Supplement of Atmos. Meas. Tech., 18, 5783–5803, 2025 https://doi.org/10.5194/amt-18-5783-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Global validation of the Particulate Observing Scanning Polarimeter (POSP) Aerosol Optical Depth products over land

Zhe Ji et al.

Correspondence to: Zhengqiang Li (lizq@radi.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

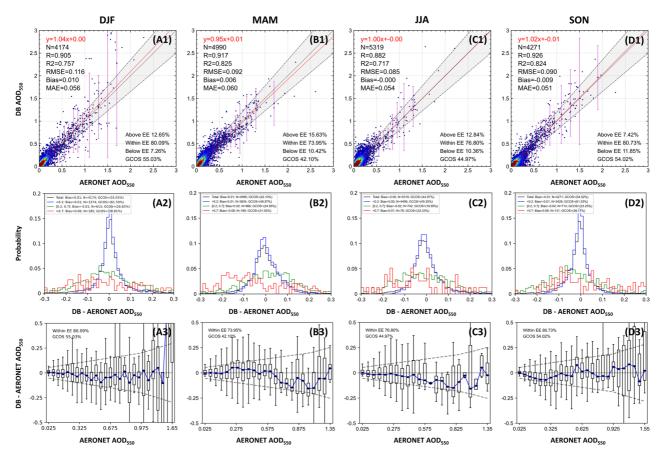


Figure S1: The same as Figure 1 but for different seasons. (1) Density scatter plots of DB AOD with AERONET AOD; (2) The probability density functions of differences (DB-AERONET); (3) Box plots of difference between DB AOD and AERONET AOD against AERONET AOD, in (A) DJF, (B) MAM, (C) JJA, and (D) SON.

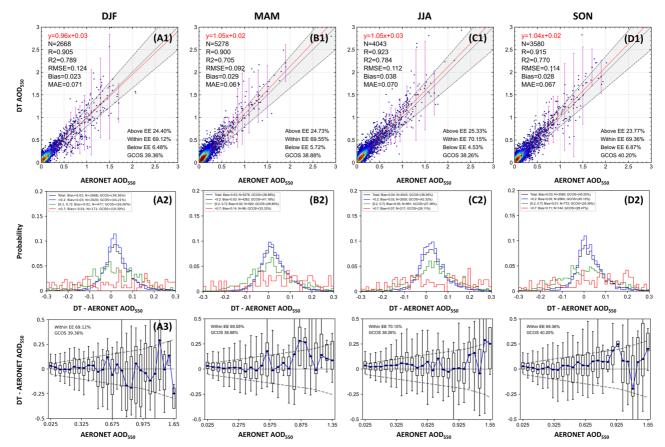


Figure S2: The same as Figure S1, but for DT.

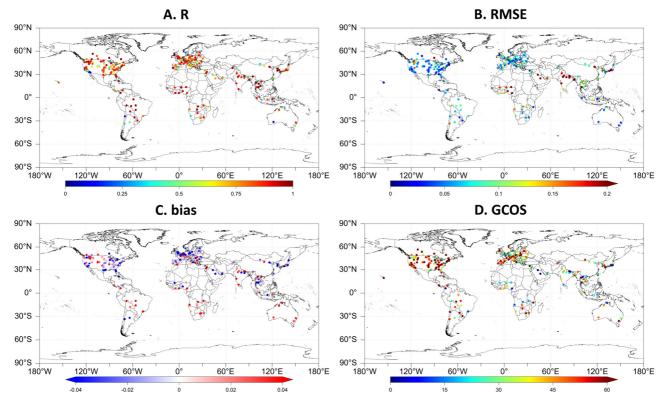
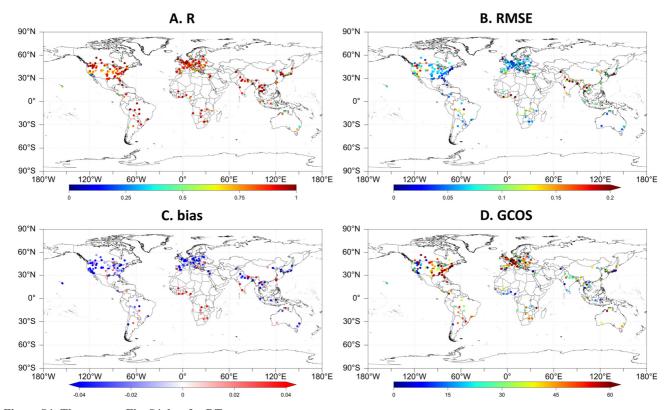



Figure S3: Site-scale statistics of the comparison of DB AOD versus AERONET AOD: (A) R, (B) RMSE, (C) Bias, and (D) GCOS.

