
Atmos. Meas. Tech., 18, 5841–5859, 2025
https://doi.org/10.5194/amt-18-5841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

A new technique to retrieve aerosol vertical profiles using
micropulse lidar and ground-based aerosol measurements
Bo Chen1, Seth A. Thompson1, Brianna H. Matthews1,a, Milind Sharma1, Ron Li1, Christopher J. Nowotarski1,
Anita D. Rapp1, and Sarah D. Brooks1

1Department of Atmospheric Sciences, Texas A&M University, College Station, 77843, United States
anow at: Savannah River National Laboratory, Aiken, South Carolina, 29808, United States

Correspondence: Sarah D. Brooks (sbrooks@tamu.edu)

Received: 29 October 2024 – Discussion started: 13 December 2024
Revised: 31 August 2025 – Accepted: 9 September 2025 – Published: 29 October 2025

Abstract. Accurately characterizing the vertical distribu-
tion of aerosols and their cloud-forming properties is cru-
cial for understanding aerosol-cloud interactions and their
impact on climate. This study presents a novel technique
for retrieving vertical profiles of aerosols, cloud condensa-
tion nuclei (CCN), and ice nucleating particles (INP) by
combining micropulse lidar, radiosonde, and ground-based
aerosol measurements. Herein, the technique is applied to
data collected by our team at Texas A&M University during
the Tracking Aerosol Convection Interactions ExpeRiment
(TRACER) campaign. Ground-based aerosol size distribu-
tion and CCN counter data are used to estimate the value of
the aerosol hygroscopicity parameter, κ . The derived κ , to-
gether with Mie scattering theory and the relative humidity
profile from the radiosonde, is used to estimate aerosol size
growth and the associated increase in backscatter at each al-
titude. We then correct the lidar backscatter to dry conditions
to produce the dry aerosol backscatter coefficient profile. The
dry aerosol backscatter coefficient profile is linearly scaled
to collocated surface measurements of aerosols, CCN, and
INP to produce corresponding vertical profiles. Combining
lidar backscatter profiles with aerosol and cloud nucleation
measurements leads to a more realistic representation of ver-
tical distributions of aerosol properties. The method could
be readily applied to lidar measurements in future field cam-
paigns.

1 Introduction

The interaction between aerosols and clouds introduces sig-
nificant uncertainties in estimating aerosol indirect radiative
forcing, a critical factor in predicting future climate scenarios
(Seinfeld et al., 2016). Aerosols can facilitate the formation
of cloud droplets and ice particles by acting as cloud conden-
sation nuclei (CCN) and ice nucleating particles (INP), re-
spectively. Consequently, changes in aerosol concentrations
could influence many cloud properties and processes (Tao et
al., 2012; Fan et al., 2016; Twohy et al., 2005). For exam-
ple, increased CCN concentrations could result in smaller
cloud droplet sizes, suppress local precipitation in warm-
phase clouds, and extend cloud lifetimes (Twomey, 1977;
Albrecht, 1989). Some convective cloud studies have sug-
gested that an increased concentration of ultrafine aerosol
particles (smaller than 50 nm) leads to enhanced conden-
sational heating from additional water vapor condensation.
Since this process invigorates the updraft intensity, it has
been referred to as warm-phase invigoration (Fan et al., 2007;
Fan et al., 2018; Lebo and Seinfeld, 2011). Other studies
have focused on cold-phase invigoration of updrafts, a pro-
cess in which cloud water freezes, releasing latent heat and
subsequently increasing the buoyancy of air parcels (Andreae
et al., 2004; Rosenfeld et al., 2008). At present, the extent
and significance of aerosol-induced invigoration effects are
under debate (Lebo, 2018; Igel and van den Heever, 2021;
Varble et al., 2023). Addressing these uncertainties requires
a deeper understanding of the microphysical processes in-
volved (Jensen, 2023). One of the key gaps in our current un-
derstanding of aerosol-cloud interactions is the vertical dis-
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tribution of aerosols, CCN, and INPs in the cloud environ-
ment.

The knowledge of the aerosol vertical distribution is im-
portant for assessing aerosol-cloud interactions (Rosenfeld
et al., 2014; Lin et al., 2023). Modeling studies have shown
evidence that the altitude of aerosols significantly influences
their impact on cloud formation and deep convection (Mari-
nescu et al., 2017; Lebo, 2014; Zhang et al., 2021). However,
in most long-term field campaigns, aerosol, CCN, and INP
measurements are only made at ground-based sampling sta-
tions (Schmale et al., 2018; Pöhlker et al., 2016; Perkins et
al., 2022). By comparison, airborne in situ measurements,
which provide observations of CCN and INP at the cloud
level, are generally of shorter duration (Stith et al., 2009;
Dadashazar et al., 2022; Raes et al., 2000). Thus, retrievals
from ground-based lidar observations, which can operate
continuously over extended periods to quantitatively assess
vertical profiles of aerosol properties, represent a highly valu-
able method.

Lidars detect range-resolved properties of aerosols and
cloud particles by emitting laser pulses and measuring the
backscattered light. Lidar measurements can be used to re-
trieve bulk aerosol optical properties, including the aerosol
backscatter coefficient, extinction coefficient, and depolar-
ization ratio. These aerosol optical properties are influenced
by various aerosol properties, including size distribution,
shape, chemical composition, and mixing state (Brooks et
al., 2004b; Titos et al., 2016; Yao et al., 2022). Although
the same intrinsic particle properties govern microphysics,
the relationship between the lidar observations and the con-
centration of cloud-forming aerosols is not straightforward.
Most CCN are found within the Aitken (typically between
0.01 and 0.1 µm) and accumulation (typically between 0.1
and 1 µm) aerosol modes, but lidar observations at visi-
ble wavelengths are most sensitive to the accumulation and
coarse (typically greater than 1 µm) mode (Shinozuka et
al., 2015; Kapustin et al., 2006). In addition, aerosol hy-
groscopic growth due to increased humidity increases the
aerosol backscatter coefficient without affecting the CCN
concentration (Shinozuka et al., 2015; Liu and Li, 2014).
As for INP, it has been shown that larger aerosols are more
likely to be INP, particularly those with a diameter exceed-
ing 500 nm (DeMott et al., 2010). Individual aerosols in this
size range backscatter light effectively, but less than 1 in
105 particles in the atmosphere can act as INPs (DeMott et
al., 2010). Thus, INPs contribute little to the measured bulk
aerosol optical signals. Consequently, it is necessary to em-
ploy assumptions or complementary aerosol measurements
when estimating cloud-forming aerosol concentration from
remote sensing measurements.

Studies have adopted different approaches when using li-
dar measurements to retrieve the CCN concentration verti-
cal profile (Lv et al., 2018; Mamouri and Ansmann, 2016;
Ansmann et al., 2021; Ghan et al., 2006; Ghan and Collins,
2004; Lenhardt et al., 2023). The first approach involves

using multiwavelength lidar to retrieve aerosol concentra-
tions by classifying them into different aerosol types (urban,
biomass burning, and dust) and then using the prescribed
hygroscopicity parameter of each aerosol type to estimate
the CCN concentration (Lv et al., 2018). This approach re-
quires an advanced multiwavelength lidar, such as the multi-
wavelength High Spectral Resolution Lidar (HSRL-2) or the
multiwavelength Raman lidar (Müller et al., 2011; Müller
et al., 2014). Another approach relies on an empirical rela-
tion between the aerosol extinction coefficient and aerosol
concentrations derived from the Aerosol Robotic Network
(AERONET) to convert backscatter into aerosol concentra-
tion profiles. A CCN parameterization scheme based on the
empirical relation between aerosol and CCN concentration
of each aerosol type is applied to the aerosol concentration
profile to produce the CCN concentration profile (Mamouri
and Ansmann, 2016; Ansmann et al., 2021). Each of these
approaches strongly relies on assumed aerosol composition,
shape, and refractive index used in the lidar retrieval and
CCN parameterizations. Consequently, they may fail to cap-
ture the complex conditions of atmospheric aerosols, thus
limiting the precision of CCN estimations.

