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Abstract. This study presents the development of an
automated aerosol typing model utilizing Mie–Raman–
fluorescence lidar data collected by LILAS (Lille Lidar
for Atmospheric Study), located on the ATOLL (ATmo-
spheric Observations at LiLLe) platform in Lille, France. The
proposed model, FLARE-GMM (Fluorescence Lidar-based
Aerosol REcognition from Gaussian Mixture Model), em-
ploys a Gaussian mixture model trained on a dataset span-
ning from early 2021 to the end of 2023. FLARE-GMM is
able to distinguish the predominant aerosol type in a given
layer between dust, urban, and biomass burning aerosols
by using the PLDR (particular linear depolarization ratio)
and the fluorescence capacity, as well as relative humid-
ity, all measured with LILAS. To ensure accurate model
training, cases were manually selected to include only pure
aerosol layers, as mixed aerosols are not accurately mod-
eled by GMM. Following the training phase, the model’s
performance was evaluated by investigating extreme events
in which the aerosol type is not ambiguous. This approach
was also completed with the use of a test dataset, on which
FLARE-GMM was compared to NATALI (Neural Network
Aerosol Typing Algorithm Based on Lidar Data), another au-
tomatic aerosol typing model based on neural networks us-
ing lidar data. The results demonstrated that FLARE-GMM
shows promise in accurately identifying aerosol types, in-
dicating its potential for classifying aerosols in a variety of
situations. Finally, FLARE-GMM was used to estimate the
aerosol types present in Lille’s atmosphere throughout the
entire dataset from early 2021 to the end of 2023. A statistical
analysis of these results was conducted, further underscoring
the model’s capability in automated aerosol classification.

1 Introduction

Aerosols are critical components of the atmosphere, signifi-
cantly influencing the Earth climate system. They are emitted
by both natural sources, such as pollen or marine aerosols,
and anthropologic sources, like traffic or fossil fuel burning.
In addition to their effects on health, they interact with radi-
ation, directly affecting the Earth radiative budget (direct ef-
fect). Their presence also disrupts the water cycle, affecting
cloud properties and further modifying the Earth radiative
balance through indirect and semi-direct effects (Twomey,
1959; Johnson et al., 2004; Seinfeld et al., 2016; Thorsen
et al., 2020; Herbert et al., 2020). Compared to other climate
forcers, aerosols have much shorter lifetimes in the atmo-
sphere. Consequently, their distribution across the globe is
highly heterogeneous and heavily dependent on their sources
as well as the atmospheric dynamics (Inness et al., 2019;
IPCC, 2023).

Therefore, observations are essential to monitor their pres-
ence around the globe. Spaceborne instruments allow us to
cover global scale at the cost of strong technical constraints
and high expenses. They are complemented by ground-based
systems that are more versatile and cheaper to develop but
limited to local measurements. To compensate for this draw-
back, ground-based instruments work with networks such
as AERONET (AErosol RObotic NETwork), established by
NASA (National Aeronautics and Space Administration) and
PHOTON (PHOtométrie pour le Traitement Opérationnel de
Normalisation Satellitaire), which gathers ground-based ob-
servations to retrieve aerosol properties around the globe.
Among ground-based instruments, in situ systems like the
Scanning Mobility Particle Sizer (SMPS), Aerosol Chemical
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Speciation Monitor (ACSM), and nephelometers can directly
measure particle microphysical, chemical, and optical prop-
erties, enabling accurate characterization of aerosols (Ander-
son and Ogren, 1998; Ng et al., 2011; Coquelin et al., 2013).
However, these instruments are limited to measurements at
their specific locations, restricting their ability to charac-
terize the entire atmosphere. To address this limitation, re-
mote sensing instruments such as photometers and lidars are
used. Photometers measure integrated aerosol optical prop-
erties over the atmospheric column, while lidars provide pro-
files of aerosol optical properties throughout the atmosphere.
From such measurements, non-analytical inversion models
and processes, such as the MLE (maximum likelihood esti-
mation) or EB (empirical Bayes) approaches, enable the de-
termination of the microphysical and chemical properties of
the particles (Warren and Vanderbeek, 2007; Chang et al.,
2022). Lately, with the advancement of these instruments
and the automation of measurement processes, the volume of
data has increased exponentially. This surge in data availabil-
ity has facilitated the development of data-driven inversion
approaches, such as machine learning and deep learning, for
the retrieval of aerosol properties from remote sensing mea-
surements (Nicolae et al., 2018; Lolli, 2023).

LILAS (Lille Lidar for Atmospheric Study) is a Mie–
Raman lidar located at the ATOLL (ATmospheric Observa-
tions at LiLLe) platform in Lille (France), managed by the
Laboratoire d’Optique Atmosphérique (LOA), and is em-
ployed in the frame of EARLINET/ACTRIS-FR (European
Aerosol Research Lidar Network / Aerosols, Clouds, and
Trace Gases Research Infrastructure-France). The unique
feature of this instrument is its ability to measure atmo-
spheric fluorescence induced by laser pulse emission. This
type of measurement is still relatively novel and is found in
only a few atmospheric lidars (Rao et al., 2018; Reichardt et
al., 2023; Gast et al., 2025). However, it shows great promise
due to its high sensitivity to the bio-molecules, like chloro-
phyll, contained in some aerosols. This sensitivity enables
discrimination between aerosols with high biogenic content,
such as pollens and biomass burning smoke, and those with
low biogenic content, such as desert dust or urban aerosols,
allowing us to perform aerosol typing (Immler et al., 2005;
Sugimoto et al., 2012; Veselovskii et al., 2020).

Another particularity of LILAS is the large volume of data
it generates thanks to its high level of automation, enabling
nearly continuous operation. Additionally, it has been mea-
suring fluorescence signals by night since 2019 and has been
simultaneously measuring water vapor by night since early
2021, resulting in a substantial dataset spanning from the
early part of 2021 to the end of 2023 of nighttime LILAS
measurements available for this study.

