
ations in Earth’s infrared albedo (i.e., outgoing longwave ra-
diation), which in turn depended on atmospheric and illumi-
nation conditions. The resulting structural changes affected
the angle of incidence and divergence on the Fabry—Perot
and Fizeau interferometers used to retrieve Doppler shifts
from Rayleigh and Mie scattering. These effects introduced
horizontal line-of-sight (HLOS) wind biases along the or-
bit, sometimes exceeding several meters per second (Rennie
et al., 2021; Weiler et al., 2021).

In contrast, the EarthCARE CPR pointing biases discussed
in this study arise from antenna mispointing primarily in-
duced by direct solar illumination and subsequent shading
of the antenna structure. While the mechanisms differ, both
cases share the common influence of solar-induced distor-
tions. Notably, Aeolus demonstrated that wind bias could
be correlated with onboard temperature sensors mounted on
the mirror’s backside (Weiler et al., 2021), leading to a ma-
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jor breakthrough in bias correction strategies (Rennie et al.,
2021) and highlighting the potential value of integrating tem-
perature telemetry into satellite mispointing correction tech-
niques.

In this study, both the geolocation and antenna point-
ing characterization are derived from surface measurements
collected over natural targets between the months of June
2024 and June 2025, the geolocation techniques described in
Puigdomenech Treserras and Kollias (2024), and the C-APC
product described in Kollias et al. (2023). Although thermis-
tors are installed on the backside of the CPR antenna and
were used during pre-launch tests to model thermal deforma-
tion, the telemetry data are not publicly available and are not
used in the present study. Instead, we adopt an observation-
based approach that leverages the Earth’s surface as a sta-
ble reference. The results presented here are further validated
through a comparison of the pointing effects on the climatol-
ogy of Doppler velocities in ice clouds.

2 Geolocation

The accurate determination of the precise location on Earth’s
surface and atmosphere corresponding to signals received by
the CPR instrument is essential for their interpretation. Fur-
thermore, because one of the strengths of the EarthCARE
mission is the synergistic use of multisensor observations,
the CPR measurements must be properly geolocated in order
to ensure an effective integration with the signals from all
other sensors. These measurements are combined in syner-
gistic algorithms like AC-TC (Irbah et al., 2023), ACM-CAP
(Mason et al., 2023), and ACM-COM (Cole et al., 2023).
Here, the geolocation assessment is performed using the
techniques described in Puigdomeénech Treserras and Kollias
(2024), based on the positions of known natural targets, such
as significant elevation gradients and coastlines over more
than 140 domains of 2° x 2° distributed around the globe. For
significant elevation gradients, the assessment is performed
by comparing the instrument’s surface detection height to a
reference digital elevation model (DEM). To do this, small
displacements are systematically applied to the CPR geolo-
cation coordinates in both along- and cross-track directions
when projecting the detected surface onto the DEM. These
displacements correspond to different possible geolocation
offsets, as any pointing results in a lateral shift of the pro-
jected footprint on the ground. The step sizes are chosen such
that the corresponding horizontal shifts match the DEM res-
olution (1 arcsec), ensuring optimal sampling for the anal-
ysis. The absolute geolocation is determined by the shift
that maximizes the correlation between the instrument and
the DEM-estimated surface height. For coastlines, the anal-
ysis leverages the fact that land and ocean surfaces exhibit
distinct normalized radar cross-section signatures, resulting
in sharp surface signal gradients at land—ocean transitions.
These transitions, detected in the CPR surface signal, provide
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Figure 1. EarthCARE CPR geolocation assessment using significant elevation gradients and coastlines. Panels (a) and (b) illustrate an
example based on significant elevation gradients in a mountainous region of British Columbia, Canada. Panel (a) shows the selected 2 x 2
domain, with the red line representing one of the EarthCARE overpasses. Panel (b) depicts the correlation analysis used to estimate the
optimal geolocation offset for the full set of surface detections and the entire domain shown in panel (a), with the white line representing
the satellite path, in descending orbit, and the red filled star denoting the final estimated geolocation offset. Panel (¢) presents the coastline-
based geolocation assessment in a region near the Greek Islands. The red dots represent clear coastline detections, aggregated from multiple
overpasses between August and November 2024. Unlike the elevation-gradient method, the coastline analysis is based on direct minimization
of spatial distances between the detected transitions and the reference coastline map, rather than a 2D scan over a grid of possible offsets.
The base map is © OpenStreetMap contributors 2015, distributed under the Open Data Commons Open Database License (ODbL) v1.0.

