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Abstract. The dependable reporting of methane (CH4) emis-
sions from point sources, such as fugitive leaks from oil
and gas infrastructure, is important for profit maximization
(retaining more hydrocarbons), evaluating climate impacts,
assessing CHy fees for regulatory programs, and validating
CHj, intensity in differentiated gas programs. Currently, there
are disagreements between emissions reported by different
quantification techniques for the same sources. It has been
suggested that downwind CHy quantification methods using
CHy4 measurements on the fence line of production facilities
could be used to generate emission estimates from oil and
gas operations at the site level, but it is currently unclear how
accurate the quantified emissions are. To investigate the accu-
racy of downwind methods, this study uses fence-line simu-
lated data collected during controlled-release experiments as
input for a non-standard closed-path eddy covariance (EC),
the Gaussian plume inverse model (GPIM), and the back-
ward Lagrangian stochastic (bLs) model in a range of atmo-
spheric conditions. This study’s EC attempt was unsuccessful
due to data collection and instrumentation issues, resulting
in invalid results characterized by underestimated emissions,
large negative fluxes, and cospectra/ogives that deviated from
their ideal shapes. Consequently, the EC results could not be
compared with the GPIM and bLS model. The bLs model
demonstrated the highest accuracy for single-release single-
point emissions, though it exhibited greater uncertainty than
GPIM under multi-release conditions. Across the GPIM and
bLs model, the most reliable quantification was achieved
with 15 min averaging and a narrow 5° wind sector range. Al-

though EC was limited in this context, future studies should
consider employing a standard EC system and further opti-
mizing GPIM and bLs approaches — particularly for complex
multi-source scenarios — to enhance quantification accuracy
and reduce uncertainty.

1 Introduction

Reducing methane (CH4) emissions from oil and gas sys-
tems is necessary for adhering to regulations and voluntary
reporting frameworks such as the Oil & Gas Methane Part-
nership 2.0 (OGMP 2.0) (UNEP, 2024). The OGMP 2.0 pro-
vides a comprehensive measurement-based international re-
porting framework allowing companies to stay ahead of reg-
ulatory compliance requirements, meet investor and market
pressure, have an enhanced corporate image, and prevent rev-
enue loss by lowering their emissions. In the US, the amount
of CH4 emitted from US oil and gas production is currently
compiled by the US Environmental Protection Agency (EPA)
under Subpart W. Typically, companies use a bottom-up in-
ventory approach where emission factors (CH4 emissions per
equipment, e.g., separator, or emissions per event, e.g., liquid
unloading) are multiplied by activity factors (total number
of pieces of equipment or events; US EPA, 2023) to gener-
ate emissions. This quantification approach has several short-
comings: (1) it calculates CH4 emissions separately for nat-
ural gas and petroleum systems, which are practically not in-
dependent systems and can result in bias based on changes
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in gas to oil ratios throughout a basin (Riddick et al., 2024a);
(2) some emission factors used are outdated (Riddick et al.,
2024b), while others do not account for the temporal and spa-
tial variations in emissions (Riddick and Mauzerall, 2023);
(3) emission factors do not account for long-tail distributions
(Riddick et al., 2024b); (4) there is difficulty in obtaining a
truly representative sample from a large, diverse population
to generate emission factors (Allen, 2014); and (5) possibly
unreliable data are reported by operators (Chan et al., 2024).
Recently, mechanistic models, such as the Mechanistic Air
Emissions Simulator (MAES), have been developed to ad-
dress shortcomings in bottom-up CHy reporting (Mollel et
al., 2025), but these still depend on direct measurements to
inform emission factors.

Top-down methods, including using aircraft such as
Bridger Photonics light detection and ranging (lidar; 90 %
detection limit of ~2kg h~!) (Johnson et al., 2021) and
satellites such as Carbon Mapper (predicted 90 % detection
limit of about 100 kg h~1) (Carbon Mapper, 2025), can also
be used to infer emissions. However, these survey methods
only quantify emissions over a very short period of time
(< 105s), and observations are typically made during the day,
which can often coincide with maintenance activities that
can bias emissions and result in overestimation (Riddick et
al., 2024a; Zimmerle et al., 2024). Additionally, different
top-down technologies measuring the same source have dis-
agreed on their reported emissions, which has called into
question the credibility of these methods (Brown et al., 2023;
Conrad et al., 2023). As a result, ensuring accuracy in mod-
els and technologies used in CH4 emissions quantification
has been a complex issue.

Currently, fence-line methods are used to detect, local-
ize, and quantify emissions. This approach uses point sen-
sors fixed to the fence line of a production site, with emis-
sions detected when the measured concentration exceeds a
threshold, localized by triangulating multiple detections and
quantified using a simple dispersion modeling framework,
usually based on a Gaussian plume inverse approach (Bell
et al., 2023; Day et al., 2024; Riddick et al., 2022a). De-
tection and localization of simulated fugitive emissions us-
ing this approach have been successfully demonstrated in
controlled-release studies. For example, Ilonze et al. (2024)
reported a 90 % probability of detection for emissions be-
tween 3.9 and 18.2kg CH4 h™! using multiple point sensors
and scanning/imaging systems. However, significant uncer-
tainty in quantification remains; their study reported emis-
sions being incorrectly estimated by a factor of 0.2 to 42
for releases between 0.1 and 1kgCH;h~! and by a factor
of 0.08 to 18 for emissions above 1kg CH4 h~!. While infor-
mative, the methods in Ilonze et al. (2024) differ in key ways
from those employed here — specifically, their use of multi-
ple sensors and a distributed monitoring configuration as op-
posed to the single-instrument, fence-line-based framework
used in our study — limiting direct comparison of quantifica-
tion accuracy. This study evaluates the quantification accu-
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racy of the closed-path eddy covariance (EC), the Gaussian
plume inverse model (GPIM), and the backward Lagrangian
stochastic model (bLs) for oil and gas point source quantifi-
cation using a single instrument deployed at a fence-line dis-
tance.

