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Abstract. Cloud fraction (CF) is an integral aspect of
weather and radiation forecasting, but real time monitoring
of CF is still inaccurate, expensive and exclusive to com-
mercial sky imagers. Traditional cloud segmentation meth-
ods, which often rely on empirically determined threshold
values, struggle under complex atmospheric and cloud con-
ditions. This study investigates the use of a Random For-
est (RF) classifier for pixel-wise cloud segmentation using a
dataset of semantically annotated images from five geograph-
ically diverse locations. The RF model was trained on di-
verse sky conditions and atmospheric loads, ensuring robust
performance across varied environments. The accuracy score
was always above 85 % for all the locations along with sim-
ilarly high F1 score and Receiver Operating Characteristic –
Area Under the Curve (ROC-AUC) score establishing the ef-
ficiency of the model. Validation experiments conducted at
three Atmospheric Radiation Measurement (ARM) sites and
two Indian locations, including Gadanki and Merak, demon-
strated that the RF classifier outperformed conventional Total
Sky Imager (TSI) methods, particularly in high-pollution ar-
eas. The model effectively captured long-term weather and
cloud patterns, exhibiting strong location-agnostic perfor-
mance. However, challenges in distinguishing sun glares and
cirrus clouds due to annotation limitations were noted. De-
spite these minor issues, the RF classifier shows significant
promise for accurate and adaptable cloud cover estimation,
making it a valuable tool in climate studies.

1 Introduction

Clouds are a fundamental constituent of our weather systems
and one of the most critical climate variables influencing the
Earth’s radiation budget. Cloud albedo influences the amount
of solar radiation reflected into space and hence affects the
energy budget at Earth’s surface and in the atmosphere (Ra-
manathan et al., 1989). It also influences the atmospheric
thermodynamics, surface fluxes and hence the water vapor
and carbon cycle (Várnai and Marshak, 2015), thereby im-
pacting the extent of many land-atmosphere processes, feed-
back and interactions at various spatio-temporal scales. Con-
sequently, the scientific community requires specific devices
to observe the fluctuations in cloud cover and other cloud
properties at a high spatial and temporal resolution. Typi-
cally, these devices fall into two categories: satellite-based
and ground-based imagers. Satellite imagers observe clouds
over larger spatial domains (Verma et al., 2018) with tem-
poral resolutions as high as 10 min (Huang et al., 2019).
Ground-based sky monitoring devices, on the other hand,
capture data at high temporal resolutions, ranging from as
frequent as 30 s to 5 min over a fixed point (Nouri et al.,
2019).

Over the years, researchers have developed numerous
algorithms to detect clouds in images and classify them
into broader categories of cloud types. These cloud detec-
tion algorithms primarily fall into two categories: threshold-
ing techniques and classifier-based methods. The clear sky
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(CSL) threshold method, as outlined by (Shields et al., 2009),
uses spectral information – particularly from the red and blue
bands – to differentiate between cloudy and clear-sky condi-
tions. This technique has been widely adopted by researchers
(Chauvin et al., 2015; Chow et al., 2011; Ghonima et al.,
2012; Kuhn et al., 2018; Lothon et al., 2019). However, a no-
table limitation is that the threshold value can vary across an
image, influenced by the relative distance between the sun
and each pixel in the image. This dynamic adjustment is cru-
cial because scattering properties change with variations in
the path length and the angular position of the sun, as demon-
strated by Long et al. (2006). As such, an adaptive threshold-
ing technique was proposed based on distance from the sun
(Li et al., 2011; Yang et al., 2012). However, cloud images
are inherently diverse, featuring complex spectral informa-
tion. Due to this diversity, conventional image segmentation
techniques, such as thresholding and shape differentiation
methods, struggle to provide precise and consistent segmen-
tation results.

