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Abstract. Global Navigation Satellite System (GNSS) radio
occultation (RO) is a space-based remote sensing technique
that measures the bending angle of GNSS signals as they tra-
verse the Earth’s atmosphere. Profiles of the microwave in-
dex of refraction can be calculated from the bending angles.
High accuracy, long-term stability, and all-weather capabil-
ity make this technique attractive to meteorologists and cli-
matologists. Meteorologists routinely assimilate RO obser-
vations into numerical weather models. RO-based climatolo-
gies, however, are complicated to construct as their sampling
densities are highly non-uniform and too sparse to resolve
synoptic variability in the atmosphere.

In this work, we investigate the potential of machine learn-
ing (ML) to construct RO climatologies and compare the re-
sults of an ML construction with Bayesian interpolation (BI),
a state-of-the-art method to generate maps of RO products.
We develop a feed-forward neural network applied to Con-
stellation Observing System for Meteorology, Ionosphere,
and Climate-2 (COSMIC-2) RO observations and evaluate
the performance of BI and ML by analysis of residuals when
applied to test data. We also simulate data taken from the
atmospheric analyses produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) in order to test
the resolving power of BI and ML. Atmospheric temperature,
pressure, and water vapor are used to calculate microwave re-
fractivity at 2, 3, 5, 8, 15, and 20 km in geopotential height,

with each level representing a different dynamical regime of
the atmosphere. The simulated data are the values of mi-
crowave refractivity produced by ECMWF at the geoloca-
tions of the COSMIC-2 RO constellation, which fall equa-
torward of 46° in latitude. The maps of refractivity produced
using the neural networks better match the true maps pro-
duced by ECMWF than maps using BI. The best results are
obtained when fusing BI and ML, specifically when applying
ML to the post-fit residuals of BI. At the six iso-heights, we
obtain post-fit residuals of 10.9, 9.1, 5.3, 1.6, 0.6, and 0.3N
units for BI and 8.7, 6.6, 3.6, 1.1, 0.3, and 0.2N units for the
fused BI&ML. These results are independent of season.

The BI&ML method improves the effective horizontal res-
olution of the posterior longitude–latitude refractivity maps.
By projecting the original and the inferred maps at 2 km in
iso-height onto spherical harmonics, we find that the BI-
only technique can resolve refractivity in the horizontal up
to spherical harmonic degree 8, while BI&ML can resolve
maps of refractivity using the same input data up to spherical
harmonic degree 14.

1 Introduction

Earth radio occultation (RO) sounds temperature and water
vapor in the Earth’s atmosphere by measuring the refraction-
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induced frequency shifting of the signals of the Global Navi-
gation Satellite System (GNSS) as received by satellites in
low-Earth orbit (LEO). The RO remote sensing technique
has been thoroughly described in several previous works,
e.g., Kursinski et al. (1997, 2000), Melbourne (2004), and
Mannucci et al. (2021). As an active limb-sounding tech-
nique, it provides highly accurate information on tempera-
ture and water vapor with 100 m vertical resolution from the
surface to the stratopause but with non-homogeneous, non-
uniform, and sparse horizontal sampling. In order to convert
the soundings to a gridded dataset, special algorithms must
be devised to map the data in the horizontal. The horizon-
tal sampling is non-homogeneous because the orbital con-
figurations of the multiple RO spacecraft have not been co-
ordinated and because of the orbits of the satellites in the
GNSS constellations. Consequently, local time coverage is
generally incomplete and meridional coverage is at times ne-
glected. Because of orbital dynamics, gaps in the RO sam-
pling pattern occur at specific, well-defined latitudes (Leroy
et al., 2012). The horizontal sampling distribution is also
sparse because the density of RO soundings has never been
high enough to sample every cell of synoptic variability in the
atmospheric system, where a cell is approximately described
by a span of several hours and the atmospheric Rossby radius
of deformation. Mapping RO data requires statistical meth-
ods that weight the RO observations that do exist in a manner
that minimizes the errors incurred by under-sampling the at-
mosphere without inducing biases.

Two approaches have been developed to construct grid-
ded RO climatologies. The first approach is referred to as
sampling-error removal. It uses the forecasts of a numeri-
cal weather prediction (NWP) model to estimate the sam-
pling error associated with synoptic variability and incom-
plete coverage of the diurnal cycle. In this approach, the fore-
casts of an NWP system are interpolated to the locations and
times of RO soundings, binned and averaged into longitude–
latitude boxes just as the actual RO soundings are, and com-
pared to the gridded predictions to estimate the bias asso-
ciated with the binning and averaging. This estimate of the
bias is then subtracted from the actual binned-and-averaged
RO data (Foelsche et al., 2008, 2011). The other approach
is Bayesian interpolation (BI) on a sphere, wherein linear
combinations of spherical harmonics as basis functions are
fit to RO data without overfitting the data (MacKay, 1992;
Leroy et al., 2012). There have been many other applica-
tions of BI, and it has been evaluated in detailed analyses as
a method for constructing climatologies of RO data (Leroy et
al., 2012, 2021).

In this work, we use machine learning (ML) to produce RO
climatologies. The ability of ML to learn from large amounts
of data has been shown in many research subjects and appli-
cations (Hassanien, 2018). Neural networks are well-suited
to the problem of estimating most probable values related to
generalized inputs, which is the same problem that affects
gridding RO data in the horizontal. Unlike the sampling-

error-removal approach, neither BI nor ML requires exter-
nal datasets to form objective gridded climatologies of RO
data. At its core BI superposes spherical harmonics, while
ML is based on more general mathematical functions. Spher-
ical harmonics are orthogonal on a sphere but do not nec-
essarily represent structures of atmospheric variability well.
The more generalized interpolators of ML should prove to
be more capable of resolving complex fine-scale horizontal
structure.

ML has already been used successfully on ground-based
GNSS observations. For decades, parameters estimated from
GNSS data (station coordinates, troposphere, ionosphere,
etc.) have been routinely quantified at permanent geodetic
stations. In addition, the size and resolution of GNSS net-
works have increased, following the requirements of meteo-
rologists, geodesists, and geophysicists. Thus, a large amount
of data has been produced, which has naturally generated
interest in applying ML algorithms to these datasets. Kiani
Shahvandi et al. (2022), Gou et al. (2023), and Natras et
al. (2022) applied ML to improve the prediction of important
parameters needed in GNSS applications, such as polar mo-
tion prediction, ultra-rapid orbits, and the ionosphere, while
Crocetti et al. (2021) used ML to detect discontinuities in
time series of GNSS station coordinates.