The growing amount of data acquired by LILAS, com-
bined with other limitations, which will be discussed later,
motivated us to work on an automatic aerosol typing method
in order to improve the manual approach described in
Veselovskii et al. (2022). The objective of this work is to

use the specificities of the LILAS instrument to train a new
machine learning algorithm we call FLARE-GMM (Fluores-
cence Lidar-based Aerosol REcognition from Gaussian Mix-
ture Model). Its objective is to automatically perform aerosol
typing out of LILAS measurements. The first part of this
paper presents the instrument and FLARE-GMM, highlight-
ing its distinctive features and advantages compared to other
aerosol typing models. The second part details the training
phase of FLARE-GMM, describing the methods used to se-
lect the model hyperparameters and to assemble the training
set. The third part evaluates the model performance by ana-
lyzing extreme events and comparing its results with those of
NATALI (Neural Network Aerosol Typing Algorithm Based
on Lidar Data), another automatic aerosol typing algorithm
using lidar data. Finally, before concluding and proposing fu-
ture directions, a statistical study of the aerosol types present
in the Lille atmosphere obtained with FLARE-GMM is pre-
sented.

2 Instrument and model presentation

2.1 LILAS instrument and data

LILAS is a Mie–Raman lidar located at the ATOLL plat-
form in Lille, France (50.611° N, 3.138° E). Its emission part
consists of a Nd:YAG, doubled and tripled in frequency,
operating at a repetition rate of 20 Hz with a pulse energy
of 100 mJ at 355 nm. The lidar system is configured in a
3β + 2α+ 3δ arrangement. This setup allows us to retrieve
the elastic backscatter coefficients and the particle linear de-
polarization ratios of aerosols at the wavelengths of emission
(1064, 532, and 355 nm). Additionally, it measures the ex-
tinction coefficients of aerosols at 532 and 355 nm. The in-
strument also includes a Raman channel centered at 408 nm
for monitoring atmospheric humidity and a detection channel
ranging from 444 to 488 nm devoted to laser-induced atmo-
spheric fluorescence observation. As already mentioned, this
instrument is highly automated and therefore operates almost
continuously when it is not raining.

The gathered lidar profiles are inverted using the modified
Raman inversion method (Ansmann et al., 1992; Veselovskii
et al., 2022) used to obtain quick looks of the elastic
backscatter coefficient (βλ) and the particular linear depo-
larization ratio (PLDR) of the aerosols at 532 nm, as well as
the fluorescence backscatter coefficient (βfluo) of the aerosols
and the water vapor mixing ratio, with a high temporal and
vertical resolution (about 3 min and 7.5 m, respectively). In
order to maximize the signal-to-noise ratio, the quick looks
are averaged over a period of 1 h. Only nighttime measure-
ments have been considered for this study because of the
low intensity of fluorescence and water vapor Raman signals,
which makes it difficult to obtain accurate daytime measure-
ments.
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Table 1. LILAS summary table of the various important quanti-
ties used in this study with their characteristics. β532 is the elas-
tic backscatter coefficient of the aerosols at 532 nm, PLDR532 is
the PLDR of the aerosols at 532 nm, and βfluo is the fluorescence
backscatter of the aerosols.

Quantity β532 PLDR532 βfluo RH

Units sr−1 m−1 ∅ sr−1 m−1 ∅, %
Availability All All Night Night
Time resolution 3 min
(initial)
Time resolution 1 h
(final)
Range resolution 7.5 m

Figure 1. Aerosol type with a depolarization/fluorescence capacity
diagram (adapted from Veselovskii et al., 2022).

In order to calibrate the water vapor mixing ratio mea-
sured by the lidar, the method developed by Foth et al. (2015)
is used with an RPG-HATPRO microwave radiometer and
temperature data obtained from the ERA-5 reanalysis model.
The lidar water vapor mixing ratio calibration procedure is
described in Miri et al. (2024). From this calibrated mea-
surement and with the ERA-5 temperature, the atmospheric
relative humidity (RH) is computed.

More details about the LILAS instrument and data man-
agement can be found in Hu et al. (2018) and Veselovskii et
al. (2020).

2.2 Choice of the model

As explained in the introduction, the objective of this study
is to develop a machine learning model able to automati-
cally identify the aerosol type from LILAS measurements
and to exploit the instrument ability to measure atmospheric
fluorescence. In Veselovskii et al. (2022), an approach is
proposed to distinguish between dust, urban, smoke, and
pollen aerosols using LILAS measurements. It is based on
the aerosol PLDR at 532 nm and the fluorescence capacity
(Gfluo), which is defined as the ratio βfluo/β532, to estimate

the aerosol type, according to the classification represented
Fig. 1.

Based on this distribution, the Fluorescence Lidar-
based Aerosol REcognition from Gaussian Mixture Model
(FLARE-GMM) algorithm has been developed to automati-
cally estimate the predominant aerosol type of a given layer
from LILAS measurements using a data-driven machine
learning approach. FLARE-GMM leverages a Gaussian mix-
ture model (GMM), a probabilistic clustering method that
models the data as a combination of several Gaussian dis-
tributions, to identify patterns in the datasets and facilitate
robust classification. The algorithm considers the PLDR at
532 nm, RH, and the fluorescence capacity to identify the
aerosol type.

One major advantage of machine learning is that it learns
the decision boundaries from the data with statistical pro-
cesses, thereby reducing reliance on manual thresholding and
simplifying the analysis of complex, high-dimensional fea-
ture spaces.

A notable challenge in aerosol classification, as high-
lighted by Veselovskii et al. (2022), is the influence of hygro-
scopic growth. This phenomenon, in which aerosol particles
interact with moisture, consequently alters their optical prop-
erties as a function of relative humidity, which can signifi-
cantly compromise the accuracy of aerosol typing. By incor-
porating RH as an additional feature in the model, FLARE-
GMM effectively accounts for the influence of hygroscopic
growth, thus enhancing the reliability of the aerosol retrieval
process under varying environmental conditions.

Then, compared to other machine learning algorithms,
GMM shows many benefits. Compared to K-means, a sim-
pler clustering algorithm, GMM algorithms provide more de-
tailed information and enable finer classification, at the cost
of a longer computation time. K-means is a non-probabilistic
model that uses a hard-clustering approach, meaning that
it gives binary information about the aerosol type, whereas
GMMs are probabilistic models. This distinction allows
GMMs to handle cluster overlap more efficiently than K-
means, as well as making them better at dealing with un-
certainty, because clusters are represented by Gaussian dis-
tributions. This representation allows for better identification
of outliers and data points near decision boundaries, a capa-
bility that K-means lacks because it indicates only the class
to which each data point belongs (Bishop, 2006; Patel and
Kushwaha, 2020).

