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Abstract. Air pollution, particularly exposure to ultrafine
particles (UFPs) with diameters below 100 nm, poses sig-
nificant health risks, yet their spatial and temporal variabil-
ity complicates impact assessments. This study explores the
potential of machine learning (ML) techniques in enhanc-
ing the accuracy of a global aerosol-climate model’s outputs
through statistical downscaling to better represent observed
data at specific sites. Specifically, the study focuses on the
particle number size distributions from the global aerosol-
climate model ECHAM-HAMMOZ. The coarse horizontal
resolution of ECHAM-HAMMOZ (approx. 200 km) makes
modeling sub-gridscale phenomena, such as UFP concentra-
tions, highly challenging. Data from three European mea-
surement stations (Helsinki, Leipzig, and Melpitz) were used
as target of downscaling, covering nucleation, Aitken, and
accumulation particle size ranges during years 2016–2018.
Six different ML methods (Random Forest, XGBoost, Neu-
ral Networks, Support Vector Machine, Gaussian Process
Regression and Generalized Linear Model) were employed,
with hyperparameter optimization and feature selection inte-
grated for model improvement. A separate ML model was
trained for each of the sites and size ranges. Results showed
a notable improvement in prediction accuracy for all particle
sizes compared to the original global model outputs, partic-

ularly for the accumulation subrange. Challenges remained
particularly in downscaling the nucleation subrange, likely
due to its high variability and the discrepancy in spatial scale
between the climate model representation and the underlying
processes. Additionally, the study revealed that the choice of
downscaling method requires careful consideration of spatial
and temporal dimensions as well as the characteristics of the
target variable, as different particle size ranges or variables in
other studies may necessitate tailored approaches. The study
demonstrates the feasibility of ML-based downscaling for
enhancing air quality assessments. This approach could sup-
port future epidemiological studies and inform policies on
pollutant exposure. Future integration of ML models dynam-
ically into global climate model frameworks could further
refine climate predictions and health impact studies.

1 Introduction

Air pollution is considered one of the leading global health
risks, in terms of both associated premature deaths and dis-
ability (GBD 2019 Risk Factors Collaborators, 2020). Fine
particulate matter (PM2.5, particle diameter < 2.5 µm) has
been found to be especially harmful; a recent report from
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the Global Burden of Disease study identifies it as the most
important environmental health risk factor (McDuffie et al.,
2021). Although PM2.5 has undergone extensive study, ex-
posure to and health impacts of smaller particle sizes, such
as ultrafine particles (UFPs) with diameters below 100 nm,
remain less well understood (Fuzzi et al., 2015; Vogli et al.,
2023). Different sized particles contribute to different aspects
of the ambient particle concentration – UFPs mainly control
the concentrations in terms of number, while coarser parti-
cles control the concentrations in terms of mass (PM2.5). The
size of aerosol particles influences, for example, their deposi-
tion in the human respiratory tract and their reactive surface
area, which in turn can affect their potential to cause health
problems (Kreyling et al., 2004; Schraufnagel, 2020). Ac-
cording to epidemiological and toxicological studies, UFPs
can more easily enter the alveoli in the lungs, and from
there reach other organs (Kreyling et al., 2004; Schraufnagel,
2020). Compared to larger particles, they can thus potentially
contribute to, for example, diabetes (Bai et al., 2018), cancer
(Pagano et al., 1996), and ischemic cardiovascular disease
(Downward et al., 2018; Li et al., 2017; Ostro et al., 2015)
more strongly. However, due to their high spatial and tempo-
ral variability, estimating exposure to UFPs is challenging,
leading to uncertain or even conflicting conclusions regard-
ing their health impacts (Vachon et al., 2024a; Schraufnagel,
2020). Currently, both the World Health Organization (World
Health Organization, 2021) and the European Union (Euro-
pean Council, 2008) provide guidelines on safe exposure lim-
its for PM2.5 and PM10 (diameter < 10 µm), but no such lim-
its exist for UFP. Indeed, according to a recent review of the
topic (Schraufnagel, 2020), UFPs are, in many ways, “at the
frontier of air pollution research”.

As the availability of exposure data limits the potential to
conduct epidemiological UFP studies (Vachon et al., 2024a),
various approaches have been used to gain more informa-
tion on UFP number concentrations. To study exposure to
pollutants, observations from a scarce network of sites have
typically been expanded to cover the study area, such as a
city, through methods like land use regression (LUR) (Venuta
et al., 2024; Amini et al., 2024; Wolf et al., 2017) or interpo-
lation (Jung et al., 2023). Sometimes, more measurements
are done in relatively short campaigns to improve the spa-
tial coverage (Vogli et al., 2023; Downward et al., 2018), or
satellite-based observations are added as inputs to LUR mod-
els to more accurately represent spatial or temporal variabil-
ity of pollutants (Zani et al., 2020; Jung et al., 2023; Stafog-
gia et al., 2019). However, most such studies are focused on
pollutants other than UFPs (Lin et al., 2022). In recent years,
machine learning (ML) has also been a common tool in im-
proving the accuracy of LUR models, often outperforming
traditional statistical methods (Vachon et al., 2024b).

While improved spatial characterization of present-day air
quality is valuable for understanding its health implications,
predicting how air quality may evolve in the future is also
important. Actions taken to mitigate climate change might

significantly affect the emissions of pollutants or their pre-
cursors, thus hindering the prediction ability of LUR models.
Furthermore, since these models are purely descriptive and
not integrated with physics-based tools, they cannot be used
for studying air quality under varying emission scenarios.

Besides the said statistical methods, local-scale air qual-
ity is commonly represented using deterministic models that
simulate, for example, the emissions, transport, and transfor-
mation of pollutants (Sofiev et al., 2006; Johansson et al.,
2022). As the inputs of these models can in principle be
modified based on the climate change scenario of interest,
they could be suitable for long-term air quality prediction.
However, many physics-based models simulate only gaseous
pollutants such as NOx (Pepe et al., 2016) and O3 (Sharma
et al., 2013); aerosols, if supported, may be limited to larger
particle sizes (Friberg et al., 2017), omitting UFP. Addition-
ally, running simulations can be computationally expensive
and always requires boundary conditions from global climate
models, further increasing computational costs. The physics-
based air quality models are also not ideal for all sites, as ac-
counting for urban infrastructure or complex terrain requires
detailed information about local topography, which is often
either unavailable or not accurately captured by local-scale
models. (Hinestroza-Ramirez et al., 2023).

Compared to air quality models, global-scale climate mod-
els generally produce more output variables, potentially also
containing size-resolved representations of aerosols. Simu-
lating long-term global changes in aerosol concentrations is
possible with climate models, as they incorporate a broader
range of atmospheric processes and feedback mechanisms
compared to regional climate models. Since global-scale
models are already necessary to generate boundary condi-
tions for regional models, using them directly for gener-
ating air quality estimates might seem practical. However,
for local-scale air quality estimation, the resolution of cur-
rent climate models is far too coarse, typically ranging from
tens to hundreds of kilometers horizontally and tens to hun-
dreds of meters vertically (Turnock et al., 2020). Particularly
for UFPs, the challenge arises from their number concentra-
tions being governed by processes such as primary emissions
and secondary formation and growth, which occur both in
multiple scales. The initial cluster formation occurs in sub-
grid spatial scales and it is highly spatially variable (Dada
et al., 2023), including a contribution from traffic as well
(Rönkkö et al., 2017), while the growth to Aitken and ac-
cumulation mode sizes (see Sect. 3) takes place in synoptical
scale (Petäjä et al., 2022). All of this makes the particle size
distribution of the nucleation mode highly variable in space
and time.