ML algorithms have been successfully used to model me-
teorological products derived from GNSS observations in the
past. For instance, in Miotti et al. (2020) and Shehaj (2023),
ML was applied to tropospheric observations from ground-
based GNSS to model them based on meteorological parame-
ters. Miotti et al. (2020) showed that ML could model the im-
plicit relation between zenith total delays (ZTDs) estimated
at ground-based GNSS stations and meteorological param-
eters measured at permanent meteorological stations. While
Miotti et al. (2020) demonstrated the applicability of ML to
map time series of GNSS tropospheric observations, in She-
haj et al. (2023) ML and least-squares collocation were com-
bined to produce high-resolution ZTD fields.

In other work, ML has been applied to tropospheric de-
lays estimated at GNSS ground-based stations for the pre-
diction of Alpine foehn (Aichinger-Rosenberger et al., 2022)
or to spatially map zenith wet delay at a global scale, as
in Crocetti et al. (2024). Kitpracha et al. (2019) used long
short-term memory (LSTM) and a combination of singular
spectrum analysis and Copula to predict zenith delays based
on previous meteorological and delay series; errors of 2 and
1 cm were reported for a prediction of 24 h. In Shamshiri et
al. (2019), an ML Gaussian process to model tropospheric
delays in InSAR based on zenith delays was used, report-
ing an improvement of 81 % on the tropospheric correc-
tions of the interferograms. In Zhang and Yao (2021), ML
was applied to fuse precipitable water vapor from GNSS,
MODIS (Moderate-Resolution Imaging Spectroradiometer),
and the numerical weather model ERA5. In Shi et al. (2023),
a method to efficiently generate zenith delays for the massive
GNSS CORS (continuously operating reference station) net-

Atmos. Meas. Tech., 18, 57–72, 2025 https://doi.org/10.5194/amt-18-57-2025



E. Shehaj et al.: GNSS radio occultation climatologies 59

work utilizing ML was developed. Gou and Soja (2024) use
ML to enhance the global resolution of total water storage
anomalies, with a spatial resolution of 0.5°.

While in previous work ML was successfully deployed to
map time series of GNSS ground-based atmospheric obser-
vations, in this work we apply ML for spatial and temporal
mapping of GNSS RO measurements. We exploit the large
number of RO measurements (thousands daily) and the abil-
ity of ML to learn patterns from large datasets.

We develop a neural network for interpolating RO data in
6 h cycles in order to create gridded climatologies and com-
pare the results to maps generated using BI. We can only
compare our ML approach to BI since it provides a posteri-
ori uncertainty but the sampling-error-removal method does
not. We also estimate performance with simulation-mapping
experiments using the output of an NWP system as a “nature
run”. In doing so, we treat the gridded model output as truth
against which we compare the output of the various mapping
methods we consider. The outcomes are estimates of the un-
certainty and the performance of each mapping approach.

Several studies have also applied ML to model residuals
of observations, computed as the difference between a model
not based on ML and target observations. The most typi-
cal cases originate from using physical models for prediction
and from training an ML model to predict the residual part.
For example, Wang et al. (2017) showed that ML could be
used to model the difference between a superior model that
is computationally expensive and a simple model to predict
the component of the total stress tensor in a fluid. Similarly,
Gou et al. (2023) applied several ML and deep learning (DL)
algorithms to model the differences between GNSS final or-
bit products and ultra-rapid-orbit products. Therefore, their
ML model could help overcome the limitations of simpli-
fied physics-based orbit propagators by training on residuals.
Kiani Shahvandi et al. (2023) used a method based on neu-
ral networks (NNs) named ResLearner to calibrate the rapid
Earth orientation parameters (EOPs) with respect to the final
EOPs in a residual manner. In this work, we also propose a
loosely coupled combination of ML and BI, in which we first
apply BI to the observations and then train the ML model on
the BI residuals.

The second section of this paper describes the data that
we use. The third section describes the BI and ML mapping
algorithms. The fourth section contains the analysis of a nu-
merical experiment that probes the performance of BI and
ML. Finally, the fifth section presents a summary and dis-
cussion of the results and future work.

2 Data

2.1 COSMIC-2/FORMOSAT-7

The Constellation Observing System for Meteorology, Iono-
sphere, and Climate-2, COSMIC-2/FORMOSAT-7 mission

is operated by the National Oceanic and Atmospheric Ad-
ministration (NOAA), the US Air Force (USAF), Taiwan’s
National Space Organization (NSPO), the University Con-
sortium for Atmospheric Research (UCAR), and other part-
ners (UCAR, 2022a; Ho et al., 2020; Schreiner et al., 2020).
At present, COSMIC-2 obtains RO soundings from the
transmitters of the US Global Positioning System (GPS)
and the Russian Globalnaya Navigazionnaya Sputnikovaya
Sistema (GLONASS), providing approximately 6000 high-
performance profiles of refractivity daily and covering the
Earth from latitudes of 46° S to 46° N . We use analyzed re-
fractivity sourced from wetPf2 files from the data portal of
the COSMIC project office of UCAR. The wetPf2 NetCDF
files contain geometric altitude above mean sea level, geopo-
tential height above mean sea level, longitude, latitude, tem-
perature, pressure, water vapor partial pressure, specific hu-
midity, relative humidity, dry temperature, dry pressure, and
refractivity for each level of the atmospheric sounding. In
this work, we use geometric altitude above mean sea level,
longitude, latitude, and refractivity.

We interpolate the COSMIC-2 refractivity profiles to iso-
hypsic surfaces at 2, 3, 5, 8, 15, and 20 km above mean sea
level. These levels show a wide variety of morphologies in
spatiotemporal structures because of the very different phys-
ical phenomena prevalent at each level.

– 2 km (Fig. 1a). At this height, we notice small-scale
structures related to boundary layer clouds and water
vapor.

– 3 km (Fig. 1b). At this height, there is still an important
contribution from the water vapor to refractivity, but it
is just outside the planetary boundary layer. We expect
the retrieved refractivity to have higher quality than at
2 km since Abel inversion for refractivity encounters its
largest errors within the boundary layer, usually associ-
ated with super-refraction and tracking difficulties.

– 5 km (Fig. 1c) and 8 km (Fig. 1d). Synoptic, jet stream,
and frontal variability dominate the dynamics of refrac-
tivity, with a smaller contribution of water vapor than in
the boundary layer.

