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Abstract. High latitude wetland emissions of methane (CHy)
remain a significant source of uncertainty in global methane
budgets. At these latitudes, flux estimation approaches, such
as atmospheric inversions, are challenged by complex me-
teorological conditions, limited observational coverage, and
uncertainties in atmospheric transport modelling. This study
evaluates the performance of various atmospheric transport
models and reanalysis datasets using meteorological and
CHy in-situ measurements collected during the MAGIC2021
campaign near Kiruna, Sweden. Over six days of measure-
ments in August 2021, the ERAS5 reanalysis, produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) and providing global atmospheric data, showed
better agreement with observations compared to the meso-
scale Weather Research and Forecasting (WRF) model,
though WRF provided valuable insights into local atmo-
spheric dynamics. Among global simulations of CH4 mixing
ratios, inversion-optimised models which adjust emissions
to match observations, achieved the best performance over-
all particularly when constrained by surface measurements.
Regional simulations from WRF coupled with chemistry
(WRF-Chem) revealed biases in CH4 mixing ratios in the
boundary layer, suggesting an overestimation of emissions
by wetland models. All chemistry-transport models exhibited

a positive bias in the stratosphere. Simulations with higher
vertical resolution demonstrated an improved representation
of vertical CHy profiles in the upper layers of the atmosphere.
Despite the limited spatio-temporal coverage of the observa-
tions, we were able to identify the best performing transport
models and to evaluate fluxes from different biogeochem-
ical model parameterisations using the MAGIC2021 high-
resolution dataset, demonstrating the utility of in-situ vertical
profile datasets for transport and flux model evaluation.

1 Introduction

In recent years, the Earth’s climate has been rapidly chang-
ing, with significant impacts on polar and sub-polar regions.
In the Arctic, the rate of warming was thought to be around
twice as fast as the global average until recently (AMAP,
2021; Jansen et al., 2020; Walsh, 2014; Yu et al., 2021), but
it is now estimated to be closer to 4 times faster (Rantanen
et al., 2022). The amount of greenhouse gas in the atmo-
sphere and the meteorological conditions are essential com-
ponents of the circumpolar climate system, where positive
climate feedback loops are ubiquitous and disruptive (boreal
fires Zheng et al., 2023, permafrost Miner et al., 2022; Mac-
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Dougall, 2021, wetland emissions Zhang et al., 2023, and
albedo Hall, 2004; Booth et al., 2024). However, a scarcity of
long-term direct observational data in the region has proven
to be a challenge for studies aiming to constrain uncertain-
ties and changes in the regional methane cycle (Wittig et al.,
2023). In order to understand these changes, climate mod-
els are therefore highly relied upon, and direct measurements
must be employed to provide an assessment of their perfor-
mance in modelling mixing ratios of greenhouse gases in the
region.

In-situ data at high latitudes mainly come from several
surface measurement networks operated by Arctic coun-
tries, as depicted in Wittig et al. (2023). In Europe, data
collection is coordinated by the Integrated Carbon Obser-
vation System (ICOS) network, which comprises several
towers stationed in Fennoscandia (few above the polar cir-
cle), that measure either in-situ atmospheric mixing ratios
or methane fluxes through eddy covariance. mixing ratios
are however only measured close to the surface. They are
mostly representative of local scales and lack vertical infor-
mation. Measurements covering larger scales and higher at-
mospheric layers are crucial for accurately modelling the re-
gional methane budget. Several projects have carried out field
measurements of atmospheric methane at high latitudes re-
cently, including campaigns from the NASA ABoVE initia-
tive (Sweeney et al., 2022) or the NASA-ESA joint initiative
Arctic Methane and Permafrost Challenge (AMPAC, Miller
et al., 2021). This latest project was notably involved in the
CoMet 2.0 Arctic campaign set in Canada and Alaska in
2022 (https://comet2arctic.de/, last access: 27 October 2025),
and MAGIC2021, set near Kiruna, Sweden (67°N). The
study presented here focuses on MAGIC2021 (Crevoisier,
2021), which spanned from 14 to 27 August 2021 and in-
cluded airborne measurements of meteorological variables
and atmospheric methane mixing ratios, combined with
weather data sounding. The Monitoring Atmospheric com-
position and Greenhouse gases through multi-Instruments
Campaigns (MAGIC) initiative launched by Centre National
de la Recherche Scientifique (CNRS) and Centre Nationale
des Etudes Spatiales (CNES) aims at improving knowledge
of CO, and CH4 distribution and emissions in the Earth’s
atmosphere by organising frequent measurement campaigns
in different regions of interest. The first three campaigns,
set in France from 2018 to 2020, served as a mean to cali-
brate and validate instruments and measurement techniques,
whilst also validating current space missions. MAGIC2021
was therefore the first MAGIC campaign to focus on the
study of CHy emissions at high latitudes, bringing together
70 participants from 17 teams and 7 different countries. As
field work is relatively recent, few results have been pub-
lished yet and, to our knowledge, no study has tried to ex-
tensively assess atmospheric composition models using cam-
paign data at high resolution in those regions.