An approach known as downscaling can be applied
to the low-resolution outputs of global climate models,
with the aim of improving their accuracy in the lo-
cal scale. In this context, the nested approach of initial-
izing regional climate models with boundary conditions
from global simulations is called dynamical downscaling
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(Maraun and Widmann, 2018). Another technique, statistical
downscaling, instead aims to find a statistical dependence
between coarse-resolution outputs and local observations of
the quantity of interest. This dependence can later be used
for output correction as a post-processing step. The benefit
of statistical downscaling lies in its computational efficiency
compared to the computationally much more costly dynam-
ical downscaling (Xu et al., 2020). Most of the literature on
downscaling focuses on correcting meteorological variables
such as temperature (Li et al., 2020; Goyal et al., 2011; Kim
and Villarini, 2024) and precipitation (Xu et al., 2020; Van-
dal et al., 2017; Sachindra et al., 2018). Some recent studies
have applied statistical downscaling to air quality variables
(Miinalainen et al., 2023; Gouldsbrough et al., 2024; Ivatt
and Evans, 2020) but only a few to UFP number concen-
trations (Kohl et al., 2023). Although the statistical methods
for downscaling have typically been simple bias corrections
or linear regressions (Maraun and Widmann, 2018), many
downscaling studies from the past few years have instead uti-
lized ML methods with promising results (Xu et al., 2020;
Sachindra et al., 2018; Miinalainen et al., 2023; Goulds-
brough et al., 2024). To our knowledge, however, none so
far has applied ML methods to UFP downscaling.

In this study, using various ML methods, we have down-
scaled aerosol particle number size distributions produced by
a global aerosol-climate model to better match observations
from three measurement stations. We used data from two ur-
ban stations (Helsinki, Finland and Leipzig, Germany) and
from one rural background measurement station (Melpiz,
Germany). The size distribution was represented by three
size ranges, the so-called nucleation, Aitken, and accumu-
lation subranges. We have opted to avoid calling these sub-
ranges “modes”, as the subranges do not exactly match the
conventional mode definitions due to limitations in the size
resolution of the climate model representation. Based on
these subranges, we categorized the simulated and observed
daily average particle number concentrations (PNCs). All
three subranges overlap with the UFP size range (< 100 nm),
with the nucleation subrange being barely above molecular
cluster size and a part of the accumulation subrange exceed-
ing 100 nm. A broad selection of ML methods, six in total,
was used and is further described in Sect. 4.4. Moreover,
ML model hyperparameters were optimized and feature se-
lection performed, to obtain optimal model configurations
for the task. Finally, a glimpse into the inner workings of
the black box ML models was provided by a game theoret-
ical method, SHAP, that aims to explain the usage of fea-
tures by these models. The objective of the study is to act as
a proof of concept, showcasing the potential of ML meth-
ods in improving predicted PNCs in different parts of the
UFP size range. Additionally, comparing the performance
of ML methods can help determine whether some of them
could be particularly recommended. Ultimately, such ML-
based downscaling of UFP could serve to study air quality
simultaneously with other aspects of climate change, helping

improve policy-making by accounting for more diverse con-
sequences. Past air quality datasets could also be expanded
using this method for studying UFP health effects. A new
air quality directive of the European Union (European Coun-
cil, 2024) includes a mandate to measure UFP concentrations
throughout urban and rural supersites in Europe. In the next
decade, this is expected to enhance the availability of UFP
data for health studies. Our approach could provide addi-
tional insights into UFP number concentrations already be-
fore the new measurements are implemented.

2 Global aerosol-climate model simulation

We conducted the global climate model simulation with
the aerosol-climate model ECHAM6.3-HAM2.3 (ECHAM-
HAMMOZ) (Schultz et al., 2018; Tegen et al., 2019;
Neubauer et al., 2019). ECHAM-HAMMOZ includes the
general circulation model ECHAM (Stevens et al., 2013),
the aerosol module HAM (Tegen et al., 2019; Neubauer
et al., 2019) and also the chemistry module MOZART
(Schultz et al., 2018). We use the aerosol microphysics mod-
ule SALSA2.0 (Kokkola et al., 2018), which discretizes the
aerosol size distribution into ten size classes and treats a
soluble and an insoluble sub-population separately. A more
detailed description of the SALSA module is presented in
Kokkola et al. (2018). The size classes range from 3 nm
to 10 µm, from which we have selected the seven smallest
classes (3 to 700 nm) as a basis of the nucleation, Aitken,
and accumulation subranges that will constitute the target
variables of our study, which are compared against measure-
ments (see Sect. 3 for more details). Additionally, all ten
size classes are included as input variables in the ML mod-
els, along with the other simulated variables on which the
downscaling is based (see Table S1 in the Supplement). In
the aerosol module HAM, the aerosol compounds treated are
black carbon (BC), sulfate (SU), organic aerosol (OA), sea
salt (SS), and mineral dust (DU). The grid resolution that
was used in our simulation was T63L47, corresponding ap-
proximately 1.9°× 1.9° horizontal resolution. The grid ex-
tends vertically to 0.01 hPa (∼ 80 km) and there are 47 verti-
cal hybrid layers. The layer nearest to surface has a height of
approximately 65 m. The chemistry module MOZART was
not included in our setup, but instead a simplified scheme for
sulfur chemistry was used (Feichter et al., 1996; Stier et al.,
2005).

The simulation was performed using prescribed sea sur-
face temperature and sea ice cover from data from the At-
mospheric Model Intercomparison Project (AMIP) of the
Program for Climate Model Diagnosis and Intercomparison
(PCDMI) (Taylor et al., 2012). In addition, large-scale me-
teorological fields, wind and surface pressure, were nudged
towards ERA5 reanalysis data (Hersbach et al., 2020, 2017).
Temperature and free static energy were allowed to evolve
freely (Zhang et al., 2014). The anthropogenic aerosol
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Figure 1. Measurement site locations marked on the map of north-
eastern Europe. M, L, and H refer to the Melpitz, Leipzig, and
Helsinki sites, respectively. The grid lines show the coarse output
resolution of ECHAM-HAMMOZ. As can be seen, Leipzig and
Melpitz are located in the same grid cell. Coordinates have been
rounded to one decimal place.

emissions were prescribed as monthly averages from the
ECLIPSE V6b emission inventory (Stohl et al., 2015; IIASA,
2024). A more detailed description of the aerosol emission
input fields can be found from Miinalainen et al. (2023).

3 Aerosol measurements

Measurement data used in this study consist of atmospheric
measurements from three stations (Fig. 1), spanning years
2016–2018. Specifically, particle number size distribution
data measured with the DMPS/SMPS (Differential/Scanning
Mobility Particle Sizer) instruments were obtained from the
stations. The data are openly available from SmartSMEAR
(SmartSMEAR, 2025; Junninen et al., 2009, Helsinki) and
EBAS databases (EBAS, 2025, Leipzig and Melpitz). These
sites were chosen because of the relatively long and continu-
ous time series of aerosol size distributions available. In this
section, we focus on providing short descriptions of the sta-
tions’ locations and regional representativeness, relevant for
interpreting the results. More detailed information about the
measuring stations can be found in the references of their
short descriptions in the paragraphs below.

The size distribution data have been reformulated into
number concentrations of three subranges, nucleation
(< 7.7 nm), Aitken (7.7–50 nm), and accumulation (50–
700 nm). These size ranges were selected to correspond to
the SALSA bins 1a1 for nucleation, 1a2–1a3 for Aitken, and
2a1–2a4 for accumulation. The three subranges that consti-
tute the target variables of the study were formed by sum-
mation over the relevant bins. The hourly number concen-
trations of the three subranges have then been averaged to
one-day time resolution. These data processing steps were
performed by Leinonen et al. (2022), and are further dis-

cussed there. However, in our study, days with fewer than
eight hours of measurements were also removed from the
dataset to ensure representativeness. No other conversions or
postprocessing steps were performed. Daily averaged num-
ber concentrations of the subranges, which act as the target
variables in our study, are presented together with simulated
ECHAM-HAMMOZ concentrations in Fig. 2.