Eddy covariance is a vertical flux gradient measurement
that measures CH4 emissions based on the covariance be-
tween CHy concentrations measured using a fast-response
analyzer (> 10 Hz) and a vertical wind vector measured by
a fast-response sonic anemometer (> 10 Hz) (Fig. 1; Morin,
2019). It is typically implemented over long, homogeneous
fetches where the eddy mixing scale is a small fraction of
the distance from the site, providing more predictable ver-
tical transport. Dumortier et al. (2019) used EC to estimate
known point source emissions at a cow’s muzzle height and
reported that the model could estimate emissions between
90 % and 113 % of the true emissions. Dumortier et al. (2019)
stated that the optimal controls for point source quantifica-
tion and footprint modeling involve using running means
with 15 min averaging periods, not applying the Foken and
Wichura (1996) stationarity filter, and using the Kormann
and Meixner (2001) footprint function. The study tested the
model using an artificial CH4 source at 0.8 m, programmed
to emit when winds came from the source direction (£45°)
and when friction velocity (u,) was above 0.13 m s~L. In the
point source testing of Dumortier et al. (2019), they noted
that amplitude resolution, skewness, and kurtosis tests were
disabled as they deleted almost all periods involving the arti-
ficial source in the footprint. Rey-Sanchez et al. (2022) stud-
ied the accuracy of the Hsieh model (Hsieh et al., 2000),
the Kljun model (Kljun et al., 2015), and the K&M model
(Kormann and Meixner, 2001) in calculating the footprint of
point source hot spots using footprint-weighted flux maps.
The study reported the K&M model to be the most accu-
rate. Polonik et al. (2019) compared five gas analyzers, two
open-path analyzers, two enclosed-path analyzers, and one
closed-path analyzer for carbon dioxide EC measurements.
The study noted that while open-path sensors minimize spec-
tral attenuation and require smaller spectral correction fac-
tors compared to sensors with an inlet tube such as a closed-
path sensor, open-path sensors risk data loss in non-ideal
conditions like precipitation, fog, dust, or dew. The main
challenge of applying EC to continuous monitoring of oil and
gas sites is instrument limitations (it requires deployment of
multiple sensors throughout a facility; sensor cost is a fac-
tor), statistical tests, and quality controls, all of which could
filter out some of the data.

The GPIM method calculates the CH4 emission rate as a
function of mole fraction at a point in space (x, y, z), down-
wind distance, perpendicular (crosswind) distance, mean
wind speed, and atmospheric stability (Fig. 2a, Riddick et
al., 2022b). This method has been used to quantify emissions
from oil and gas production sites, especially for survey solu-
tions (Riddick et al., 2022b). For a single point source, Rid-
dick et al. (2022b) reported absolute uncertainties of between
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Figure 1. Illustrations of eddy covariance, where CHy is methane concentrations, and w is vertical wind speed.

40.7 % and 60 % in a controlled-release experiment involving
10 replicate measurements of compressed natural gas (1.5 m
release height), with concentrations measured using a mobile
vehicle survey. While this differs from continuous fence-line
deployment, it offers insight into the inherent uncertainty in
the GPIM method in field conditions. Using controlled single
point source tests, Foster-Wittig et al. (2015) reported aver-
age errors of between —5 % and 6 %. The limitations of the
GPIM method are that it assumes a homogeneous emission
source, steady-state flow, and uniform dispersion of gas in an
open area free of obstructions (Hutchinson et al., 2017).

The bLs model adapted in WindTrax can simulate the
transport of gases from point sources that emit them (Fig. 2B;
Crenna, 2006). The model releases individual particles and
follows them along their unique paths in air by mimick-
ing the random, turbulent motion of the atmosphere. Tagli-
aferri et al. (2023) investigated the validity of WindTrax in
quantifying emissions from complex sources and reported
the model to be reliable under neutral conditions, underes-
timate emission rates during unstable stratification, and over-
estimate emissions during stable conditions. Similarly to the
GPIM method, the model assumes free flow of air in the ab-
sence of obstructions and uses time-averaged data as input.

Continuous monitoring of CH4 emissions using fence-line
sensors requires proper quantification of intermittent and per-
sistent releases from oil and gas during all release (com-
plex emission profiles) and atmospheric conditions (unsta-
ble, neutral, and stable). Oil and gas emissions are charac-
terized by intermittent, non-uniform, and single or multiple
point source emissions, varying in leak size, location, height,
and distance between the source and sensor, and are typi-
cally in complex aerodynamic environments (i.e., not flat).
An ideal quantification model should always quantify emis-
sions and should capture short- and long-lasting emission
events. Most models have been validated to work best dur-
ing neutral conditions for single point sources. However, it is
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important to test and apply these models during non-neutral
conditions as well, as these are part of real-world conditions
where continuous monitoring is applied. In this study, we
evaluate whether using a readily available CHy4 cavity ring-
down analyzer for model quantification, such as the closed-
path EC, is a feasible solution for quantifying point source
emissions.

This study aims to inform the feasibility of downwind
quantification models in oil and gas settings by investigat-
ing which models are likely to work most of the time with
instrumentation that is typically available for fence-line de-
ployment. Fence-line sensor deployments involve multiple
sensors, continuously running in all conditions and provid-
ing emissions data. Using robust releases and environmental
conditions, this study aims to investigate the performance of
these methods in quantifying emissions for known gas re-
lease rates and evaluating uncertainties that could result in
incorrect CHy reporting. Specifically, this study evaluates the
overall quantification accuracy (linear regression slope of es-
timated versus actual emissions and R?) of closed-path EC,
the bLs model, and the GPIM method in quantifying single-
release single-point and multi-release single-point emissions
that simulate oil and gas emissions.

2  Methods
2.1 Experimental setup

Controlled-release experiments were conducted at Colorado
State University’s Methane Emissions Technology Evalua-
tion Center (METEC) in Fort Collins, CO (USA, ~105km
north of Denver) between 8 February and 20 March 2024.
METEC is a simulated oil and gas facility that does con-
trolled testing for emissions leak detection and quantification
technology development, field demonstration, leak detection
protocol, and best practice development (Colorado State Uni-
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(b) Backward Lagrangian stochastic model
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Figure 2. (a) A plume that follows a Gaussian plume inverse model, where the emission rate can be inferred from concentrations at different
downwind distances and crosswind distances. (b) An illustration of how the backward Lagrangian stochastic model traces particles to the

source.

versity, 2025a). The weather conditions during the test period
were mostly sunny, but precipitation was also observed (32
sunny days, 7 snowy days, 12 rainy days, 7 cloudy days, and
1 foggy day; Sect. S1). Wind speeds were between 0 and
25ms~!, and temperatures ranged between —15 and +19 °C
(Sect. S1). A stationary mast holding the instrumentation was
set up on the northwest corner of METEC to take advantage
of the predominant wind direction, avoid the largest aero-
dynamic obstructions, and simulate the likely placement of
a fence-line instrument (Fig. 3A; Day et al., 2024; Riddick
et al., 2022a). Fence-line sensors are typically placed within
the oil and gas perimeter (~ 30 m). This study collected data
for what we considered close and far releases, with distances
between 9 and 94 m.