Kiruna and its surrounding area are characterised by wet-
land landscapes that include small ponds to large lakes as
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well as peatland and various inundated soils found in both
boreal forest and tundra ecosystems, as shown on the left
panel of Fig. 1, where land cover comes from European Envi-
ronment Agency (2019). These wetlands are known to be the
main local source of methane though their emissions are gen-
erally poorly constrained (Saunois et al., 2020). Additionally,
some permafrost areas are also present at higher altitudes
found in the Scandinavian mountains west of the city, though
to a relatively small extent (Brown et al., 1997). In lower
parts of the atmosphere, model estimates of greenhouse gas
mixing ratios can be strongly affected by these high un-
certainties in emission processes, particularly for methane.
Boundary layer mixing ratios are also strongly influenced by
turbulent flow which is parametrised in global models and
challenging to simulate accurately at finer scale (Schuh et al.,
2019). This has a strong influence on atmospheric compo-
sition at all levels, as CHy released at the surface is usu-
ally transported to deeper atmospheric levels via turbulent
and/or convective fine scale processes. Above the bound-
ary layer, transport by geostrophic wind becomes the major
driver for greenhouse gas mixing ratios. This means that at-
mospheric methane content is no longer strongly dependent
on local emissions, but rather influenced by medium to long
range transport. Stohl (2004) have shown that mixing ratios
observed in Northern Europe can be traced back to emis-
sions from North America or Siberia, provided meteorolog-
ical conditions allowed for transport of surface emissions to
the free troposphere. At higher altitudes, an important driver
of CH4 mixing ratios becomes methane depletion by OH rad-
icals and other molecules (e.g. Cl, Li et al., 2018). Their pres-
ence mostly affect methane mixing ratios in the upper tropo-
sphere and lower stratosphere, where stratification and reac-
tion with these chemical species reduce drastically CH4 mix-
ing ratios in the upper troposphere and above the tropopause.
Upper-tropospheric and lower-stratospheric CH4 mixing ra-
tios are therefore characterised by a strong vertical gradient.
Tropopause height and troposphere/stratosphere exchanges
are thus key influences on CH4 mixing ratios (Xiong et al.,
2013), and are also challenging to model accurately (Mateus
etal., 2022).

In this study, the accuracy and precision of several models
in reproducing greenhouse gas mixing ratios and meteoro-
logical conditions observed at fine scale are assessed. Our
study uses in-situ observations that employed research air-
craft and weather balloons deployed around Kiruna in Au-
gust 2021 (details in Sect. 2). We first start by assessing
models regarding meteorological variables, with data from
the European Centre for Medium-Range Weather Forecasts
(ECMWEF) fifth-generation reanalysis (ERAS5) global prod-
uct and regional WRF simulations. Then, we assess the at-
mospheric composition models ability to reproduce observed
CH4 mixing ratios. Models assessed include the Copernicus
Atmosphere Monitoring Service (CAMS) analysis hlkx and
inversion-optimised flux product version 21rl, six PYVAR-
LMDz-SACS ensemble inversions and WRF-Chem regional
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simulations. More detail about these models can be found
in Sect. 2. Comparisons between model simulations and ob-
servational data provide insights into the strengths and lim-
itations of these models in the Lapland region and highlight
areas for improvement at several levels and scales.