coastline geolocation markers. Then, through a minimization
approach, the absolute geolocation is determined by mini-
mizing the error between a collection of coastline detections
and a reference map. The primary limitation of this approach
is that it requires sufficient sampling of coastline crossings
to ensure statistical robustness, which is why detections over
several months must be aggregated.

During the commissioning phase, an extensive analysis of
the data collected over the specified set of regions of interest
confirmed that the CPR instrument is accurately geolocated,
with overall pointing errors remaining below 100 m — 5 times
better than the initially specified requirements by ESA.

Figure 1 illustrates two examples of the geolocation anal-
ysis: one over a mountainous region of British Columbia,
Canada, and another over the southern coastlines of Greece.
The first analysis, illustrated in Fig. 1a and b, utilizes the sig-
nificant elevation gradients technique based on a single over-
pass, which has proven sufficient for performing the geoloca-
tion assessment. This technique benefits from the abundance
of surface detections within the domain given by the along-
track resolution of 500 m and the vertical sampling resolu-
tion of 100 m. In contrast, the coastline geolocation assess-
ment, illustrated in Fig. lc, is derived from a collection of
detections spanning 4 months of data used in the analysis,
i.e., August to November 2024. This approach is necessary
because the coastline technique typically identifies only one
or a few crossings within the domain, which is not enough
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to assess the instruments’ geolocation. Although the effect
of aggregating data over several months could, in principle,
smooth out geolocation variations, the technique is based on
the assumption that such variations are sufficiently small, and
the resulting estimates are expected to remain stable over
timescales of a few months.

Overall statistics of the geolocation assessment are pre-
sented in Fig. 2, which shows that the average along- and
cross-track mispointing angles are 0.002 and 0.008° for as-
cending orbits and —0.014 and —0.007° for descending or-
bits, respectively. At a satellite altitude of 395km, a mis-
pointing error of 0.01° corresponds to a geolocation error
of approximately 69 m. Although the geolocation techniques
have inherent accuracy limits, as described in Puigdoménech
Treserras and Kollias (2024), the results show the presence of
along- and cross-track biases that are well within the pointing
requirements.

3 Surface Doppler velocity

Although the CPR instrument footprint is geolocated within
the specified requirements (~ 1/10 of its footprint), this re-
quirement is not sufficient to ensure that no Doppler veloc-
ity biases are introduced due to antenna mispointing. At the
velocity of the satellite, about 7.6 kms—!, a minimal mis-
pointing error of 0.01° in the along-track direction translates
into a Doppler velocity bias of about 1.33 ms~!. Therefore,
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Figure 2. Combined global geolocation statistics of the EarthCARE CPR for data collected from August to November 2024: (a) ascending
and (b) descending parts of the orbit. Each symbol represents an individual domain where the geolocation is assessed, with the symbol size
being indicative of the number of overpasses. Distinctive colors identify different domains, while filled stars denote the averages. The dashed

lines denote the perfect geolocation point (0°).

meeting the geolocation requirements is not satisfactory for
achieving good Doppler measurements. Thus, a more de-
tailed assessment is required to identify and possibly cor-
rect any possible Doppler velocity bias due to along-track
antenna mispointing. To evaluate this further, the Doppler
velocity measurements are analyzed to verify if there is any
residual mispointing contaminating the data.

Fortunately, the Earth’s surface, which typically represents
a disturbance for the atmospheric signal, can be used as a
Doppler signal reference target. For a Doppler radar point-
ing near nadir, when a beam-limited approximation is valid,
assuming that the antenna footprint is several hundreds of
meters wide, it can be assumed that the average vertical ve-
locity of the surface (be it ocean, vegetated land, or some-
thing else) is generally O on average. Therefore, any depar-
ture from the expected 0ms™! velocity, after correcting any
potential NUBF effects, indicates a potential antenna mis-
pointing (Testud et al., 1995; Kobayashi and Kumagai, 2003;
Tanelli et al. 2005; Battaglia and Kollias, 2015a; Scarsi et al.,
2024).