– 15 km (Fig. 1e). Mixing across the subtropical front by
baroclinic eddies in the stratospheric “middle world”
dominates. In the midlatitudes, we are in the strato-
sphere, while in the tropics we are in the troposphere.
This is depicted in Fig. 1, where a clear distinction –
almost a step function – in refractivity is experienced
between the tropics and midlatitudes.

– 20 km (Fig. 1f). Larger structures of the atmosphere re-
late to planetary-scale waves in the lower stratosphere.

We utilize COSMIC-2 data representing 10 d time series
of the four seasons. The measurements spanning 1–10 Jan-
uary 2020 represent boreal winter (40 000 profiles), 1–10
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Figure 1. COSMIC-2 RO refractivity distributions on six isohypsic surfaces for the period 1–10 January 2020, illustrating the very different
spatiotemporal morphologies at each level. The refractivity at 2, 3, 5, 8, 15, and 20 km is visualized in panels (a), (b), (c), (d), (e), and (f),
respectively. The color bar units are N units (ppm), i.e., refractivity units; the x axis is longitude; and the y axis is latitude.

April 2020 represent boreal spring (40 000 profiles), 3–12
July 2020 represent summer (30 000 profiles), and 1–10 Oc-
tober 2020 represent fall (30 000 profiles). The criterion to
select these time spans was continuity, meaning that we sim-
ply chose the first 10 continuous days with RO profiles for
each season of 2020.

2.2 ECMWF operational forecasts

In order to create a nature run on which to test ML map-
ping schemes, we interpolated the forecasts of the opera-
tional weather prediction system of the European Centre for
Medium-range Weather Forecasts (ECMWF) to the times
and locations of COSMIC-2 RO soundings, spanning 1–10
January 2020. Specifically, we used the output of ECMWF
Integrated Forecast System (IFS) cycles 46r1 and 47r1; see
ECMWF (2023). Using forecast fields rather than analysis
fields, complications that arise from assimilating COSMIC-
2 RO data into ECMWF operational analyses are avoided.
Forecasts are always physically consistent three-dimensional
fields of the atmosphere, in as much as the physics is defined
by the prognostic model. NWP analyses, however, are phys-
ically inconsistent because the data that constrain the atmo-
spheric state perturb the state in isolated regions away from
physical consistency. We obtained NetCDF files of pressure,
temperature, water vapor, and geopotential fields with a hori-
zontal resolution of 0.5°. We used 12 h forecast fields, which
are published hourly.

We computed refractivity profiles (and geometric altitude
above mean sea level) at the times and locations of COSMIC-
2 RO soundings at the grid points in operational forecasts.
RefractivityN is related to the microwave index of refraction

n and atmospheric properties (Rueger, 2002):

N = (n− 1)× 106
=

(
77.6890KhPa−1

) (p−pw)
T

+

(
71.2952KhPa−1

) pw
T
+

(
375463K2hPa−1

) pw
T 2 , (1)

where p, pw, and T are the atmospheric pressure, the par-
tial pressure of water vapor, and temperature, respectively.
This formulation of refractivity accounts for fixed and in-
duced dipoles of nitrogen, oxygen, carbon dioxide, and wa-
ter vapor but neglects compressibility effects. The refractiv-
ity of surface air generally falls in the interval of 320–360N
units, about 10 % of which is due to water vapor, with larger
values at lower latitudes where more water vapor is present.
When interpolating the model to the times and locations of
COSMIC-2 RO soundings, we took the model refractivity
profile in the cell nearest to the RO sounding and interpo-
lated linearly in altitude, the vertical dimension.

Finally, we interpolated the refractivity for each profile to
the six chosen altitudes listed in Sect. 2.1. Using ECMWF
data with resolutions of 0.5° in latitude and longitude and 1 h
in time, we locate the closest forecast geolocations and times
from the COSMIC-2 RO data.

3 Methods

We introduce two RO mapping techniques in this section:
Bayesian interpolation on a sphere and machine learning via
neural networks.

3.1 Bayesian interpolation (BI)

Bayesian interpolation (BI) works by fitting irregularly grid-
ded and noisy data using a superposition of basis functions
without overfitting the data (MacKay, 1992). The input to the
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method is a set of scalar values with associated longitudes
and latitudes and possibly even local (solar) times. The out-
put is an inference of a two-dimensional field and its uncer-
tainty as the coefficients of a spherical harmonic expansion
and sines and cosines in the diurnal cycle, along with an as-
sociated uncertainty covariance matrix of those coefficients.
Diagnostics of the process yield information on the effective
degrees of freedom of the signal – and hence the horizontal
resolution of the map – a single value describing the “mea-
surement” error in every input value, and on the Bayesian ev-
idence for the fit, otherwise known as the joint probability of
the model and the data. While largely an objective method,
it nevertheless does involve some tuning of the regulariza-
tion matrix, the purpose of which is to prevent overfitting of
the data. We use a regularization matrix that asymptotes to
stable values of Bayesian evidence with increasingly large
spherical harmonic expansions (Leroy et al., 2012). In doing
so, we assure that output mappings are neither penalized nor
rewarded for increasing numbers of basis functions beyond
some nominal expansion.

BI is well-suited to map GNSS RO data because the sam-
pling patterns are highly irregular, and synoptic variability
acts as a source of noise (Leroy, 1997). On a sphere, the
natural basis functions are spherical harmonics, and BI us-
ing spherical harmonics as basis functions has been explored
in depth to generate level 3 climatologies (i.e., latitude–
longitude gridded products) of GNSS RO data (Leroy et al.,
2012, 2021). For this work, we use the same Python module
developed by Leroy et al. (2012, 2021). We map RO observa-
tions in latitude and longitude and use the BI results to com-
pare and combine them with ML. While BI on a sphere is in-
tended for globally distributed non-uniformly sampled data,
it also works well when the data are restricted geographically.
In our application, COSMIC-2 RO sounding distributions are
restricted to the tropics and to the oceans. An example of a
BI map is shown in Fig. 5b.

3.2 Machine learning applied to RO

We use the classical artificial neural network algorithm mul-
tilayer perceptrons (MLPs) detailed in Haykin (2009). This
algorithm is widely applied to large datasets. We apply a fully
connected neural network, where the neurons of one layer
are connected to all the neurons of the previous one. The first
layer consists of the inputs and the last one of the target val-
ues. Each neuron is computed as follows (Haykin, 2009):

neuron= f (
n∑
i=1

neuron_previous_layeri ·wi + b), (2)

where a weight wi is computed for each neuron of the previ-
ous layer, and a bias b is added. The bias and weights are the
parameters of the neural network.