The third approach to determining CCN concentration us-
ing lidar is to directly scale ground-based CCN concentration
measurement with the lidar-measured extinction or backscat-
ter profile, first proposed by Ghan and Collins (2004). This
approach assumes that the aerosol composition and size dis-
tribution remain relatively constant with altitude. Ghan and
Collins (2004) used the humidification factor (hereby re-
ferred to as the lidar hygroscopic growth correction factor),
defined as the dependence of aerosol extinction or backscat-
ter on relative humidity (RH), to convert the observed ex-
tinction and backscatter coefficients to their dry counter-
parts. Ghan and Collins (2004) found that CCN concentra-
tions at smaller supersaturations correlate more strongly with
dry backscatter and are less impacted by height variations
in aerosol size distribution than at higher supersaturations.
Ghan et al. (2006) later validated this approach, showing that
the correlation between lidar-derived and in situ CCN is in-
fluenced by supersaturation, aerosol uniformity with height,
and lidar retrieval accuracy. This method has been applied
in a routine CCN profile data product based on a Raman
lidar (Kulkarni et al., 2023). Following a similar approach,
Lenhardt et al. (2023) compared in situ CCN and airborne
HSRL-2 measurements in the southeast Atlantic. Their re-
sults show that CCN concentration at 0.3 % supersaturation
in dry ambient conditions (where RH≤ 50 %) strongly corre-
lates with the HSRL-2 measured extinction and backscatter.
Collectively, these studies demonstrate the strong potential
of lidar observations for retrieving CCN profiles.

Compared to the lidar retrievals of CCN, fewer studies
have focused on INP retrievals using lidar data. Studies have
combined INP parameterization with lidar measurement to
retrieve INP concentration profiles (Mamouri and Ansmann,
2016; Marinou et al., 2019; Ansmann et al., 2021). A num-
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ber of INP parameterization schemes based on previous ice
nucleation measurements are available in the literature for
total global aerosols of unspecified composition (DeMott et
al., 2010), dust (Ullrich et al., 2017; DeMott et al., 2015;
Niemand et al., 2012; Steinke et al., 2015), soot aerosols
(Ullrich et al., 2017), biological aerosols (Tobo et al., 2013),
and organics (Wang and Knopf, 2011). Generalized aerosol
type and composition assumptions must be made when us-
ing these INP parameterizations, which depend on past mea-
surements from other locations or lab experiments. In con-
trast, lidar retrievals based on simultaneous ground-based
INP measurements would provide a more realistic estimate
of ice nucleation. We propose that, analogous to CCN pro-
file retrieval, INP concentration measured at the surface can
be linearly scaled by the dry backscatter coefficient profile
derived from lidar measurements to create an estimate of the
INP vertical profile.

Despite advancements in understanding aerosol–cloud
interactions, significant uncertainties remain in accurately
characterizing aerosol vertical distributions and their impact
on cloud processes, requiring more comprehensive and ver-
tically resolved measurements to fill these knowledge gaps.
The Tracking Aerosol Convection Interactions ExpeRiment
(TRACER) campaign focused on understanding aerosol-
cloud/convection interaction in the Houston metropolitan
area in the summer and fall of 2022 (Jensen, 2023). In
this study, we use the micropulse lidar and ground-based
aerosol measurements we collected during the TRACER
campaign to develop a measurement-based approach to re-
trieve the aerosol, CCN, and INP vertical profiles. The
ground-based aerosol measurements include aerosol size dis-
tribution, CCN, and INP measurements. By leveraging obser-
vations to minimize assumptions in the retrieval process, this
approach is expected to produce realistic vertical profiles of
aerosol, CCN, and INP concentrations.

2 Methodology

2.1 Overview of TRACER Field Campaign

The US Department of Energy (DOE) TRACER field cam-
paign was conducted from October 2021 through September
2022 in the Houston metropolitan area, with an intensive ob-
servation period (IOP) from June 2022 to September 2022, as
shown in Fig. 1. The DOE first Atmospheric Radiation Mea-
surement (ARM) Mobile Facility (AMF1) was deployed at
La Porte, Texas, throughout the campaign. During the IOP,
whenever forecasts indicated a strong sea breeze and con-
ditions favorable for isolated deep convection, the TAMU
ROAM-V was deployed at Seawolf Park in Galveston, Texas,
and at several inland sites (Rapp et al., 2024). An overview of
the TAMU TRACER campaign payload, deployment strat-
egy, and available measurements is provided by Rapp et al.
(2024). Both AMF1 and ROAM-V collected similar ground-

Figure 1. TRACER campaign sampling locations in the Houston,
Texas, metropolitan area. The Texas A&M University sampling
sites are marked with circles, the ARM AMF1 site is marked with
a star, and the ARM ancillary site is marked with a diamond. This
map was created using Natural Earth shapefiles, LandFire 2022 veg-
etation data, and USA detailed water bodies data (Rollins, 2009).

based aerosol measurements, radiosonde data, and ground-
based lidar profiles, as summarized in Table 1. The lidar re-
trieval method described below was developed based on the
ROAM-V instrumentation and was also applied to the ob-
servations at the AMF1 site during TRACER. By extension,
this method could be used in other future campaigns with
a similar instrumentation configuration. All ROAM-V mea-
surements, including the offline ice-nucleation array work,
were conducted by our Texas A&M group (see Thompson et
al., 2025a, b for details), and Table 1 lists the corresponding
DOE ARM data-archive entries for each instrument.

Figure 2 provides an overview of the retrieval routine for
aerosol, CCN, and INP profiles using the TRACER cam-
paign data. The routine is summarized here. First, we used
lidar and radiosonde data to determine the vertical pro-
file of the cloud-free aerosol backscatter coefficient. Next,
the aerosol measurements from Scanning Mobility Parti-
cle Sizer (SMPS), Portable Optical Particle Spectrometer
(POPS), and a cloud condensation nuclei (CCN) counter are
used to estimate the lidar hygroscopic growth correction fac-
tor, f (RH), which is the ratio of aerosol backscatter coeffi-
cient at a given relative humidity (RH) to that at dry con-
ditions. f (RH) and radiosonde-derived RH profile are then
used to convert the aerosol backscatter coefficient profile to
a dry aerosol backscatter coefficient profile. The resulting
dry aerosol backscatter coefficient profile is used to linearly
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Table 1. A list of data and instruments used in this study.