The analysis of surface Doppler velocities is performed
globally, without separating land and ocean scenes, on indi-
vidual orbits to ensure both temporal and spatial consistency
in the data. For each orbit, surface measurements are exam-
ined within 250km along-track running windows, calculat-
ing the averages and standard deviations for each window.
To provide a robust summary of the data, the median of these
statistics is computed for each position globally, gridded at a
resolution of 1° x 1° latitude and longitude.

This method is chosen for several reasons. First, using in-
dividual segments allows for a clear separation of measure-
ments in time and space, reducing potential biases from over-
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lapping data. After examining the data at different window
lengths, the 250km window (i.e., about 32s of integration
time) is chosen as an optimal balance: it is long enough to
smooth out small-scale variability, such as noise, while still
preserving meaningful large-scale trends in the Doppler mea-
surements. Finally, employing the median of the averages
and standard deviations effectively minimizes the impact of
outliers, providing a reliable representation of the overall
Doppler velocity average and variability while maintaining
robustness to noise and anomalies.

The spatial average and variability of the surface Doppler
velocity (i.e., the Doppler velocity corresponding to the sur-
face range) for the period from August to November 2024
is shown in Fig. 3a and b. The surface range is identified
in the CPR L1b surface detection algorithm, which applies
a parabolic fitting of the reflectivity profile near the sur-
face. Here, the surface Doppler velocity corresponds to the
Doppler velocity at the integer range bin reported by this
detection. The corresponding sea ice coverage and snow-
covered land areas derived from the ECMWF model are
shown in Fig. 3c. Variance in the measured surface Doppler
velocity arises not only from the surface type but also from
spectral broadening, which results from the convolution of
the CPR antenna pattern with the velocity gradients within
the radar footprint due to the satellite’s rapid motion (Sy and
Tanelli, 2022). Additionally, the CPR pulse-repetition fre-
quency (PRF) configuration, shown in Fig. 3d, determines
the number of pulses transmitted per second by the CPR
and thus the number of samples used to estimate the sur-
face Doppler velocity, affecting its uncertainty. The higher
the PRF value, the lower the Doppler velocity uncertainty
(Kollias et al., 2014). The depth of the atmospheric layer we
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Figure 3. Panels (a) and (b) depict the global surface Doppler velocity tendency and variability, represented by the median of the mean and
standard deviation values, both calculated from orbit-to-orbit measurements within a 250 km along-track window collected from August to
November 2024. Panel (c¢) depicts the ECMWF average model sea ice cover and snow depth for the same period, and panel (d) shows the
default variable EarthCARE CPR pulse-repetition frequency (PRF) configuration, which changes as a function of the latitude. The horizontal
dashed lines are plotted to indicate the boundaries of the orbit’s segments, defined by frame IDs: (A) 4+22.5 to —22.5° ascending, (B) +22.5
to +67.5° ascending, (C) +67.5° ascending to +67.5° descending, (D) +67.5 to +22.5° descending, (E) +22.5 to —22.5° descending,
(F) —22.5 to —67.5° descending, (G) —67.5° descending to —67.5° ascending, and (H) —67.5° to —22.5° ascending.

want to sample (troposphere) is the only practical limiting
factor. As a result, the PRF progressively increases at higher
latitudes as the depth of the troposphere decreases.

While the results highlighted in Fig. 3 do not differenti-
ate between ascending and descending orbits, Fig. 3a already
reveals a noticeable bias in surface Doppler measurements
as a function of latitude, suggesting potential mispointing,
especially in the Northern Hemisphere (brighter colors). In
contrast, land surfaces exhibit considerable spatial variabil-
ity and regional biases that deviate from the oceanic trend.
These biases are not uniformly correlated with orography
but are also linked to the heterogenic characteristics of the
surface. At least two primary factors could contribute to this
mispointing: errors in the satellite’s attitude systems and ther-
moelastic distortions. Figure 3b depicts the surface Doppler
variability, Fig. 3c depicts the ECMWF average model sea
ice cover and snow depth, and Fig. 3d shows the default
EarthCARE CPR PRF configuration.