20 Figure S4: The same as Fig. S4, but for DT.

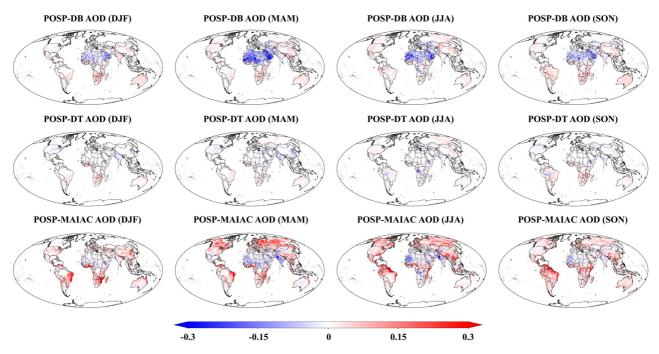


Figure S5: The differences between the seasonally averaged AOD from POSP and MODIS product for the year 2022.

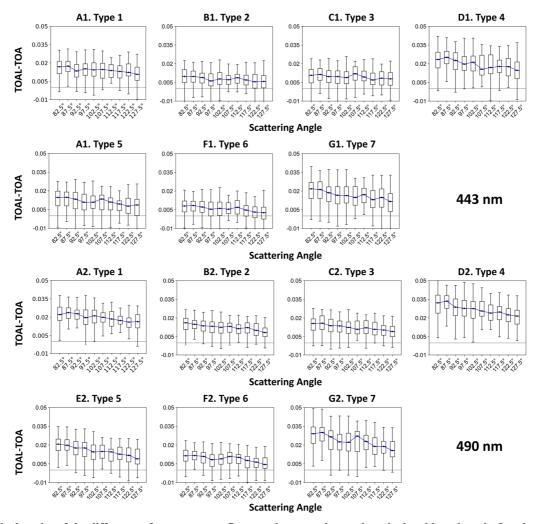


Figure S6: The boxplot of the differences for apparent reflectance between the results calculated based on the Lambertian forward radiative transfer model (TOAL) and the non-Lambertian forward radiative transfer model (TOA). The upper panel shows the differences as a function of AOD, while the lower panel presents the differences as a function of the scattering angle.

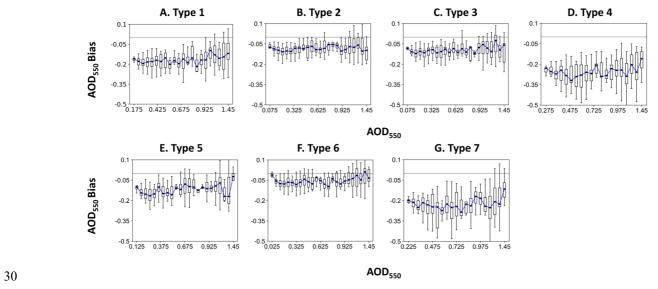


Figure S7: AOD bias as a function of aerosol loading for different urban surface types.

BRDF model

The Ross-Thick Li-Sparse (RTLS) model is a widely used semi-empirical kernel-driven model and is also the model used in the MODIS BRDF/Albedo product (MCD43) (Schaaf et al., 2002). The kernel functions are calculated as follows:

$$K_{iso}(\theta_{s}, \theta_{v}, \varphi) = 1 \tag{S1}$$

$$K_{vol}(\theta_s, \theta_v, \varphi) = \frac{\left(\frac{\pi}{2} - \xi\right)\cos\xi + \sin\xi}{\cos\theta_s + \cos\theta_v} - \frac{\pi}{4}$$
 (S2)

where ζ is the phase angle calculated as:

$$\cos \xi = \cos \theta_s \cos \theta_v + \sin \theta_s \sin \theta_v \cos \varphi \tag{S3}$$

$$K_{geo}(\theta_s, \theta_v, \varphi) = O(\theta_s, \theta_v, \varphi) - \sec \theta'_s - \sec \theta'_v + \frac{1}{2}(1 + \cos \xi') \sec \theta'_s \sec \theta'_v$$
 (S4)

40 where $O(\theta_s, \theta_v, \varphi)$ is the overlap area between the view and solar shadows, calculated as

$$O(\theta_s, \theta_v, \varphi) = \frac{1}{\pi} (t - \sin t \cos t) (\sec \theta'_s + \sec \theta'_v)$$
 (S5)

with

45

$$\cos t = \frac{h\sqrt{D^2 + (\tan \theta'_s \tan \theta'_v \sin \varphi)^2}}{\sec \theta'_s + \sec \theta'_v}$$
 (S6)

$$D = \sqrt{\tan^2 \theta'_s + \tan^2 \theta'_v - 2 \tan \theta'_s \tan \theta'_v \cos \varphi}$$
 (S7)

$$\cos \xi' = \cos \theta'_{s} \cos \theta'_{v} + \sin \theta'_{s} \sin \theta'_{v} \cos \varphi \tag{S8}$$

$$\theta'_{s} = \tan^{-1} \left[\frac{b}{r} \tan \theta_{s} \right] \theta'_{v} = \tan^{-1} \left[\frac{b}{r} \tan \theta_{v} \right]$$
 (S9)