Eventually, compared to neural network methods, GMM
also has many advantages. Neural networks are popular al-
gorithms, making it possible to solve very complex prob-
lems, and have been used in various occasions for aerosol
typing (Nicolae et al., 2018; Papagiannopoulos et al., 2018;
Voudouri et al., 2019). The ability of neural networks to solve
complex problems lies in the number of their parameters,
which can be important depending on the network complex-
ity. However, the high number of parameters means that the
computation time for training neural networks can be signif-
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icant. Additionally, a very large training set is necessary to
prevent overfitting, a strong limitation of these algorithms.
Finally, neural networks are generally supervised models,
implying that the training set already contains the expected
aerosol type. Constituting the training set can therefore repre-
sent an important challenge if the classification of aerosols is
performed manually, moreover considering that the training
set size needs to be large in order to correctly train the neural
network. This aspect has motivated researchers to work with
simulated data, as is the case for Nicolae et al. (2018), in
order to work with a large training set containing the aerosol
type of each data point. The advantage of GMM compared to
neural networks lies in the ability to work with real, unclassi-
fied data, whereas neural networks require simulated labeled
data for training.

Nonetheless, the primary limitation of GMM is its foun-
dational assumption that the data are generated by Gaus-
sian processes. When the actual data distribution deviates
from this assumption, accurately identifying clusters be-
comes problematic. Lidar instruments (such as LILAS) of-
ten measure an averaged optical property over a volume con-
taining mixtures of different aerosol types. In these cases,
the recorded optical properties represent a convolution of the
individual contributions from various aerosol sources. This
convolution effect is not well modeled by GMM during the
training phase, which may lead to biases in cluster determi-
nation, and is a huge challenge in the selection of the training
set to correctly identify the different clusters.

3 FLARE-GMM training

3.1 Data preparation

To correctly train GMM algorithms, the training set, com-
posed of LILAS measurements from early 2021 to the end of
2023, needs to be pre-processed. Before rescaling the dataset
to make sure that each variable contributes equally to the
cluster identification, it needs to be filtered, as the presence
of outliers in the training set can strongly impact the model.

In order to filter LILAS data, the PLDR at 532 nm, β532,
Gfluo, RH, and the altitude have been considered. First, con-
cerning the PLDR, situations in which the measured depolar-
ization ratio is negative have been filtered out because nega-
tive values of the PLDR are non-physical. A negative value
means that a problem occurred during the profile inversion.
This concerns about 5 % of the dataset. Then, regarding the
upper limit, we have chosen to fix it at 40 %. This choice has
been motivated by the maximum values reached by desert
dust aerosols (Haarig et al., 2022). Pollen aerosols may ex-
hibit higher PLDR values at 532 nm, up to 80 % (Bohlmann
et al., 2021), but, as will be shown later, occurrences of pure
pollen aerosols have not been observed in the dataset. In-
stead, pollen is often mixed with urban aerosols in the at-
mospheric boundary layer, making it difficult to reach such

levels of depolarization. Situations for which the PLDR value
reaches higher values than 40 % may then correspond to ice
clouds, which can be misclassified as desert dust aerosols
otherwise.
β532 has also been used to filter the dataset. The objective

here is to filter out cloudy cases that can alter the data, either
by impacting the profile inversion or due to the screen ef-
fect of optically thick clouds. Therefore, after some tests, we
have chosen to filter out profiles for which β532 reaches over
10 Mm−1 sr−1 to avoid cloudy situations. Moreover, β532 has
also been used to filter situations with low aerosol load. It is
important to remove these situations, as performing aerosol
typing if there is little to no aerosol is not relevant. More-
over, if β532 is low, the PLDR becomes very sensitive to
measurement noise. Indeed, the depolarization is computed
from a ratio between β532 measured in the parallel and cross-
polarization states. Therefore, as these values decrease under
low aerosol load conditions, the PLDR sensitivity to mea-
surement noise increases and can reach outlier values. Hence,
if β532 < 0.7 Mm−1 sr−1, the case is filtered out from the
training set. These upper and lower thresholds have also been
applied to the results of FLARE-GMM, and these situations
have been classified as “clouds” and “background”, respec-
tively.

Regarding Gfluo, the results from Veselovskii et al. (2022)
and the observation of the LILAS data have been used to de-
termine the various thresholds to filter outliers. In the dataset
used for this study, smoke aerosols can have Gfluo reaching
up to 10−3. This value has thus been chosen as the upper
threshold for Gfluo, and cases exhibiting higher values have
been filtered out. For the lower threshold, a value of 9.10−6

has been selected. This choice has been motivated by obser-
vations of Gfluo of urban and dust cases, which rarely fall
below this threshold. Lower values of Gfluo are typically ob-
served only in clouds. This lower threshold is thus a sec-
ondary filtering process enabling the exclusion of such con-
ditions.

Then, concerning RH, negative values or values above
100 % have been removed. This concerns about 0.5 % of the
dataset. Finally, only altitudes above 1000 m above ground
level have been considered to ensure that the LILAS overlap
function is equal to 1, guaranteeing inversion quality. Sim-
ilarly, only altitudes below 6000 m have been considered in
the first place to maintain an acceptable signal-to-noise ratio
for the RH data.

A next step is to pre-process the data. The fluorescence
capacity can vary on very large ranges (between 9.10−6 and
10−3) compared to PLDR and RH, which typically vary
within a single order of magnitude. This wide variation im-
plies that some information may be lost during the rescal-
ing process. To mitigate this effect, the base-10 logarithm of
Gfluo has been used as a feature for the GMM training. In
this way, the range of Gfluo is squeezed, reducing the dispar-
ity with other variables. Afterward, the training set has been
rescaled by retracting the mean of the dataset and dividing by
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the variance to ensure that each variable contributes equally
to cluster identification. This rescaling step is crucial, as it
balances the influence of each variable in GMM, allowing
the model to more effectively identify clusters without being
dominated by any single variable.