One of the most notable characteristics of the surface
Doppler measurements is their variability, which is depen-
dent on the orography, surface type, and CPR PRF settings.
The lowest Earth’s surface Doppler velocity variability is
observed over ocean and snow-covered land (e.g., Antarc-
tica and Greenland). Flat surfaces and uniform surfaces are
expected to introduce no vertical motion at nadir, whereas
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heterogenic and rough topography can generate heteroge-
nous backscattering and significant terrain-induced Doppler
effects due to slopes and variations in reflectivity causing
NUBEF effects (Manconi et al., 2025). Consequently, land re-
gions tend to exhibit noisier measurements, with exceptions
such as the deserts of Western Australia, the Sahara, and
Namibia, which have relatively uniform surfaces. Sea ice, on
the other hand, appears to considerably increase the measure-
ment variability. Additionally, the high PRF settings, config-
ured to find balance between the unambiguous range and the
tropopause height (a proxy for maximum cloud top height)
at different latitudes, significantly reduce the measurement
variability at high latitudes (e.g., near the North Pole and
Antarctica), where the PRF is at its highest, further high-
lighting the influence of the instrument configuration on data
quality.

4 Antenna pointing correction

The clear-sky Doppler velocity measurements over the ocean
(free of ice) and snow-covered land (Antarctica and Green-
land) collected for all orbits from June 2024 to June 2025 are
used to document the biases observed in the global clima-
tological analysis, and in order to identify any potential an-
tenna mispointing, other land regions are excluded from the

Atmos. Meas. Tech., 18, 5607-5618, 2025
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Figure 4. Weekly averaged EarthCARE CPR antenna mispointing angle as a function of the ANX time (time since ascending node crossing)
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2024 to June 2025. The letters on top correspond to the frame IDs, which denote the different segments of the orbit, each spanning a specific
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analysis because the high variability of their surface Doppler
measurements compromises the precision required for mis-
pointing detection and the integrity of the global assessment.
The surface Doppler velocity measurements are corrected
for NUBF effects, averaged using a 250 km running window
and converted to antenna mispointing angles considering the
satellite velocity. Figure 4 illustrates the resulting weekly av-
eraged mispointing angles as a function of the ANX time
(time since ascending node crossing).

The analysis presented in Fig. 4 demonstrates a repeat-
ing pattern along the orbit as a function of the ANX time;
the antenna mispointing increases, reaching a peak, and then
it starts to gradually decline until reaching a minimum, af-
ter which it begins to increase again, ultimately reaching its
maximum peak in the next orbital cycle. Applying a 250km
running window and performing a weekly average effec-
tively smooths the data, revealing the underlying trend with
an amplitude of approximately 0.006° (0.8 ms~!). Both the
phase and amplitude of this trend shift over the course of
the year. In June, the mispointing peak reaches 0.006° be-
fore the 20 min mark, whereas the minimum is around 0°
at the 55 min mark. In February, the mispointing trend re-
mains similar but appears shifted by nearly 10 min in time,
with the amplitude’s maximum and minimum reaching ap-
proximately 0.004 and —0.002°, respectively. This ampli-
tude span of 0.006° is significant because it corresponds to a
Doppler velocity shift of 0.8 ms~!. The deviation of individ-
ual 250km along-track averaged measurements from their
respective fits exhibits a second-order residual with a stan-
dard deviation of approximately 0.00055° (0.07 ms™!). Ad-
ditionally, individual orbits occasionally diverge from their
weekly averaged trend, likely due to variations in solar ra-
diation (Bard and Frank, 2006) affecting the antenna defor-
mation pattern. Because the presence of thermoelastic distor-
tions cannot be excluded, the effect of sunlight rays reaching
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periods not yet covered by CPR measurements.

the antenna must be considered, specifically the spacecraft
daylight entry and exit times, along with the solar azimuth
angle and their seasonal variations, which are expected to
cause the shifts in time and amplitude.