In the RTLS model, h is the distance from the center of the ellipsoid to the ground, b is the length of the long half-axis radius of the ellipsoid, and r is the length of the short half-axis radius of the ellipsoid. In the MODIS BRDF product, h/b=2,b/2=1 is assumed (Lucht et al., 2000).

50 Non-Lambertian forward radiative transfer model

Qin et al. (2015) proposed an non-Lambertian forward radiative transfer model as an improvement over the original fourstream radiative transfer model:

$$\rho_{TOA} = \rho_0 + \frac{\vec{T}(\mu_s)^T \, \mathbf{R} \vec{T}(\mu_v) - e^{-\tau/\mu_s} |\mathbf{R}| e^{-\tau/\mu_v}}{1 - \rho_{BHR} S}$$
 (S10)

$$\mathbf{R} = \begin{bmatrix} \rho & \rho_{DHR} \\ \rho_{HDR} & \rho_{BHR} \end{bmatrix} \tag{S11}$$

where, μ_s and μ_v refer the cosine of solar zenith angle and viewing zenith angle, respectively; $\rho 0$ refers to the path reflectance; S is the spherical albedo of the atmosphere. R denotes the reflectance matrix, ρ_{DHR} is the directional-hemispherical reflectance (DHR), ρ_{HDR} is the hemispherical-directional reflectance (HDR), ρ_{BHR} is the bihemispherical reflectance (BHR) equal to the surface albedo, and |R| is the determinant of R. $\vec{T}(\mu_s) = \begin{bmatrix} e^{-\frac{\tau}{\mu_s}} & t_d(\mu_s) \end{bmatrix}^T$ and $\vec{T}(\mu_v) = \begin{bmatrix} e^{-\frac{\tau}{\mu_v}} & t_d(\mu_v) \end{bmatrix}^T$ are transmission matrices, td refers to the diffuse transmission. The description of the model is excerpted from (Ji et al., 2025).

60 Lambertian forward radiative transfer model

Assuming a uniform Lambertian surface, a horizontally averaged atmosphere, and atmospheric molecules primarily exist above the aerosol layer, the Top-of-Atmosphere (TOA) reflectance can be expressed as follows:

$$\rho^* = T_{gas} \left[\rho^R + T^R(\mu_s) \frac{\rho_G}{1 - S\rho_G} T^R(\mu_v) \right]$$
 (S12)

Where ρ^* is the apparent reflectance at the satellite observation, T_{gas} is the gas transmittance, $T^R(\mu_s)$ and $T^R(\mu_v)$ are the upward and downward atmospheric transmittances, respectively, ρ_G is the surface-coupled reflectance, and S is the spherical albedo. The description of the model is excerpted from (Ji et al., 2024).

References

- Ji, Z., Li, Z., Zhang, Y., Ma, Y., Shi, Z., Yan, X., Xie, Y., Zheng, Y., and Chen, Z.: Aerosol Optical Depth Retrieval Over Land from Particulate Observing Scanning Polarimeter (POSP) Using a New Look-Up Table (LUT) Method, Aerosol Sci. Eng., 8, 482–496, https://doi.org/10.1007/s41810-024-00236-6, 2024.
 - Ji, Z., Ma, Y., de Leeuw, G., Shi, Z., and Li, Z.: An Enhanced Aerosol Optical Depth Retrieval Algorithm for Particulate Observing Scanning Polarimeter (POSP) Data Over Land, IEEE Trans. Geosci. Remote Sens., 63, 1–18, https://doi.org/10.1109/TGRS.2024.3514170, 2025.
- 75 Lucht, W., Schaaf, C. B., and Strahler, A. H.: An algorithm for the retrieval of albedo from space using semiempirical BRDF models, IEEE Trans. Geosci. Remote Sens., 38, 977–998, 2000.
 - Qin, Y., Mitchell, R., and Forgan, B. W.: Characterizing the Aerosol and Surface Reflectance Over Australia Using AATSR, IEEE Trans. Geosci. Remote Sens., 53, 6163–6182, https://doi.org/10.1109/TGRS.2015.2433911, 2015.
- Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., and others: First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148, 2002.