The Helsinki station (60°12′ N 24°58′ E) is situated in
Helsinki, Finland (see Hussein et al., 2008, and Järvi et al.,
2009, for details). Helsinki is the largest city in Finland (ap-
prox. 675 000 inhabitants), and more than 1.5 million inhab-
itants live in the Helsinki metropolitan area. The station is
classified as an urban station. In Helsinki, the particle num-
ber size distribution is measured with DMPS (TSI), with size
range of 3 nm to 1 µm. All three subranges were available
from the site.

The Melpitz station (51°32′ N 12°54′ E) is situated in Ger-
many, in the southwest of the small town of Torgau (approx.
20 000 inhabitants), immediately west of the village of Mel-
pitz (Hamed et al., 2010). It is classified as a rural back-
ground station (Birmili et al., 2016). Particle number size
distribution is measured with SMPS (TSI) with size range
of 5 to 800 nm. All three subranges were also available from
the Melpitz station.

The Leipzig station (51°21′ N 12°26′ E) is situated in
the city of Leipzig, Germany (approx. 590 000 inhabitants),
about 4 km east of the city center (more detailed description
in Birmili et al., 2016). It is classified as an urban background
station. Aitken and accumulation subrange number concen-
trations are available from this site. The measured particle
size range was between 10 and 800 nm (using DMPS), and
for this reason, the number concentration of the nucleation
subrange is not available.

4 Analysis methods

4.1 Downscaling workflow

Statistical downscaling, in this application, refers specifi-
cally to finding and utilizing a relationship between the large
number of ECHAM-HAMMOZ output variables and the ob-
served particle number concentrations (PNCs) at the three
sites with the aid of ML methods. If the ML models can
learn this dependence, they no longer need the measurement
data to function, but can predict the PNC based purely on
the climate simulation. In other words, the outputs of the
ECHAM simulation constitute the inputs of the ML models,
and the output of the ML models is the number concentration
of a specific size subrange. The ML output is also referred
to as the target variable, while the input variables are com-
monly called features. The inputs are properly introduced in
Sect. 4.2 and listed exhaustively in Table S1. The downscal-
ing is site-specific, that is, the ML models are trained sepa-
rately for each station and size subrange.
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Figure 2. Daily averages of measured and simulated PNCs per subrange of particle size distribution (rows) at each of the three sites (columns),
from 2016 to 2018. The black bars represent missing data. Partitioning of the data into training, validation, and testing subsets is shown by
the dashed vertical lines. Acc, Ait, and Nuc refer to the accumulation, Aitken, and nucleation subranges, respectively.

As the first step of the ML pipeline, the dataset con-
sisting of simulated features (i.e., the simulation outputs
of ECHAM-HAMMOZ) and measured PNC was split into
three subsets, known as training, validation, and testing sets
(see Sect. 4.2). Next, the number of input variables was re-
duced through feature selection (Sect. 4.3), the hyperparam-
eters of the models were tuned (Sect. 4.5), and the models
were trained, while evaluating the models’ performance at
each step where necessary. In ML terminology, hyperparam-
eters refer to the tunable parameters of the ML algorithms.
This is in contrast to the internal parameters, such as linear
model coefficients or neural network weights, which are not
controlled by the user but automatically selected by the algo-
rithms. After the optimized, trained models were obtained,
further analysis and comparison was done.

On each iteration step of the hyperparameter optimization,
an ML model with particular hyperparameter values was fit
to the training data, and the trained model was then tested on
the validation data to obtain a measure of its goodness-of-fit.
The purpose of this common approach is to avoid overfit-
ting the model to the training data, which would impair its
generalizability. A separate validation set was used instead
of k-fold cross-validation to avoid temporal leakage of infor-
mation, where future data is used for training and past for
testing (Fraga et al., 2023). Rolling variants of k-fold cross-
validation that retain the ordering of the data were consid-
ered, but initial tests showed poor generalization across folds,
possibly due to the seasonality inherent in the data. Thus, k-
fold cross-validation was not used in this study.

When the optimization was finished, the combination of
hyperparameters leading to the best validation performance
was selected, and the ML model with this configuration was
retrained on the combined training and validation subsets.
Then, the model was applied to the testing subset to evaluate
its performance on completely unseen data. This was done
because there could be a slight, optimistic bias in the vali-
dation score when the hyperparameters have been selected
to be optimal for the validation subset. Because some of the
ML methods (RF and the NNs, see Sect. 4.4) utilize random-
ness as part of their algorithms, and therefore depend on the
initialization of the random number generator, the retraining
part was repeated with 50 different seed numbers. In the re-
sults, the mean performance is shown for these methods. Fi-
nally, the SHAP method (see Sect. 4.6) was applied to the
trained models to investigate their use of input variables.

4.2 Data preparation

For each station, we used ECHAM-HAMMOZ data from
only one ECHAM grid cell, which contained the station co-
ordinates and altitude. The ECHAM-HAMMOZ data with
a vertical dimension were interpolated to correspond to the
station altitude. This was done by utilizing the CDO com-
mand line tool (Schulzweida, 2023), and by using the near-
est layer to the surface as well as the second lowest layer.
Thus, the global scale simulation data were matched with the
point measurements. Both the observed and simulated data
were then averaged to daily resolution. We selected 93 vari-
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ables directly from ECHAM-HAMMOZ data as input vari-
ables, covering meteorology, aerosol composition and size
distribution. Additional variables were created to replace or
complement the existing simulated variables. The u and v
components of wind were transformed into two cyclic di-
rectional components (north-south, wind_ns and east-west,
wind_ew, both varying between −1 and 1) and one variable
for the absolute magnitude of the wind vector (wind_speed).
Finally, time of the year was represented by time_ws (winter–
summer variability) and time_sa (spring–autumn variability).
These were also formed cyclically (and thus vary between
−1 and 1) to avoid a large difference between the value of
the last day of the year and the first of the next year, which
occurs when using linear time and can disrupt the ML mod-
els. In practice, transforming a variable into two cyclic com-
ponents was done by applying sinusoidal functions (sine and
cosine) to the proportion of the variable’s current value rela-
tive to its maximum (for example, time_ws= cos([day num-
ber] / [days in year]). In our naming convention for all four
cyclic features, the positive direction is referenced first (i.e.,
wind_ns= 1 means northerly wind and time_ws= 1 means
New Year). All in all, these changes resulted in 100 input
variables to be considered for the ML models (see Table S1).
These variables were chosen for their potential relevance for
aerosol formation, transport or removal, or because they rep-
resent properties of the particle size distribution in the cli-
mate model.

The three years of data were split into three subsets used
for training, validation, and testing of the ML models. Be-
cause of missing data, not all subsets could cover a full
year (See Fig. 2). The last year of data (2018) was reserved
for testing to prioritize the completeness of the test results,
while the rest of the data were split equally between train-
ing and validation. The difference in the number of samples
between the subsets therefore depended on the measurement
site. As atmospheric phenomena often show strong seasonal-
ity, it was deemed beneficial to have data from throughout the
year in all subsets, even if increasing the size of the training
subsets could also have been useful.

As most of the ML methods used in this study benefit from
feature normalization, the input data were normalized to zero
mean and one standard deviation, computed from the training
set. No other preprocessing techniques were applied. For all
parts of the ML procedure that utilize randomness, the ran-
dom number generator was initialized with an arbitrary seed
number (1024858913).

4.3 Feature selection

Reducing the number of input variables by removing redun-
dant or less impactful ones can improve the performance of
ML models, as well as mitigate unnecessary computational
costs. Simpler models are also easier to interpret. Therefore,
a feature selection scheme was applied before feeding the
simulation data into the ML models. A typical way to drop

redundant variables is to see if some of the inputs correlate
strongly, and only retain non-correlating ones (up to some
threshold value). Dependence between each feature and the
target variable, on the other hand, can be an indicator of the
feature’s relevance. Each criterion alone, however, provides
only a partial view and could result either in an ineffective se-
lection or the removal of important information. In addition,
as feature selection is still often performed manually rather
than in a data-driven manner, these issues could be further
exacerbated by human error.