Another important point worth noting is the similarity with
the along-track component of the previously introduced ge-
olocation assessment. Both analyses yield results of the same
order of magnitude, with differences arising from method-
ological differences between the two approaches.

To fully characterize the evolution of the CPR antenna
mispointing throughout the year, the minimum and maxi-
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mum values of each weekly averaged mispointing trend are
tracked and analyzed as a function of the time of year. The
results are highlighted in Fig. 5.

These results illustrate a dependence between solar illumi-
nation and the mispointing cycle, supporting the hypothesis
that thermoelastic distortions affect the CPR antenna point-
ing. The mispointing trend reaches its maximum when the
spacecraft enters daylight and its minimum about 12 min be-
fore exiting daylight. The observed increase in mispointing
in Fig. 4 corresponds to the eclipse phase of the orbit, while
the gradual decline occurs during the sunlit phase. Addition-
ally, the mispointing amplitude varies throughout the year.
During winter in the Northern Hemisphere, both the min-
imum and maximum mispointing values are at their low-
est, whereas their magnitudes increase during the summer
months. This analysis indicates that both the time and ampli-
tude shifts observed in Fig. 4 can be explained by seasonal
variations, specifically the changes in solar elevation — affect-
ing the spacecraft’s entry and exit times — and solar azimuth,
which influences the incidence of sunlight on the antenna.
These variations evolve systematically with the ANX time
throughout the year and thus are fully predictable.

Figure 6 provides a visualization of EarthCARE’s orien-
tation relative to sunlight during its daylight phase, helping
explain the antenna mispointing trends. Figure 6a shows the
spacecraft just a few moments after entering daylight, where
sunlight rays (yellow line) strike the antenna perpendicularly.
This direct solar illumination likely causes the rapid change
in the mispointing angle trend observed early in the daylight
phase (Fig. 4b and c). Figure 4b illustrates the spacecraft
shortly before exiting daylight. At this point, sunlight is par-
tially blocked by the spacecraft body and solar panels, reduc-
ing direct exposure to the antenna. This shading effect seems
to contribute to the second change in trend, as observed af-
ter the decline toward near-zero values (Fig. 4f and g). The
transition between these two phases — direct exposure upon
entry and gradual shading before exit — aligns with the pe-
riodic variations in the mispointing angle and highlights the
impact of prolonged solar illumination and its absence, con-
sistent with thermoelastic distortions. The delays or offsets in
the change in trends are likely a result of the time required for
thermal effects to propagate through the antenna structure.

The information presented in Fig. 5 is used to establish a
normalized parameterization of the antenna mispointing pat-
tern in Lagrangian coordinates, with 1 January as the ref-
erence time. This parameterization accounts for the system-
atic seasonal variation that affects both phase and amplitude
shifts. The resulting fit, shown in Fig. 7, provides a refined
characterization of the climatological antenna mispointing
pattern.

This parameterization serves as a climatological reference
for modeling the CPR antenna mispointing and can be used
to identify the actual mispointing on an orbit-to-orbit basis.
The phase and amplitude of the normalized fit are adjusted
throughout the year, leveraging the information depicted in
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Fig. 5. To determine the actual mispointing angle at any given
time, the normalized mispointing value is first shifted based
on the difference of the daylight entry time relative to the
reference date (1 January) and then scaled according to the
seasonal amplitude variation. This ensures that the final esti-
mate accurately reflects the expected mispointing trend over
the year.

A detailed description of how to apply this correction to
the radar signal — including the look-up table (LUT) derived
in this study, the mathematical formulation, and the imple-
mentation steps — is provided in the “Data availability” sec-
tion and Appendix A.

It is also worth noting that the previously mentioned
second-order residual of 0.00055° (1.98 arcsec), observed in
the individual weekly orbital assessments, is also reflected in
the variability of the normalized trend. Specifically, the stan-
dard deviation is 0.9, which, when multiplied by the average
amplitude of 0.006° (Fig. 5b), results in 0.00055°, which cor-
responds to 7 cms ™! in the Doppler velocity space. The con-
vergence of these values suggests that the applied transfor-
mations accurately preserve the structure of the mispointing
variability.