3.2 Training set construction

During the development of FLARE-GMM, multiple train-
ing datasets were evaluated. In its current configuration, the
training dataset comprises manually selected cases that are
categorized into three subsets based on ambient humidity
conditions. This categorization was implemented to address
specific challenges encountered during the training.

The first issue encountered was the presence of aerosol
layers composed of mixed aerosol types. As already dis-
cussed, such mixtures are not well represented by GMM al-
gorithms, as the measurements obtained by LILAS reflect a
convolution between the Gaussian distributions of each indi-
vidual aerosol component. This phenomenon results in data
points being located in the interstitial spaces between clus-
ters, complicating the identification process during the train-
ing phase. An initial attempt to mitigate this issue involved
excluding the atmospheric boundary layer from the training
dataset, as this region typically contains aerosol layers with
mixed types. However, this approach was unsuccessful. Con-
sequently, a manual analysis of each case was carried out to
selectively include only cases featuring aerosol layers that
are likely to be made up of a single aerosol type rather than a
mixture. This identification process relied both on the quad-
rant method described in Veselovskii et al. (2022) and shown
in Fig. 1 and on an early version of FLARE-GMM, trained
on the dataset excluding the boundary layer.

The second challenge encountered was the representation
of hygroscopic growth. As noted earlier, it alters aerosol opti-
cal properties under humid conditions, complicating the clas-
sification. To address this, RH was initially incorporated as
a feature in FLARE-GMM. However, the resulting cluster
identification was not what was expected. This has been in-
terpreted as being due to the fact that hygroscopic growth
is not well modeled by a Gaussian distribution. Specifi-
cally, for a given aerosol, there is a bijective relationship
between its optical properties and RH. Consequently, the
three-dimensional cluster in the (PLDR, fluorescence capac-
ity, RH) feature space adopts a cylindrical shape, as varia-
tions along the RH axis can be represented by a translation.
This contradicts the GMM assumption that clusters follow a
3D Gaussian distribution. To mitigate this issue, the dataset
has been partitioned into three subsets based on humidity
levels, and three distinct models have been trained: one for
dry conditions, one for high-humidity conditions, and one
for intermediate conditions. Dry data points have been se-
lected for RH< 60 %, very humid data points have been se-
lected for RH> 80 %, and data with 60%<RH< 80% have
been attributed to the dataset corresponding to medium con-

ditions. This repartition was chosen after running some tests.
The challenge is to balance between having as many sub-
sets as possible to correctly consider the impact of hygro-
scopic growth on the aerosol optical properties and ensur-
ing that each aerosol class is well represented with enough
data points in each section to correctly train the model. The
other benefit of this method is that only two features are used,
which allows us to visualize the data and clusters much more
easily.

Figure 2 shows the 2D histograms of the different sections
of the training set as a function of the Gfluo and PLDR. Each
section contains 4719, 9970, and 2475 data points for the dry,
medium, and wet sections, respectively, which is enough to
correctly train FLARE-GMM without risking any overfitting.

By comparing each subplot of Figs. 2 to 1, it is possible to
check if the different aerosol types are correctly represented
in the dataset. While it is possible to visually attribute clusters
to urban, smoke, and dust aerosols in each case, it is interest-
ing to notice that it is not possible for pollens. This can be
explained by the fact that in Lille, pollens are generally emit-
ted locally at low altitudes. As a result, pollen aerosols are
mainly located below the detection limit of LILAS, which is
around 1 km. A second consequence is that, in most cases,
pollens are mixed with urban aerosols, making it impossible
to identify a pure pollen aerosol layer in this dataset.

Figure 2 also shows a tendency of the urban and smoke
clusters to be shifted towards lower values as RH increases.
This is a direct illustration of the hygroscopic growth impact
on aerosol optical properties, which can be clearly observed
in this situation.

The silhouette coefficient method (Dinh et al., 2019; Zhou
and Gao, 2014), shown in the Appendix, has been used on
each section of the dataset to determine the ideal number of
clusters. In each case, the obtained number is three, in agree-
ment with what we were expecting from the observation of
the dataset 2D histograms.

FLARE-GMM models have been trained on each section
of the training set. The results of the training set data reparti-
tion are displayed in Fig. 3. We see that the different clusters
are well defined and separated in each case. The association
of each cluster to its aerosol type – urban, smoke, and dust –
is not ambiguous and can be performed straightforwardly.

However, this distribution suffers from some limitations.
First, it relies on a limited dataset, and thus the resulting
model may not perform adequately on unseen data. For a ro-
bust generalization, the training set should encompass all the
potential scenarios that the model might encounter in prac-
tice. The manual selection process inherently restricts the di-
versity and size of the dataset, which can compromise the
model ability to accurately classify new data.

The second issue concerns the management of mixed
aerosol layers. If multiple aerosol types coexist within the
same resolution volume, data points may lie near the bound-
aries of several clusters. Without proper handling, the auto-
matic aerosol typing model might inadvertently assign these
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Table 2. Summary of the various thresholds used to filter the dataset in the initial stage.

Quantity β532 PLDR Gfluo RH Altitude

Maximum threshold 10 sr−1 Mm−1 (profile removed) 40% 10−3 100% 6 km
Minimum threshold 0.7 sr−1 Mm−1 0% 9.10−6 0% 1 km

Figure 2. 2D histograms of the training set containing hand-selected data of pure cases as a function of the RH levels: (a) below 60 %, (b)
between 60 % and 80 %, (c) over 80 %, and (d) all data.

mixed cases to the most prevalent aerosol class simply be-
cause the data points are closest to its corresponding cluster.