2 Methods
2.1 Observational data

Both ground-based and airborne measurements were taken
during MAGIC2021. This study focuses on airborne data
taken by CNES weather balloons as well as two aeroplanes,
an ATR42 from SAFIRE and a Cessna from Deutsches Zen-
trum fiir Luft- und Raumfahrt (DLR). These platforms had
different payload configurations and measurement capabili-
ties and thus provide complementary information about the
distribution of gases in the atmosphere. Whilst this study
does not make use of the full set of MAGIC2021 mea-
surements due to data availability at the time of our anal-
ysis, it provides a solid example of such campaigns capa-
bility in terms of model validation. All data were put on the
WMO scale (Dlugokencky et al., 2005) through several inter-
comparisons and inter-calibrations using similar gas tanks on
each Picarro analysers. These were carried out during the
campaign, and included a wing-by-wing flight by the ATR42
and Cessna aircraft.

2.1.1 Weather balloon observations

Two types of weather balloons from CNES were released
during MAGIC2021: the Light Inflatable Balloon (BLD —
Ballon Léger Dilatable) and the Zero Pressure Difference
(ZPD) balloon. Balloon types differ in their usage, BLD are
single-use, their membrane bursting after the ascent phase.
They typically reach altitudes up to 30 km. ZPD are reusable
and can reach altitudes above 30 km. Weather balloons car-
ried two main instruments whose data were used in the study:
the AirCore atmospheric sampler, and meteomodem M20 ra-
diosondes. The M20 instrument is an ultra-lightweight (36 g)
radiosonde used to gather meteorological data such as tem-
perature, humidity, pressure, as well as zonal (UU) and merid-
ional (V) wind components. More details about the instru-
ment can be found at https://www.meteomodem.com/m20?
(last access: 21 October 2025). Measurements with the M20
were made during both ascending and descending phases of
balloon flights.

AirCore is an atmospheric sampler (Tans, 2009; Karion
et al., 2010; Membrive et al., 2017) which allows sampling
atmospheric composition on a large range of altitudes (~ 0-
30 km) making use of the atmospheric pressure gradient. To
be more specific, the AirCore is made of a coated stainless
steel tube that is filled with a calibration gas before release.
The length of that tube varies according to the AirCore type:
light AirCores have a shorter tube than high resolution Air-
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Cores. The sampler is then attached to a weather balloon that
is released from the surface. During the ascending phase, the
relatively high pressure inside the tube pushes out the calibra-
tion gas. At the top of the trajectory, the balloon pops and the
payload starts a descending phase during which increasing
pressure outside of the tube pushes atmospheric air inside the
AirCore. Similarly to ice cores, the resulting sample consists
of a continuous profile of atmospheric air, with the most re-
cently sampled air (from lower altitudes) located near the in-
let and the earlier sampled air (from higher altitudes) located
deeper within the tube. Both light AirCore and high resolu-
tion AirCore were deployed during MAGIC2021. After sam-
pling, AirCores were retrieved and analysed on the ground,
using the G2401 instrument from Picarro© (Picarro, 2008)
which measured CH4, CO;, CO and H,O. Time and trajec-
tories of measurements for the AirCore instrument are shown
in Fig. 1. Atmospheric composition observations used in this
study include 8 separate weather balloon soundings. For me-
teorological data, only 6 of the 8 weather balloons were used
due to radiosondes malfunctioning during two of the flights,
but meteorological data were acquired during both ascent and
descent flight phases which allowed to compensate for miss-
ing data.

2.1.2 Aircraft observations

Two research aircraft flew between the surface and approxi-
mately 8 km, carrying instruments that gathered atmospheric
composition and weather data: the SAFIRE ATR 42-320
(CNES, CNRS, Météo France), abbreviated as ATR42, and
the DLR Cessna C-208B Grand Caravan, abbreviated as
Cessna. The position, velocity, and altitude of the ATR42 air-
craft were recorded by both an iXBlue™ inertial reference/-
navigation system called SAFIRE AIRINS and a NovAtel™
Global Positioning System (GPS). This GPS system consists
of L1/L2 GPS-Antennae (5x) and a OEM3 receiver. Wa-
ter vapour and relative humidity were measured using a non
dew/frost point hygrometer called SAFIRE relative humidity
sensor, made by Michell Instruments™. Airspeed, incidence
angle and turbulence were measured by a Rosemount & Sex-
tant™ incident flow vector probe called SAFIRE five hole
radome. This instrument allows the measurement of U and V
wind components. Finally, the Rosemount™ in-situ temper-
ature sensor called SAFIRE Rosemount PT102E2AL, mea-
sures the temperature at the aircraft’s location. Also on board
the ATR42 were two Picarro™ models. One was the previ-
ously mentioned G2401 and the other was the G5310 that
measures CO with higher precision as well as N>O. Other
instruments installed on the aircraft also gathered additional
meteorological data.