When applying this climatological reference to correct the
EarthCARE CPR dataset, it is also essential to account for
other sources of uncertainty and orbit-to-orbit variations. As
previously mentioned, some orbits occasionally diverge from
the expected trend, suggesting that the antenna does not al-
ways deform in the exact same way. To mitigate residual
biases and ensure a highly adaptive and robust correction
methodology, a final optimization step minimizes the resid-
uals relative to the mispointing angles derived from the in-
gested 250 km along-track averaged surface Doppler velocity
observations.

This procedure aims to further adjust and reduce the resid-
uals. The amplitude limits are systematically perturbed in
small increments of 0.0001° over a range spanning twice
the measured standard deviation (0.0011°). For each pertur-
bation pair, the mean absolute difference (MAD) between
the reference and the orbital observations is computed. After
evaluating all combinations, the optimal amplitude limits are
determined by selecting the pair that minimizes the MAD.
To evaluate its effectiveness, this process has been applied
to approximately 3000 orbits. A comparison between the
modeled mispointing trend and the mispointing angles de-
rived from the ingested observations shows that the 90th per-
centile of residuals remains below 0.00077° (2.77 arcsec,
~ 10cms™!), highlighting the effectiveness and precision of
the suggested method for correcting the antenna mispointing.

5 Effect on ice clouds
As a further evaluation, the effects of CPR antenna mispoint-

ing and the proposed correction methodology are analyzed
on Doppler velocity measurements of ice clouds. For this
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Figure 6. 3D model of EarthCARE from the Satellite Mission Editor and Player (SAMI) software package distributed by ESA. Panel (a)
shows the satellite a few seconds after entering daylight, while panel (b) depicts it a few minutes before exiting daylight on 1 October 2024.
The yellow line represents the direction of sunlight rays reaching the satellite.
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Figure 7. Normalized antenna mispointing angle as a function of the ANX time, aligned with the spacecraft’s daily daylight cycle as of
1 January. The angle is normalized according to the seasonal amplitude variation. The red lines and shading denote the mean and standard
deviation, and the yellow background represents the spacecraft daylight coverage time. The letters on top correspond to the frame IDs, which
denote the different segments of the orbit, each spanning a specific latitude and time range marked by the dashed vertical lines, with the

corresponding latitude values displayed above them.

purpose, the quality-controlled mean Doppler velocity esti-
mates and radar reflectivity of ice clouds from the C-CD and
C-FMR product (Kollias et al., 2023) are collected from one
of the time periods where the antenna mispointing is at its
maximum — January 2025. The C-CD processing includes
a correction for NUBF effects, integration over 4 km along-
track and 500 m in height, and a correction for velocity fold-
ing, whereas the C-FMR processing applies a filtering mask
for non-meteorological echoes and a correction for gaseous
attenuation. Leveraging this information, the evaluation is
performed using the global reflectivity—Doppler velocity (Z—
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V) relationship of ice clouds between the temperatures of
—30 and —40°. The results of the analysis are depicted in
Fig. 8.

The analysis depicted in Fig. 8 confirms the effective-
ness of the antenna pointing correction. With the correc-
tion applied, the Z—V relationships become consistent across
all different segments of the orbit, identified by the unique
frame IDs. In contrast, without the correction, the Doppler
velocities exhibit segment-dependent biases, with frames G
and C being the most affected by positive and negative bi-
ases, respectively. This result agrees with the initial assess-
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Figure 8. Reflectivity—Doppler velocity (Z—V) relationships of ice
clouds for temperatures between —30 and —40°C for the month
of January 2025. Panels (a) and (b) depict the Z—V relationships
with and without the antenna pointing correction, respectively. Each
color represents a different frame ID, while the vertical bars indicate
the 10th, 25th, 75th, and 90th percentiles, and the solid lines repre-
sent the median. The overlaid probability density functions (PDF)
on the top and right axes illustrate the distribution of reflectivity
and Doppler velocity samples contributing to each range. Note that
the C-CD L2a product inverts the velocity sign with respect to the
C-NOM L1b product.

ment shown in Fig. 4. Additionally, the figure also illus-
trates the Doppler velocity variability under different signal-
to-noise ratio (SNR) conditions. Below —21 dBZ (SNR =0),
the Doppler velocity variability becomes significantly large,
indicating a reduced measurement reliability.