In order to address these issues, the likelihood function can
be used. It is defined as

P(x)=

K∑
j=1

πjN
(
x|µj ,σj

)
, (1)

where πj denotes the weights of each Gaussian and
N
(
x|µj ,σj

)
corresponds to the Gaussian distribution j (of

mean µj and standard deviation σj ) evaluated at point x.
This function can be interpreted as the probability that x
has been generated by a Gaussian distribution of the model.
Therefore, by choosing a threshold on the likelihood value, it
is possible to balance between enlarging the clusters to miti-
gate the impact of the limited training set and excluding mix-
ture cases and outliers from the repartition process. Indeed,
if a low likelihood value is chosen as the threshold, the re-
sulting clusters will be narrower, enhancing the reliability of
the aerosol typing estimation by FLARE-GMM. However, at
the same time, narrow clusters mean that the model will have
more difficulty in identifying cases that were not in the train-
ing set and cases with higher measurement uncertainty. On
the other hand, if a high likelihood value is chosen, the clus-

ters will be wider, allowing identification of more cases that
are potentially not contained in the training set but potentially
decreasing the reliability and the accuracy of the model.

Figure 4 shows the contour lines of the negative log-
likelihood field, i.e.,− ln(P (x)), as a function of the rescaled
features. This figure has been analyzed in order to select the
optimal threshold of − ln(P (x)) and correctly filter out mix-
ture cases and outliers while also widening the clusters to
consider the limits of the training set. Finally, the thresh-
old has been fixed at 8. This value was chosen after running
tests and allows for cases out of the training set, for which
− ln(P (x)) is generally below 8, to be correctly classified,
while also excluding mixture cases and outliers, for which
− ln(P (x)) is generally over 8.

Another benefit of this model is that it can be used at high
altitudes, where RH is much more difficult to obtain accu-
rately. In order to use FLARE-GMM above 6 km in altitude,
above which RH cannot be measured by LILAS, we have
decided to use the driest model to classify cases. The reason
is that lidar can measure fluorescence and depolarization at
very high altitudes and in clear-sky conditions, the RH level
typically being lower at these altitudes (Wolf et al., 2023).
Consequently, hygroscopic growth cases are rarely detected
at high altitudes. This encourages us to use a dry aerosol
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Figure 3. Data repartition of the training set sections with the different versions of FLARE-GMM trained on these sections: (a) section with
RH< 60%, (b) that with 60%<RH < 80%, and (c) that with RH> 80%. Each color is associated with a Gaussian distribution determined
by FLARE-GMM.

model for aerosol typing in such cases, allowing us to per-
form aerosol typing up to 15 km during the night.

Eventually, we see that the cluster associated with urban
aerosols and the one associated with smoke particles are
very close to each other. Moreover, there is no separation
between them once the negative log-likelihood criterion is
applied. This makes it currently very difficult to differenti-
ate layers containing a mixture of urban and smoke cases
from a layer containing pure particles of one aerosol type.
Instead, FLARE-GMM can estimate which aerosol type has
the stronger contribution to the mixture optical properties.
In our case, it is not possible to improve this result, as the
clusters are too close. The use of other optical properties in
future studies, such as the lidar ratio (LR) or the Ångström
exponent, could help to solve this issue.

4 Generalization of FLARE-GMM

The objective of this section is to generalize FLARE-GMM.
To do so, its results have been compared to aerosol types ob-
tained from other methods for cases out of the training set.
In the first part, it concerns cases of extreme events in which
the aerosol type is not ambiguous and that have already been
documented by other studies. In the second part, FLARE-
GMM is compared to NATALI, another automatic aerosol
typing model based on lidar data, which uses a neural net-
work.

4.1 Classification of specific events

Assessing the accuracy of clustering models such as GMM
can be challenging in the absence of definitive reference.
In this section, an analysis of specific events has been per-
formed to have an idea of the algorithm performances in
identifying aerosol types from LILAS data.
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Figure 4. Data repartition of the training set sections with the different versions of FLARE-GMM trained on these sections: (a) section with
RH< 60%, (b) that with 60%< RH< 80%, and (c) that with RH> 80%. Each color is associated with a Gaussian distribution determined
by FLARE-GMM, with the representation of the negative log-likelihood contour lines (− ln(P (x))).

Our initial approach involves exploring FLARE-GMM
aerosol typing estimation in instances where aerosol types
are not ambiguous and easily identified. These scenarios
mainly manifest during specific events of dust or smoke oc-
currences. Fortunately, the region of Lille frequently expe-
riences such events, which are consistently documented and
analyzed by the LOA and whose origins can be checked from
backward trajectories (Baars et al., 2019; Draxler et al., 2023;
Stein et al., 2015).

The first event analyzed in this section occurred during the
night between 15 and 16 March 2022. In this period, strong
manifestations of Sirocco winds were observed. They are re-
sponsible for the advection of Saharan desert dust over Eu-
rope. Consequently, desert dust can be observed in Lille dur-
ing such events (Husar, 2004; Stohl et al., 2004). The back-
ward trajectory for this night (see Appendix) confirms that
the air mass above Lille came from the Saharan region, thus
supporting the fact that desert dust is expected to be observed
in Lille.

On the other hand, Fig. 5 shows the quick look of
FLARE-GMM aerosol type estimation during the night be-
tween 15 and 16 March 2022. Background and cloud classes
are automatically attributed when β532 < 0.5 or β532 <

15 Mm−1 sr−1, respectively, while the unknown class gath-
ers the outliers and mixture cases for which − ln(P (x)) > 8.
Figure 5 shows that after 00:00 UTC on 16 April 2022, an
aerosol layer was present below 3000 m, with clouds at the
top of the layer. FLARE-GMM estimates that these aerosols
are certainly desert dust aerosols, which is consistent with
the backward trajectories as well as the analyses and the dif-
ferent reports made on this particular situation (Bouteiller,
2022). The FLARE-GMM aerosol typing estimate concurs
with the expected result in this case, supporting the fact
that FLARE-GMM is able to identify desert dust aerosols
in such events. We can notice, however, that it is much more
complicated for the aerosol layer above 6 km and between
20:00 and 01:00 UTC, which appears as a mixture between
unknown aerosols, clouds, and desert dust, though they are
probably misclassified here. Furthermore, one can notice that
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Figure 5. FLARE-GMM aerosol type estimation quick look during the night between 15 and 16 March 2022 between 1000 and 15 000 m.

from 01:00 UTC to the end of the night, a cloud is present
at around 2.5 km, shadowing the layers above and making it
impossible for the lidar to observe the aerosol layers above
it.