The Cessna aircraft was equipped with a system called
blackMAMBA (Measurement Acquisition of Meteorologi-
cal Basics) that delivered track (i.e. position and time) data,
together with aircraft status and meteorological parameters.
Some of the meteorological sensors were installed in the
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Figure 1. Location (left) and date and time (right) of MAGIC2021 measurements used in this study. Map background shows land use adapted
from the Corine2018 dataset (European Environment Agency, 2019). Individual land cover types from the Corine2018 dataset are grouped
in broader categories to ease map interpretation. Notably, wetlands include inland marshes, peat bogs, salt marshes, salines, intertidal flats,
coastal lagoons and estuaries, i.e. both freshwater and saltwater wetlands.

MetPod, a container with a nose boom, mounted under the
left wing. This allows atmospheric parameters to be mea-
sured with less distortion than if they were measured from
the fuselage. The temperature, pressure, humidity sensors
and the calibration of the wind measurement system are de-
scribed in detail by Mallaun et al. (2015). The aircraft also
carried two in-situ trace gas instruments. Here we use only
the data from a Picarro G1301m, which measured CHy, CO»,
and H>O mixing ratios. More details about gas measure-
ments can be found in Fiehn et al. (2020).

Observations used in this study include 6 ATR42 and 10
Cessna flights for both atmospheric composition and meteo-
rological data.

2.2 Atmospheric modelling systems

This section describes model data that was compared to
MAGIC2021 observations. The first two sections describe
global models whilst the third focuses on the regional mod-
elling system based on WRF-Chem that was specifically set
up for MAGIC2021.

2.2.1 Global meteorological reanalysis

Global meteorological fields used in this study came from
the European Centre for Medium-Range Weather Forecasts
(ECMWEF) fifth-generation reanalysis product (ERAS, Hers-
bach et al., 2020; C3S, 2018), that provides meteorological
data on a global scale from 1950 to present. In our study,
we assessed ERAS reanalysis wind, temperature, and hu-
midity. The high density of vertical levels in ERAS from
the mid-troposphere down to ground level allows for ac-
curate comparison with the flights from MAGIC2021. Our
analysis was carried out using ERAS at time resolution of
1 h, spatial resolution of 0.25° and 137 vertical levels. Hor-
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izontal ERAS wind was given in terms of zonal (U) and
meridional (V) components of the wind vector. Both obser-
vations and model data were converted to horizontal wind
speed V and direction 6 for comparison when needed us-
ing: V=+U2+V2 0 =tan ! (-TU, —V)-lﬂﬁ (Tetzner et al.,
2019). To compare humidity from models (given as specific
humidity q in ERAS) to measured relative humidity (RH),
ERAS data was converted to RH using RH = fs where e is
the partial pressure of water vapour in air (pressure exerted
by water molecules) and e is the saturation vapour pressure,
or the maximum vapour pressure achievable at a given tem-
perature before condensation occurs.

2.2.2 Global CH4 assimilation systems

The Copernicus Atmosphere Monitoring Service (CAMS) is
a service provided by ECMWEFE. Its atmospheric composition
product combines satellite data and ground-based measure-
ments in a 4D-Var assimilation system to provide compre-
hensive information on key atmospheric parameters such as
mixing ratios of greenhouse gases in 4 dimensions (Peuch
et al., 2022). Two CAMS products are used in this study. The
first is the CAMS hlkx analysis (Agusti-Panareda et al., 2023)
which is based on ECMWF Integrated Forecast System for
Composition (C-IFS, Verma et al., 2017), with a vertical res-
olution of 137 vertical levels, a horizontal resolution of 0.25°
and 6h of temporal resolution. Methane loss to OH in the
upper troposphere and stratosphere is provided by Bergam-
aschi et al. (2009) where CHy4 destruction was simulated us-
ing OH fields based on methyl chloroform optimised Carbon
Bond Mechanism 4 (CBM-4) chemistry (Bergamaschi et al.,
2005; Houweling et al., 1998). Non-OH stratospheric loss is
based on the 2-D photochemical Max-Planck-Institute (MPI)
model (Bergamaschi et al., 2009; Briihl and Crutzen, 1993).
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The second CAMS product compared to MAGIC2021 is
the global inversion-optimised greenhouse gas mixing ra-
tios product for CHy version 21r1 (Segers, 2023). This prod-
uct makes use of methane mixing ratio measurements from
the NOAA ground observations network to optimise a priori
fluxes of CHy and produce 3D mixing ratios and correspond
better to ground observations. Simulations are run using the
chemistry transport model TMS5-MP (Williams et al., 2017)
that includes upper tropospheric and stratospheric computa-
tion of CHy loss using monthly mixing ratios of sink tracers,
built-in reaction rates and monthly temperature estimates.
Tropospheric or stratospheric reaction rates are attributed us-
ing a latitude dependent tropopause parameterisation from
Lawrence et al. (2001). The spatial resolution is of 2° x 3°
(latitude x longitude) x34 levels and the temporal resolu-
tion is 6 h. To distinguish between these two products from
CAMS, the analysis product will be referred to as CAMS
hlkx and the inversion-optimised product as CAMS v217rl.