Another important aspect worth mentioning is that the
well-characterized Z-V climatological relationships of ice
clouds from the EarthCARE dataset can serve as an ad-
ditional reference for assessing the antenna mispointing
(Battaglia and Kollias, 2015b). These measurements provide
a valuable source of information that can complement sur-
face Doppler measurements, increasing the number of sam-
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ples in the orbit-to-orbit corrections and further improving
their accuracy. Any deviation from the Z—V climatological
relationships may indicate a potential antenna mispointing.

6 Summary

This study highlights the critical role of precise geolocation
and antenna pointing correction in ensuring the quality of
EarthCARE’s CPR observations, particularly in minimizing
errors in Doppler velocity measurements.

A similar challenge was encountered in the Aeolus
Doppler lidar mission, where thermoelastic deformations led
to orbit- and seasonally dependent pointing biases, reinforc-
ing the importance of monitoring structural responses to ther-
mal effects in active remote sensing systems.

Through a comprehensive geolocation assessment lever-
aging natural targets such as coastlines and terrains with sig-
nificant elevation gradients, we demonstrate that the CPR in-
strument is properly geolocated within the specified mission
requirements. However, the examination of surface Doppler
velocity measurements reveals systematic mispointing trends
influenced by seasonal variations and thermoelastic distor-
tions of the antenna structure.

The characterization of these mispointing trends, based on
surface Doppler velocity measurements, indicates a cyclic
pattern in the along-track mispointing angle, which corre-
lates with the spacecraft’s daylight cycle. This mispointing
is shown to be driven by thermoelastic effects resulting from
variations in solar illumination, with peak deviations occur-
ring near daylight entry and a few minutes before exit. The
observed biases are quantified and parameterized to a clima-
tological mispointing reference model, which accounts for
both phase and amplitude variations throughout the year.
This parameterization allows correcting the CPR data to
within 5-7cms™! (the 90th percentile is below 10cm s
precision, significantly reducing Doppler velocity biases.

The impact of the antenna mispointing on CPR Doppler
velocity measurements is further validated through ice cloud
climatology. Prior to correction, the observed reflectivity—
Doppler velocity relationships exhibit systematic biases,
which are effectively removed after applying the mispoint-
ing correction. This improvement confirms that the corrected
Doppler velocity data provide a more accurate representation
of atmospheric dynamics, ensuring the integrity of Earth-
CARE’s mission objectives.

Overall, the methodologies developed and applied in this
study establish a robust framework for geolocation validation
and antenna pointing correction that will benefit the ongoing
calibration and validation efforts of the EarthCARE mission
and will be applied in the level 2 processors, i.e., C-APC and
C-PRO (Kollias et al., 2023). The findings underscore the
necessity of continuous monitoring and refinement of mis-
pointing corrections to maintain the high accuracy required
for Doppler velocity measurements, ultimately enhancing the
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scientific utility of EarthCARE’s CPR observations in study-
ing cloud microphysics and precipitation processes.

Appendix A

This section describes the application of the antenna mis-
pointing look-up table (LUT) to correct the EarthCARE CPR
Level 1b Doppler velocity data using the climatological fit
of the CPR antenna mispointing presented in this study. The
correction is applied directly to the complex lag-1 autoco-
variance of the pulse-pair radar signal, prior to Doppler ve-
locity derivation.

Performing the correction directly in Doppler velocity
space requires careful handling of Nyquist folding effects,
particularly at high PRF. Even small mispointing angles can
induce phase shifts that exceed the Nyquist limit, leading to
velocity aliasing. Instead, applying the correction at the level
of the complex radar signal avoids this ambiguity and ensures
phase continuity.