Modern algorithms integrate multiple features into build-
ing a classifier, including spectral, statistical, and Fourier-
transformed features, in a supervised manner (Calbó et al.,
2008). Many supervised algorithms have been used for
recognising different cloud types (Heinle et al., 2010) and
(Rajini and Tamilpavai, 2018) have used a k-nearest neigh-
bour (KNN) classifier to determine cloud type using sta-
tistical features. Kazantzidis et al. (2012) proposed an im-
proved KNN classifier for cloud-type determination where
solar zenith angle and visible solar disk were considered.
To improve the speed of classification, (Rajini and Tamil-
pavai, 2018) have used neighbourhood component analysis
to optimize the feature selection. Li et al. (2015) have estab-
lished a cloud identification model based on the Otsu tech-
nique (Otsu, 1979) with the aim of increasing the accuracy
of short-term solar power production. Satilmis et al. (2020)
have developed a hierarchical histogram merging method to
classify cloud types in high dynamic range (HDR) images.
While most authors have predominantly used RGB colour
space or some derivative feature of RGB values, Jayade-
van et al. (2015) have suggested the use of hue-saturation-
value colour space to increase the contrast between clouds
and background sky. The use of machine learning for cloud
classification has gained significant traction in recent years.
Taravat et al. (2015) and Li et al. (2016) showcase the use
of multi-layer perceptron neural networks as well as sup-
port vector machines in cloud detection. Artificial neural net-
works (ANN) have also been implemented to distinguish
clouds from clear sky (Xia et al., 2015) using a hybrid KNN
and ANN method. (Kliangsuwan and Heednacram, 2018) in-
troduced using Fourier-transformed features for classifica-
tion using ANN. Wan et al. (2020) combined several tex-
ture, colour and spectrum features to classify clouds as cir-
rus, cumulus, and stratus clouds. While many existing meth-
ods excel at classifying different cloud types, their accuracy
tends to hover around 80 %–85 % when it comes to precisely

identifying individual cloud pixels. A U-Net based convolu-
tional neural network model developed by Fa et al. (2019),
Fabel et al. (2022) and Xie et al. (2020) have shown promis-
ing results of having nearly the same cloud fraction out-
put as obtained by manual observations. An improvement
in the encoder-decoder model has been developed by Ye et
al. (2022) where the decoding stage is branched into binary
segmentation for cloud detection and attribute discrimination
and feature learning. However, these CNN techniques require
high-power graphical processing units to process.

This paper’s primary focus is on presenting a high ac-
curacy cloud fraction retrieval approach that leverages the
power of random forest for pixel-level cloud classification in
sky images. The predicted cloud fractions are compared with
semantically annotated sky images from five different loca-
tions with varying atmospheric and sky conditions to validate
their accuracy and reliability. Moreover, a baseline compar-
ison has been done between the output of the total sky im-
ager used at the three ARM sites and our model’s output. A
yearly comparison of trends in observed cloud fraction has
also been conducted to demonstrate the stability of the clas-
sifier’s output under different climatic conditions. To support
these objectives, the remainder of the paper is structured as
follows. Section 2 describes the data used in this study, in-
cluding observing sites, datasets, preprocessing steps, and
the creation of ground truth masks. Section 3 details the
model selection process. Section 4 covers model training and
evaluation, with Sect. 4.1 focusing on model validation and
Sect. 4.2 discussing the application of the Random Forest
classifier over the Merak site. Finally, Sect. 5 presents the
conclusions drawn from this study.

2 Data

2.1 Observing sites and datasets

The sky image data used in the current work are taken from
three different ARM sites (Morris, 2000). These are publicly
available data with the following sites: the Black Forest, Ger-
many (FKB; 48.54° N, 8.40° E, 511 m a.s.l.); Southern Great
Plains, Central Facility, Lamont, Canada (SGP; 36.61° N,
97.49° W, 315 m a.s.l.); and Tropical Western Pacific, Cen-
tral Facility, Darwin, Australia (TWP; 12.42° S, 130.89° E,
30 m a.s.l.). We also took sky image data from National At-
mospheric Research Laboratory (NARL; 13.48° N, 79.18° E,
375 m a.s.l.) Gadanki, India. All four sites utilize the same
type of instrument – a Total Sky Imager (TSI) – for captur-
ing sky images. The TSI, used at all four locations, features
a dome-shaped, spherical mirror with a 180° field-of-view
of the sky. A downward-facing CCD camera is placed above
the dome mirror to take images. To prevent image saturation
from direct sunlight, a rotating shadow band is used to track
and block the sun continuously. This multi-site data collec-
tion enables the evaluation of the model’s robustness across
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various locations and their corresponding atmospheric con-
ditions.