Methane concentration data for the closed-path EC,
GPIM, and bLs methods were collected through an inlet tub-
ing (3.275 mm inner diameter) at 3 m height, connected to the
ABB (Zurich, Switzerland) GLA131 Series microportable
greenhouse gas analyzer (MGGA) set to sample at 10 Hz.
The MGGA is a closed-path greenhouse gas analyzer with
a~3.2Lmin~" pump flow rate, 10 cm cell length, 2.54 cm
cell diameter (~0.23 sccm (standard cubic centimeters per
minute) effective volume), and 0.4 s gas flow response time.
The inlet tubing was collocated with an R. M. Young (Tra-
verse City, MI, USA) 81000 sonic anemometer, which mea-
sured micrometeorology at 10 Hz (Fig. 3B). The northward,
eastward, and vertical separation of the inlet tubing from the
sonic anemometer was 0, 0, and —10 cm, respectively.

2.2 Controlled methane releases

Controlled releases were part of the METEC Spring 2024
Advancing Development of Emissions Detection (ADED)
campaign conducted between 6 February and 29 April 2024
(Colorado State University, 2025b). Natural gas of known
CHy4 content was released from above-ground emission

Atmos. Meas. Tech., 18, 5687-5703, 2025

points attached to equipment typically present in an oil and
gas facility (tanks, separators, and well pads). The gas release
rates ranged between 0.01 and 8.7 kg h~1, and the release du-
rations ranged from 10 s to 8 h, simulating both fugitive emis-
sion and large-emission events. The releases were run during
both the day and the night. The distance from the release
points to the measurement points ranged between 9 and 94 m,
and emission heights were between 0.1 and 4.9 m (Fig. 3A).
Emission points simulate the realistic size and locations of
typical emissions from components such as the thief hatches,
pressure relief valves, flanges, bradenheads, pressure trans-
ducers, Kimray valves, and vents. The releases included both
single-point emission (single releases) and multi-point emis-
sion events (multiple simultaneous releases).

2.3 Calculation of roughness length

Surface roughness length (z9) was calculated from friction
velocity (Sect. S2.1: Eqs. S1 and S2) by splitting the high-
frequency sonic anemometer data into 15 min tables and fil-
tering for those in neutral conditions, | L | > 500 (Sect. S2.1:
Eq. S3). The overall roughness length selected as the median
of all the calculated zp was 0.1 m (Rey-Sanchez et al., 2022).

2.4 Model quantification

2.4.1 Eddy covariance
Data pre-processing

Evaluating the MGGA CHy4 data showed that actual sam-
pling was between 4 and 12 Hz (majority of the data collected
at approximately 6 Hz), even though the analyzer had been
configured to sample at 10Hz (Sect. S2.2). To account for
this sampling variability, data were filtered to when sampling
was equal to or greater than 8 Hz. Data sampled at frequen-
cies above 8 Hz were downsampled to 8 Hz. The 8 Hz fre-
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Sonic
anemometer

Figure 3. (a) Map illustration of major pieces of equipment and the measurement points at Colorado State University’s Methane Emissions
Technology Evaluation Center (METEC) in Fort Collins, CO, USA. Equipment 4S denotes horizontal separators, 4W is wellheads, 4T is
tanks, 5S is vertical separators, and SW is wellheads. Panel (b) is the measurement point for the microportable greenhouse gas analyzer for
the closed-path eddy covariance, Gaussian plume inverse model, and backward Lagrangian stochastic model quantification. The inlet tubing
and the sonic anemometer are at 3 m height. The dotted red lines with yellow numbers show the average distances (meters) between the
emission equipment and measurement point. The orange numbers show the range of emission heights (meters) for each equipment piece.

The analyzers were hosted in a temperature-controlled box.

quency threshold was selected to ensure uniform sampling,
provide enough data for model evaluation as most sampling
was conducted at lower frequencies, and preserve as much
temporal resolution as possible given the system limitations.
The actual sampling frequency of the sonic anemometer me-
teorological data (horizontal wind vectors (u, v), vertical
wind vector (w), temperature (7), and pressure (P)) var-
ied between 7 and 9 Hz, with the most frequent frequency
at 8 Hz (Sect. S2.2). As the MGGA gas analyzer and sonic
anemometer were not designed to clock synchronously, us-
ing the MGGA CHg4 clock time as a reference, meteoro-
logical data from the sonic anemometer were matched to
the MGGA CHy4 data using linear interpolation to generate
concentration—meteorological 8 Hz data. While, under ideal
circumstances of a fast pump and short tube length, correct
time series matching can be achieved by establishing a clear
point of maximum covariance when determining the time
lag, this is difficult for our system due to a 3 Lmin~! pump
flow rate and 3 m tubing that caused both attenuation and
time lag.

The aggregated concentration—meteorological data were
then merged with METEC’s release data and metadata, and
release event tables were created. Release event tables are
aggregated tables of concentration, meteorology, and release
(emission source location, duration, and rate) information for
all defined release events at METEC. The concentration—
meteorological-release event data were then separated into
single-release and multi-release events. Single-release events
occur when there is a single emission point at the site level,
while multi-release events occur when there is more than
one emission point at the site level. The concentration—
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meteorological-release event tables were split into 5, 15, and
30 min release event tables (i.e., there was continuous release
during the duration). Based on the bearing of the emission
point relative to the measurement point and the average wind
direction during the duration, the data were further filtered to
downwind data at =10, 20, and £+45°.

Flux calculation

Turbulent fluxes were calculated using the open software
EddyPro® version 7 (LI-COR Biosciences, 2021). The ac-
quisition frequency was set at § Hz, while the file duration
and flux interval were set at 5, 15, and 30 min, respectively,
depending on the files being processed. Table 1 shows the
instruments that were input to the software.