In this study, these ideas were combined to take both
redundancy and relevance into account through a data-
driven approach. First, a threshold for redundancy (hereafter
red_thresh) was selected based on the methods described in
Sect. 4.5.1. For each feature, the number of high-correlation
pairs (correlations larger than red_thresh) that included the
feature was counted. The feature participating in the largest
number of such pairs was then dropped. This was repeated
until no pair of features exceeded the threshold. In case the
number of high-correlation cases was equal for two or more
features, the magnitudes of the correlations were compared,
and the one with the larger sum of correlations was dropped.
If only two highly correlated features remain and the sums
are thus equal, we have removed the one that appears ear-
lier in the column order of the input data. After this, an-
other threshold was set for relevance (later rel_thresh), and
each feature whose correlation with the target fell below this
threshold was also dropped. Both relevance and redundancy
were measured by Spearman’s correlation coefficient to ac-
count for nonlinear dependencies.

The two threshold values were optimized along the model-
specific hyperparameters for each ML method and dataset to
ensure optimal choice of features. Our approach was inspired
by the more commonly used minimum redundancy – max-
imum relevance (mRMR) method (Ding and Peng, 2005),
which we also initially compared to both our approach and a
more typical correlation-based selection procedure (not pre-
sented here). As further motivation for our approach, it is
worth noting that mRMR does not offer a mechanism to
adjust the relative weighting of relevance and redundancy,
which could be beneficial in certain cases.

Naturally, removing any feature during selection entails a
trade-off: the model loses some amount of information, even
if that information appears redundant or insignificant in the
training data. While feature selection is based on observed
correlations and redundancy, it is still possible that a removed
feature could improve predictions in future scenarios – par-
ticularly for out-of-distribution data. To mitigate this risk, we
combined feature selection and model-specific hyperparam-
eter optimization using cross-validation on a holdout vali-
dation set, allowing the process to account for generaliza-
tion performance. Additionally, as a robustness check, we
repeated the model training using all available input features
(i.e., without applying feature selection), to compare perfor-
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mance and ensure that potentially valuable information was
not systematically excluded.

4.4 Machine learning methods

In this study, the downscaling task is performed using six dif-
ferent statistical methods. Unless mentioned otherwise, all
methods were implemented by the Python package scikit-
learn version 1.1.1 (Pedregosa et al., 2011). The implemen-
tations feature a varying number of hyperparameters, some
of which were optimized (listed in Tables S2–S8), while oth-
ers were either left to their default values or given some other
constant value. If some non-default constant value was used,
it is mentioned in this section. For more detailed information
on the effects of the hyperparameters, readers are referred to
the documentation of the methods.

Random Forest (RF) and XGBoost (further abbreviated
XGB in figures) are based on different approaches to an en-
semble of decision trees. RF takes advantage of random-
ness to reduce the dependence between individual trees in
the ensemble, thereby reducing the ensemble’s total variance
(Breiman, 2001; Hastie et al., 2009). XGBoost, belonging
to the class of gradient boosting methods, generally builds
smaller trees with less initial variance and aims to reduce the
total bias of the ensemble by sequentially adding trees that
correct the errors made by the preceding trees (Friedman,
2001). Unlike the other five methods, XGBoost was imple-
mented by the standalone XGBoost library version 2.0.3 for
Python (Chen and Guestrin, 2016). The RandomForestRe-
gressor function from scikit-learn was used for RF.

Neural networks (NN), in their most basic form, are made
of layers of interconnected nodes that each produce a lin-
ear combination of the incoming signals, which is then trans-
formed by a non-linear activation function (Alpaydin, 2014).
The first layer is composed of the inputs, while the last
layer produces the output(s). The layers between them are
referred to as hidden layers. Such simple feedforward NNs
are also known as multilayer perceptrons (MLP). The scikit-
learn function MLPRegressor was used as our NN, and two
different versions were trained separately: one with one hid-
den layer (NN1), and another with two hidden layers (NN2).
These model architectures were also considered distinct from
the point of view of our comparison, increasing the number
of methods in the results section from six to seven. Before
optimization, two hyperparameters were given constant val-
ues based on preliminary tests: batch size was set to 32 and
solver to “Adam”.

Instead of fitting a complex non-linear function to the
training data, the Support Vector Machine (SVM) transforms
the data into a higher dimension, where it then fits a linear
model to it (Cortes and Vapnik, 1995). In practice, this com-
putationally demanding coordinate transformation can be re-
placed by a kernel operation by choosing suitable basis func-
tions (Alpaydin, 2014). Additionally, if a data point’s dis-
tance to the fitted hyperplane were smaller than a specified

amount, the point would be ignored by the fit. This way, the
model’s tolerance to minor errors can be controlled (Alpay-
din, 2014). A function called SVR from scikit-learn was used
to implement the SVM model. Before optimization, the up-
per limit for solver iterations (max_iter) was set to 10 000, as
some unsuitable hyperparameter combinations could cause
the iteration to become stuck. Concurrently, the SVM’s cache
size hyperparameter was increased from the default 200 to
1000 MB to avoid issues with insufficient memory.

Gaussian Processes (GP) take a Bayesian approach to ML
by conditioning a prior distribution, again represented by
a kernel function, on the training data. The mean of the
resulting posterior process can then be used as a predic-
tion (Rasmussen and Williams, 2005). GaussianProcessRe-
gressor from scikit-learn was used for this study. Most of
its hyperparameters were set before the optimization, leav-
ing alpha as the only optimizable parameter. The number
of restarts was set to nine (meaning ten runs in total), and
normalize_y was set to True, as recommended for zero-
mean, unit-variance priors in the documentation. Addition-
ally, copy_X_train was set to False, as the training inputs are
not changed during the optimization and thus do not need to
be saved. An RBF (Radial Basis Function) kernel with length
scale bounds (1× 10−10, 1× 102) was selected as the covari-
ance function of the GP. The length scale of the kernel is op-
timized internally by GaussianProcessRegressor, and not as
part of the hyperparameter optimization procedure.

The sixth method in the comparison was the Generalized
Linear Model (GLM). It generalizes, and improves upon, lin-
ear regression by allowing a non-Gaussian error distribution,
and enabling a nonlinear relationship between the inputs and
the target through a so-called link function (McCullagh and
Nelder, 1989). Nevertheless, GLM does not utilize interac-
tions between inputs unless they are explicitly defined, mak-
ing it considerably simpler compared to the other methods.
Because of its relative simplicity, GLM is not always consid-
ered a pure ML method. In scikit-learn, GLM is implemented
by the TweedieRegressor function.

4.5 Hyperparameter optimization

4.5.1 Optimization methods

Finding the hyperparameter values that result in a model con-
figuration with the highest predictive performance can be
seen as an optimization problem, where the objective func-
tion to be optimized takes the hyperparameters as inputs and
produces as output some measure of the goodness-of-fit of
the corresponding ML model. Each evaluation of the objec-
tive therefore involves training an ML model and testing it
against observations, which can make a brute force search
through hyperparameter combinations extremely slow. To
minimize the number of evaluations, the Bayesian optimiza-
tion (BO) approach aims to approximate the expensive-to-
evaluate objective through a surrogate function, such as a
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Gaussian Process (Brochu et al., 2010). The surrogate func-
tion is updated every time a new point is evaluated, and can
be used to strategically select the next point either in a region
of uncertainty (favoring exploration) or closer to previously
found extrema (favoring exploitation). An acquisition func-
tion determines which points should be evaluated, and can
often be tuned to balance the trade-off between exploration
and exploitation.