Additionally, multi-year sky image data is taken from
an all-sky camera (Ms. Prede, Japan) recorded for every
5 min interval from the National Large Solar Telescope site,
Merak (33.80° N; 78.62° E; 4310 m a.s.l.), Ladakh, India.
Such cloud data in the high-altitude mountain sites in the
Ladakh region is used for the astronomical site characteri-
zation program of the Indian Institute of Astrophysics, Ben-
galuru, India. There are several unique features of the ob-
serving site, such as low aerosol content (∼ 0.05 at 500 nm,
Ningombam et al., 2015), with 61 %–68 % of clear skies
in a year (Ningombam et al., 2021), dry and cold atmo-
spheric conditions, located in the rain shadow area of the Hi-
malaya. A comprehensive statistical analysis is conducted on
the model’s output for this site to show the effectiveness of
capturing some of the intricate atmospheric conditions of this
location.

2.2 Preprocessing

All sky images are organized using a timestamp-based nam-
ing convention to maintain chronological order. Any image
captured before 06:00 a.m. and after 06:00 p.m. (local time)
were removed because of bad lighting conditions. Addition-
ally, images captured during rain were manually removed be-
cause of the undue distortions caused by the raindrops on
the lens. Since images from different locations had vary-
ing image size, all the images were cropped and resized to
280× 280 pixels to remove dead zones in the image. The im-
ages had lens glares and occasional occlusions from nearby
structures and instruments. To mitigate these issues, a circu-
lar mask of radius 130 pixels is applied to all images, effec-
tively removing potential interferences that could disrupt the
training process. An example of one such pre-processed im-
age is shown in Fig. S1 in the Supplement.

2.3 Selection

A large part of the uncertainty in this kind of supervised train-
ing is determining the optimal level of variability within the
dataset to ensure the model learns effectively. A well-curated
selection must be made, encompassing various scenarios, in-
cluding clear skies, different cloud cover percentages and at-
mospheric/sky conditions for the ML model to understand
the diverse data and increase its robustness. A systematic ap-
proach was followed to curate the image dataset for training
our machine learning model. Initially, a thorough visual in-
spection of the entire image pool was performed. The goal
was to ensure a balanced representation of cloud cover per-
centages in our dataset. Around 300 images from each site
were carefully selected, ranging from no clouds to 100 %
cloud coverage (based on visual estimation). This approach
allowed us to create a diverse and well-structured training
dataset of different CF and different cloud types required for

training. This would be essential in developing an effective
machine-learning model for cloud cover classification. A set
of 100 images, which also contains various cloud percent-
ages between 0 % to 100 % and cloud types, was kept aside
for validation of the model’s training.

2.4 Ground truth masks

About 2000 sky images, selected from all five locations, are
meticulously annotated using the MATLAB image labeller
app (The MathWorks Inc., 2022). This tool offers advanced
capabilities for image annotation, allowing for annotations in
the form of lines, rectangles, polygons, or pixel-level detail,
with the added benefit of colour coding for a well-organized
graphic user interface.

For images with complex cloud shapes, pixel-level anno-
tation is the optimal selection. These annotations involve as-
signing numerical labels to different elements in the images,
where 0 represents the sky, 1 represents the sun, 2 represents
the clouds, and 3 represents occlusions. Given the diverse and
complex nature of clouds, along with variations in experts’
perspectives on cloud pixels within an image, the annotation
process involves three different domain experts. An overlap
of their annotations is taken to produce the final annotated
image.

These annotated images are saved as separate pixel ma-
trix files, retaining the same name as the original image file.
This is a crucial step to ensure that the correct annotations
are cross-referenced during the model’s training and testing
phases.

3 Model Selection

RF is a machine-learning technique to solve classification
problems (Breiman, 2001). It is an ensemble method that
combines the predictions of multiple decision trees to pro-
duce a more accurate and stable prediction. Here at every
instance, a node is partitioned based on one optimal feature
among several selected features. Hence, for each decision
tree, there is maximum independence leading to generalized
performance and a decreased chance of over-fitting (Diet-
terich, 2000). The final prediction is a result of the majority
vote calculated using the probability of each kth class:

Pk =
wkNk∑m
j=1wjNj

(1)

Where m is the total number of classes, Nj , Nk are the num-
ber of trees predicting the j th and kth class and wj , wk are
the weights of the j th and kth class. For tuning the RF clas-
sifier, two of the most important parameters that need to be
effectively chosen are number of decision trees (Ntree) and
number of selected feature variables (Mfeat). Higher Mfeat
implies an increased correlation between two decision trees
resulting in poor categorization. Similarly, larger Ntree can
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provide increased accuracy at the cost of higher computa-
tional resources. It has been found that higher Ntree can lead
to over-fitting in some cases (Scornet, 2017). Fu et al. (2019)
and Ghasemian and Akhoondzadeh (2018) have suggested
choosing the two parameters such that they are large enough
to capture the patterns and have a wide diversification, but
small enough for the model to run at reduced computational
power and prevent overfitting.