In raw data processing, axis rotations for tilt correction
under wind speed measurement offsets were selected. Un-
der turbulent fluctuations, double-rotation and block aver-
age detrend methods were used. Covariance maximization
with default settings was used for time lag detection; time
lag detection was enabled. Compensation for density fluctu-
ations (Webb—Pearman-Leuning terms) (Webb et al., 1980)
was disabled as the MGGA analyzer reported dry CHy, water
mole fractions, cell temperature, and pressure synchronously.
Mauder and Foken (2004) (0-1-2 system) were used for
the quality check. All statistical tests for raw data screen-
ing (Vickers and Mahrt, 1997) — spike count/removal, ampli-
tude resolution, dropouts, absolute limits, skewness and kur-
tosis, discontinuities, time lags, angle of attack, and steadi-
ness of horizontal wind — were selected. The default values
for all these tests were used. Similarly, default settings for
spectral analysis and corrections were used. Analytic correc-
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Table 1. Anemometer and gas analyzer input into EddyPro.

Anemometer information

Gas analyzer information

Manufacturer Young
Model 81000
Height 3m

Wind data format u,v, and w

North alignment
North offset 0.0

Northward separation Reference
Eastward separation Reference
Vertical separation Reference

Longitudinal path length
Transversal path length

Manufacturer Other
Model Generic closed path
Tube length 300 cm
0.1291in. 3.275 mm
Nominal tube flow rate 3.2Lmin"!
Northward separation 0.00cm
Eastward separation 0.00cm
Vertical separation —10.00cm
Longitudinal path length ~ 10.00cm
Transversal path length 2.54cm
Time response 04s

tions of high-pass-filtering effects (Moncrieff et al., 2005) for
the low-frequency range and correction of low-pass-filtering
effects (Fratini et al., 2012, in situ analysis and instrument
separation; Horst and Lenschow, 2009, only crosswind and
vertical) in the high—frequency range were used.

Post-processing

Flux data were flagged as “2”, low quality, based on Mauder
and Foken’s (2004) (0-1-2) quality system. Cospectral anal-
ysis revealed that the EC system in this study smoothed out
low-frequency eddies, as the cospectra lacked the ideal shape
characterized by a low-frequency rise, a peak region, and
a high-frequency decay (Sect. S2.3.1). While the slope in
the high-frequency region varies around the theoretical —4 /3
slope, the cospectral data followed the 1 : 1 line, indicating a
consistent spectral shape across sampling periods. We also
examined the relationship between CHy flux and friction ve-
locity (uy) to identify a u, threshold below which flux es-
timates may be unreliable (Sect. S2.3.2). However, no con-
sistent relationship was observed across atmospheric stabil-
ity classes (unstable, stable, and neutral). CHy fluxes varied
widely — including both positive and negative values — across
the full range of u, (~0 to 1 ms™—!), with no discernible
threshold beyond which fluxes stabilized. This indicated that
CHj4 fluxes were effectively independent of u.., and thus, data
from all u, values were retained. Ogive analysis was con-
ducted to assess whether averaging durations of 5, 15, and
30min were sufficient for capturing the full turbulent flux.
The resulting ogive curves deviated from the ideal asymp-
totic shape, particularly at the highest and lowest frequen-
cies (Sect. S2.3.3). Notably, the curves did not exhibit a clear
plateau near the low-frequency end, where the cumulative
flux should approach unity. This indicates incomplete flux
capture. Furthermore, the similarity in ogive shapes across
different frequencies — mirroring patterns seen in the cospec-
tra — suggests a lack of significant turbulent contributions and
the influence of non-turbulent, possibly advective processes.
These results imply that the EC system may not have fully
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resolved the flux due to insufficient averaging time, non-
stationarity, or instrument-related limitations (Sect. S2.3.4).
As positive fluxes are generally considered emissions and
negative fluxes depositions, data were further filtered for pos-
itive fluxes, which were then quantified to emission rates.

Footprint calculation

Eddy covariance footprints were calculated using the Kljun
et al. (2015) and Kormann and Meixner (2001) footprint
models. For the Kljun et al. (2015) model, the free online
MATLAB code of the model was used, while the Kormann
and Meixner (2001) model was coded in MATLAB. To de-
termine the point source footprint contribution, the study first
calculated the area that contributed 90 % of the vertical flux,
and based on the location (x and y coordinates based on wind
direction and distance from the source) of the point source,
the source was determined if it was within the 90 % footprint
area. Point source emissions of sources within this region
were then calculated based on the approach by Dumortier
et al. (2019). This approach assumes that all measured fluxes
are equal to fluxes resulting from a single point source. In the
case of the mast being downwind of more than one source,
more sonic anemometers are needed to solve the two un-
known point source fluxes.

2.4.2 Gaussian Plume inverse method
Data pre-processing

Methane concentration data from the MGGA analyzer and
meteorology data from the sonic anemometer were aver-
aged to 1 Hz and aggregated. The aggregated concentration—
meteorological data were merged with METEC’s release
data and metadata, and release event tables were created.
The concentration—meteorological-release event data were
then separated into single-release and multi-release events.
For single-release events, the concentration—-meteorological—
release event tables were split into 5, 15, and 30 min release
event tables. Based on the bearing of the emission point rela-
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tive to the measurement point and the average wind direction
during the duration, the data were further filtered to down-
wind data within +5, £10, and £20° wind sector ranges.
Multi-release events were further classified into multi-release
single-point emissions (i.e., there were multiple emissions at
the site level, but the mast was downwind of a single source)
and multi-release multi-point emissions (i.e., there were mul-
tiple emissions at the site level, and the mast was down-
wind of more than one source). This study focuses on single-
release single-point and multi-release single-point emissions.
For continuously monitoring sensors, background concentra-
tion can be determined from CH4 concentrations measured
by a sensor upwind of the emission source or by sampling
when the wind blows away from the source. However, for
continuously monitoring sensors, using an upwind sensor has
the limitation of missing downwind background noise result-
ing from emissions in the preceding emission event where
there is residual CHy in air, especially during stable condi-
tions, and capturing sensors drift in the downwind sensor. In
this study, background CH4 was calculated as the average of
the lowest 5th percentile, 5 min before each release started.
In cases where this background was greater than the mean
CHy4 concentration in the quantifying duration, the minimum
CH4 concentration for that duration was used as the back-
ground. Methane enhancement was then calculated as CHy
concentration minus the background.