Measurements TAMU ROAM-V ARM AMF1

Aerosol Extinction and backscatter
profile

miniMPL
(Brooks and Chen, 2023)

MPL
(Muradyan et al., 2021)

Pressure, temperature, and relative
humidity profile

iMet-4
(Sharma et al., 2023)

Vaisala RS41
(Keeler et al., 2021)

Ground-based aerosol measurements

Aerosol concentration and size
distribution

SMPS, POPs
(Chen et al., 2024)

SMPS, APS
(Shilling and Levin, 2021,
2023)

CCN concentration CCN Counter
(Thompson et al., 2023)

CCN-200
(Koontz et al., 2021)

INP concentration DRUM impactor and TAMU
droplet freezing array
(Brooks and Thompson, 2023)

DRUM impactor and TAMU
droplet freezing array
(Brooks and Thompson, 2023)

scale time-averaged surface aerosol concentration, CCN con-
centration, and INP concentration measurements to estimate
their vertical distributions. Each profile is retrieved from data
collected over a one to three hour period centered around ra-
diosonde launch time.

This method addresses the challenge that aerosol size
distribution, composition, particle shape, and hygroscopic
growth, all of which influence backscatter, are not directly
measured by the micropulse lidar and must be inferred. By
assuming that surface aerosol properties are representative of
those of the whole column, the dry backscatter coefficient be-
comes approximately linearly proportional to aerosol volume
concentration. We therefore could scale the time-averaged
surface aerosol, CCN, and INP measurements with the lidar-
derived dry backscatter profile to obtain their vertical distri-
butions. Below, we discuss details of each step of the retrieval
process with TAMU ROAM-V data collected on 28 August
2022 in Galveston, Texas, as an example.

2.2 Micropulse Lidar Measurement and Inversion of
the Lidar Equation

The mini micropulse lidar (miniMPL, Droplet Measure-
ment Technologies, Inc.) operates at 532 nm and measures
backscatter and depolarization (Campbell et al., 2002; Flynn
et al., 2007; Welton and Campbell, 2002). The miniMPL
uses a vertical resolution of 15 m and a temporal resolution
of 1 min in the TRACER campaign. The normalized relative
backscatter (NRB), also known as the attenuated backscatter,
is derived from the raw backscattered lidar signal after stan-
dard background, afterpulse, deadtime, and overlap correc-
tions are performed. Details of the corrections are presented
in the Supplement (Eqs. S1–S4). An example of an NRB time
series collected by the miniMPL is shown in Fig. 3.

NRB can be expressed as,

NRB(R)= C[β1(R)+β2(R)]T
2

1 (R)T
2

2 (R) (1)

where R is the range, C is the lidar calibration constant, β1
and β2 represent the backscatter coefficient of aerosol and
air molecules, respectively; T1 and T2 represent the transmit-
tance of aerosol and air molecules, respectively. After cor-
recting the raw lidar data to produce the NRB profile, data
filtering and smoothing are applied to the NRB profile. First,
a continuous wavelet transform based algorithm is used to
create a cloud mask, filtering out periods of data with cloud
signal peaks in the NRB profile that compromise the quality
of aerosol retrieval (Du et al., 2006). Because the miniMPL
collects measurements near the peak of the solar spectrum,
observations can have a considerable amount of background
noise during daytime measurements (Campbell et al., 2002).
The NRB profiles of cloud-free columns, typically between
0.5 to 1.5 h before and after the radiosonde launch time (for a
total of one to three hours), are time-averaged. The sensitivity
of this aerosol profile retrieval method is shown in Sect. S4
of the Supplement. This averaged NRB profile is further nor-
malized by the average NRB value of the lowest range bin.
In addition, the NRB profile above 4.5 km is smoothed using
the NeighBlock denoising algorithm based on the discrete
wavelet transform to increase the stability of the retrieval pro-
cess (Cai and Silverman, 2001). Similar wavelet transform
techniques have been widely used in lidar applications for
noise reduction and feature detection because the lidar signal
exhibits a varying degree and frequency of noise at different
ranges (Fang and Huang, 2004; Xie et al., 2017).

Next, a Fernald two-component lidar inversion method
is performed. This is a classic method for solving the li-
dar equation and retrieving aerosol backscatter profiles from
the attenuated backscatter (Fernald et al., 1972; Klett, 1981;
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Figure 2. Overview of the aerosol, CCN, and INP profile retrieval
routine.

Figure 3. Normalized relative backscatter (NRB) time series col-
lected on 28 August 2022, with miniMPL in Galveston, Texas.

Fernald, 1984; Sasano et al., 1985). The lidar ratio (S), de-
fined as the ratio of aerosol extinction coefficient to aerosol

backscatter coefficient, is assumed to be constant with re-
spect to range (R). Following the Fernald method, the sum
of aerosol (β1(R)) and molecular backscatter coefficient
(β2(R)) is expressed as:

β1(R)+β2(R)

=
NRB(R) · e−2(S1−S2)

∫ R
RC
β2(r)dr

NRB(RC)
β1(RC)+β2(RC)

− 2S1
∫ R
RC

NRB(r) · e−2(S1−S2)
∫ r
RC
β2(r ′)dr ′dr

(2)

The numerical form of Eq. (2) used for the calculation is
shown in the Supplement (Eq. S5). S1 and S2 in Eq. (2) repre-
sent the lidar ratio of aerosol and air molecules, respectively.
S2 is approximated by the well-known constant 8π/3 sr (Fer-
nald, 1984). RC is the calibration range selected at the far
field, and usually, a priori information is needed to set the
reference aerosol backscatter at the calibration range. At a
wavelength of 532 nm, the aerosol lidar ratio typically ranges
from 23± 5 sr for clean marine aerosols, 44± 9 sr for dust,
53± 24 sr for clean continental aerosols, 55± 22 sr for pol-
luted dust, to 70± 25 sr for polluted continental and smoke
aerosols (Young et al., 2018). To account for the potential
variability of the lidar ratio, we choose 20 and 90 sr as the
lower and upper estimates of aerosol lidar ratio, respectively.
The calibration range, RC, was chosen to be 8 km above
ground level (a.g.l.). At this range, we assume the calibration
scattering ratio (β1(R)+β2(R))/β2(R), which is the ratio
of the sum of aerosol and molecular backscatter coefficients
and molecular backscatter coefficient, varies between 1.0 and
1.2.

The Rayleigh backscatter β2(R) is calculated using the
following equation (Gimmestad and Roberts, 2023).

β2(R)= 1.39 ×
[

0.55µm
λ

]4

× 10−6
·

288.15K
1013.25hPa

·
P(R)

T (R)
(3)

P(R) and T (R) are pressure and temperature profiles mea-
sured by radiosondes launched during the TRACER cam-
paign, and λ is the lidar wavelength, 532 nm. Finally, Eq. (2)
can be iteratively solved in a top-down approach, starting
from the calibration range and working toward the surface.
The aerosol backscatter coefficient profile can be calculated
by subtracting the molecular backscatter coefficient profile
from the total backscatter coefficient profile.

An example of NRB profile and backscatter coeffi-
cient profile inversion is shown in Fig. 4. The cloud-
free NRB profile of miniMPL is time-averaged between
16:10 to 18:50 UTC at Seawolf Park on 28 August 2022.
The Rayleigh backscatter coefficient profile, shown in blue
dashed lines in Fig. 4b, is calculated using data from the ra-
diosonde launched around 17:30 UTC from the same site,
and the total backscatter coefficient derived from the lidar
inversion is shown in Fig. 4b as a black solid line. The to-
tal backscatter coefficient profile closely follows the molec-
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Figure 4. (a) Time-averaged NRB profile of miniMPL from 16:10
to 18:50 UTC on 28 August 2022. The black line is the NRB profile
normalized by the lowest level value; the orange dashed line rep-
resents the smoothed NRB. (b) Rayleigh backscatter coefficient β2
(dashed blue line) and total backscatter coefficient β1+β2 (solid
black line). The shaded region shows the uncertainty range of the
retrieved total backscatter coefficient.

ular (Rayleigh) backscatter profile above 2 km a.g.l., indicat-
ing that aerosol contributions are minimal at these altitudes
and that the backscatter is dominated by scattering from air
molecules. This consistency also suggests that the Fernald in-
version is performing well, since the molecular backscatter is
independently calculated and provides a reference baseline.