In this study, a BO algorithm from the Python package
bayesian-optimization version 1.4.3 was used to
search for optimal values of the hyperparameters and feature
selection thresholds (Nogueira, 2014). This implementation
uses a GP as the surrogate function. The default kernel for
the GP is the Matérn kernel, which has a parameter ν con-
trolling the smoothness of the sampled functions. Another
tunable parameter of the optimizer is the noise level α of the
GP itself. For the acquisition function, the package’s default
option is the Upper Confidence Bound (UCB) function

UCB(x)= µ(x)+ κσ(x) (1)

where κ controls how much weight should be given to the
posterior’s standard deviation σ(x) relative to its mean µ(x)
at some point x of the hyperparameter space. That is, a higher
κ favors exploration, focusing the search on regions of higher
uncertainty. We have generally used the default settings for
both the acquisition function and the GP, apart from some
customization that is described next.

Many of the hyperparameters in ML models are either
integer-valued (e.g. number of estimators in an ensemble) or
categorical (e.g. choice of activation function in NNs), while
the GP of the BO algorithm utilized in this study only sup-
ports optimization of hyperparameters with continuous val-
ues. A common solution to this is to take the point suggested
by the acquisition function, and either round the hyperpa-
rameters to the closest integer or one-hot-encode the cate-
gorical ones before evaluating the objective, depending on
which one is needed. As demonstrated by Garrido-Merchán
and Hernández-Lobato (2020), this approach causes the GP
to ignore that an interval around an integer becomes known
when one point is evaluated in the interval, as all values in
that interval are rounded to the same integer value. This can
lead to unnecessary evaluations and thus slow down the it-
eration. In the worst case, the algorithm can even become
stuck on one point. Therefore, the authors propose that the
transformation (i.e., rounding and encoding) of the hyperpa-
rameters should be done inside the kernel function, so that
the acquisition function gains accurate information about the
posterior when evaluating a new point. We have applied this
approach to the default Matérn kernel, keeping it otherwise
unchanged.

As the range of the hyperparameters can be wide and the
general location of the optimum can be uncertain, it can
be useful to optimize some hyperparameters logarithmically.
This is not supported by the BO package by default, but it is
easy to implement by transforming, at the beginning of the

objective function, the hyperparameter x in question to 10x ,
effectively optimizing the value of the exponent. This trans-
formation was applied to many hyperparameters in almost all
ML models, and is also indicated differently in Tables S2–S8.

In addition to BO, the optimization of the hyperparameters
was also done using a randomized search (RS), which would
be expected to perform worse, as long as the BO iteration
proceeds properly. As there are multiple parameters to tune
for the optimizer itself that can significantly affect its per-
formance (Snoek et al., 2012), a suboptimal selection could
potentially make the BO method inferior to a purely random
procedure. In our application, where a large number of mod-
els are optimized, it would be highly impractical to inspect
every model individually to make sure the BO iteration has
succeeded, especially with the limited options for visualiza-
tion available. Visualizing aspects of the optimization pro-
cess can make it easier to verify that the parameter space has
been thoroughly explored and that fitting the GP has been
successful. Due to these limitations, both BO and RS were
used. While the models and datasets of this study are rela-
tively small and thus a complex method like BO may not lead
to major computational gains, the same methodology could
be applied in future studies with more computationally in-
tensive problems. These could be, for example, downscaling
of a longer or higher resolution time series, training a single
model on data from a large number of sites, or using large
deep learning models.

4.5.2 Optimization procedure

The selected optimization method, either BO or RS, was exe-
cuted for 300 iterations. In the case of BO, the first 30 points
were also sampled randomly to have sufficient data for the
acquisition function to operate on. Another case, called “pure
BO” in the results section, was run without sampling these
initial points. As for the parameters of the optimizer itself,
the ν of the Matérn kernel was set to 1.5 (making the sam-
ples from the GP once differentiable), while the α of the GP
was set to 1× 10−2 when the model had categorical hyper-
parameters, and left to the default 1× 10−6 otherwise. Three
options (1, 2.5 and 10) were tried for the κ parameter of the
acquisition function to account for different needs for explo-
ration and exploitation.

In addition to these five cases (RS, pure BO, and BO with
three different values of κ), two more cases were formed by
not optimizing the feature selection (FS) parameters as part
of either RS or BO (with κ = 2.5). Hence, all 100 input vari-
ables were included in the models. These two cases are called
“RS & no FS” and “No FS”, respectively. It should be noted
that without feature selection, the only hyperparameter of the
GP model is α, and therefore it would not make much sense
to use BO to optimize it, as it is also based on fitting a GP.
In this case, RS was used instead, meaning that “RS & no
FS” and “No FS” refer to the same procedure when GP is
concerned.
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4.6 Evaluation of model performance

To assess model performance, we employed five comple-
mentary evaluation metrics. In addition to the commonly
used mean absolute error (MAE), root mean squared error
(RMSE), and Pearson’s correlation coefficient (r), we also
used the coefficient of determination (ρ2) and the scaled
MAE (sMAE), defined as:

ρ2 (y, ŷ)= 1−

∑n
i=1
(
yi − ŷi

)2∑n
i=1(yi − y)

2 (2)

sMAE
(
y, ŷ

)
=

MAE
y
=

1
y
·

1
n

n∑
i=1
|yi − ŷi | (3)

Here, y denotes the vector of observed values, ŷ the pre-
dicted values, and y their mean.

The coefficient of determination, ρ2, measures the propor-
tion of variance in the observations explained by the model.
While often referred to as R2, we use ρ2 to emphasize that
in non-linear models this value can be negative, unlike in un-
constrained linear regression whereR2 is bounded between 0
and 1. A perfect match between predictions and observations
yields ρ2

= 1.
The scaled MAE (sMAE), applied e.g. in Mikkonen et al.

(2020), normalizes MAE by the mean of the observed values.
This allows for better comparability across datasets of dif-
fering magnitudes, such as the particle size distribution sub-
ranges examined here. As the mean PNC is strictly positive,
sMAE remains well-defined throughout.

RMSE and MAE are expressed in the same units as the
target variable (1 cm−3 in this case), with RMSE penalizing
large errors more heavily. Pearson’s r , in turn, quantifies the
association between predicted and observed values and is in-
sensitive to the scale of errors, making it useful for assessing
rank consistency.

For model selection during hyperparameter optimization,
ρ2 was used as the primary criterion of goodness-of-fit.

In addition to numerical evaluation, we applied a game-
theoretical interpretation method, SHAP (SHapley Additive
exPlanations), to assess the influence of individual input fea-
tures on model predictions (Lundberg and Lee, 2017; Mol-
nar, 2022). SHAP assigns a contribution value to each feature
per prediction, indicating the direction and magnitude of its
effect relative to the average prediction. Positive (negative)
SHAP values imply that the feature increased (decreased) the
model’s output.

We used the shap Python package (v0.40.0) with the per-
mutation explainer applied to the test data (Lundberg and
Lee, 2017). The results were aggregated across all test days
and visualized using beeswarm plots, which show both the
distribution and strength of feature effects. In these plots, a
consistent increase (or decrease) in SHAP values with rising
feature values suggests a positive (or negative) association
with the target variable.

The SHAP analysis helps identify which input variables
the models depend on most and whether these dependencies
align with known atmospheric processes. This interpretabil-
ity is especially valuable when evaluating black-box models
such as neural networks or ensemble methods.

5 Results and discussion

5.1 Comparison of ML models

In Fig. 3, we present a comparison of all seven downscal-
ing methods across the eight datasets. The performance of
the methods varied depending on the dataset: all methods
were among the best in at least one of the datasets, but most
of them also failed in some cases, yielding ρ2s close to, or
even less than, zero. Only RF and GP showcased stable per-
formance, as they never resulted in a ρ2 less than 0.1, and
were never among the worst performing methods. On aver-
age, XGBoost had the highest ρ2 (0.263), followed by SVM
(0.250). XGBoost was also the best method for four out of
the eight datasets. It only failed in the nucleation dataset of
Helsinki, where it had a lower ρ2 than any other model (see
also Table S4 for hyperparameters, some of which are atyp-
ical). However, this dataset turned out to be difficult for all
methods, as none of them were able to reach a ρ2 above 0.15.
Generally, the differences between methods were smaller
than the differences between datasets, and in many cases,
multiple methods were nearly equal in performance. Only
some datasets had one method that clearly outperformed the
others; this was XGBoost in the nucleation and accumulation
datasets of Melpitz and in the Aitken dataset of Helsinki, and
GLM in the accumulation dataset of Leipzig. Additionally,
XGBoost and SVM were the two best methods for all sub-
ranges from Melpitz, indicating some commonality between
these datasets.