Quantification

The GPIM was evaluated under six scenarios (two equations
and three different dispersion coefficient generations) using
single-release single-point emissions to test when the model
works best (Sect. S2.1: Eqs. S7 and S8). Dispersion coef-
ficients were generated based on (1) high-frequency sonic
anemometer data at ~ 10 Hz, (2) EPA point source dispersion
coefficients (US EPA, 2013), and (3) 1 Hz sonic anemometer
data. The scenario with the slope closest to 1 and the high-
est R? across averaging durations and wind sector ranges
was selected and used for multi-release single-point emis-
sions quantification. For single-release tables, the measure-
ment point was downwind of a single source (single-release
single-point emission); hence the tables were quantified as
they were. However, for multi-release events, the tables were
further processed as the GPIM method is designed to quan-
tify one point source at a time. For multi-release events, the
number of emission points in the downwind tables was used
to further classify the tables into multi-release single-point
emissions (i.e., there were multiple emissions at the site level,
but the mast was downwind of a single source) and multi-
release multi-point emissions (i.e., there were multiple emis-
sions at the site level, and the mast was downwind of more
than one emission source). The GPIM method was only used
for multi-release single-point emissions.
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2.4.3 Backward Lagrangian stochastic model

Pre-processed data from the GPIM method were used for
bLs quantification. Quantification was done using the open-
source software WindTrax 2.0 (Crenna, 2006; WindTrax 2.0,
2020). For every 5, 15, and 30min duration within +£5,
+10, and £ 20°, respectively, inputs included roughness
length (z¢); Monin—Obukhov length (L — Sect. S2.1: Eq. S3);
mean wind speed, wind direction, concentration, pressure,
and temperature; background concentration; source height;
and distance from the emission point to the sensor. Wind-
Trax is also designed to quantify a single point source at a
time and was hence only used to quantify single-point single
emissions and multi-point single emissions.

3 Results
3.1 Eddy covariance
3.1.1 Single-release single-point emissions

For single-release single-point (SRSP) emissions, the closed-
path EC underestimated emissions. Using the Kljun et
al. (2015) footprint model, the slope of the linear regression
between estimated emissions and actual emissions ranged
from —0.03 to 0.54 at 5 min, from —0.36 to —0.04 at 15 min,
and was 0.03 at 30 min for 45° (10 and 20° had insufficient
data points) (Fig. 4). The adjusted R?> was between —0.06
and 0.12, indicating no linear relationship between the es-
timated and actual emissions (Fig. 4). Using the Kormann
and Meixner (2001) footprint model, the slope was between
—0.42 and 0.17 at 5 and 15 min, respectively, and —0.08 at
30 min for 45° (Sect. S3.1.1). Similarly, the adjusted R? val-
ues were between —0.07 and 0.05. These results indicate that
this study’s EC system using either the Kljun et al. (2015) or
the Kormann and Meixner (2001) footprint model did not
reliably quantify emissions for SRSP cases. The low slopes
and adjusted R? values suggest little to no linear relationship
between estimated and actual emissions under the tested con-
ditions (Fig. 4; Sect. S3.1.1).

3.1.2 Multi-release single-point emissions

For multi-release single-point (MRSP) emissions, the closed-
path EC largely underestimated emissions and did not show
good agreement between estimated and actual emissions
(Fig. 5). Using the Kljun et al. (2015) footprint model, the
slope was between —0.51 and 0.18, except for the 5min
45° category that had a slope of 0.61. The adjusted R? did
not show a linear relationship between estimated and ac-
tual emissions, with values ranging between —0.02 and 0.00
(Fig. 5). Using the Kormann and Meixner (2001) footprint
model, the slope was between —0.03 and 1.06, with good
agreement of 1.06 at 30 min for 45° with an adjusted R>
of 0.12 (Sect. $3.1.2). The rest of the categories had an R?
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Figure 4. Estimated emission vs. actual emission (kg h~1) for single-release single-point emissions. The dotted red line is a 1 : 1 line based
on actual emissions; i.e., points below the line are underestimated emissions, and those above are overestimated emissions. The gray region
represents £30 % of the actual emissions. Adj. R2 is the adjusted R2. The sample size is n.

of between —0.02 and 0.06. These results suggest that the
EC system did not reliably quantify emissions for MRSP
cases under most conditions. Only one category (30 min
at 45° using the Kormann and Meixner, 2001, footprint
model) showed moderate agreement (slope = 1.06, adjusted
R? =0.12), but even this explains only a small portion of the
variability in actual emissions. Overall, the adjusted R? val-
ues across scenarios (—0.02 to 0.12) indicate a weak or no
linear relationship.

3.2 Gaussian plume inverse method
3.2.1 Single-release single-point emissions

The GPIM sensitivity analysis comparing different equa-
tions and dispersion coefficients showed no difference in
quantified emissions between Egs. (S7) and (S8). Among
the dispersion coefficient sets tested (US EPA, 2013), the
coefficients resulted in the most consistent performance,
with the least variability in slope and the highest over-
all adjusted R? values (Sect. S3.2). For this scenario, the
slope ranged from 1.65 to 3.92 (excluding the 30min
5° case due to insufficient data), and adjusted R? values
ranged from 0.40 to 0.64 (Fig. 6). The 15 min 5° case had
a slope closest to 1 (slope=1.65, R?>=0.40), while the
S min 5° case showed the strongest linear relationship over-
all (slope=2.42, R% =0.64) (Fig. 6). These results sug-
gest that while the GPIM tends to overestimate emissions
(slopes > 1), it provides relatively consistent and stronger

Atmos. Meas. Tech., 18, 5687-5703, 2025

linear agreement with actual emissions compared to the
closed-path EC system tested above (Sect. 3.1).