The inputs and outputs have complex relations. The acti-
vation function f defines the nonlinearity. The most com-

mon activation function is the rectified linear unit func-
tion (ReLU); it suppresses neurons with negative values
(Nwankpa et al., 2018):

f (x)=max(0,x). (3)

The training process adapts all the network parameters so
that the input/output relation will be accurate. The hidden
layers are functions of the neurons in the previous layers.
Thus, we relate the output and input layers as follows:

pred= F {feature1, . . .featuren}, (4)

where featuren represents the nth input variable. The predic-
tion pred can be compared to the true value (label) directly.
Therefore, a loss function can be calculated with the typical
formulation for regression purposes, i.e., the mean-squared
error (MSE):

MSE=
1
n

n∑
i=1

(
predi − labeli

)2
. (5)

The parameters of the neural network, i.e., the weights and
biases, describe the loss function. We aim to minimize the
loss function, and thus the set of parameters that best satisfies
this condition is defined by the network. The local minimum
of the loss function is searched for using stochastic gradient
descent.

Another step is the standardization of the data before the
training process. This is applied to avoid numerical issues.
The mean (µ) and standard deviation (σ ) of the training
dataset are used to standardize each feature x separately as
follows:

x′ = (x−µ)/σ. (6)

Thus, the feature variables are scaled to a standard deviation
of 1 and centered around zero. This mainly affects the search
for local minima using gradient descent. Introducing features
with very different values (and value variations) might result
in a steep gradient descent, leading to a solution that is not
optimal. For a deeper look into neural networks, we refer the
readers to Hastie et al. (2009) and Stanford (2023).

Note that MLP is not necessarily the best algorithm for
our research question, but our ultimate goal in this research
is not to find the most appropriate one. Our objective is to
demonstrate that ML can be used to map RO data and that it
provides comparable (or better) results compared to state-of-
the-art methods.

3.3 Machine learning applied to Bayesian interpolation
residuals

We also develop a method where we combine BI with ML,
named BI&ML. In this case, we train on residuals of BI. The
procedure is as follows.
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– We apply BI to the training dataset. We compute the
spherical harmonic coefficients with the same 80 % of
the data that are used for training in ML.

– We compute residuals of the BI applied to the training
dataset.

– We train the neural network using the BI post-fit resid-
uals (of the training dataset) as a target and using lon-
gitude, latitude, and time as inputs. The tuning of the
hyperparameters is done as explained in Sect. 4.

– We compute error statistics by comparing BI&ML re-
fractivities with the test dataset.

4 Analysis

Here we apply mapping to real and simulated COSMIC-2
data. Our application is an interpolation problem, with the
goal of mapping RO data in longitude, latitude, and time.

In the first step of the analysis, we compare the post-fit
residuals of the BI, ML, and BI&ML approaches based on
actual COSMIC-2 RO data. In the second step, we evaluate
the performance of the BI and BI&ML approaches using the
atmospheric analyses of the ECMWF operational products as
a nature run. Initially, we compute the (gridded) residuals for
simulated ECMWF refractivities at COSMIC RO locations,
and then we evaluate the effective horizontal resolution of
these two approaches.

To fit the BI and ML models, we use 10 d of COSMIC-2
data and ECMWF forecasts. A longer time span of data does
not affect the results of ML; however, BI is more sensitive
to the length of data. Indeed, BI is only able to estimate the
best spatial fit to an entire 10 d dataset. The atmospheric state
evolves over each 10 d period, and thus BI can only estimate
a time-average state with less horizontal structure. A period
of 10 d is a compromise to have enough data to properly train
the ML models and at the same time produce BI climatolo-
gies with little averaging over time. Unlike BI, in our tests,
ML can produce climatologies with a very high temporal res-
olution.

In the first subsection (Sect. 4.1), we give the results for
hyperparameter tuning for ML and BI&ML. In the sec-
ond subsection (Sect. 4.2), we compare the relative perfor-
mance of all three approaches described in Sect. 3 at differ-
ent heights in the atmosphere. In the third subsection (Sect.
4.3), we analyze the consequences for our ability to resolve
spatial and temporal variability in fields that can be measured
by RO.

4.1 Tuning hyperparameters

One important step when working with neural networks is
tuning the hyperparameters, which define the architecture or
how the training process is performed. When defining the

hyperparameters that determine the architecture of the net-
work, such as the number of layers and number of neurons
per layer, one option is to add layers until the error can no
longer be reduced. A larger number of parameters allows for
complexity in mappings; thus, adding more layers can im-
prove the complexity of fitting. A larger number of parame-
ters, however, can also lead to overfitting. If necessary, regu-
larization methods (such as dropout) can be used to prevent
overfitting.

As is customary in ML, we randomly split the nature
dataset into three segments: 72 % of the data for training,
8 % for validation, and 20 % for testing. We point out that
the training, validation, and testing datasets do not overlap.
By random choice, we mean that we do not split them ac-
cording to a specific parameter (such as time, geolocation, or
refractivity values). Since we neither assume different accu-
racies of the training and testing datasets nor teach the net-
work any specific random behavior of the test dataset, we
expect the accuracy of the model fitted to the training dataset
to be similar for the testing dataset. Therefore, a very good
fit in the training dataset does not bias the testing. Indeed, we
get similar post-fit residuals for both datasets; this is consid-
ered a successful evaluation of the model resulting from the
training dataset.

In addition, in one exercise, for each block of 10 d of data,
we use the first 8 d for training and the last 2 d for testing.
This makes our task a prediction problem and not an interpo-
lation problem. We evaluate the quality of this approach by
intentionally overfitting the training data, resulting in overly
large errors when applied to the testing data as expected.
We can explain this result by the fact that there are differ-
ent structures in the refractivity field for the testing dataset
that have not been seen by the network during the training.
This exercise demonstrates overfitting in prediction, proving
our ML architecture ill-suited for prediction but not for inter-
polation.

4.1.1 Hyperparameter tuning for the ML approach

After tuning, we settled upon a final architecture consisting
of five hidden layers, with the first having 512 neurons and
the next four having 128 neurons. It is not unusual for neural
networks to have different numbers of neurons in each layer
leading to similar error statistics. The input layer consists of
three variables, namely longitude, latitude, and time, and the
output layer produces microwave refractivity.