A key limitation of Random Forests is that, due to their
ensemble nature, it is difficult to trace individual pixel-level
classifications back to specific features or decision paths.
Even then, Mu et al. (2017) explain that RF has lower time
and computation costs when the data size is larger than most
machine learning algorithms. Wang et al. (2020) have used
RF for cloud masking and study of cloud thermodynamics
using satellite data which have shown good resemblance with
the lidar observations. Sedlar et al. (2021) have classified
cloud types based on surface radiation measurements using
RF. Li et al. (2022) have used RF to classify cloud types from
images taken by an all-sky imager for astronomical obser-
vatory site selections. While these findings demonstrate the
prowess of RF in cloud type classification, they also serve as
motivation to utilize the RF algorithm in this paper to pre-
dict cloud fraction from sky images by classifying cloud and
non-cloud pixels.

The process of selecting features from the images under
examination is a pivotal step in image processing and in-
depth understanding of the scenes observed through the sky
imager. These features can be spectral, textural or a combi-
nation of both.

The selection done in the paper includes the fundamen-
tal red (R), green (G), and blue (B) colour channels, which
provide insights into colour composition and distribution
within the images. Additionally, the Hue, Value, and Satura-
tion (HVS) model is considered, offering information about
the dominant colour tone, brightness, and colour vividness,
thus contributing to the interpretation of visual perception.
To delve into spectral properties, the ratio of red (R) to blue
(B) channels and its logarithmic counterpart are used, re-
vealing variations that are indicative of cloud presence and
atmospheric conditions. Notably, the RAS (Removal of At-
mospheric Scattering) feature, as introduced by Yang et al.
(2017), emerges as a key component in this segmentation
task. This composite parameter mitigates the influence of at-
mospheric scattering on image data by merging the panchro-
matic, bright, and dark channels. It minimizes the inhomoge-
neous sky background throughout the image and thereby en-
hances the distinction between cloud and sky regions. Each
of these features brings a unique perspective to image anal-
ysis, encompassing a diverse array of image characteristics,
that play distinct and indispensable roles in the decision tree.

To evaluate the computational performance of the pro-
posed model, the RF classifier’s inference benchmarks were
run on a desktop machine with an Intel Core i7-11700 CPU
(8 cores, 16 threads), 16 GB RAM, and no GPU accelera-

tion, running Windows 11 (64-bit). Inference was performed
on 280× 280-pixel images (∼ 78 400 pixels) with an aver-
age runtime of 0.113 s per image, a peak memory usage of
41 MB, and an effective processing speed of approximately
800 000 pixels per second. These results reflect the classi-
fier’s suitability for real-time, low-power applications with-
out the need for specialized hardware. An overview of the
proposed RF based cloud detection pipeline is shown in
Fig. 1.

4 Model Training and Evaluation

For each of the locations using TSI, a set of 300 images were
selected of that particular location to train a random forest
classifier. While the set of images are a representation of
different cloud fractions, they also encompass various cloud
types, weather conditions, and lighting scenarios of each lo-
cation. The classifier was configured with 100 trees and a
fixed random seed to ensure the reproducibility of results. A
train-test split of 80 : 20 was applied on the dataset and after
training, the model is used to classify cloud and non-cloud
pixels of each sky image in the test set.

Each model, trained specifically using images of that loca-
tion, was used to predict the cloud pixels from the test images
corresponding to that location. We computed various per-
formance metrics, including accuracy, F1-score, precision,
recall, ROC-AUC score and Intersection over Union (IoU)
score to assess the classifier’s effectiveness in distinguishing
between cloud and non-cloud regions which is tabulated in
Table 1. The confusion matrix for each location is provided
in Fig. S2 along with the description of each performance
metric.

While the accuracy score for all locations has been greater
than 88 %, the F1 score is also hovering around the same
figure, suggesting that the model has been trained on a well-
balanced dataset with different classes. The RF model is nei-
ther overly conservative nor too lenient in predicting cloud
pixels as suggested by the precision and recall values lying
between 0.84 to 0.88 and 0.88 to 0.93 respectively. The ROC-
AUC score is also high across all locations, indicating that
the model has good discriminatory ability between differ-
ent classes (e.g., cloud vs. no cloud). The IoU scores are all
above 0.75, indicating a significant overlap between the pre-
dicted cloud regions and the ground truth. Overall, the model
shows strong predictive ability across different geographical
locations.