Campaign data was also compared to mixing ratios from
six PYVAR-LMDz-SACS (Peng et al., 2022; Lin et al., 2024,
abbreviated PLS) ensemble inversions that optimised weekly
methane surface fluxes for 2021 at a spatial resolution of
1.9° x 3.75° on 39 vertical levels and 3 h time resolution. In-
versions employed three different atmospheric observation
datasets for flux constraints and two physical parameteri-
sations. Two inversions used GOSAT column estimates to
constrain fluxes, either from the National Institute for Envi-
ronmental Studies (NIES) or University of Leicester (UoL)
and the others used in-situ measurements from both the Inte-
grated Carbon Observation System (ICOS) and NOAA tower
networks. The two physical parameterisation are known as
the “classic” and “advanced” versions of the atmospheric
transport model LMDz (noted a and b respectively). The
“classic” version uses the vertical diffusion scheme of Louis
(1979) and the scheme of Tiedtke (1989) to parametrise deep
convection, whilst the “advanced” version combines the ver-
tical diffusion scheme of Mellor and Yamada (1974) and
thermal plume modelling by Rio and Hourdin (2008) to sim-
ulate the atmospheric mixing in the boundary layer. Deep
convection is represented using the scheme from Emanuel
(1991) coupled with the parameterisation of cold pools de-
veloped by Grandpeix et al. (2010). Bottom-up inventories or
process-based land surface models were used to build prior
CHy4 fluxes for different categories, and the OH and o('D)
fields were prescribed from the simulation of a chemistry-
climate model LMDz-INCA with a full tropospheric photo-
chemistry scheme. Inclusion of observations and definition
of observation errors to constrain fluxes followed the method
outlined in Peng et al. (2022); Lin et al. (2024).
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2.2.3 Regional atmospheric model (WRF-Chem)
WRF-Chem configuration

In addition to global model outputs, the Weather Re-
search and Forecasting coupled with Chemistry (WRF-
Chem) model was used to simulate the meteorological
conditions and greenhouse gas mixing ratios during the
MAGIC2021 campaign on a regional scale. WRF is a widely
used mesoscale numerical weather prediction system in both
research purposes and operational forecasting. It uses fully
compressible and non-hydrostatic Eulerian equations on an
Arakawa C-staggered grid to ensure the preservation of mass,
momentum, entropy, and scalars (Skamarock et al., 2008).
The set-up for this study included two domains, one parent
and one nested. The parent domain (d01) encompassed the
whole of Fennoscandia as well as Denmark, the westernmost
part of Russia and most of the area covered by Baltic coun-
tries, at a resolution of 9 x 9 km. The nested domain (d02) had
a higher resolution of 3 x 3 km and spanned most of the north-
ern part of Finland, Sweden and Norway where MAGIC2021
measurements were taken. Domain boundaries were chosen
such as to avoid strong emissions and high topography close
to a boundary, which are known to cause transport problems
(NCAR, 2024). WRF-Chem generated output fields includ-
ing meteorological variables and mixing ratios every 20 min.