We tuned variables that determine how the training is
done, where the choice of learning rate, the batch size, and
the number of epochs impacted the results the most. The
final values that we chose are 0.0001, 100, and 30 000, re-
spectively. Note that we designed different neural networks
to train refractivities at the different altitudes (shown in
Sect. 2.1). Although we used the same final hyperparame-
ter values for all networks, in some cases a different choice
provided similar (but not better) statistics. For instance, at
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20 km in altitude for learning rate, batch size, and number
of epochs, using 0.0001, 250, and 30000 or 0.001, 250, and
15 000 led to similar results. An example of hyperparameter
tuning is shown in Fig. 2, where the best results are shown
in more distinct colors. We also trained the number of lay-
ers, the optimizer, and the weight decay. However, we did
not notice any significant differences when using different
optimizers or weight decay.

4.1.2 Hyperparameter tuning for the BI&ML
approach

Once more, we trained different neural networks for six re-
fractivity altitudes. The architecture of the MLP is the same
as that shown in Sect. 4.1.1, consisting of five hidden lay-
ers, with the first having 512 neurons and the next four hav-
ing 128 neurons. The input layer has three variables, namely
longitude, latitude, and time, and the output layer delivers BI
residuals of microwave refractivity. The learning rate is again
0.0001 for all networks. The tuned batch size and number
of epochs are 25 and 2000, respectively, for the networks of
2, 3, and 5 km in altitude; 50 and 1000 for the network of
8 km in altitude; and 100 and 4000 for the networks of 15
and 20 km in altitude. Again, other possible hyperparameter
choices could result in similar (but not better) results; for ex-
ample, we could choose for the dataset at 5 km in altitude
a learning rate of 0.001, batch size of 250, and number of
epochs of 1000. Different tunings with similar results were
especially encountered when training data at high altitudes.
One reason is that the target value variations become very
small, and it is possible to learn them with different values
for learning rate, number of batch sizes, and/or number of
epochs. Training BI residuals instead of total refractivity val-
ues leads to a faster training process. One explanation is that
the network can learn more quickly when the targets have
smaller variations.

4.2 Performance evaluation for real RO data

Using the BI and ML models obtained from the training
dataset, we mapped the observations of the test dataset,
which is 20 % of the data, and then we computed the residu-
als for the six chosen heights. Figure 3 displays the residuals
for the three methods (BI, ML, and BI&ML), and Table 1
summarizes the statistics in terms of the standard deviation
(SD) and mean relative error (MRE). The MRE represents
the mean of the residuals scaled by the true values of the re-
fractivity.

– As expected, the residuals are higher at lower altitudes
for each method. This is logical since the refractivity
values are higher and more spatially variable at lower
altitudes (see Fig. 3), and the Abel inversion results in
larger errors at lower altitudes. Therefore, the noise in
the observations is also higher at lower altitudes.

– The spatial distribution of the larger residuals is differ-
ent for the different heights. For instance, at the lower
heights, we can find most of the high residuals of BI
in the tropics, while at 15 km they are located in the
mid latitudes. This is the case since the mapping meth-
ods miss the high jumps in the refractivity values due
to approximation of RO data and low resolution of RO
data. At 2 and 3 km, these jumps occur mainly in the
tropics, related to higher water vapor, and in the moun-
tainous areas, where the distribution of water vapor can
highly vary on the different sides. At 15 km, the map-
ping functions fail to approximate the large refractivity
jumps between the troposphere (in the tropics) and the
stratosphere (in the midlatitudes).

– We notice that when we apply ML, the refractivity
jumps at 15 km from the tropics to the midlatitudes are
captured well.

– From Fig. 3, it might be difficult to understand the
benefit of applying ML to RO residuals after applying
BI. However, from the statistics in Table 1, we notice
an improvement of about 5 %–10 % compared to ML-
only. One advantage of applying ML to RO residuals
is in terms of interpretation of the dataset used to fit
the ML model. For instance, at 15 km we expect ML
to learn from the distinct pattern of BI residuals (where
the large residuals occur in the midlatitudes) and to fur-
ther improve these results. In addition, as mentioned in
Sect. 4.1.2, ML applied to RO residuals is much more
efficient in terms of the time needed to train the ML
models. In our experiments, the time to train the neu-
ral network is proportional to the number of epochs and
the batch size. For example, in the case of two different
models, if we use the same batch size, a doubling of the
number of epochs doubles the training time. Similarly,
if we consider the same number of epochs, a batch size
two times smaller doubles the training time. Other hy-
perparameters can also affect the training time, such as
the type of optimizer, the number of neurons, and the
learning rate (a smaller learning rate requires a larger
number of epochs); however, these parameters are the
same for the different neural networks that we use.

The overall best configuration, which we will focus on in
Sect. 4.3, is the ML approach applied to the residuals of BI.

Figure 4 displays the increment of BI&ML over the ML-
only and BI-only approaches at 3 km in altitude. The incre-
ment of BI&ML over BI-only has large values mainly in the
geolocations, where we can visualize large jumps in refrac-
tivity within few degrees (latitude and/or longitude). The in-
crement of BI&ML over ML-only has a more random distri-
bution of large values. These values happen mainly in loca-
tions where the residuals of ML and/or BI&ML (see Fig. 3)
have a larger density. By training on BI residuals, we antici-
pated better results since a part of the refractivity behavior is
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Figure 2. Hyperparameter tuning in ML, visualized in weights and biases (https://wandb.ai/site, last access: 26 September 2023). The first
three columns contain the values tried during the tuning process for three main hyperparameters (batch size, epochs, and learning rate).
The next columns contain statistics that we can use to evaluate the performance of candidate combinations of tuned hyperparameters. The
fourth column (loss) represents the loss function (mean squared error function) of the training dataset. The fifth (mae) and sixth (val_mae)
columns represent the mean absolute error in the training and validation dataset. The seventh (mean_error) and eighth (RMSE_error) columns
represent the mean error and the root-mean-squared error in the testing dataset. The final column (val_loss) defines the loss function for the
validation dataset. The validation loss is the metric chosen to tune the hyperparameters, and the color bar represents its results. Following
the curves, we can define the best set of hyperparameters. The validation dataset represents a randomly chosen 10 % of the training dataset,
utilized to tune the hyperparameters. The statistics of the validation dataset can be easily computed and were therefore chosen as a metric to
select the hyperparameters. The highlighted curves show the best results on the testing dataset in terms of root-mean-squared error for the
different tunings, arbitrarily chosen for this visualization.

already removed; however, since the spatial resolution of RO
data is not very high, BI does not always capture the spatial
refractivity changes very well (especially when sudden re-
fractivity changes happen). This may lead to higher relative
changes between the residuals compared to the total values;
thus, the trained values in the ML model have larger vari-
ations. In addition, since BI is a screen over the 10 d, the
mapped refractivity for similar locations can be more accu-
rate for some epochs of the 10 d time span. Since we do not
label the noise of each input feature differently when we train
the ML models, ML will consider all residuals as having the
same weight, which will impact its mapping accuracy. How-
ever, from the statistics in Table 1, we can see that ML ap-
plied to BI residuals results in better generalization for the
entire time span and surface. Indeed, it removes most of the
complex atmospheric dynamics and simplifies the entire vari-
ation in the target variables.