The uncertainty in the total backscatter coefficient is as-
sessed by systematically varying key parameters: the scat-
tering ratio at the calibration height and the lidar ratio. The
Fernald inversion process was applied 40 times to the same
NRB profile, using 5 calibration scattering ratios (1.0 to 1.2)
and 8 lidar ratios (20 to 90 sr), producing 40 backscatter coef-
ficient profiles. The mean of these profiles can be considered
as the best estimate, while the spread of these profiles from
the maximum to the minimum of these profiles represents
the uncertainty interval. This systematic sensitivity analysis
ensures that the retrieved aerosol backscatter profile accounts
for potential variability in the lidar ratio and the scattering ra-
tio, providing a more reliable estimate. The uncertainty range
of the retrieved backscatter coefficient is shown in Fig. 4b as
the grey-shaded region.

2.3 Ground-based Aerosol Measurements

During the TRACER field campaign, the TAMU ROAM-
V deployed a suite of surface aerosol measurements, which
are used in this analysis (see Table 1). The ROAM-V plat-
form shares a heated and dried isokinetic inlet among the
TSI Scanning Mobility Particle Sizer (SMPS), the Droplet
Measurement Technologies CCN counter, and an additional
GRIMM Condensation Particle Counter (CPC). Details of
the ROAM-V instrument sampling setup for the TRACER

Figure 5. Time-averaged aerosol measurements were collected on
28 August 2022, from 16:10 to 18:50 UTC at the TAMU site in
Galveston. (a) Time-averaged aerosol size distribution with a y-axis
on a linear scale. The shaded area illustrates the standard error of the
estimated mean. (b) Time-averaged aerosol size distribution with a
y-axis on a log scale. (c) CCN spectra, where scatter points are time-
averaged CCN concentrations at different supersaturations, and the
standard error of the sample mean is illustrated as error bars. (d)
INP spectra showing INP concentrations evaluated at different tem-
peratures.

campaign and the particle loss corrections are further de-
scribed in Thompson et al. (2025a).

Onboard ROAM-V, the SMPS measures the mobility di-
ameter of aerosols between 7 and 305 nm, while the POPS
measures the optical diameter of aerosols ranging from 125
to 3370 nm. Because the SMPS and POPS are based on dif-
ferent physical principles, a method was developed to merge
their measured size distributions. T-matrix code is used to
simulate the signal scattered by quasi-spherical particles of
various sizes detected by the POPS, generating a signal-size
relation that depends on the aerosol effective refractive index
(Mishchenko and Travis, 1994). The POPS-measured aerosol
sizes can be recalculated by adjusting the effective refractive
index. The refractive index that minimizes the root-mean-
square error of the overlapping size region between the POPS
and SMPS size distributions is then selected. The resulting
POPS size distribution is then merged with the SMPS size
distribution by applying a weighted average over the over-
lapping region. The weights are determined by the Gaussian
error function to ensure a smooth transition between the two
size distributions. The time average of the merged size dis-
tribution across the time-averaging period is used for further
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analysis. An example of the time-averaged aerosol size dis-
tribution measurement taken on 28 August 2022, from 16:10
to 18:50 UTC at Seawolf Park, is shown in Fig. 5a, b. The
uncertainty of the aerosol size distribution is represented by
two standard errors of the time-averaged aerosol size data
to provide a 95 % confidence interval for the time-averaged
aerosol size distribution.

The CCN concentration spectra were measured with the
CCN counter, which was set to supersaturations between
0.2 % and 1.2 % with intervals of 0.2 %. The CCN counter
was calibrated with size-selected ammonium sulfate parti-
cles. Similar to the merged aerosol size distribution, the time-
averaged CCN spectra are calculated to represent the CCN
concentration during the time-averaging period. An example
of the average CCN measurement taken on 28 August 2022,
from 16:10 to 18:50 UTC at the TAMU site in Galveston, is
shown in Fig. 5c. The two standard errors of CCN data are
calculated to provide a 95 % confidence interval for the time-
averaged CCN concentration.

For ice nucleation measurements, size-resolved aerosol
samples were collected using the Davis Rotating-drum
Universal-size-cut Monitoring (DRUM) impactor in four size
ranges: greater than 3 µm, 3 to 1.2 µm, 1.2 to 0.34 µm, and
0.34 to 0.15 µm, and analysed in the laboratory for ice nu-
cleation measurements. Ice nucleation measurements were
conducted using the custom-built immersion freezing ar-
ray used in our previous experiments (Fornea et al., 2009;
Lei et al., 2023; Thompson et al., 2025a; Thompson et al.,
2025b), and described only briefly here. Aerosol impactor
samples are washed off the impactor substrate into high
purity UHPLC (ultra-high-pressure liquid chromatography)
water. Then, 2 µL droplets of the sample water are subjected
to 25 freeze-thaw cycles on the immersion freezing array. A
digital camera is used to detect freezing events and identify
ice nucleation temperatures by measuring the average bright-
ness (or grayscale value) of the droplet pixels in an 8-bit im-
age (which has 256 levels of grayscale value). This image-
processing technique monitors changes in brightness to infer
droplet freezing. The INP concentrations in the air are calcu-
lated using established methods (Vali, 1971).

For each retrieval, aerosol, CCN, and INP measurements
were averaged over the same one to three hour window as
the lidar data used for backscatter profile retrieval. This av-
eraging period reflects the operational constraints of each in-
strument: the CCN counter requires approximately 30 min to
complete a full scan over the range of supersaturations, and
INP samples were collected over one to two hour periods
(Thompson et al., 2025a).

2.4 Aerosol Hygroscopicity and Lidar Hygroscopic
Growth Correction Factor

Since water uptake by aerosols enlarges their size and in-
creases backscattering without affecting aerosol concentra-
tion, it is not possible to reliably determine aerosol concen-

tration from the aerosol backscatter profile alone. It is impor-
tant to convert the aerosol backscatter profile to the aerosol
backscatter profile that would be observed under dry condi-
tions prior to calculating aerosol, CCN, or INP concentra-
tions.

In past studies, the hygroscopicity or water uptake by
aerosols, defined as the change in aerosol diameter at a given
RH relative to its dry diameter, has been quantified by tandem
differential mobility measurements (Brooks et al., 2004a;
Tomlinson et al., 2007). Similarly, humidified nephelometers
have been used to quantify changes in scattering by aerosol
at increased RH compared to scattering by dry aerosol, and
the results have been used to interpret lidar backscatter ob-
servations (Kotchenruther et al., 1999; Ghan et al., 2006).