The physical parameterisation included the WSMS5
scheme for microphysics (Hong et al., 2004) as well as the
RRTMG longwave and shortwave schemes (Iacono et al.,
2008) for radiation. The planetary boundary layer was rep-
resented using the MYNN Level 2.5 scheme (Nakanishi and
Niino, 2009), whilst the revised MM5 surface layer scheme
(Jiménez et al., 2012) was used, with the thermal roughness
length dependent on vegetation. No urban model was acti-
vated. For the land surface, the Noah model was used, with 4
soil layers (Tewari, 2004). Regarding convection, the Kain-
Fritsch scheme was used for the parent domain (Kain, 2004),
whilst convection was resolved explicitly in the nested do-
main. Additional convection-related options were activated,
including radiation feedback on convection, convection di-
agnostics, and Grell-Devenyi scheme parameters (Grell and
Dévényi, 2002). Vertically, the simulations had 50 levels
from ~ 140m to ~20km with about half of all levels be-
low 2km. The model configuration was evaluated in previ-
ous studies to produce minimum transport errors at both con-
tinental (Feng et al., 2019) and regional (Diaz-Isaac et al.,
2018) scales.

Methane mixing ratios were modelled as passive tracers,
which were transported online at each time step concurrently
with meteorological variables. Emissions are injected from
the surface into the first atmospheric layer to generate the
mixing ratio fields of tracers. These tracers undertook a se-
ries of transport processes, including advection, diffusion,
turbulence, and convective mixing, to simulate the motion of
molecules in the atmosphere. Initial conditions were set by
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ERADS reanalysis meteorology at 0.5°x0.5°x 137 levels reso-
lution and boundary meteorological conditions were updated
every 3 h using the same product. Data within WRF-Chem
domain was then produced by WRF physics and dynamics.
Methane boundary conditions were produced by the inver-
sion optimised CAMS mixing ratios product version 21rl
described earlier, at a resolution of 3° x 2° x 34 levels every
6 h. Emissions within simulation domains were divided into
multiple tracers depending on source types. These tracers are
described in Table 1. mixing ratios within our simulation do-
main were initially set to a constant value. A period of 15d
was shown to be sufficient for boundary conditions and lo-
cal emissions to propagate through our domains and reach
steady-state. The simulations were thus run from 1 to 31 Au-
gust 2021, to account for spin-up time and the MAGIC2021
campaign period.

Emission tracers

Input emissions (Table 1) were chosen according to data
availability for August 2021, then prioritising higher spatial
resolution in order to reduce regridding issues. If no product
were found for that time period, the highest time resolution
product was chosen and climatological averages were used.
Oceanic methane emissions were taken from Weber et al.
(2019), a monthly climatology with a spatial resolution of
0.25° x 0.25°. Methane lake emissions from Johnson et al.
(2022) were also used. The dataset includes corrections
for daily and seasonal observational bias, observed ice-
free/emission seasonality, and realistic lake area and distri-
bution. Anthropogenic and fire emissions of methane were
provided by CAMS, which publishes emissions driving their
global atmospheric greenhouse gas mixing ratios products
(Agusti-Panareda et al., 2023). They are respectively from
EDGARv4.2FT2010 (Olivier and Janssens-Maenhout, 2012)
and GFAS Version 1.2 (Kaiser et al., 2012). Anthropogenic
and fire emissions both share the same 0.1° x 0.1° spatial
resolution but anthropogenic emissions were monthly av-
eraged emissions over 2016-2017-2018 (latest years avail-
able) whereas fire emissions were daily emissions from Au-
gust 2021. Wetland emissions came from two sources: the
latest product from the WetCHARTSs model (Bloom et al.,
2017), with simulations up to 2019, and several versions
of JSBACH-HIMMELI (JSB-HIM) simulations originally
designed for the European project VERIFY, described in
Aalto (2019), that were recently extended to later years.
WetCHARTS has a spatial resolution of 0.5° x 0.5° and a
monthly time resolution, spanning until 2019. A monthly
climatological average was therefore used, taking the same
years as for CAMS anthropogenic emissions. 18 different
flux versions are publicly available from WetCHARTs, de-
pending on physical parameters detailed in the documenta-
tion (Bloom et al., 2017). A subset of 8 WetCHARTS ver-
sions were selected, to maximise representativeness of the
dataset whilst staying cost-effective in our computations.
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JSB-HIM emissions were provided by the Finnish Meteo-
rological Institute (FMI) at daily resolution for August 2021
and a spatial resolution of 0.1°x 0.1°. 3 versions of total wet-
land flux from JSB-HIM, each differing in their driving me-
teorology were included in this study.