Overall, other ML methods have a slight advantage over
GLM, as its average ρ2 is the lowest across datasets (0.176).
There is, however, strong variance in its performance, as
it is among the best methods in both Leipzig’s accumula-
tion dataset and Helsinki’s nucleation dataset, but among
the worst in the six remaining datasets. In three of the six
datasets, it is strictly the weakest, and in the other three, only
two methods (NN2 and SVM) perform slightly worse. Par-
ticularly, the previously mentioned RF and GP were never
outperformed by GLM, except in Leipzig’s accumulation
dataset. Moreover, GLM results in negative ρ2 (−0.126) in
the Aitken dataset of Helsinki, a drastic difference to all other
methods.

For RF and the two neural networks, a mean ρ2 from 50
different initializations is shown in both the table and the
graph in Fig. 3. The magnitude of the 2σ confidence in-
tervals, given in parentheses, indicates that randomness had
a relatively minor effect on the performance of these mod-
els, except for those models that performed poorly to begin
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Figure 3. Test set performances (ρ2) of the optimized models for all eight datasets. For the methods that are affected by randomness, the 2σ
confidence intervals computed from 50 different initializations are also shown in the table. The background colors in the table represent the
optimization method used. The methods and the abbreviations are explained in Sect. 4.5.1 and 4.5.2. In the cases where multiple optimization
methods produced the exact same result, the background is left blank. These cases were Helsinki Ait (Pure BO, κ = 1, and κ = 2.5) and
Helsinki Acc (κ = 1, κ = 2.5, κ = 10, and RS). The downscaling method(s) that achieved the highest ρ2 for a given dataset are shown in
bold (differences of less than 0.025 are disregarded).

with. It is also interesting to compare the two variations of
the neural network. In all datasets from Helsinki, adding an-
other layer to the neural network was beneficial. The simpler
one-layer network yielded better results in all other datasets.
This could be linked to a higher complexity in modeling
the particle number size distribution in Helsinki compared
to the other sites. This complexity may also be reflected in
the qualities of the optimized models: the three best models
developed for Helsinki’s subranges utilize all 100 features,
while at least some amount of feature selection was benefi-
cial for all of the other datasets’ best models (see Sect. 4.3
for a description of feature selection, and Tables S2–S8 for
optimization results). Conversely, the accumulation subrange
of Leipzig seems to have been a less complex target for
downscaling, as the optimal number of features for it was
lower than for other datasets, both when considering the best
method (GLM, 19 features) and the average of all methods
(28 features). In this case, interactions between features were
not needed either, as GLM does not utilize those, unlike the
other methods. It is of course possible that having access to
more training data or an even wider range of input variables
would reveal some interactions that were not found by our
current procedure. In that sense, the simplicity of the best
model might only indicate that something, like outliers in the

training data, confused the more complex methods while not
affecting the linear model to the same extent.

5.2 Downscaling performance

Figure 4 shows the PNC results of the most successful
downscaling methods for the test subset (2018) of each of
the eight datasets. In all cases, a clear improvement is ob-
served compared to the original subranges simulated by
ECHAM-HAMMOZ, both visually and based on the five
metrics shown in the figures. XGBoost achieved the high-
est ρ2 for all subranges from Melpitz and the Aitken sub-
range from Helsinki. Gaussian process regression resulted in
the best model for Leipzig’s Aitken subrange and Helsinki’s
nucleation subrange, support vector machine for Helsinki’s
accumulation subrange, and the generalized linear model
for Leipzig’s accumulation subrange. Generally, the down-
scaling of the accumulation subrange was most success-
ful, whereas the nucleation subrange seems to have been
more difficult to downscale, resulting in relatively low ρ2s
in both Helsinki and Melpitz. All three downscaled accumu-
lation subranges have higher ρ2s, correlations, and sMAEs
than any of the other datasets, even though many peaks
and troughs are still estimated incorrectly. The downscaling
model trained on the accumulation subrange of Melpitz per-
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forms best out of the three, producing a ρ2 of 0.56 and sMAE
of 0.24.

The original ECHAM-simulated nucleation subranges dif-
fer significantly from the measured ones, likely contributing
to the relatively poor performance of the downscaling mod-
els for that subrange. In Melpitz, the ρ2 of the original is
lowest among all subranges (−14.53), and the sMAE is high-
est (3.36). The strongly negative ρ2 indicates that the large-
scale approximation of the size distribution in ECHAM is a
poor representation of the nucleation subrange at this site. In
wintertime, the simulation represents the measurements rea-
sonably well, but a strong overestimation is apparent from
spring to autumn. Similarly in Helsinki, the correlation be-
tween the simulated and measured nucleation subranges is
almost nonexistent (0.03) before downscaling. The simula-
tion is unable to predict the high peaks in number concen-
tration during spring and early summer, but instead predicts
peaks for autumn, when the measured concentrations are rel-
atively low. By downscaling, these differences can be greatly
reduced: sMAE drops from 1.01 to 0.56 in Helsinki and
from 3.36 to 0.74 in Melpitz, and the previously negligible
correlation in Helsinki increases to 0.38. Thus, even though
the performance metrics of the downscaled nucleation sub-
range are worse even when compared to the non-downscaled
ECHAM-simulation of the accumulation subrange in Mel-
pitz, the improvements are significant considering the start-
ing point. Additionally, it should be noted that arithmetic
means instead of medians were used in the daily averaging
to preserve the highly variable nature of the data. Using me-
dians would smooth the time series, which, while possibly
improving downscaling results, would also depict the nucle-
ation subrange less realistically.

The representation of new particle formation and
nucleation–sized particles is, on many occasions, not suffi-
cient in global climate models (Williamson et al., 2019). This
can be due to, for instance, errors in estimating nucleation
rates. As a study by Laakso et al. (2022) shows, ECHAM-
SALSA tends to favor partitioning of sulfuric acid to the
particle phase due to nucleation over condensation, which
may lead to overestimation of nucleation subrange particles.
Kokkola et al. (2018) compared ECHAM-SALSA number
size distributions to observation data, and their results re-
vealed that at some measurement stations, ECHAM-SALSA
overestimates the nucleation mode number concentrations.
Furthermore, ECHAM-SALSA does not model new parti-
cle formation due to nitrates, which may cause differences
between modelled and measured nucleation subrange num-
ber concentrations. The representation of nucleation-sized
aerosols could be enhanced by including a volatility basis set
(VBS) scheme (Donahue et al., 2011), which can improve the
representation of secondary organic aerosols. In addition to
limitations in representing the nucleation mode, other input
variables can also contribute to challenges in downscaling.
The coarse spatial resolution of global-scale models naturally

limits their ability to accurately capture processes other than
just new particle formation.

A strong variability can be seen in both the simulated
and measured Aitken subranges at the German sites (Melpitz
and Leipzig), although the peaks and troughs match poorly.
In winter, the simulated concentrations decrease more than
they should. The downscaling methods are generally able to
bring the concentrations to a more realistic level, but they
fail to capture the true variability in the data. Compared to
the subranges simulated by ECHAM-HAMMOZ, the down-
scaled concentrations no longer fluctuate as rapidly, but in-
stead seem to more carefully follow an average level between
the peaks and troughs of the measured time series. This can
be acceptable when the main focus of a study is on long-term
averages, and not on e.g. maximum daily exposures. Regard-
less, an improvement compared to the original is seen in all
reported metrics. For the Aitken subrange from Helsinki, the
original simulated concentration is mostly too low, and has
a less drastic summertime variability compared to the Ger-
man sites. The downscaling by XGBoost fixes the underes-
timation and brings the variability closer to that of the mea-
surements. Based on the metrics, the results are quite sim-
ilar to the other Aitken subrange datasets. The increase in
the correlation coefficient from 0.12 to 0.53 is largest out of
all datasets, and the improvements in sMAE and ρ2 are also
among the largest.