The model’s primary objective is to determine the cloud
fraction, representing the proportion of the area covered by
clouds relative to the total area. This effectively is a ratio be-
tween the number of pixels that are clouds to the total num-
ber of visible sky pixels. Thus, the location specific trained
model was applied on the corresponding validation set and
the predicted cloud and non-cloud pixels were used to mea-
sure cloud fraction (CF). The measured CF were compared
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Figure 1. Workflow of the Random Forest-based cloud detection framework. Input images are pre-processed and annotated to create a master
dataset, which is split into training, validation, and test sets. The Random Forest model is trained with hyperparameter tuning and evaluated
on validation data. The trained model generates predicted cloud masks, from which cloud fraction is computed and compared against ground
truth for output validation.

Table 1. Shows the performance metrics for each dataset location.

Location Accuracy Precision Recall F1 Score ROC-AUC Score IoU Score

Black Forest, Germany 0.93 0.88 0.88 0.88 0.88 0.79
Lamont, Canada 0.89 0.84 0.90 0.87 0.85 0.76
Darwin, Australia 0.91 0.88 0.93 0.90 0.87 0.80
Gadanki, India 0.94 0.85 0.92 0.88 0.90 0.79

against the ground truth annotated CF values for the valida-
tion set images of each location, providing a direct measure
of the model’s CF prediction accuracy. A scatter plot of the
predicted CF vs the ground truth for each location is shown
in Fig. 2.

4.1 Model Validation

Initially, a same-location RF classifier was trained using 300
images from individual sites using the TSI and validated on
images from the same site. Subsequently, a unified training
set of 300 images was created by combining some of the im-
ages from the training sets of all four sites that utilize the
TSI. A new, multi-location trained RF model was developed
using this merged training set, and its performance was eval-
uated on the validation set from each site. Additionally, the

cloud fraction data provided by TSI of the ARM sites and
Gadanki were used for comparison with the RF classifier
outputs and the ground truth. The results of the comparative
analysis from these experiments are shown in Fig. 2.

It can be inferred from the graphs that the same-location
trained RF classifier has generally outperformed the multi-
location trained RF classifier, which is expected. However,
the difference in performance is not substantial, suggesting a
location agnostic behaviour of the classifier model. Further-
more, the RF classifier shows better accuracy compared to
the TSI output, as indicated by the higher fit value (R2) of the
RF classifier model in all four cases. This is further illustrated
in Fig. 3, which compares the outputs of our RF classifier and
the TSI for three randomly selected sky images taken by the
TSI at Gadanki, India. In these cases, the TSI struggled to de-
tect all clouds, missing several significant cloud formations
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Figure 2. Comparison of cloud fraction output against ground truth, of single-location RF model (in blue dots), multi-location RF model (in
green squares) and TSI output (in black plus symbol) of ARM sites located at Black Forest Germany, Lamont Canada, and Darwin Australia
and Gadanki, India where a TSI has been used to get sky images.

accurately. In contrast, our RF classifier performed notably
better, closely aligning with the annotated clouds.

Another intriguing observation that is highlighted in Fig. 2
is the variability of TSI’s output over various regions. The
TSI outputs exhibit higher accuracy at locations character-
ized by lower pollution levels, such as Black Forest, Ger-
many, and Lamont, Canada, compared to areas with elevated
pollution loading, such as Gadanki, India, and Darwin, Aus-
tralia. This observation suggests that the TSI may yield more
reliable results in cleaner environments due to reduced at-
mospheric interference and greater clarity of sky images.
However, locations with higher pollution levels may intro-
duce complexities and uncertainties in TSI outputs, poten-
tially compromising their accuracy.

In contrast, the RF classifier model is relatively unaffected
by location-specific pollution loading effects. Regardless of
the environmental conditions or pollution levels, the RF clas-
sifier maintains its accuracy in estimating cloud fractions
from sky images. This robustness highlights the adaptability

and generalizability of the RF classifier model across differ-
ent geographical locations with similar imaging equipment.