The second case used in this study occurred during the
night between 2 and 3 March 2021. Similarly to the previous
case, strong Sirocco winds were responsible for the transport
of Saharan desert dust over Europe. The backward trajectory
for this case (see Appendix) shows that the air mass in Lille
during this night originated from the North African region,
supporting the presence of desert dust in the atmosphere.
Figure 6 shows the quick look of the FLARE-GMM aerosol
type estimate for this case. Here, FLARE-GMM identifies
desert dust aerosols in a layer spanning from 2000 to almost
7000 m. Clouds can also be observed after 00:00 UTC, rang-
ing from 3000 to 10 000 m, while the lowest part of the at-
mosphere is associated with an unknown aerosol type, which
could correspond to a mixture between desert dust and urban
aerosols in the boundary layer. As for the previous studied
case, in this situation, the ability of FLARE-GMM to cor-
rectly identify desert dust aerosol layers is illustrated here,
as the FLARE-GMM aerosol typing estimate corresponds to
the aerosol type expected from the backward trajectory and
previous analyses (Veselovskii et al., 2022).

The last case investigated in this part occurred during
the night of 19 July 2022. Significant forest fires occurred
in the Gascogne region in southeastern France. The winds
blowing northward during this event transported biomass
burning aerosols to Lille. This can be clearly observed in
Fig. 7, where both the fire map and the backward trajec-
tory are represented. Figure 7a shows the backward trajec-
tory in this situation, and Fig. 7b shows the fire map be-
tween 14 and 19 July 2022, obtained from the Fire Infor-
mation for Resource Management System (FIRMS), which
uses data from MODIS and the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) and is managed by NASA (source:

https://firms.modaps.eosdis.nasa.gov/, last access: 28 June
2024). This map also highlights the fire data corresponding
to the forest fires that occurred in the Gascogne region in
this period. Analyzing both these figures, it is possible to ob-
serve that biomass burning aerosols emitted from the forest
fires have been transported to Lille during this period. On the
other hand, Fig. 7c shows the aerosol typing estimate from
FLARE-GMM during the night of 19 July 2022. This fig-
ure shows that FLARE-GMM correctly recognizes the pres-
ence of a smoke layer ranging from 2000 to 6000 m with the
presence of unknown aerosols in the lower part of the atmo-
sphere, which could correspond to a mixture with another
aerosol type, like urban aerosol, or to outliers. Nevertheless,
this case illustrates well the ability of FLARE-GMM to iden-
tify smoke layers in such conditions, supporting its efficiency
and generalization.

These three presented cases allow for the evaluation of
the performance of FLARE-GMM in occurrences of strong
events. In these situations, the aerosol type estimated by the
algorithm is consistent with the expected aerosol type ob-
served in the atmosphere. The ability of FLARE-GMM to
correctly identify aerosol types in such cases is thus sup-
ported by these examples. However, this approach is limited
because it uses a low number of specific situations, which is
therefore not ideal to evaluate the algorithm performance in
general. In order to complete this approach, in the absence
of an absolute reference for the estimate of the aerosol type
with lidar data, FLARE-GMM can be compared to another
automatic aerosol typing method that uses lidar data.

4.2 Comparison with NATALI aerosol typing

The Neural Network Aerosol Typing Algorithm Based on Li-
dar Data (NATALI) is a deep learning algorithm developed to
estimate the most probable aerosol type from lidar data. This
algorithm uses the EARLINET 3β+2α(+1δ) profiles, which
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Figure 6. FLARE-GMM aerosol type estimation quick look during the night between 2 and 3 March 2021 between 1000 and 15 000 m.

are multispectral profiles that can be obtained from LILAS
and are regularly inverted. NATALI has been trained on syn-
thetic data, using the aerosol Ångström exponent, color in-
dex, color ratios, LR, and PLDR of the aerosols as features to
perform aerosol typing. From these properties, the algorithm
is able to determine aerosol type among continental, conti-
nental polluted, smoke, dust, marine, and volcanic (Nicolae
et al., 2018).

In this section, a comparison between NATALI and
FLARE-GMM is presented to evaluate how both models per-
form compared to one another on LILAS data. Thirty-six
cloud-free profiles from 2022, covering different situations
and aerosol types, have been selected randomly to compare
FLARE-GMM and NATALI estimates. Figure 8 shows the
confusion matrix between the two aerosol type estimates.
Confusion matrices are usually used to evaluate the perfor-
mance of a classification algorithm. They display the counts
of true positives, true negatives, false positives, and false neg-
atives, helping to assess the accuracy, precision, and overall
model performance. In this case, this matrix can be used to
compare the results from the two models and analyze their
agreements and discrepancies.

The confusion matrix indicates that the agreement rate be-
tween the two models is at 38 %. This rate is encouraging
given that the two models use different features for classifi-
cation and differ in their algorithmic structure. Indeed, NA-
TALI is a supervised learning algorithm, whereas FLARE-
GMM is unsupervised. Regarding the disagreements be-
tween FLARE-GMM and NATALI, we can first evidence the
confusion that exists between smoke and urban, or continen-
tal, aerosols. Indeed, in a substantial number of cases, NA-
TALI and FLARE-GMM disagree between smoke and ur-
ban aerosols. This confusion was expected because the opti-
cal properties of smoke and urban aerosols are close, as evi-
denced in the former section.

Moreover, we can notice that most cases identified as
desert dust by FLARE-GMM are classified differently by
NATALI, either as smoke aerosols (in 570 cases) or as ma-
rine aerosols (in 311 cases). This confusion is more surpris-
ing because desert dust optical properties are supposed to
be different from these aerosol types. In particular, desert
dust PLDR at 532 nm is expected to range close to 30 %,
whereas smoke and marine aerosols are expected to exhibit
much lower PLDR at this wavelength.