Here, we developed a new method that combines κ-Köhler
theory with Mie theory to infer dry aerosol backscatter pro-
files from the observations at ambient RH. It is well known
that activated CCN are defined as those aerosols that have
grown beyond the critical diameter required for spontaneous
droplet growth. CCN activation occurs in a supersaturated
environment. However, it has been demonstrated that for uni-
formly mixed soluble aerosol, CCN activation measurements
can be used to infer hygroscopic growth of aerosol in subsat-
urated conditions as well (Petters and Kreidenweis, 2007).
This widely used concept has become known as κ-Köhler
theory (Petters and Kreidenweis, 2007).

Using κ-Köhler theory, CCN and aerosol size distribution
measurements can be combined to infer an aerosol hygro-
scopicity parameter κ (kappa). The critical dry diameterDp,c
is the size above which dry aerosols of a certain κ activate to
form cloud droplets when exposed to a critical supersatura-
tion SSc. Following the work of Moore et al. (2011), Dp,c
satisfies the integral

NCCN =

∫
∞

Dp,c

np(logDp)dlogDp (4)

np(logDp) is the measured aerosol size distribution in the
form of dndlogDp, and NCCN is the measured CCN concen-
tration at a supersaturation level. Dp,c can then be numeri-
cally solved. Since CCN concentration is measured at a few
different supersaturations, multiple pairs of SSc-Dp,c values
are calculated, and an example of the SSc-Dp,c pairs is shown
in Fig. 6a. Each pair of SSc-Dp,c values can then be numer-
ically solved using κ-Köhler theory to derive a κ value (Pet-
ters and Kreidenweis, 2007).

Following κ-Köhler theory, the saturation ratio S over an
aqueous solution droplet with diameter D (also called wet
diameter) can be expressed as

S(D)=
D3
−D3

d

D3−D3
d(1− κ)

exp
( 4σ s

a
Mw

RT ρwD

)
(5)

Dd is the dry diameter of the particle. κ is the hygroscopicity
parameter. σs/a is the surface tension of the air-water inter-
face. Mw is the molar mass of water. R is the universal gas
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Figure 6. (a) Blue scattered points represent pairs of critical su-
persaturation and corresponding critical dry diameter derived from
aerosol size distribution and CCN measurements. The blue dotted
line represents the geometric mean of derived aerosol hygroscopic-
ity κ , and the shaded region represents the one geometric standard
deviation of κ . κ = 1 line is shown in a solid black line; κ = 0.1
is shown in a dashed line; κ = 0.01 line is shown in a dash-dotted
line; κ = 0.001 line is shown in a dotted line; and κ = 0 is shown
in a thick solid black line. (b) Lidar hygroscopic growth correction
factor as a function of relative humidity. The shaded area represents
the uncertainties of the derived κ .

constant. T is the temperature evaluated at 298.15 K. ρw is
the density of water. The κ-Köhler equation relates saturation
ratio to particle size, and the supersaturation at the peak indi-
cates the activation point of the particle as a CCN. A numer-
ical function was constructed to find the supersaturation at
the peak of the κ-Köhler equation using binary search, with
the particle dry diameter and κ as input parameters. Thus,
the problem becomes finding the κ corresponding to a given
Dp,c as the dry diameter, to match a specific SSc as the out-
put. The κ is then numerically determined using an iterative
root-finding method to match the measured SSc-Dp,c pairs.

Since κ can be considered as log-normally distributed (Su
et al., 2010), the geometric mean and geometric standard de-
viation can be calculated to represent the average value and
the variability of κ for the bulk aerosol composition. An ex-
ample of the geometric mean and geometric standard devi-
ation of κ is also shown in Fig. 6a. The variation in κ val-
ues at different supersaturations can be attributed to uncer-
tainties in measurements and the differences in the aerosol
chemical composition and mixing state across various sizes.
Subsequently, the aerosol size growth is predicted by numer-
ically solving for the wet aerosol diameter at a discrete series
of RH values (Petters and Kreidenweis, 2007). To determine
the wet diameter at each RH value, we solve for the point at
which the saturation ratio predicted by the κ-Köhler theory
matches the specified environmental saturation ratio. This is
done through an iterative root-finding approach, using the dry
diameter as the initial guess.

Once the aerosol size is known as a function of RH, the
Mie scattering theory is then used to calculate the aerosol
extinction coefficient at each RH value (Prahl, 2023). The
refractive index for dry aerosol is assumed to be 1.45–0i

based on values for dry ammonium sulfate at 532 nm (Cot-
terell et al., 2017). In the absence of detailed aerosol com-
position data, the refractive index of ammonium sulfate is
frequently adopted as a representative value in aerosol op-
tical calculations, as it provides a reasonable approximation
for non-absorbing, hygroscopic particles (Zieger et al., 2013;
Ghan and Collins, 2004). In reality, aerosols containing sul-
fate, nitrate, organic compounds, soot, and soil dust were all
presented in Houston in varying proportions depending on
air mass origin (Thompson et al., 2025a; Lei et al., 2025).
The refractive index of aerosol at each RH is calculated as
the volume-weighted average of the dry aerosol refractive
index and that of water. During the field campaign, aerosol
size distribution measurements are made after the sample air
is dried to below 30 % RH, as measured by an RH sensor.
At this RH level, aerosols are typically considered dry based
on the efflorescence point of background ammonium sulfate
(Onasch et al., 1999). Therefore, a lidar hygroscopic growth
correction factor f (RH) can then be calculated as:

f (RH)=
{

σ(RH)
σ (30 %) RH > 30%
1 RH ≤ 30%

(6)

Following the work of Geisinger, the extinction coefficient σ ,
rather than the backscatter coefficient, was used here. The
extinction coefficient is more stable numerically than the
backscatter coefficient in Mie scattering calculations and is
less sensitive to uncertainties in particle size distribution and
refractive index (Geisinger et al., 2017). This is convenient
since we already assumed a linear relation between backscat-
ter and extinction in the lidar inversion, and it is justifiable
based on the work of Ghan and Collins (2004), in which the
influence of RH on backscatter and extinction was shown
to be similar. In addition, we assume a perfectly internally
mixed aerosol distribution, and we apply the same κ across
all aerosol sizes when predicting aerosol size growth at dif-
ferent RH. To account for the uncertainty of κ , we calculate
the f (RH) using the geometric mean κ and its value at one
geometric standard deviation interval. The f (RH) calculated
using the κ values is shown in Fig. 6b. The solid black line
represents the f (RH) calculated using the geometric mean
κ , and the shaded region represents the f (RH) uncertainty
calculated using one geometric standard deviation interval of
κ . The calculated f (RH) is further interpolated using a cubic
spline to calculate f (RH) at any RH value.