3.2.2 Multi-release single-point emissions

For MRSP emissions, the GPIM produced a wide range of
slopes, from —43.05 to 1.60 (Fig. 7). Excluding the 5 min 5
and 10° categories and the 30 min 10° category, most other
cases reported slopes between 0.76 and 1.22, suggesting po-
tential quantification within ~ 25 % of the actual emissions.
However, the adjusted R? values in these cases were close to
0, indicating no consistent linear relationship between esti-
mated and actual emissions (Fig. 7). This lack of correlation
is likely due to the high variability in GPIM estimates, which
reached up to 200kgh~! for the selected categories, despite
actual emissions being only around ~ 6kgh~!. These results
indicate that while the GPIM sometimes produced slope val-
ues suggesting close agreement with actual emissions, the
lack of linear correlation and large overestimations highlight
its limited reliability in quantifying MRSP emissions accu-
rately.

3.3 Backward Lagrangian stochastic model
3.3.1 Single-release single-point emissions

For SRSP emissions, the bLS method generally produced the
most accurate slopes (i.e., closest to 1) compared to the EC
and GPIM methods (Fig. 8). The 15 min 5 and 10° categories
yielded the most accurate estimates, with slopes of 1.05 and
1.10, respectively. The adjusted R? ranged from 0.48 to 0.66

https://doi.org/10.5194/amt-18-5687-2025
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on actual emissions; i.e., points below the line are underestimated emissions, and those above are overestimated emissions. The gray region
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for the 5 min averaging duration and from 0.40 to 0.48 for
the 15 min duration. At the 30 min averaging duration, per-

emissions.

formance improved in the 10 and 20° categories, likely due to
increased sample sizes (Fig. 8). These results show that bLs
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is more suitable for quantifying single-release single-point
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3.3.2 Multi-release single-point emissions

sions spanned up to > 20kgh™!, mostly for actual emissions

of up to 6kgh~!, many points were concentrated close to

L o 0. Compared to the GPIM MRSP results, even though both

The b'Ls mc?thod had l'arge uncertainties for. MRSP emissions, models have an R2 of ~ 0, the GPIM had a slope closer to

especially in Fhe Smin 5 and 10° categories (Fig. 9). In the 1 in the 15 min category than the bLs, showing better perfor-
other categories, the slopes were between —0.03 and 0.45,

with an R? value of ~ 0. Even though the estimated emis-
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mance. These results show that the bLs is more suitable for
quantifying SRSP emissions than MRSP emissions.

3.4 Model comparison — subset data

Using a subset of the data (SRSP), filtered by 15 min intervals
within a 10° wind sector range where each model provided
an emission estimate, the bLs model exhibited the best per-
formance, with its linear regression closely aligned with the
1:1 line (Fig. 10). The slope of the regression line for the
GPIM was 1.6, indicating an overestimation, while the bLs
had a slope of 0.95, suggesting high accuracy. In contrast, the
EC model produced slopes of 0.08 and 0.10 when using the
Kormann and Meixner (2001) and Kljun et al. (2015) foot-
print parameterizations, respectively, indicating significant
underestimation. When emission estimates were categorized
by emission point, the GPIM notably overestimated emis-
sions at locations 4W-22 and 4W-51 (identified in Fig. 3),
both situated approximately 10 m from the measurement lo-
cation. The EC model consistently underestimated emissions
across all sources, while the bLs (WindTrax) model provided
estimates closest to the expected values. The EC model pro-
duced negative emission rates associated with negative fluxes
during periods of high non-stationarity (Sect. S2.3.4). These
deviations from stationarity reflect intermittent plume cap-
ture, where the EC system alternated between sampling emit-
ting and non-emitting regions. Overall, these findings indi-
cate that for source—receptor distances ranging from approx-
imately 10 to 90 m, the bLs model demonstrated the highest
accuracy in quantifying emissions.

3.5 Traceability example

To illustrate how raw data were converted into model-based
emission estimates, we present one representative 15 min in-
terval used in Fig. 10. During a controlled release at point
4W-22 (wellhead), located approximately 10.5m from the
mast, the ground-truth release rate was 3kg CH4h™!. Over
this interval, the average CHs concentration enhancement
was 8.3 ppm above the background (determined using the 5th
percentile method; see Sect. 2.4.2 “Data pre-processing”).
The wind direction was 153° (0.3 m crosswind distance),
with an average wind speed of 5.8 ms~!. The same interval
was processed through the three modeling frameworks:

— The bLs model (WindTrax), using measured concen-
tration, geometry, and meteorological data, estimated
3.5kgh™!.

— The GPIM, using Eqs. (S7) and (S8) (Sect. S2.1)
and US EPA (2013) dispersion coefficients, estimated
10.3kgh~!.

— The EC method, using the Kormann and
Meixner (2001) footprint, estimated —0.004kgh~!
due to a negative flux under high-non-stationarity
conditions.

https://doi.org/10.5194/amt-18-5687-2025

This example illustrates how the bLs model reproduced
the true emission most closely, while GPIM overestimated
the emission, and EC underestimated the emission. More ex-
amples of data presented in Fig. 10 are available under the
supplementary data, “MATLAB Code & Software Configu-
ration — Validation.xlsx”.

3.6 Eddy covariance quality assurance and control

Evaluation of the EC data revealed quality assurance and
control issues that compromised both the analysis and the
conclusions drawn from the EC results. The flux data were
flagged as “2” (low quality) according to the 0—1-2 quality
classification system of Mauder and Foken (2004), indicating
that the data were not suitable for EC analysis. In EC quality
assessment, both the qualitative shape of the cospectra and
the quantitative slopes of selected portions are examined to
determine if the data meet accepted standards. In this study,
the cospectra deviated significantly from the ideal shape, in-
dicating problems in data collection and pre-processing. Pos-
sible causes include obstructions in the testing area, mis-
alignment between CHy4 and sonic anemometer time series
(due to the absence of a reliable method for alignment), slow
response time of the gas analyzer, increased lag from the 3 m
inlet tubing, and inconsistent sampling frequency. Similarly,
ogive analysis — used to evaluate whether the averaging time
is sufficient — showed that the ogive curves did not follow
the characteristic sigmoidal shape (plateauing at the y axis
and at 0). The ogive shapes were similar across all averaging
intervals — none plateaued sufficiently — further indicating
data collection issues that invalidate the EC method for this
study. For clarity and to guide future studies, Burba (2013)
provides examples of ideal cospectra and ogive shapes, illus-
trating how these tools can be used to diagnose instrumenta-
tion and data collection problems.