These differences between FLARE-GMM and NATALI
can be explained by several factors. First, it could be a con-
sequence of the difference between the two algorithms. As
mentioned above, NATALI is a supervised learning model
that has been trained on synthetic data, as opposed to
FLARE-GMM, which is an unsupervised learning model
that has been trained using data from the LILAS instru-
ment specifically. This aspect is an advantage for FLARE-
GMM, as the specificities of the site in Lille, as well as the
specificities of the instrument, are therefore inherently inte-
grated in the model. On the other hand, NATALI, which has
been trained on synthetic data, might contain biases from the
model used to simulate the aerosol optical properties. More-
over, the features used by NATALI might explain these dif-
ferences with the FLARE-GMM estimates. Indeed, NATALI
uses the LR and the Ångström exponent, which both rely on
extinction coefficient estimations. However, these properties
are difficult to determine accurately with the Raman inver-
sion performed on the EARLINET profiles. These quanti-
ties often exhibit high uncertainties (Ansmann et al., 1992),
thus impacting the NATALI estimate quality. This might ex-
plain why NATALI predicts the presence of marine aerosols
even though the measurement site is located 70 km away
from the coast, thus making it unlikely to observe aerosol
layers mainly composed of marine particles. The case repre-
sented in Fig. 9 illustrates this situation. In this figure, both
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Figure 7. (a) Backward trajectory of 24 h at 4000 m above ground level at 22:00 UTC on 19 July 2022. (b) Fire map from the Fire Information
for Resource Management System (FIRMS) between 14 and 19 July 2022 (source: https://firms.modaps.eosdis.nasa.gov/, last access: 28 June
2024). (c) FLARE-GMM aerosol type estimation quick look during the night of 19 July 2022 between 1000 and 15 000 m.

Gfluo and PLDR indicate that the aerosol layer is primarily
composed of dust aerosols, characterized by a high depolar-
ization ratio and low fluorescence capacity. FLARE-GMM
correctly classifies most of the aerosol layer as dust. How-
ever, NATALI, which primarily relies on the lidar ratio (LR)
and the Ångström exponent for aerosol type identification,
classifies this aerosol layer as a combination of smoke and
marine aerosols. This classification appears unlikely, partic-
ularly given the high depolarization ratio, suggesting that, in
this case, the Ångström exponent and lidar ratio may not be
accurate enough for aerosol type estimation. This example
highlights the challenges of using parameters like the LR and
Ångström exponent, which are highly sensitive to measure-
ment noise, for aerosol classification and shows that proper-
ties such as the fluorescence capacity and depolarization ratio

provide more reliable information to perform aerosol charac-
terization.

The treatment of hygroscopicity can also be responsi-
ble for the differences between NATALI and FLARE-GMM
aerosol typing estimates. This phenomenon, which signifi-
cantly alters aerosol properties, is taken into account by NA-
TALI in the training set, as it is modeled according to dif-
ferent RH levels but RH is not used as an input to determine
the aerosol type (Nicolae et al., 2018). On the other hand, as
FLARE-GMM uses real data in the training set, it covers a
wide range of humidity levels, and furthermore, even if RH
is not used as a feature, its influence on aerosol optical prop-
erties is considered with the use of different trained models
as a function of the RH levels. These differences in treatment
can be responsible for important differences between the two
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Figure 8. Confusion matrix between FLARE-GMM and NATALI
aerosol type estimation on 36 profiles from 2022.

estimates, especially between urban and smoke aerosols, as
their optical properties can be difficult to distinguish if hu-
midity is not considered.

Nevertheless, the comparison between FLARE-GMM and
NATALI allows us to compare FLARE-GMM’s performance
to that of another automatic aerosol typing model. While
the comparison suffers from the limitations that have been
raised, making it challenging to formulate clear interpreta-
tions and conclusions, it still provides encouraging results.
Indeed, despite their differences in terms of architecture,
training methods, and datasets used to perform the classi-
fication, the agreement rate between the two models is al-
most 40 %. Moreover, discrepancies between NATALI and
FLARE-GMM can be explained by many factors that have
been mentioned. Therefore, this comparison, with the anal-
ysis of extreme events performed, is promising with regard
to FLARE-GMM’s performance. It also provides a positive
outlook for FLARE-GMM’s potential future improvements
and advancements, indicating that the model is robust and
can continue to be improved.

5 Aerosol type analysis in Lille

In this section, FLARE-GMM is used to analyze aerosol type
estimates in Lille on all the available datasets. The advan-
tage of developing an automatic aerosol typing method is that
such analyses are easily performed quickly on a very large
amount of data. The results can then be analyzed to study
aerosol properties in Lille and evaluate potential trends.

By using FLARE-GMM on the LILAS dataset from 2021
to 2023, we can investigate the aerosol type repartition, as
well as the seasonality of the aerosols in the Lille region. To
do so, the aerosol type has been estimated by FLARE-GMM
for each available profile between 2021 and 2023. Each pro-
file containing more than 15 data points classified as a spe-
cific aerosol type was considered in order to avoid treating
outliers. Eventually, the considered altitudes for this analy-

sis were selected to be below 6 km. This choice was made to
avoid taking cirrus clouds into account, which might be clas-
sified as dust aerosols by FLARE-GMM due to their high de-
polarization and low fluorescence. Indeed, cirrus clouds of-
ten show low optical thickness and are therefore more com-
plicated to differentiate from aerosols using a criterion on
the elastic backscatter coefficient. By considering only the
data below 6 km, it is possible to mitigate the impact of cir-
rus clouds in the statistics while also considering most of the
aerosol cases, which are in typically present at low altitudes.

First, it can be interesting to investigate the altitude dis-
tribution for each aerosol type. Figure 10 shows the vio-
lin plots (a) and the box plots (b) of the averaged altitudes
above the ground of the identified aerosol layers as a func-
tion of the aerosol type. This plot indicates that both urban
and smoke aerosols are predominantly detected at low al-
titudes, mainly within the boundary layer. The distribution
for smoke aerosols exhibits a longer tail compared to urban
aerosols. This is expected, as smoke aerosols, generally origi-
nating from fires, are emitted at high temperatures and can be
injected into higher altitudes. In contrast, urban aerosols usu-
ally remain confined to the boundary layer and rarely reach
higher altitudes. Regarding dust aerosols, their distribution
shows that they can be present at much higher altitudes. This
result can be interpreted in different ways. First, it could be
a consequence of ice cloud detection; however, below 6 km,
the presence of ice clouds is less probable in the Lille at-
mosphere. This could also be due to the fact that the primary
sources of dust in Lille are not local. Unlike urban and smoke
aerosols, which may be emitted locally, dust often originates
from the Sahara or other deserts and is carried to Lille by the
wind. As a result, dust particles are found at more dispersed
altitudes compared to urban and smoke aerosols.