The RF classifier is also able to capture the regional trends
of cloud fraction across all four locations as evident in Fig. 4.
It shows the median CF data as heatmaps with each row
corresponding to one of the four locations and each col-
umn corresponding to median CF obtained from TSI data,
median CF predicted by our RF classifier and the percent-
age difference between them respectively. The horizontal
axis of the heatmap represents the months of the year (Jan-
uary to December) in numbers, and the vertical axis repre-
sents the hours of the day from 06:00 a.m. to 06:00 p.m. lo-
cal time for each region. The heatmap colour gradient indi-
cates the CF values, with darker shades representing higher
cloud fractions. While the general patterns match, subtle re-
gional differences become apparent in the percentage dif-
ference heatmaps. In the case of Australia, the TSI overes-
timates cloud cover in the first half of the year and under-
estimates it in the latter half. This is seen in the positive
percentage differences (warmer colours) in the early months
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Figure 3. Comparison of the detected clouds by the RF Classifier and by the TSI (at Gadanki, India) with the annotated clouds. The first
column shows the actual images captured by TSI on 3 July 2010 at 10:15, 10:25 and 11:00 a.m. IST. The second column is the corresponding
annotated image, with the white colour representing clouds and everything else in black. The third column is the RF classifier’s image output
of the detected cloud pixels, with white colour representing clouds and everything else in black. The fourth column shows the cloud pixels
detected by TSI software, with white colour as thin clouds, grey colour as thick clouds, blue as sky, sun’s position as yellow and everything
else in black. The TSI is underestimating the cloud pixels in all three cases while the RF classifier is capturing them effectively.

and negative differences (cooler colours) later in the year.
Germany and Canada datasets show relatively stable agree-
ment between TSI and RF, with only slight overprediction
by TSI. This consistency suggests that the RF model is suc-
cessfully capturing the general climate and cloud trends for
these regions, with TSI performing reasonably well, though
slightly skewed toward overprediction. In India, the RF and
TSI heatmaps show a stark contrast. The RF classifier pre-
dicts higher cloud fractions throughout the year compared to
the TSI data.

The percentage difference heatmap for India shows pre-
dominantly negative values (cooler colours), indicating that
TSI persistently underpredicts the cloud fraction in this re-
gion across all months and hours. This consistent underesti-
mation suggests that TSI data struggles to capture Gadanki’s
cloud dynamics properly throughout the year. In turn, the RF
classifier, having been trained on local data, is better adapted
to handling the unique cloud patterns seen here.

4.2 Application of RF Classifier Model over Merak

A crucial obstacle that has been encountered pertains to
the compatibility of the RF model across different imaging
equipment. This can be attributed to the inherent variations

among sensors used in CMOS cameras and CCD cameras.
This leads to discrepancies in the image characteristics such
as colour, rendition, contrast, and resolution. Consequently,
attempting to generalize the RF model to images from dis-
parate sources becomes impractical due to the divergence in
sensor specifications and calibration methodologies. That is
why the RF classifier developed using the TSI image data
cannot be used for Merak, which uses a CMOS-sensor based
all-sky imager.

Thus, the images of Merak underwent a similar process of
data selection, training, testing, and validation to create a dif-
ferent model, specific to this location. After getting a good
accuracy score of 95 % for the test dataset, the model’s ef-
fectiveness was verified by employing it to predict the cloud
fraction for the validation set images. The scatter plot of the
predicted cloud fraction vs the ground truth in Fig. 5a shows
a good fit of about 0.98 with a root mean squared error as
low as 0.05. This substantiates the high accuracy score of
95 % and serves as verification of the model’s effectiveness
at a different location with a different imaging instrument.
A few accurately predicted outputs of the RF classifier have
been shown in Fig. S3.

Despite a good fit between the ground truth and the pre-
dicted output, as evident from Figs. 2 and 5a, there are a few
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Figure 4. Median Cloud Fraction (CF) heatmaps for four regions – Australia, Germany, Canada, and India – comparing CF estimates from
TSI data, RF classifier output, and their percentage difference. The horizontal axis denotes the months (January to December), and the
vertical axis indicates the local time of day (06:00–18:00). Distinct regional patterns emerge: TSI tends to overestimate CF in Australia
(January–June) and in Germany and Canada, while underestimating CF in India.

points in the plot that have significant disparities. A few of
these disparities are illustrated in Fig. 5b. A significant source
of error affecting the predicted output can be attributed to
sun glare and cirrus clouds. Although naturally occurring
and often unavoidable, these elements introduce complexi-
ties and uncertainties that can pose challenges for accurate
image analysis and interpretation. Sun glare often leads to

overexposed or saturated pixels, making it challenging to ex-
tract meaningful information about the sky’s properties. As a
result, an inaccuracy is introduced in cloud detection.