2.5 Deriving the Aerosol, CCN, and INP Vertical
Profiles

To retrieve aerosol, CCN, and INP vertical profiles, we as-
sume that the surface measurements are representative of the
aerosol size distribution, composition, and cloud-activating
ability aloft. This assumption generally holds in well-mixed
layers but may break down in the presence of elevated
aerosol layers, such as transported smoke or dust, which can
be identified in the normalized relative backscatter (NRB)
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signal. Assuming that aerosol hygroscopicity at the surface is
representative of the entire profile, the dry aerosol backscat-
ter coefficient profile βdry(R) is given by

βdry(R)=
β1(R)

f (RH)
(7)

Figure 7a shows the aerosol backscatter coefficient profile
(black line with gray shading for uncertainty), the RH pro-
file (solid blue line), and the resulting dry aerosol backscatter
coefficient profile (red line with red shading for uncertainty).
The radiosonde has a relatively small uncertainty in RH mea-
surements, specified as±5 %. The uncertainty in the lidar hy-
groscopic growth correction factor, f (RH), is included in the
overall uncertainty of the dry aerosol backscatter coefficient.
Assuming that the aerosol, CCN, and INP properties at the
surface are representative of the vertical profile, the aerosol
(Np), CCN (NCCN), and INP (NINP) concentration profiles
can therefore be estimated as:

Np(R)=
βdry(R)

βdry(R0)
·Np(R0) (8a)

NCCN(R,SS)=
βdry(R)

βdry(R0)
·NCCN(R0,SS) (8b)

NINP(R,T )=
βdry(R)

βdry(R0)
·NINP(R0,T ) (8c)

R0 is the altitude where the surface measurements are col-
lected. βdry(R0) is the dry aerosol backscatter coefficient pro-
file at R0. Np, NCCN, and NINP are aerosol, CCN, and INP
number concentrations, respectively. One profile each for
aerosol, CCN, and INP is retrieved for each time-averaging
period. Since the MPL and the miniMPL have near-field
blind ranges of 250 and 100 m, respectively, lidar mea-
surements near the surface are unavailable. To estimate the
aerosol backscatter coefficient profile within the lidar’s blind
zone, we perform a second-degree polynomial fit to the dry
aerosol backscatter profile from up to 300 m a.g.l. down to
the edge of the blind zone. This fitted curve is then extrap-
olated into the blind zone. Since the aerosol profile is later
linearly scaled by the dry backscatter profile, having a physi-
cally reasonable estimation of the aerosol profile in the blind
zone is necessary to ensure that the scaling reflects realis-
tic near-surface conditions. The extrapolated portions of the
dry backscatter coefficient profile within the blind zone are
shown as dotted lines in Fig. 7a. The SS is the supersatu-
ration at which the CCN concentration is evaluated, and T
is the temperature at which the INP concentration is eval-
uated. In addition, one standard error of the time-averaged
aerosol and CCN concentration of the time averaging pe-
riod, around one to three hours, is included in the calcula-
tion for aerosol and CCN concentration profiles. The aerosol
and CCN concentrations evaluated at different supersatura-
tions are shown in Fig. 7b. INP profiles are shown in Fig. 7c.
The dry aerosol backscatter coefficient profile determines the

shape of aerosol, CCN, and INP concentration profiles, while
the surface aerosol measurements determine the amplitude.
CCN concentration profiles are presented at different super-
saturations, and INP concentration profiles are presented at
different activation temperatures. Presenting CCN and INP
profiles this way is useful for modeling applications, as it al-
lows the model to compute CCN and INP activation dynam-
ically when the particles are transported to conditions sup-
portive of cloud condensation or ice nucleation within the
modeled convection (or other atmospheric processes of in-
terest).

It is important to acknowledge that lidar-derived aerosol
profiles may be affected by the artificial increase in aerosol
backscatter at higher altitudes. As seen in Fig. 7a, b, the
aerosol backscatter coefficient shows a steady increase with
height above 4 km. This apparent increase is likely a system-
atic artifact related to lidar signal noise at higher altitudes.
As a result, the retrieved aerosol profile above 4 km should
be interpreted with caution.

3 Results

3.1 Case study: Aerosol Profile under Clear Sky
Conditions

We begin with a case study from 31 August 2022, at the
coastal Galveston site (16:39–19:00 UTC), representing a
baseline case under well-mixed atmospheric conditions with
minimal cloud influence. The NRB time series in Fig. 8a
shows a persistent layer of high backscatter, visible below
approximately 1 km a.g.l. In addition, intermittent layers of
high backscatter are observed between 1 and 3 km.

Figure 8b shows the cloud-free aerosol backscatter coeffi-
cient and the dry aerosol backscatter profile during the time-
averaging period. The relative humidity (RH) profile is rela-
tively uniform below 8 km, stabilizing around 65 %, and the
derived aerosol hygroscopicity parameter κ is modest, with a
geometric mean of approximately 0.09× 2.70±1. This low κ

value suggests the aerosol population during this period was
only weakly hygroscopic. As expected, under these uniform
RH and composition conditions, the correction for aerosol
hygroscopic growth introduces minimal differences between
the raw and dry backscatter profiles. The similarity between
the two profiles (Fig. 8b) confirms that, in this case, the lidar
backscatter signal is not significantly biased by water uptake.

Figure 8c shows the retrieved aerosol profile and CCN pro-
file at different supersaturations. Surface aerosol concentra-
tions were (5.65± 0.46)× 103 cm−3, decreasing to (1.14±
0.57)× 103 cm−3 at 1 km a.g.l., a roughly fivefold reduc-
tion with height. CCN concentrations at a supersaturation of
0.2 % show a similar decline, from 329± 2 cm−3 at the sur-
face to 67± 26 cm−3 at 1 km. Figure 8d shows the retrieved
INP profile evaluated at different temperatures. INP concen-
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Figure 7. (a) Aerosol and dry aerosol backscatter coefficient profiles are shown as solid black and red lines, respectively, with shaded areas
showing the corresponding uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. (b) The aerosol
profile is shown as a solid black line. CCN profiles are shown in different colors corresponding to supersaturation levels of 0.2 %, 0.6 %, and
1.2 %. (c) INP profiles evaluated at −20 and −25 °C.

Figure 8. (a) NRB time series data collected on 31 August 2022, from 16:39 to 19:00 UTC, with miniMPL in Galveston, Texas. (b) Aerosol
and dry aerosol backscatter coefficient profiles are shown as solid black and red lines, respectively, with a shaded area showing the corre-
sponding uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. (c) The aerosol profile is shown as
a solid black line. CCN profiles are shown in different colors corresponding to supersaturation levels of 0.2 % and 0.6 %. CCN data for 1.2 %
supersaturation were not available. (d) INP profiles at −15, −20, and −25 °C. Note that the −20 °C INP profile overlaps with the −25 °C
INP profile.
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trations evaluated at−15 °C were 0.11 L−1 at the surface and
0.02 L−1 at 1 km a.g.l.

3.2 Case study: Correction for Hygroscopic Growth in
the Boundary Layer

This case from 6 September 2022 at the inland site in
Hockley, Texas (18:30–20:30 UTC), demonstrates the impor-
tance of applying a hygroscopic growth correction when RH
varies strongly with altitude. Figure 9a shows the lidar NRB
time series, with a shallow boundary cloud observed around
1.2 km a.g.l. The layer at and below the cloud level height
can be identified as a convective mixed layer, while the layer
above the cloud level can be identified as an elevated aerosol
layer. Although an elevated aerosol layer exists, it does not
affect the correction for the enhanced scattering from hy-
groscopic growth in the mixed layer. The NRB time series
in Fig. 9a shows limited temporal variation in attenuated
backscatter profiles during the cloud-free period.

Figure 9b shows the cloud-free aerosol backscatter co-
efficient and the dry aerosol backscatter profile during the
time-averaging period. As RH increases toward 100 % within
the mixed layer, the correction for hygroscopic growth, ap-
plied using the lidar hygroscopicity factor f (RH), results in
a dry aerosol backscatter profile lower than the uncorrected
one. Without this correction, aerosol concentrations would
be substantially overestimated. For example, at 1.2 km a.g.l.,
aerosol concentration estimates from uncorrected backscatter
would exceed the corrected value by a factor of 2.8.