To summarize, downscaling was generally more effective
for larger particle sizes than for smaller ones, and for the rural
Melpitz site compared to the urban sites. The eight datasets
were further examined through statistical tests comparing the
means of the training, validation and testing subsets of the
measured PNC (not shown). These tests found significant
differences between the years for most subranges and sites,
amounting to five out of eight cases in total. If the subsets dif-
fer substantially, ML models may struggle to generalize from
one dataset to another. To potentially reduce the variation be-
tween subsets, the temporal dimension of the data could be
expanded beyond three years, thereby enlarging each sub-
set. Training the models with more than one year of data, in
particular, could enhance generalization performance. There-
fore, we recommend collecting more data for future studies,
if possible.

We can compare our results to previous studies to place
them in a broader context, although no directly comparable
studies exist. For example, Ivatt and Evans (2020) trained
an XGBoost model to improve the ozone predictions of a
chemistry transport model, and achieved an improvement
in Pearson’s r of 0.36 (from 0.48 to 0.84). This is sim-
ilar, though in most cases slighty higher, to the improve-
ment achieved by our models. In addition to a different tar-
get variable, their higher time resolution and lower spatial
resolution (mean of multiple sites) complicate the compar-
ison. XGBoost was also the most successful model in the
study by Venuta et al. (2024), which produced spatiotempo-
ral UFP predictions (logarithm of PNC) with a daily time
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Figure 4. Daily average particle number concentrations per subrange in 2018 (test set), for all three sites. Measurements are shown in blue,
ECHAM-HAMMOZ outputs in green, and the results of downscaling by the best model for each dataset (i.e., the bolded cells in Fig. 3)
in purple. Goodness-of-fit metrics are reported in the top left corners of each figure, first for the downscaling and then, in parentheses, for
ECHAM-HAMMOZ.
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resolution. Their ρ2 of about 0.72 was significantly higher
than ours, though a direct comparison is again difficult due
to the smoothing effect of the log-transform combined with
data trimming they performed. Additionally, they used obser-
vational weather data instead of climate simulations to train
the models. As our models can in theory be used to predict
far into the future and produce non-transformed estimates
of UFP concentrations, the seemingly lower metrics are still
competitive, especially considering the substantial improve-
ment over the ECHAM predictions.

5.3 Notes on optimization

In the table of Fig. 3, the method of hyperparameter opti-
mization that resulted in the best model is represented by
the color of the cell’s background. In the cases where the
background of the table is white, multiple optimization meth-
ods yielded the exact same hyperparameter values and hence
also ρ2. This means that the hyperparameters resulting in
the highest ρ2 were discovered either during the initial ran-
dom steps of the iterations (which were now deterministic
due to the fixed seed number), or by the convergence of
the BO algorithm to the same hyperparameter values dur-
ing the non-random steps. The latter was the case for the RF
model trained on the Aitken data from Helsinki. This makes
sense given that one of the equally performing optimization
methods was “Pure BO”, which didn’t utilize random itera-
tions. For the NN2 model trained on Helsinki’s accumulation
subrange, on the other hand, the optimum was found from
among the initially sampled points in all four identically per-
forming cases.

It can be seen that for most models, the BO methods were
superior to RS. However, it is surprising that in some cases
randomized search (RS) led to higher ρ2. The number of it-
erations for both approaches was the same, and BO searches
the parameter space more methodically, so it should have
been able to find a better combination of hyperparameter val-
ues. In these situations, it is possible that the hyperparameters
don’t have a clear optimum, and therefore a reasonably good
combination can be found randomly. Then, RS could work
slightly better than BO purely by chance. Another possibility
is that the few alternatives which were tried for the parame-
ters of the optimizer itself (e.g. kappa, alpha, and nu) were
suboptimal for that specific model and dataset. Selecting the
parameters correctly can be challenging when the number of
different models and datasets is large, and when the options
for visualization are limited, such as in high-dimensional
spaces. Finally, it is possible that the optimization algorithm
itself didn’t fully work as intended in these cases, or even
got stuck without actually converging on a solution, possibly
due to the additional complexity in the acquisition function
caused by the treatment of discrete-valued and categorical
hyperparameters, as mentioned in Nguyen et al. (2020). This
problem could be difficult to diagnose in a comprehensive

model comparison study, when every result cannot feasibly
be individually inspected.

Simultaneously with the model hyperparameters, feature
selection was also optimized through two threshold parame-
ters for redundancy and relevance (see Sect. 4.3 and 4.5.2).
For the GP models trained on the datasets of Helsinki, both
“No FS” and “RS & no FS” involved using RS and were
thus identical, for reasons discussed in Sect. 4.5.2. It is also
interesting to note that if optimized correctly, our feature se-
lection method could have resulted in practically no selec-
tion (i.e., full set of features) by setting the thresholds for
redundancy and relevance to 0.99 and 0, respectively. There-
fore, it should theoretically always be equal or superior to
the “No FS” cases where all 100 features were used with-
out any selection procedure. However, this might be further
complicated by the effect of an increased number of hyper-
parameters on the capability of the optimization algorithm to
find the optimum.

In conclusion, BO can improve the results of hyperparam-
eter tuning relative to a randomized search, but can be sig-
nificantly affected by the selection of the BO parameters and
therefore requires careful analysis of the optimization pro-
cess. Due to this tradeoff between the simplicity of RS and
the (generally) improved optimization performance of BO,
BO may be preferable when developing one computation-
ally expensive ML model. However, when the number of
models under optimization is large, the interpretability and
ease of implementation of RS can make it a more practi-
cal choice. Other Python packages that implement similar
optimization methods, though not only Bayesian, also ex-
ist and could alternatively be utilized. Some examples are
Hyperopt (Bergstra et al., 2013), Optuna (Akiba et al.,
2019), and SMAC3 (Lindauer et al., 2022).

5.4 Interpreting the models

The SHAP method, described in Sect. 4.6, was used to ana-
lyze the features in the ML models. Figure 5 shows a sum-
mary of the most important features across all models. The
height of the bars relates to how many models were strongly
influenced by the corresponding feature, defined by the fea-
ture being among the ten highest when ranked by mean ab-
solute SHAP value. For example, the north-south directional
component of wind was among the ten most important in 46
models out of the total 56. In general, the wind-related fea-
tures are seen to be important for the prediction of all sub-
ranges of the size distribution, though less so for the nu-
cleation subrange. Solar radiation is also one of the most
important variables. ML models for the smallest two size
ranges seem to utilize emissions of organic carbon, whereas
accumulation subrange is connected to sulfur dioxide (SO2)
and sulfate (SO4), according to the SHAP values. Interest-
ingly, the feature for geopotential height is mainly used by
the Helsinki models.

https://doi.org/10.5194/amt-18-5763-2025 Atmos. Meas. Tech., 18, 5763–5782, 2025



5776 A. Vartiainen et al.: ML-based downscaling of GCM size distributions

Figure 5. Most important input variables across all eight datasets, measured by mean absolute SHAP values. All seven ML models were
analyzed for each dataset. Hence, the upper limit for the height of the bars is 56. Bars with height less than ten are not shown.

The modewise summaries of the SHAP explanations
(given in Figs. S1–S3) can be examined for additional in-
sights. Figure S1 shows that also variables related to dust and
black carbon, which are not present in the summary figure
(Fig. 5), are contributing to many of the ML models for ac-
cumulation subrange. Variables used for downscaling Aitken
subrange (Fig. S2) do not substantially differ from the ones
shown in the summary of Fig. 5. In general, we recommend
refraining from using SHAP to interpret weakly performing
models, such as most of the ones for nucleation subrange
(Fig. S3), as any conclusions made are likely to be mislead-
ing.