Al Overview

The EarthCARE CPR Doppler velocity is derived from the
phase angle of the lag-1 autocovariance of the IQ signal. This
phase shift between consecutive pulses encodes the Doppler
frequency and is given by:

__ A-PRF

V= : Qnom’ (A])
4

where A is the radar wavelength, PRF is the pulse repe-
tition frequency, and 6yon is the phase angle of the com-
plex lag-1 autocovariance, computed from its real (R[R]) and
imaginary (/[R]) components:

Onom = atan(/[R], R[R]). (A2)
A2 Line-of-sight correction

A correction must first be applied for line-of-sight (LOS)
contamination resulting from the satellite’s motion projected
onto the CPR beam direction. This effect is not accounted for
in the pulse-pair radar signal reported in the L1b. The LOS-
projected velocity (VL os) is computed as follows:

VLos = Vsat - sin(faps), (A3)

where Vg, is the satellite velocity in Earth-centered, Earth-

fixed (ECEF) coordinates and 65ps is the antenna pitch angle

reported by the Attitude Determination System (ADS). This

LOS velocity introduces a phase shift in the measured signal:
4 - Vi os

6 = —. A4
LOS " PRF (A4)

The phase correction is applied by subtracting this LOS-
induced phase (6Los) from the nominal measured phase:

OL0S-CORR = Fhom — OLOs- (AS5)
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To correct the complex lag-1 autocovariance, the real and
imaginary components of the lag-1 autocovariance are re-
computed using the corrected phase:

I[R]L0s-CORR = |R[R]+ j - I[R]| - sin(fLos-cORR),  (A6)
R[R]L0s-corrR = |R[R]+ j - I[R]| - cos(6Los-cOrRR)- (A7)

The Doppler velocity corrected for LOS contamination
can then be obtained by applying Eqs. (A2) and (A1) to the
updated complex radar signal defined by Egs. (A6) and (A7).

A3 Antenna mispointing correction

The antenna mispointing LUT provides a normalized mis-
pointing pattern as a function of the ANX time, along
with the corresponding seasonal amplitude and phase shifts.
These parameters define a climatological model of the an-
tenna mispointing that evolves smoothly over the course of
the year. At a given ANX time (¢) and day-of-year (d), the
mispointing correction is computed as follows:

Oapc(t, d) = Mporm (f + 8t¢ (d)) : (Amax(d) - Amin(d))
+ Amin (d)’ (AS)

where mporm () is the normalized mispointing pattern,
8ty(d) is the seasonal phase shift, and Apin(d) and
Amax (d) are the minimum and maximum seasonal amplitude
bounds.

This parameterization allows the reconstruction and cor-
rection of the antenna mispointing angle across the orbit
and throughout the year. Once the mispointing angle 6apc
is known, it can be converted to a Doppler phase correction
following the same approach described in the LOS correction
section.

A4 TImplementation notes

The LUT information must be applied to each specific
frame by interpolation. All required variables are found in
the CPR L1b data product (C-NOM), including rayHeader-
Lambda (1), rayStatusPrf (PRF), covarianceCoeff (R[R] and
I[RY]), pitchAngle (OaDs), satelliteVelocityX, satelliteVeloci-
tyY, satelliteVelocityZ (components of V), profileTime, and
ANXTime(?).

In the CPR L2a processing (C-APC), an additional opti-
mization step is applied to minimize the residuals between
the climatological mispointing model and the mispointing
angles inferred from the raw measured surface Doppler ve-
locity measurements. This step refines the amplitude scaling
for each orbit and ensures that residual Doppler velocity bi-
ases are reduced within 5-7 cms™! (the 90th percentile is be-
low 10cms™1).

This correction is valid at the time of reviewing this paper
(June 2025). Future versions of the CPR L1b data product
may include antenna mispointing corrections directly in the
processing chain. Additionally, updates to the orbital specifi-
cations may affect the accuracy of this correction. Users are
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advised to consult the latest product specifications and orbital
parameters before applying this method.

Data availability. The antenna mispointing correc-
tion LUT derived in this study is available at Zenodo
(https://doi.org/10.5281/zenodo.15740762; Puigdomenech Tre-
serras et al., 2025). Instructions for applying the correction to
EarthCARE CPR L1b data are provided in the Appendix A.
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