Figure 9c and d show retrieved aerosol, CCN, and
INP profiles. The aerosol concentration at the surface is
approximately (3.30± 0.09)× 103 cm−3 and decreases to
371 216 cm−3 at the top of the mixed layer at 1.2 km a.g.l.
The CCN concentration evaluated at a supersaturation of
0.2 % is 159± 2 cm−3 at the surface and 18± 10 cm−3 at
1.2 km a.g.l. (Fig. 9d). The INP concentration evaluated at
−20 °C is around 0.07 L−1 at the surface level and around
3× 10−3 L−1 at 1 km a.g.l. No INP was observed at −15 °C.
Between 1.2 and 3.2 km, the dry aerosol backscatter coef-
ficient profile indicates the presence of an elevated aerosol
layer above the mixed layer. The aerosol population in the
mixed layer and the elevated aerosol layer may differ in terms
of aerosol size distribution and chemical composition, mak-
ing this method for retrieving aerosol, CCN, and INP profiles
more uncertain in the elevated aerosol layer shown in Fig. 9.
The increase of the dry aerosol backscatter profile as well as
the aerosol concentration profile between 6 and 8 km is likely
a systematic artifact related to the lidar noise at high altitude.

3.3 Case study: Retrieval of Aerosol Profile with
Multiple Cloud Layers

This case from 26 August 2022 at the Galveston coastal site
(16:02–18:42 UTC) illustrates the retrieval method’s perfor-
mance in the presence of multiple cloud and moisture layers.

In Fig. 10a, cloud layers around 0.6, 1.5, and 3.6 km a.g.l. can
be identified as white pixels with high NRB. These cloud lay-
ers also match vertical regions of increased RH measured by
the radiosonde launched around 17:26 UTC (Fig. 10b). The
high attenuated backscatter signal near the cloud levels may
reflect the presence of distinct aerosol layers or result from
higher humidity enhancing aerosol scattering. The NRB time
series in Fig. 10a shows some temporal variation in the at-
tenuated backscatter profile, with a layer of high backscatter
slowly decreasing from around 2 to 1 km a.g.l.

As shown in Fig. 10b, a peak in the aerosol backscatter co-
efficient profile is seen around 3.6 km a.g.l., showing a region
where aerosols take up water and grow. This peak is almost
completely removed in the dry aerosol backscatter coefficient
profile in Fig. 10b, indicating a successful correction for the
hygroscopic growth effect on aerosol scattering. This result
also demonstrates that the lidar hygroscopic growth correc-
tion factor derived from surface measurements can be ap-
plied to aerosol aloft. Increased aerosol backscatter coeffi-
cients around 0.6 and 1.5 km a.g.l. due to hygroscopic growth
are also reduced, resulting in a more realistic aerosol vertical
distribution. The dry backscatter profile suggests that an el-
evated aerosol layer may be present near 1.5 km a.g.l., while
the uncorrected peak at 3.6 km a.g.l. is likely dominated by
humidity-enhanced scattering rather than a distinct aerosol
layer.

Figure 10c and d show retrieved aerosol, CCN, and
INP profiles. At the surface, the aerosol concentration is
(7.95± 0.27)× 103 cm−3, and decreases by approximately
28 % at 0.6 km, 50 % at 1.5 km, and 79 % at 3.6 km a.g.l.
At a supersaturation of 0.2 %, the CCN concentrations are
511± 10 cm−3 at the surface, 368± 73 cm−3 at 0.6 km,
256± 86 cm−3 at 1.5 km, and 107± 82 cm−3 at 3.6 km a.g.l.
At a temperature of −15 °C, the INP concentrations are
around 0.05 L−1 at the surface, 0.04 L−1 at 0.6 km, 0.03 L−1

at 1.5 km, and 0.01 L−1 at 3.6 km a.g.l. The correction for
the aerosol hygroscopic growth leads to the more realistic
aerosol, CCN, and INP profiles shown in Fig. 10c, d. The re-
trieval of aerosol, CCN, and INP concentrations may be less
reliable around 1.5 km due to the possible presence of an el-
evated aerosol layer. However, the successful removal of the
humidity-enhanced scattering peak near 3.6 km is encourag-
ing, suggesting that the applied κ value may be reasonable
throughout the column.

The increase in the dry aerosol backscatter and aerosol
concentration between 5 and 7 km is a systematic artifact
likely caused by high lidar signal noise, as shown in Fig. 10a
above 5 km. The magnitude of this artifact is likely ampli-
fied by the high noise level, which is caused by the limited
number of cloud-free profiles available for averaging during
this period, as compared to the previous case, where more
cloud-free profiles led to reduced noise and less pronounced
artifacts.
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Figure 9. (a) NRB time series data collected on 6 September 2022, from 18:30 to 20:30 UTC, with miniMPL inland at Hockley, Texas. (b)
Aerosol and dry aerosol backscatter coefficient profiles are shown as solid black and red lines, respectively, with a shaded area showing the
corresponding uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. (c) The aerosol profile is shown
as a solid black line. CCN profiles are shown in different colors corresponding to supersaturation levels of 0.2 %, 0.6 %, and 1.2 %. (d) INP
profiles evaluated at −20 and −25 °C. No INP was observed at −15 °C.

3.4 Comparison Between Collocated MPL and
miniMPL Lidar

The TAMU ROAM-V was deployed at the AMF1 (La Porte,
Texas) site on 1 September 2022, allowing miniMPL and
MPL to be collocated and compared directly. The ARM MPL
deployed at AMF1 collects data at a vertical resolution of
15 m and a temporal resolution of 10 s (Muradyan et al.,
2021). During the colocation test, the two lidars were sep-
arated horizontally by approximately 30 m and vertically by
less than 10 m. The data from both lidars were time-averaged
between 20:00 and 22:00 UTC. Vertical profiles of the lidar
raw signal, the NRB, and the aerosol backscatter coefficient,
and a comparison of the lidar aerosol backscatter coefficient
are shown in Fig. 11a, b, c, and d, respectively. Figure 11a
shows that the raw signals from the two lidars differ sig-
nificantly. However, after applying lidar-specific afterpulse,
deadtime, background, and range corrections for each lidar,
their NRB profiles agree closely (Fig. 11b). Figure 11c and d
show that the MPL and miniMPL NRB and aerosol backscat-
ter coefficient profiles follow similar shapes and magnitudes.

The miniMPL overestimates aerosol backscatter coefficients
between 6 and 8 km compared to the MPL, suggesting that
the miniMPL-derived profiles may be less reliable at higher
altitudes. This artifact is consistent with the spurious high-
altitude enhancements discussed earlier and is likely caused
by signal noise and overlap correction uncertainty in the
miniMPL retrieval. The miniMPL and MPL profiles ex-
hibit a slight vertical offset below 4 km, which may result
from residual errors introduced during the afterpulse, back-
ground, or overlap corrections. The differences between the
two aerosol backscatter profiles generally remain within the
estimated uncertainty bounds, which primarily arise from the
assumed lidar ratio and the scattering ratio at the reference
height. In summary, miniMPL and MPL data are remarkably
similar despite differences in their lidar designs and specifi-
cations. This agreement suggests that the more compact and
less expensive miniMPL can provide comparable data qual-
ity to the more established MPL system. In addition, the use
of two lidars with comparable outputs enables coordinated
deployment and consistent analysis across different sites over
the same period.
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Figure 10. (a) NRB time series collected on 26 August 2022, from 16:02 to 18:42 UTC, with miniMPL in Galveston, Texas. (b) Aerosol and
dry aerosol backscatter coefficient profiles are shown as solid black and red lines, respectively, with a shaded area showing the corresponding
uncertainty interval for each profile. The relative humidity profile is shown as a solid blue line. Gray dashed lines indicate the cloud level.
(c) The aerosol profile is shown as a solid black line. CCN profiles are shown in different colors corresponding to supersaturation levels of
0.2 %, 0.6 %, and 1.2 %. (d) INP profiles at −15, −20, and −25 °C.