4 Discussion

Methane emissions quantification from oil and gas is a
complex process that involves gas emissions from differ-
ent heights and locations, encounters aerodynamic obstacles
of different sizes, and includes varying emissions durations,
among other factors. The ability to precisely quantify emis-
sions using data collected by a point sensor downwind of a
source is directly influenced by plume dynamics. The CHy
plume downwind of a source will change in size and shape
in different atmospheric conditions, in open areas versus ar-
eas with obstacles, diurnally, and in different seasons (Casal,
2008). In this study, we evaluated the ability of downwind
methods — including a non-standard closed-path EC sys-
tem, the GPIM, and the bLs model — to quantify emissions
from single-release and multi-release point sources. While
the field measurements took place under naturally varying
meteorological conditions, these were not explicitly stratified

Atmos. Meas. Tech., 18, 5687-5703, 2025
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Figure 9. Estimated emission vs. actual emission (kg h~1) for multi-release single-point emissions. The dotted red line is a 1 : 1 line based
on actual emissions; i.e., points below the line are underestimated emissions, and those above are overestimated emissions. The gray region
represents +30 % of the actual emission. Adj. R? is the adjusted R2. The sample size is n.

or analyzed as experimental factors. Additionally, although
on-site infrastructure such as storage tanks was present, their
distance from the sampling instruments (~ 50 m) likely ren-
dered their aerodynamic influence negligible. As such, the
analysis focuses on quantification performance under realis-
tic but uncontrolled field scenarios, without attributing model
behavior to specific atmospheric or obstacle-related condi-
tions.

4.1 Eddy covariance

Eddy covariance was tested using a closed-path analyzer
and cavity ring-down spectroscopy, with a 3.2 Lmin~! pump
flow rate and a 0.4s gas flow response time. The closed-
path EC underestimated emissions, with a linear regression
slope for estimated emissions versus actual emissions of be-
tween —0.42 and 0.54 using the Kljun et al. (2015) and Kor-
mann and Meixner (2001) footprint models, and adjusted R>
was ~ 0. (Sect. 3.1). This is a larger uncertainty in estimated
emissions than that reported by Dumortier et al. (2019),
who estimated emissions at between 90 % and 113 % of true
emissions (~ 1.5kg d-! ), with concentrations between 2 and
3 ppm. Our study tested closed-path EC at emission rates be-
tween 0.005 and 8.5kgh~!. Notably, the results for the non-
standard EC system tested in this study may not be represen-
tative of EC performance in oil and gas, as ogive and cospec-
tra analysis indicated that the flux may not have been fully
resolved due to non-stationarity and instrument-related limi-
tations.

Atmos. Meas. Tech., 18, 5687-5703, 2025

Our results were derived from data filtered to include
only periods with sampling frequencies >8 Hz, which sig-
nificantly reduced the number of usable emission measure-
ments. Although the instrument was configured to sample at
10 Hz, it did not consistently achieve this rate. This discrep-
ancy may be attributed to instrument-related factors such as
the 0.4 s gas flow response time, which could delay analy-
sis of the drawn air sample in the cavity, or the use of a
3Lmin~! pump with 3 m of tubing, which reduced the ef-
fective turnover rate. The dataset used for eddy covariance
evaluation was predominantly flagged as low quality (flag 2)
according to the Mauder and Foken (2004) quality control
test, which classifies flux data based on steady-state condi-
tions and the presence of well-developed turbulence (flags
0=high, 1 =intermediate, 2=1ow quality). Many of the
low-quality flags were likely driven by wide deviation in ver-
tical wind speed (w) /methane (CH4) stationarity, reflect-
ing intermittent plume capture, where the EC system alter-
nated between sampling emitting and non-emitting regions.
The EC model produced negative emission rates associated
with negative fluxes during periods of high non-stationarity
(Sect. S2.3.4).

Despite high non-stationarity that resulted in low-data-
quality issues, further resulting in EC inaccuracies, this study
acknowledges our design limitations. Our study did not have
a reliable method for aligning the asynchronous CH4 and
sonic anemometer data streams, which likely introduced sub-
stantial timing errors and contributed to uncertainty in the
flux calculations. The intake for the closed-path system was
positioned approximately 10 cm below the sonic anemome-
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Figure 10. Top plot: estimated emission vs. actual emission (kg h~1) for each model. GPIM is the Gaussian plume inverse model, bLs is the
backward Lagrangian stochastic model, EC-KM is eddy covariance with the Kormann and Meixner (2001) footprint, and EC-Klujn is the
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below the line are underestimated emissions, and those above are overestimated emissions. The gray region represents 30 % of the actual
emission. Adj. R2 is the adjusted R2. The sample size is n. Bottom plot: estimated emission vs. actual emission categorized by emission

point, as illustrated in Fig. 3.

ter to protect the inlet tubing from debris and precipitation
by mounting it on an aluminum shield facing downward.
We recognize that even this small vertical separation can in-
troduce additional errors in flux measurements when using
short towers. This design choice was a compromise to en-
sure instrument protection while maintaining data collection
in field conditions. We acknowledge that the system used in
this study was not designed or configured for standard eddy
covariance analysis and that this limitation impacts the in-
terpretation of our results in the context of EC-based flux
quantification.

In this study, continuous monitoring was conducted using
a single sensor with an inlet deployed at a fence-line dis-
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tance. This system requires instrumentation capable of mea-
suring a wide concentration range, as emissions from oil
and gas sites can vary between 0 and 250 ppm (Sect. S1).
While continuously monitoring systems, comprising multi-
ple sensors, can offer enhanced spatial coverage and source
localization, they also introduce higher costs. The limitations
and findings reported here therefore apply specifically to this
single-sensor fence-line continuously monitoring approach
and may not be representative of all continuously monitoring
frameworks. This study acknowledges the limitations of the
eddy covariance (EC) setup used, particularly that the ABB
MGGA GLAI131 Series analyzer is not designed specifically
for EC applications. As a result, the conclusions drawn from
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the EC data are invalid and not comparable to the other tested
models.