We expect ML-only to be the best approach when we deal
with specific atmospheric structures happening on a specific
day during the 10 d time span. For instance, in the case of
atmospheric rivers, BI would fail to capture these structures
since it will find the best fit of the 10 d dataset. Therefore, it
will result in large variations in the residuals, making them
more complex to train on than total refractivities.

Results in different seasons at 2 km

We also validated the results obtained for winter 2020 with
the other seasons of the same year. Table 2 summarizes the
results of the three mapping methods for each season at 2 km
in altitude. At 2 km in altitude, RO observations are noisier
compared to the other altitudes, because of larger absolute
values and larger errors resulting from the Abel inversion. In
addition, their uncertainty and variation are higher since it
is at this height that the largest percentage of water vapor is
located. For all the seasons, the best performance is achieved
for the combined solution, resulting in a further improvement
compared to BI-only and ML-only. Note again that each of
the neural networks was tuned separately to achieve the best
possible solution.

Note that the results displayed in this section (Tables 1
and 2) are a result of one single trained network and not
of an ensemble of networks. To further validate our results,
we performed additional experiments for the refractivity at
2 km in iso-height, where we trained multiple (10) models
for ML and BI&ML. For our architecture, similar results
were achieved to the results of the ensemble of the models,
with a standard deviation ∼ 0.2N units worse. In addition,
for the ensemble of models, we noticed further improve-
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Figure 3. Residuals for the test dataset of the refractivity interpolated with BI, ML, and BI&ML for the six pre-defined isohypsic surfaces
for COSMIC-2 RO data. The units are N units (refractivity units), the x axis is longitude, and the y axis is latitude. Panels (a), (d), (g), (j),
(m), and (p) display BI residuals at 2, 3, 5, 8, 15, and 20 km, respectively. Panels (b), (e), (h), (k), (n), and (q) display ML residuals at 2, 3,
5, 8, 15, and 20 km, respectively. Panels (c), (f), (i), (l), (o), and (r) display BI&ML residuals at 2, 3, 5, 8, 15, and 20 km, respectively.

Table 1. Statistics of BI, ML, and BI&ML mapping methods at six
predefined heights for winter 2020 for COSMIC-2 RO data. The
bold-formatted values represent the best statistics amongst the three
cases: ML, BI, and BI&ML.

N units per % 2 km 3 km 5 km 8 km 15 km 20 km

SD BI 10.95 9.11 5.28 1.59 0.65 0.29
SD ML 8.97 6.98 3.82 1.16 0.28 0.22
SD BI&ML 8.71 6.65 3.57 1.09 0.26 0.22
MRE BI 3.34 3.19 2.33 1.03 0.92 0.95
MRE ML 2.62 2.34 1.63 0.7 0.42 0.62
MRE BI&ML 2.57 2.23 1.50 0.66 0.39 0.62

ments (mainly on the standard deviation) when we added
more hidden layers. On an ensemble of 10 trained models,
a∼ 0.3N units improvement can be achieved when using 10
hidden layers, compared to 5 layers for the ML model. How-
ever, this further increases the training time, which is espe-
cially important for the ML method given that we use a total
of 30 000 epochs. A higher number of layers is more suitable
for BI&ML, where the number of epochs is much smaller.

We point out that the scope of this study is to present ML
as an alternative method to grid RO observations. The re-
sults obtained herein indicate better performance compared
to BI. Considering our results and the additional tests with
multiple models, BI&ML brings additional (small) improve-
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Table 2. Statistics of BI, ML, and BI&ML mapping methods for
the four different seasons at 2 km in height for COSMIC-2 RO data.
The bold-formatted values represent the best statistics amongst the
three cases: ML, BI, and BI&ML.

N units per % Winter Spring Summer Autumn

SD BI 10.95 10.54 10.63 10.90
SD ML 8.97 9.01 8.59 8.82
SD BI&ML 8.71 8.39 8.31 8.70
MRE BI 3.34 3.21 3.21 3.31
MRE ML 2.62 2.67 2.55 2.63
MRE BI&ML 2.57 2.48 2.45 2.59

ment compared to ML methods, with an obvious advantage
in terms of a much shorter time needed to train the model.
For future work related to continuous long-term RO-gridded
products, an ensemble of models will be trained to also pro-
vide the uncertainty related to the models.

4.3 Post-fit residuals of BI, ML, and BI&ML mapping
techniques applied to ECMWF

We compare the post-fit residuals of the BI approach, the ML
approach, and the combined BI&ML by applying each to the
10 d nature run of ECMWF forecast products. We perform a
similar evaluation for ECMWF as we did for the COSMIC-2
data, where we split the data into training and test samples
and apply the three methods. We obtain, in terms of standard
deviation and mean relative error, 12.4N units and 3.8 % for
BI, 11.1N units and 3.3 % for ML, and 10.7N units and
3.1 % for BI&ML. We confirm that mapping ECMWF (fore-
cast) refractivities (interpolated at COSMIC-2 geolocations)
results in performance similar to the mapping of COSMIC-2
refractivities.

4.3.1 Structural improvement: spatial and temporal
resolution compared to ECMWF maps

We mapped the ECMWF-based simulated refractivities with
BI and BI&ML to the same locations as the ECMWF grid
points. An example of the maps (at 2 km in height) is dis-
played in Fig. 5, where the original ECMWF refractivity field
for one epoch is displayed as well. We can see the very high
resolution of the original ECMWF map compared to the in-
terpolated ones. The BI-mapped field is the screen over the
10 d dataset, while that of the BI&ML represents the interpo-
lation at only one epoch. We produced maps with a resolution
of 3 h. The ML-based maps are produced with much higher
temporal resolution compared to those with BI (a resolution
of 3 d reported in previous works; Leroy et al. (2021). In ad-
dition, Fig. 6 displays the difference between the original
ECMWF and the mapped refractivity fields. There are sev-
eral areas where the high differences between the ECMWF

and BI-based maps are further smoothed by applying ML to
the BI residuals.

Figure 6 displays only 1 map of the total of 80 maps that
we produced for the 10 d period. To compare the results for
each epoch, Fig. 7 displays the statistics for every map as a
function of time. There is an improvement in the intervals:
[0.5; 2]N units and [0.5; 1] % in terms of standard deviation
and the mean relative error, respectively.