Figure 11. Comparison of retrieved aerosol backscatter coefficient profiles derived from miniMPL and ARM AMF1 MPL data. (a) Raw
co-polarized lidar signal of TAMU miniMPL (red solid line) and ARM MPL (blue solid line). (b) Calibrated lidar normalized relative
backscatter signal of TAMU miniMPL (red solid line) and ARM MPL (blue solid line). (c) Retrieved lidar aerosol backscatter coefficient
of TAMU miniMPL (orange solid line and area) and ARM MPL (blue solid line and area). (d) Comparison of the lidar aerosol backscatter
coefficients. The uncertainty interval of the retrieved aerosol backscatter coefficient is shown as error bars.
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Figure 12. Comparison of lidar measurement of miniMPL deployed at TAMU Galveston site and MPL deployed at ARM AMF1 site on
28 August 2022, from 16:10 to 18:50 UTC. (a) Aerosol backscatter coefficient profiles. (b) Dry aerosol backscatter coefficient profiles. (c)
Aerosol concentration profile. (d) CCN concentration profiles at 0.2 % supersaturation.

3.5 Comparison of aerosol and CCN profiles between
Galveston and La Porte, Texas (28 August 2022)

A comparison between miniMPL and ARM MPL measure-
ments at different locations at the same time on 28 August
2022 is shown in Fig. 12. miniMPL was deployed at Sea-
wolf Park, Galveston, Texas, and the AMF1 was located
in La Porte, Texas. The straight-line distance between the
two sites is about 46 km. The time-averaging period was
from 16:10 to 18:50 UTC. As shown in Fig. 12b, near the
ground surface, the dry aerosol backscatter coefficients at
the two sites are similar. The dry aerosol backscatter co-
efficient at the TAMU Galveston site near the surface is
(1.07± 0.57)× 103 km−1, and at the AMF1 La Porte site,
it is (0.89± 0.51)× 103 km−1. The dry aerosol backscatter
coefficient is greater at the AMF1 La Porte site at higher
altitudes. Figure 12c and d show that the aerosol and CCN
(SS= 0.2 %) concentration at the AMF1 La Porte site is
consistently greater than at the TAMU Galveston site at
all vertical levels. At the surface, the aerosol concentra-
tion is (3.49± 0.34) × 103 cm−3 for the TAMU site and
(5.24± 1.26)× 103 cm−3 for the ARM site. At 1 km altitude,
these concentrations are 313± 169 cm−3 and (1.78± 0.47)
× 103 cm−3 for the TAMU and ARM sites, respectively.
In terms of CCN concentrations evaluated at 0.2 % SS at
the surface, the TAMU site has a CCN concentration of
127± 2 cm−3, while the ARM site has a slightly greater con-
centration of 137± 9 cm−3. At 1 km altitude, the CCN con-
centration at the TAMU site is 11± 5 cm−3, compared to
a substantially greater concentration of 46± 5 cm−3 at the
ARM site.

These differences highlight variations in aerosol and CCN
distributions between the two locations, especially at upper
altitudes. The La Porte site likely has a greater dry aerosol
backscatter coefficient and aerosol concentration due to sur-
rounding industrial emissions, while the TAMU Galveston
site is more influenced by the maritime air mass. Despite sim-

ilar surface aerosol and CCN number concentrations, there
are clear differences in the aerosol and CCN vertical distri-
bution between the two sites, only about 46 km apart. Such
variability underscores the importance of localized aerosol
vertical profile measurements in characterizing aerosol ver-
tical distributions when assessing their impact on air qual-
ity, weather, and climate. It also highlights the necessity of
deploying multiple measurement sites to capture the spatial
heterogeneity of aerosol vertical profiles when conducting a
field campaign that covers a large study area, especially in re-
gions influenced by heterogeneous sources of emissions and
complex airmass interactions.

4 Discussion and Conclusions

In this study, we use data collected during the TRACER cam-
paign to demonstrate a new method of retrieving aerosol,
CCN, and INP profiles by integrating mini micropulse li-
dar measurements with radiosonde and ground-based aerosol
measurements, including aerosol size distributions, CCN ac-
tivation, and ice nucleation measurements. In the future,
these measurements can be collected routinely to translate
lidar backscatter coefficient profiles to long-term aerosol,
CCN, and INP vertical profiles. Further, our method is not
limited to the micropulse lidar and can be applied to other
single-wavelength elastic or more advanced lidars.

One of the key findings of this study is that correcting
aerosol hygroscopic growth is necessary for retrieving real-
istic CCN and INP concentration profiles. We have shown
that using lidar-retrieved backscatter or extinction profiles
without correcting for hygroscopic growth can lead to a sig-
nificant overestimation of the aerosol concentration near the
cloud base. To solve this issue, we introduced a method to
quantify aerosol scattering enhancement due to aerosol hy-
groscopic growth. This method for determining the lidar hy-
groscopic growth correction factor can be used as a comple-
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mentary approach to the traditional method of using a collo-
cated humidified nephelometer (Ghan et al., 2006).

Another key finding is that aerosol and CCN vertical dis-
tributions can significantly vary at small spatial scales, even
when similar aerosol and CCN concentrations are measured
at the surface, as demonstrated by the comparison between
the aerosol vertical profile at the ARM and TAMU sites on
28 August 2022. This variability highlights the importance
of considering vertical profiles rather than relying solely on
ground-based aerosol measurements when assessing aerosol
properties and their impacts on cloud formation. It also high-
lights the need for localized vertical profile measurements to
accurately capture the diverse aerosol characteristics in dif-
ferent regions, particularly in areas with complex emission
sources and air mass interactions. Portable lidars, such as
the miniMPL lidar, combined with surface aerosol measure-
ments, can be highly effective in providing these localized
aerosol vertical profile measurements.

While the method described herein clearly has some dis-
tinct advantages, it is subject to several limitations. Since the
MPL and miniMPL measurements are noisy at upper alti-
tudes, this method’s retrieval above the altitude where the
lidar signal is smoothed should be used with caution and can
only serve as a best estimate. In addition, since our method
relies on the assumption that the aerosol size distribution
and composition are similar throughout the vertical column,
the retrieved profiles are most reliable within the well-mixed
boundary layer. At altitudes where aerosol properties differ
significantly from those at the surface, such as in the pres-
ence of a transported dust layer in the free troposphere, this
method may be less reliable, and the results should be inter-
preted with caution. Despite these limitations, as measure-
ments of CCN and INP vertical profiles are difficult to obtain
and sparse, the results from this method can serve as a sig-
nificant improvement over the arbitrary aerosol profiles often
used in model initialization.

In conclusion, the integration of MPL and ground-based
aerosol measurements offers a powerful tool for retrieving
detailed vertical profiles of aerosols, CCN, and INPs. The re-
trieved profiles can serve as inputs to provide realistic aerosol
vertical distributions for cloud-resolving models, facilitating
the study of aerosol-cloud interactions and aerosol effects on
climate.
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