Cirrus clouds, on the other hand, add a layer of complexity
due to their intricate filamentous structure and high altitude.
These clouds, composed of ice crystals, present unique chal-
lenges for accurate classification and quantification. Their
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Figure 5. (a) Validation of RF classifier output for images taken at Merak, India (b) Representative failure cases: top row shows overpredic-
tion due to sun glare (highlighted by red circle in a), and the bottom row shows underprediction caused by cirrus clouds (highlighted by blue
square in a). Red and blue pixels in the difference column, indicate misclassified pixels. (c) violin plot that compares CF errors for cirrus and
sun glare cases.

thin and translucent nature can make them challenging to dis-
tinguish from the background, especially when they partially
obscure other cloud types or the sun. Consequently, anno-
tation errors arise in interpreting cirrus clouds and achiev-
ing precise semantic annotations becomes a labour-intensive
task. Therefore, the presence of cirrus clouds can lead to both
false positives and false negatives in cloud detection, impact-
ing the overall quality of cloud fraction estimates. Nonethe-
less, it’s worth noting that in the validation set of 500 im-
ages of Merak India, 1.6 % of the images had cirrus clouds,
with a mean CF error of 0.14± 0.04. Similarly, about 4.2 %
of the validation set had sun glare with mean CF error of

0.12± 0.02 as evident from Fig. 5c. These errors collectively
account for a very low percentage of the overall dataset, mak-
ing them relatively insignificant in the broader context.

5 Conclusion

CF is an essential climate variable required by the scien-
tific community for studying climate change. It has numer-
ous practical applications, including studying the Earth’s ra-
diation budget, predicting future climate patterns, monitoring
agricultural activities, forecasting solar energy, and assessing

https://doi.org/10.5194/amt-18-5637-2025 Atmos. Meas. Tech., 18, 5637–5648, 2025
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resources. Additionally, cloud cover data is used as input in
models for studying pollution and climate. While traditional
cloud segmentation techniques often rely on empirically de-
termined threshold values, their accuracy falters under com-
plex atmospheric and cloud conditions. This study explores
the efficiency of the Random Forest (RF) classifier in pixel-
wise cloud segmentation, using a well-curated dataset of se-
mantically annotated images from five different locations.
Training data with diverse sky conditions and atmospheric
loading, collected over a year for each location, was metic-
ulously selected. Subsets of these training images were used
for rigorous model evaluation across multiple metrics.

The RF classifier demonstrates strong predictive ability
across all locations, with accuracy and F1 scores consistently
above 88 %, indicating a well-balanced dataset. High ROC-
AUC scores of more than 0.85 and IoU scores of more than
0.79 further confirm the model’s robust discriminatory abil-
ity between cloud and non-cloud classes. Additionally, the
RF classifier showed strong accuracy and fit metrics, partic-
ularly in locations with high pollution levels, such as India
and Australia. The model’s ability to generalize across di-
verse geographic sites highlights its location-agnostic nature,
maintaining high performance even when trained on mixed
datasets from multiple regions. Furthermore, the RF classi-
fier demonstrated superior capability in capturing long-term
weather and cloud patterns, making it a valuable tool for es-
timating cloud cover and broader climate studies.

However, the model did encounter challenges in handling
sun glares caused by incomplete shadow band coverage and
distinguishing cirrus clouds, primarily due to annotation lim-
itations. These shortcomings, while noteworthy, represent a
minor fraction of the overall dataset (roughly 6 %), and their
impact on CF estimates remain minimal. Overall, the RF
classifier proves to be a highly effective and adaptable tool
for cloud segmentation, with significant potential for improv-
ing cloud cover analysis, especially in regions with complex
atmospheric conditions.

Code and data availability. All TSI sky images are publicly avail-
able at https://adc.arm.gov/discovery/#/results/instrument_class_
code::tsi (last access: 29 May 2024) and their cloud fractions are
available at https://adc.arm.gov/discovery/#/results/primary_meas_
type_code::cldfraction (last access: 29 May 2024). The sky images
of Merak and Gadanki, India, along with all annotations and code,
can be provided on request to the corresponding author.
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