The best-performing ML models were studied in detail
using SHAP (Figs. S4–S15). These model explanations can
be compared to experimental studies from the sites to see
how well the statistical relationships found by the models
correspond to the physical characteristics of the locations.
The Helsinki station can be taken as an example. In previous
research (Järvi et al., 2009), the surrounding area has been
subdivided into three distinct land use sectors, of which the
road sector to the southeast has been found to be the largest
contributor to the accumulation mode (100–1000 nm), espe-
cially during springtime. In addition to the road itself, long-
range transport from the east is hypothesized to contribute to
this sector’s accumulation mode. On the other hand, an in-
creased concentration of ultrafine particles (3–100 nm) has
been associated roughly equally with the road sector and the
urban sector to the north. The vegetation sector to the west
remains a direction of slightly less polluted air throughout
the year. These findings are in line with the effects of wind
direction in our models: Figures S4–S8 for Helsinki show
that the east-west wind component is important in all mod-
els, and that its effect is positive (i.e., easterly wind is con-
nected to increased pollutant concentrations). The two best
models for Helsinki’s accumulation subrange (Figs. S4–S5)

both also include the north-south component, which has a
negative effect on PNC. This means that the models predict
higher concentrations when wind is blowing from the south.
Järvi et al. (2009) point out that ship emissions from the har-
bor, located approximately in this direction, can affect accu-
mulation mode PNC. Moreover, the springtime increase is
also captured by these two models. It is interesting to note
that NN2 has almost the same ρ2 as SVM, despite using far
fewer features (18 and 100, respectively; see Table S9).

As the models for Helsinki’s nucleation subrange
(Figs. S7–S8) are quite weak, and therefore unlikely to
capture the relevant effects, we compare the UFP of Järvi
et al. (2009) only to our Aitken subrange downscaling model
(Fig. S6). The positive effect of northerly wind and the nega-
tive effect of temperature on the Aitken subrange PNC seem
realistic, as wood combustion in the urban sector is a signifi-
cant source of pollutants in the area. Importance of the vari-
ables boundary layer height and atmospheric pressure might
also be related to the same phenomenon.

Likely, some (or even most) of the features shown in
the SHAP plots are only deemed important in terms of
their contribution to the downscaling because they correlate
with some physically relevant quantity, and not because they
themselves cause changes in PNC. For example, this is prob-
ably the case with the sea salt variable in Figs. S13 and S15,
as Melpitz is located nowhere near marine environments.
In the ECHAM-HAMMOZ data, PM25_SS is highly corre-
lated with certain variables (num_2a6, num_2a7, WAT_2a6,
and WAT_2a7) that might more realistically be connected to
PNC in Melpitz, however. Hence, when employing SHAP
values to assess feature importance, it is important to note
that SHAP explains how specific models operate and is not
to be interpreted as a tool for causal inference of physical
systems.
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In this analysis, it should naturally be recognized that all
features originate from a simulation of large-scale climate,
and therefore do not necessarily represent the immediate sur-
roundings of the measurement sites. Additionally, SHAP is
known to be sensitive to correlated features (Aas et al., 2021),
which most of our models include; if accurate explanations
of the models are crucial, care should be taken to remove all
(even somewhat) correlating features before training or use
more robust explanation methods.

5.5 Performance considerations

Although our results indicate that some of the ML methods
may on average result in higher goodness-of-fit metrics, there
are other aspects that might affect the choice of downscaling
method. For example, the training and inference durations
for different ML methods can vary differently as a function
of the dimensionality of input data. In our study, the com-
putational performance of the methods was not considered
important, as the downscaling was done as a post-processing
step. However, if the downscaling was included as an online
correction in the climate model itself, speed of the method
would be critical. We have compared the computational per-
formance of the seven model architectures separately for the
training, optimization, and inference steps (Fig. S16). There
is significant variation in performance: in terms of training,
GLM and SVM are by far the fastest, while the NN archi-
tectures take longest to train on average. When applying the
models for inference, however, NNs are among the fastest,
along with GLM. This might make them preferable in ap-
plications where computing time is costly. In the optimiza-
tion phase, the BO algorithm itself takes relatively long to
iterate through, reducing the difference in total duration be-
tween most methods; still, NNs are the slowest, though there
was large variation depending on the number of NN nodes.
Adding a layer to the NNs slowed their training substantially.
These findings are naturally only indicative of how the meth-
ods perform computationally, and may not apply to datasets
of different size. Moreover, parallel computation of the train-
ing or inference algorithms can yield additional speedups,
which could be another advantage of the methods capable of
being parallelized. Of our six methods, RF and NN training
can be run in parallel, as the trees in RF can be trained inde-
pendently, and the NN training can be split into independent
batches. Parts of the XGBoost algorithm can also be paral-
lelized, though the trees of the ensemble must still be trained
successively (Chen and Guestrin, 2016). Another advantage
of NNs is that their structure is ideal for multi-target regres-
sion, i.e., the number of target variables can be freely chosen.
This way, all three subranges of the size distribution could be
downscaled with a single NN. Using the other ML methods,
a separate model needs to be trained for each individual out-
put variable.

6 Conclusions

This study provides a proof of concept for using ML meth-
ods to improve the site-specific accuracy of aerosol particle
number size distributions derived from global-scale climate
models. By employing six ML methods, optimized through
feature selection and hyperparameter tuning, significant im-
provements were observed in the simulated particle concen-
trations, especially for accumulation and Aitken subranges.
Among the methods, XGBoost demonstrated, on average,
superior performance across various datasets. Despite these
advances, the nucleation subrange proved more challenging
to downscale, likely due to high spatial variability and lim-
itations in the underlying large-scale climate model outputs,
particularly in the processes contributing to new particle for-
mation.

The findings underscore the potential of ML-enhanced
downscaling as a computationally efficient alternative to tra-
ditional methods, offering robust applications in air quality
and epidemiological studies. It was observed that downscal-
ing methods can significantly enhance model accuracy at in-
dividual measurement sites. However, the selection of a suit-
able downscaling method requires precision and depends on
the target variable’s characteristics, as well as spatial and,
assumably, temporal dimensions. For example, while parti-
cle size ranges were the focus here, the same methods could
be applied to other variables as well. Future research should
focus on expanding the geographical scope of measurement
data, integrating additional features to capture local-scale
variations, and exploring dynamic downscaling during cli-
mate simulations. Additionally, deep learning methods spe-
cialized for time series regression, such as Long Short-Term
Memory NNs (Hochreiter and Schmidhuber, 1997), might
further improve the downscaling performance by account-
ing for temporal dependencies in the observed and simulated
data (if training data with no missing values were available).
These advancements could enhance the predictive accuracy
of particle size distributions in coarse-scale climate models,
contributing to better assessments of climate change impacts
and health outcomes.

Code and data availability. The ECHAM6-HAMMOZ model is
made available to the scientific community under the HAM-
MOZ Software License Agreement, which defines the condi-
tions under which the model can be used. The license can be
retrieved from https://redmine.hammoz.ethz.ch/attachments/291/
License_ECHAM-HAMMOZ_June2012.pdf (last access: 20 Oc-
tober 2025). The model data can be reproduced using ECHAM-
HAMMOZ model revision 6588 from the repository https:
//redmine.hammoz.ethz.ch/projects/hammoz/ (HAMMOZ consor-
tium, 2025, login required).

The Python code files for data processing, machine learn-
ing, and plotting are provided in the Zenodo archive at
https://doi.org/10.5281/zenodo.17079843 (Vartiainen, 2025). The
same archive also contains the ECHAM-HAMMOZ simulation set-
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tings, the trained ML models, as well as the processed simulation
and measurement datasets.

The particle number size distribution measurement data are
openly available in the EBAS (https://ebas.nilu.no/, last access: 17
September 2025) and SmartSMEAR (https://smear.avaa.csc.fi/, last
access: 17 September 2025) databases.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/amt-18-5763-2025-supplement.
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