Figure 11a shows a histogram of FLARE-GMM aerosol
type estimates on all the available data below 6000 m as a
function of time. This figure shows that, in general, more
aerosol layers are identified during spring and summer. This
situation is influenced by Lille’s meteorology, as it often rains
in this region during winter. LILAS does not measure during
rain, which reduces the amount of available data for analysis.
Additionally, during winter, the boundary layer is generally
lower due to decreased temperatures. Given that the mini-
mum considered altitude is 1000 m, aerosol layers may not
be detected, further limiting the data.

Figure 11b shows the seasonal share of each aerosol type
estimated by FLARE-GMM. This figure first illustrates that
urban aerosols are the main aerosol type in the Lille atmo-
sphere and represent more than half of the cases in each
season. This result is expected, as the LOA is close to the
city of Lille; the emission of urban aerosols by human ac-
tivity is therefore the first aerosol source in the observed at-
mosphere. Regarding smoke aerosols, Fig. 11b indicates that
they are significantly more frequent during spring and sum-
mer compared to fall and winter. This trend can be attributed
to higher temperatures in spring and summer, which increase
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Figure 9. LILAS lidar profiles on 21 March 2022 at 21:00 UTC and comparison between FLARE-GMM and NATALI aerosol type estima-
tions.

Figure 10. (a) Violin plots and (b) box plots of averaged altitude distributions between 1 and 6 km above ground level as a function of the
aerosol type for all the available data from 2021 to 2023.

the likelihood of fires, the primary source of smoke aerosols,
occurring during these periods. Eventually, regarding dust
aerosols, they are the least represented aerosol type. This is
because dust scenarios are rare in Lille, which is not located
close to a source of desert dust. The occurrence of dust cases
in Lille is rather due to extreme events such as advection
of Saharan dust by Sirocco winds, as mentioned previously.
Such events generally occur early in spring or in winter, and
it is possible to observe that dust cases are more represented
at these periods, thus confirming the importance of these phe-
nomena in the observation of dust aerosols in Lille. However,
it is important to consider the proportion of dust cases in
winter within the context of data availability limitations dur-
ing this season. Additionally, the colder temperatures in win-
ter increase the likelihood of observing ice or mixed-phase
clouds below 6000 m. These clouds can occasionally be mis-
interpreted as desert dust aerosols with the current classifi-

cation method, as has been mentioned. Despite these chal-
lenges, these findings are crucial for gaining insights into the
composition and distribution of aerosols in the region, show-
ing the benefits of using an automatic aerosol typing process
like FLARE-GMM.

6 Conclusions

In this study, we developed FLARE-GMM, a machine-
learning-based aerosol typing algorithm using lidar measure-
ments from LILAS. By leveraging a Gaussian mixture model
(GMM) trained on fluorescence capacity, the depolarization
ratio, and relative humidity, FLARE-GMM effectively clas-
sifies aerosol types between urban, dust, and smoke while
addressing challenges such as hygroscopic growth and mixed
aerosol layers.
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Figure 11. (a) Histogram of aerosol type estimates from FLARE-GMM as a function of time, and (b) the share of each aerosol according to
the season, with all data from 2021, 2022, and 2023 below 6000 m above ground level.

A key advantage of FLARE-GMM lies in its ability to
work with real, unclassified data, unlike supervised mod-
els that rely on synthetic training sets. Through a thorough
evaluation using extreme aerosol events and comparison
with the neural-network-based NATALI algorithm, FLARE-
GMM has demonstrated promising classification capabili-
ties. However, certain limitations remain, notably in distin-
guishing urban and smoke aerosols in mixed layers and in
the treatment of hygroscopic growth, but most importantly
regarding the construction of the training set, which has to
be performed manually.

Applying FLARE-GMM to the full LILAS dataset from
2021 to 2023 provided valuable insights into the seasonal
variability of aerosols over Lille, highlighting the dominance
of urban aerosols and the episodic occurrence of smoke and
dust events.

Due to the adaptable nature of this classification method,
FLARE-GMM is well suited to accommodate future techno-
logical advancements or algorithmic updates. For example,
the new lidar system of LOA, LIFE (Laser-Induced Fluores-
cence Explorer), operational since the end of 2024, will of-
fer enhanced power and the ability to measure fluorescence
across different wavelengths. This new capability is crucial
for more accurate aerosol identification and will significantly
deepen our understanding of aerosol types. By applying a
protocol similar to the one detailed in this paper, it would be
feasible to develop an updated version of FLARE-GMM that

uses the LIFE dataset for training, further enhancing its ca-
pabilities and accuracy in aerosol typing. Finally, in order to
assess the robustness of this approach to perform aerosol typ-
ing, it could be tested on another instrument also measuring
aerosols but in a different environment than Lille to confront
its viability in the presence of other aerosol types such as
marine and volcanic aerosols or pollen in higher quantity.

To effectively train future models using real data, it is es-
sential to account for mixtures of different aerosol types. In-
stead of assuming that the training set is generated by a set of
independent Gaussian distributions, an alternative approach
would be to model data points as resulting from convolu-
tions of multiple Gaussian distributions. This would enable
the use of a significantly larger portion of the dataset, with
only outliers being excluded. However, implementing such
an approach would necessitate more complex models with a
larger number of parameters, increasing both computational
demands and the complexity of the training process.

To conclude, this study underscores the potential of flu-
orescence lidar in aerosol classification and the benefits of
unsupervised learning approaches for atmospheric studies.
Future work will focus on improving aerosol mixture iden-
tification and incorporating additional optical parameters to
refine classification accuracy.
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Appendix A

Figure A1. Silhouette coefficient from K-means partitions for a number of clusters ranging from three to eight on different sections of the
training set: (a) cases with RH< 60%, (b) those with 60%<RH< 80%, and (c) those with RH> 80%.
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Figure A2. The 100 h backward trajectory at 1500 m above ground level at 03:00 UTC on 16 March 2022.

Figure A3. The 100 h backward trajectory at 3000 m above ground level at 22:00 UTC on 2 March 2021.
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