4.3.2 Effective horizontal resolution

After fitting the BI and BI&ML models, we can produce re-
fractivity maps with a very high spatial resolution. However,
the interpolated resolution is not the actual resolution that the
methods can capture for the spatial behavior of the refractiv-
ity. To evaluate what level of information BI and BI&ML can
produce in terms of horizontal resolution, we use the original
and mapped fields to compute spherical harmonic spectral
coefficients up to a very high order (such as 120). We vi-
sualize the power (and variance of the fit dataset compared
to those of ECMWF) as a function of degree (or horizontal
resolution).

Each of the datasets can be expressed as a spherical har-
monic expansion (Muir and Tkalcic, 2015):

ψ (θ,λ)=
∑lmax

l=0

∑m=l

m=−l
Y lm (θ,λ)cl,m, (7)

where Y lm (θ,λ)=Nl,mPl,m (sinθ)eimλ is the spherical har-
monic of degree l and order m, and the cl,m are complex
spherical harmonics spectral coefficients. We can compute
the spherical harmonics spectral coefficients by inverting
Eq. (7):

cl,m =
∑ng

j=1

 1
2π

2π∫
0

ψ
(
θj ,λ

)
e−imλdλ

Pl,m(sinθj )gj , (8)

which is computed over a defined Gaussian grid for j = 1 :
ng over latitude θ , with Gaussian weights gj . We can com-
pute the power at each degree as in Muir and Tkalcic (2015):

P (l)=
∑l

m=0

∣∣cl,m∣∣2. (9)

In addition, we can compute the normalized power
P _norm(l)= P (l)/Hor_res(l), where the horizontal res-
olution is given as a function of the Earth’s radius RE,
Hor_res(l)= RE

√
4π/(l+ 1).

We also evaluate the explained variance, defined as

Explained_variance(l)= 1−
Var(l |Fit−ECMWF)

Var(l |ECMWF)
. (10)

Considering dm = 1 form= 0 and dm = 2 otherwise, the two
variances can be computed as follows:

Var(l |Fit−ECMWF)=
l∑

m=0
dm
∣∣cl,m (BI or BI&ML)

−cl,m (ECMWF)
∣∣2, (11)
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Figure 4. The difference between BI&ML and ML-only(a) and the difference between BI&ML and BI-only (b) for COSMIC-2 RO data.
The units are N units, refractivity units; the x axis is longitude; and the y axis is latitude.

Figure 5. ECMWF refractivity grid (a), BI-mapped refractivity grid (b), and BI&ML-mapped refractivity grid (c) for 2 January 2020 at
03:00 UTC. The units are N units, refractivity units; the x axis is longitude; and the y axis is latitude.

Var(l |ECMWF)=
l∑

m=0
dm
∣∣cl,m (ECMWF)

∣∣2. (12)

To avoid non-orthogonality of spherical harmonics on non-
global grids, we must consider observations covering the en-
tire sphere. We randomly select values from the 10 d of the
ECMWF forecast data grid, at latitudes that are not covered
by the observations, i.e., outside the [−46°, 46°] latitude in-
terval. The only condition we apply is to have the same spa-
tial density as that in the latitude interval [−46°, 46°]. An
example of the refractivity field (at 2 km) for 10 d in winter
2020 is shown in Fig. 8. This refractivity field is used to fit
the BI and BI&ML models and therefore map the refractivity
on the original ECMWF grid.

After fitting the BI and BI&ML models, we produce grid-
ded N fields (similar to Fig. 5), which are used to compute
the spherical harmonics spectral coefficients (Eq. 8). Fig-
ures 9 and 10 display the normalized power and the explained
variance for two of the heights evaluated, 2 and 8 km. The
power and explained variance displayed here are the average
over the entire dataset of 80 maps in 10 d. From the power
plots, we notice that the BI&ML curve (red dots) follows
the ECMWF curve at a higher spherical harmonics degree
(and thus horizontal resolution). We can also see that after
40 degrees the power of BI is zero. This is expected since the
degree we chose for the BI was 40 as well.

We evaluate the explained variance at a value of 0.5, which
represents the value where the power captured from the map-

Figure 6. The difference between the ECMWF refractivity field
and the refractivity fields mapped with BI for 2 January 2020 at
03:00 UTC (a). The difference between the ECMWF refractivity
field and the refractivity fields mapped BI&ML for 2 January 2020
at 03:00 UTC (b). The units areN units, refractivity units; the x axis
is longitude; and the y axis is latitude.

Figure 7. Standard deviation (left y axis) and mean relative error
(right y axis) of the difference between the ECMWF refractivity
field and those mapped with BI and BI& ML for all epochs.
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Figure 8. The ECMWF forecast refractivity field for 10 d in winter
2020 at a 2 km isohypsic surface. To compute spherical harmonics,
we simulated refractivity at all latitudes. Between 46° S and 46° N,
the refractivity is interpolated at the same times and locations as for
the COSMIC-2 field. Below 46° S and above 46° N, we randomly
chose refractivity values from the ECMWF data, with the criteria
to keep the same density as that of COSMIC-2 between latitudes of
46° S and 46° N .

ping methods is half of the original ECMWF power. We use
this value as the metric to define the horizontal resolution of
each method. From the explained variance plots in Figs. 9
and 10, we can see that BI can capture horizontal structures
up to degree 8 (∼ 2500 km) at 2 km in height and up to de-
gree 4 (∼ 4500 km) at 8 km in height. BI&ML can produce
maps with a horizontal resolution of degree 14 (∼ 1500 km)
at 2 km in height and of degree 16 (∼ 1250 km) at 8 km in
height. These results represent the average over the entire set
of 80 maps. For both heights and the majority of the maps
produced, applying ML to BI residuals improves the spatial
resolution by greater than a factor of 2 compared to the BI-
only approach.

5 Discussion and conclusions

In this work, we investigated ML as an alternative approach
to mapping GNSS RO observations and compared it to BI,
an approach used for many years to map GNSS RO data. In
addition, we developed a combined solution where we map
the residuals of BI using ML, referred to as BI&ML.

Starting with 10 d of COSMIC-2 GNSS RO profiles in bo-
real winter 2020, we mapped microwave refractivity at six
predefined heights: (a) 2 km, where we notice small struc-
tures related to boundary layer clouds and water vapor; (b)
3 km, where there is still a large amount of water vapor;
(c) 5 km, related to synoptic disturbances, pressure fields,
storms, and precipitation; (d) 8 km, similar to 5 km but with
smaller refractivity; (e) 15 km, where the eddy mixing in the
stratospheric middle world occurs; and (f) 20 km, related to
larger atmospheric structures from planetary waves in the
lower stratosphere.