This study identified data collection and instrumentation
issues that future work can address to enable successful EC
application. Based on flagged low-quality data, non-ideal
cospectra and ogive shapes, and the presence of large nega-
tive fluxes, the dataset was deemed unsuitable for EC analy-
sis. The primary causes of the unsuccessful application were
that (1) the CH4 analyzer was not designed for EC measure-
ments, exhibiting a slow response time, a low pump flow rate,
and inconsistent sampling frequency; (2) the 3 m inlet tubing
length for the closed-path analyzer caused signal attenuation
and increased lag; (3) the sonic anemometer and CHy ana-
lyzer data were not synchronously logged, preventing accu-
rate time series alignment; (4) the EC system was installed
near obstacles that disrupted smooth eddy formation; and (5)
ogive plots suggested that the maximum 30 min averaging
interval used in this study may have been insufficient. We
recommend further EC testing with these issues corrected to
properly evaluate its application in continuous oil and gas
monitoring.

4.2 Gaussian plume inverse method

The GPIM method quantified emissions within a slope
of 1.65 to 3.92 and adjusted R?> of between 0.4 and
0.64, with the best performance at the 15min 5° wind
sector (slope =1.65, R?2=0.4) and 5min 5° wind sector
(slope =2.42, R* =0.64) for SRSP emissions (Sect. 3.2).
For MRSP emissions, the GPIM showed large uncertainties,
even though the slopes for other categories, excluding 5 min
5 and 10° and 30 min 10° categories, were between 0.74 and
1.60, with R2 ~ 0 (Sect. 3.2). The RZ close to 0 showed that
there was no linear relationship between the estimated and
actual emissions for MRSP conditions. Overall, the GPIM
performed well under a 15 min averaging duration and 5°
wind sector range in both SRSP and MRSP categories. The
MRSP emission profiles tested in this study are complex,
challenging the GPIM application as the method is a point-
source-specific quantification approach, and works best in
open areas, free of obstacles, and when the background con-
centration is well defined. For multiple emissions, even when
the sensor is nominally downwind of a single source based
on the average wind direction, quantification can be compli-
cated by interference from neighboring sources. However, it
is important to emphasize that such complexity is not a fun-
damental limitation of quantification itself but rather a func-
tion of the experimental design and study objectives. For ex-
ample, plume interference can often be minimized through
strategic localization and optimization using multiple sen-
sors — an approach that differs from the single-instrument
setup used in this study. This study’s design involves defin-
ing plumes based on wind sector ranges, as opposed to us-
ing multiple sensors to localize sources, and therefore does
not replicate how various continuously monitoring solutions
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typically operate. The GPIM has previously been reported
to quantify emissions within 40.7 and 60 % error for a sin-
gle point source using controlled-release experiments (Rid-
dick et al., 2022b). However, correct quantification by GPIM
has been suggested to be better for longer distances where
the plume is well mixed, as seen in Fig. 10. This is typi-
cally a challenge for fence-line sensors that have to be de-
ployed within the facility boundaries where large downwind
distances may not be practical.

4.3 Backward Lagrangian stochastic model

The bLs method was the most accurate in quantifying emis-
sions for the SRSP release profiles but had larger uncer-
tainties than the GPIM for MRSP scenarios (Sect. 3.2.2
and 3.3.2). For SRSP emissions, the slopes closest to 1
were during the 15min 5° (slope=1.05, R?>=0.4) and
10° (slope=1.10, R? =0.37) sectors. The best R?> was at
the 5 min 5° sector (slope = 1.64, R? =0.66). However, for
MRSP emissions, the slopes were between —0.03 and 0.45
in the best categories, with R2 of ~0. Similar to the GPIM
method, the bLs method used in this study is a point-source-
specific quantification method that simulates transport of
molecules in open areas and where the background concen-
tration is defined. In this case, as with the SRSP test sce-
nario, the bLs approach was generally more accurate than
the GPIM approach. However, for MRSP emissions, quan-
tification accuracy was low. This discrepancy may be due
to design-related challenges — specifically, interference from
neighboring sources and the lack of distinct plume separation
in complex flow conditions. Although the measurement point
was nominally downwind of a single source, the real-world
plume structure may not align with model assumptions. Ad-
ditionally, the bLs implementation in WindTrax is designed
for single-source scenarios, and applying it to multi-source
environments without adaptation can lead to inaccuracies.
The GPIM and bLs methods are sensitive to background cor-
rection, which in this study was complicated by temporal
overlap between release events and residual CH4 accumu-
lation, particularly under stable atmospheric conditions. Al-
though this is a controlled-release study, residual methane
from prior emissions and the presence of multiple plumes
can affect the CHy concentration during a candidate event,
challenging the assumptions used to define the background,
and isolate a single-source plume using wind-sector-based
criteria. These findings highlight the importance of aligning
modeling assumptions with the experimental context rather
than pointing to a fundamental limitation of the method it-
self.

4.4 Implications
In recent years, there has been a growing interest in and need

for accurate CH4 quantification from oil and gas sites. This
is generally done through survey methods and continuous
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monitoring using fence-line sensors. Continuous monitoring
involves having stationary sensors measuring meteorology
and CH4 mixing ratios, which are then used to infer emis-
sion rates. For point sources, downwind methods, such as
the Gaussian plume inverse method, have been widely used,
especially for survey quantification. Continuous monitoring
is relatively new but rapidly growing. This study’s design
replicated a continuously monitoring setup’s downwind de-
ployment distance, range of typical emission rates, emissions
heights, and meteorological data acquisition.

Oil and gas point sources could be either single emis-
sions or multiple emissions occurring concurrently. In this
study’s design, cases involving multiple emissions with more
than one release point located upwind posed challenges for
the specific Gaussian and backward Lagrangian stochastic
(bLs) model implementations, which were applied assum-
ing a single active source at a time. While these models can
be extended to handle multi-source scenarios, the assump-
tions used here limited their ability to distinguish between
individual contributions when plumes overlapped. As a re-
sult, interference from neighboring emissions introduced am-
biguity in model-observation alignment, particularly under
complex wind conditions. Closed-path eddy covariance was
generally unreliable in this study due to data collection and
instrumentation issues associated with using a non-standard
EC system. This resulted in invalid EC results that could not
be compared with the GPIM and the bLs model. The bLs
method was the most accurate for single-release single-point
emissions but was less accurate than the GPIM under multi-
release conditions. For both GPIM and bLs, 15 min averag-
ing with a narrow wind sector (5°) yielded the best perfor-
mance. While EC results in this study were limited by system
constraints, future work is recommended using standard EC
instruments and further optimizing GPIMs and bLs models —
particularly for complex multi-release scenarios — to improve
accuracy and reduce uncertainties.
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