We used 80 % of the COSMIC-2 data to train/fit the BI,
ML, and BI&ML models and evaluated the performance on
the remaining 20 %. The ML-only solution results in better
performance than the BI-only solution. Applying ML to the
residuals of BI results in the best performance and a larger
improvement compared to the state-of-the-art BI method.
The posterior uncertainties for BI&ML are 8.7, 6.6, 3.6, 1.1,
0.3, and 0.2N units, and the mean relative errors for BI&ML
are 2.57 %, 2.23 %, 1.5 %, 0.66 %, 0.36 %, and 0.62 % for
the six altitudes, respectively. The reduction in residuals for
the ML-only and BI&ML at 15 km compared to BI-only are
clearly visible (Fig. 6), where the refractivity values change
significantly between the tropics (in the troposphere layer)
and the midlatitudes (in the stratosphere layer). In addition,
we fit the BI, ML, and BI&ML mapping approaches to 10 d
of COSMIC-2 data for boreal spring, summer, and autumn
2020. We performed this evaluation at 2 km in iso-height, and
we confirmed that the results obtained for the winter scenario
apply to the other seasons as well.

We used NWP forecasts from ECMWF with a 0.5° lat-
itude/longitude resolution to interpolate ECMWF refractiv-
ities to the geolocations and times of the COSMIC-2 data
for 10 d for boreal winter 2020. We applied BI-only and
BI&ML to map the simulated data at the ECMWF grid
points, which we used as a nature run, and then performed a
closed-loop validation. The map produced by BI&ML shows
smaller residuals with respect to the nature ECMWF map
than the BI-only map. In addition, the temporal resolution of
the BI&ML maps is much higher than that of the BI-only
maps. We produced BI&ML-based maps every 3 h (higher
resolution is also possible), while BI-only needs at least 3 d
of observations to produce a map. We investigated the spa-
tial resolution of each method by spherical harmonic expan-
sion, comparing the spectral coefficients of the BI-only and
the BI&ML maps to the spectral coefficients of the nature
ECMWF maps. After evaluating the explained variance of
the coefficients, we concluded that BI-only can model re-
fractivity variations up to spherical harmonic degree 8 and
BI&ML up to spherical harmonic degree 14 at 2 km in iso-
height. At 8 km in height, the improvement is more notable,
with BI-only resolving only up to spherical harmonic de-
gree 4, while BI&ML resolves up to spherical harmonic de-
gree 17.

We set out to investigate whether ML can offer an alter-
native to existing methods to map GNSS RO data, provid-
ing a so-called level 3 product. Existing methods include BI,
which fits data using spatial basis functions without over-
fitting data, and sampling-error-removal methods, in which
synoptic variability noise is estimated by subsampling the
forecasts of a numerical weather prediction system to the
times and locations of RO soundings, computing the sam-
pling error, and subtracting that sampling error from binned
RO data. We compared ML methods to BI and found im-
proved performance, and then we compared a combined
BI&ML method and found a very substantial improvement
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Figure 9. (a) Average (over time) normalized power for ECMWF, BI, and BI&ML, at 2 km in height. (b) Average (over time) explained
variance for BI and BI&ML at 2 km in height.

Figure 10. (a) Average (over time) normalized power for ECMWF, BI, and BI&ML at 8 km in height. (b) Average (over time) explained
variance for BI and BI&ML at 8 km in height.

Figure 11. An example of refractivity at 2 km in altitude for 24
October 2021 at 16:00 UTC, similar to Shehaj (2023). (a) The
ECMWF reference field. (b) The field mapped using ML (for the
60-satellite constellation).

in the performance over BI. We are unable to compare to
sampling-error-removal approaches because they support no
error estimation. All indications point toward the combined
BI&ML approach as the best method for producing level 3
climatologies of RO data in the future, with strong perfor-
mance even at timescales of 3 h at heights ranging from the
planetary boundary layer up to the lower stratosphere and for
all seasons.

When approaching specific atmospheric structures, the
current spatial and temporal density of RO observations leads
to a need for better coverage. Shehaj (2023) shows an ex-
ample of using RO observations to detect atmospheric rivers
(AR). ARs are long and narrow bands in the atmosphere that
transport water vapor in regions beyond the tropics. Panel (a)
in Fig. 11 shows an AR that occurred in October 2021, visu-
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alized as a blue stream using ECMWF refractivity at 2 km in
altitude. In panel (b) in Fig. 11, ML was applied to simulated
RO using the ECMWF 12 h forecast, assuming a 60-satellite
LEO constellation tracking four GNSS constellations to gen-
erate a 2 km refractivity field. For the example in Fig. 11, we
can see that with the ML-mapped field, we can resolve the
AR structure. The ML field also depicts the dry patch located
in the tropics. We also notice structures that are more difficult
to resolve, such as the cyclone close to British Columbia and
the high-refractivity patch close to Hawaii.

We point out that in Shehaj (2023) similar experiments
were performed for this AR scenario using observations of
the COSMIC-2 constellation; the number of RO observations
is much smaller compared to the simulated example shown
here. After applying the ML model to grid the COSMIC-2
refractivity (at 2 km in height), we cannot properly observe
the spatial and temporal evolution of the AR structure.

The example in Fig. 11 shows the need for higher spatial
and temporal density of RO observations and the benefit of
using ML as a method to further enhance the resolution of
the observations. In future studies, we will further explore the
feasibility of GNSS RO for detection and monitoring of ARs.

Code and data availability. We provide sample routines for the
readers to be able to reproduce the results for COSMIC-2 obser-
vations at 2 km, (https://doi.org/10.3929/ethz-b-000670139, Shehaj,
2024). These include sample data (training and test data for re-
fractivity at 2 km) and code implementation (Matlab code to read
the COSMIC-2 data at 2 km and Python code to train and evaluate
the ML model). Additional code associated with this study is avail-
able from the corresponding author upon reasonable request. Addi-
tional datasets generated during and/or analyzed during the current
study are available from the corresponding author upon reasonable
request. The COSMIC-2 data were downloaded from the UCAR
repository that can be found at the following link: https://data.
cosmic.ucar.edu/gnss-ro/cosmic2/nrt/level2/ (UCAR, 2022b). The
ECMWF data are a product of the European Centre for Medium-
Range Weather Forecasts (©ECMWF).
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