Inventory emissions all have different spatial resolution,
so they have to be regridded to our WRF-Chem domains res-
olution. This was done by interpolating emissions from our
data products to the WRF-Chem grid (Virtanen et al., 2020).
11 emission tracers and one boundary condition tracer were
tracked in the simulation of total regional CH4 mixing ra-
tios. Boundary conditions were provided by the inversion-
optimised CAMS v21rl product described in Sect. 2.2.2 and
interpolated onto WRF-Chem vertical levels using https://
github.com/psu-inversion/WRF_boundary_coupling, last ac-
cess: 27 October 2025. Additionally, artificial boundary con-
ditions were also implemented for other tracers in order to
prevent near-zero computation error propagation throughout
the whole simulation. This was done by adding a constant
offset of 300 ppb through the emission tracers domain bound-
aries on an hourly basis. WRF-Chem supports several inde-
pendent passive tracers. This allows us to construct different
versions of atmospheric methane mixing ratios from a single
simulation. A common core of methane mixing ratios was
built using the boundary condition tracer added to the sum of
anthropogenic, fire, oceanic and lake emissions tracers. To
this common core, wetland contributions can be separately
added to obtain different atmospheric methane mixing ratios.
These wetland emissions include 8 separate products from
the WetCHARTS inventory, and 3 products from JSB-HIM
simulations as described above (Bloom et al., 2017; Aalto,
2019). Simulations were run in both dO1 and d02 domains,
resulting in a total of 22 atmospheric CH4 mixing ratios prod-
uct.

2.3 Comparison method

2.3.1 4 dimensional barycentric interpolation using
Delaunay triangulation

In our comparisons, modelled data were interpolated
on measurement locations using the python function
scipy.interpolate.griddata from the scientific
python library scipy. The function griddata uses
scipy.interpolate.LinearNDInterpolator

when performing linear interpolation in multiple dimensions
as in our case, a function that was written in cython by
Virtanen et al. (2020). Interpolation is necessary because
gridded modelled data do not have the same temporal or
spatial resolution as measurements taken by balloons or
aircraft. Additionally, using Delaunay triangulation as in
griddata allows interpolation from an irregular grid such
as the pressure grid used in studied models. The interpolation
was performed in 4 dimensions (time + 3 space dimensions).
griddata first computes a Delaunay triangulation around
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Table 1. Emission sources used in the WRF-Chem simulations, given with spatial and temporal resolutions as well as emission statistics.
Statistics are computed for the larger (d01) WRF-Chem domain over the month of August 2021 or climatological August depending on data

availability.
Source Model Spatial Time resolution Emissions scale (mol km~2h~! )
resolution Min Max Mean Median
Anthropogenic ~ CAMS 0.1°x 0.1° monthly clim. (2016-2018) 0.0 11000 7.1 0.20
Fire CAMS 0.1° x 0.1° daily aug. 2021 0.0 910 0.0 0.0
Oceanic Weber et al. (2019) 0.25° x 0.25°  monthly clim. (1980-2016) —0.10 15 0.50 0.0
Wetland WetCHARTS 2913 0.5° x 0.5° monthly clim. (2016-2018) 0.0 430 12 0.02
Wetland WetCHARTS 2914 0.5° x 0.5° monthly clim. (2016-2018) 0.0 400 26 0.01
Wetland WetCHARTS 2924 0.5° x 0.5° monthly clim. (2016-2018) 0.0 300 15 0.01
Wetland WetCHARTS 2934 0.5° x 0.5° monthly clim. (2016-2018) 0.0 240 11 0.01
Wetland WetCHARTSs 1913 0.5° x 0.5° monthly clim. (2016-2018) 0.0 360 9.6 0.01
Wetland WetCHARTS 2923 0.5° x 0.5° monthly clim. (2016-2018) 0.0 360 7.9 0.01
Wetland WetCHARTS 3913 0.5° x 0.5° monthly clim. (2016-2018) 0.0 604 16 0.02
Wetland WetCHARTS 3933 0.5°x0.5° monthly clim. (2016-2018) 0.0 350 6.8 0.01
Wetland JSB-HIM(CRU) 0.1° x 0.1° daily aug. 2021 0.0 190 10 0.32
Wetland JSB-HIM(CRU4) 0.1° x 0.1° daily aug. 2021 0.0 140 6.4 0.15
Wetland JSB-HIM(ERAS) 0.1°x0.1° daily aug. 2021 0.0 170 4.8 0.02
Lakes Johnson et al. (2022)  0.25° x 0.25°  daily clim. 20032015 00 20x10710 56x10712 22x10713

Table 2. Model specifications for simulations used in this study. 1 vertical coordinates are a hybrid sigma-pressure coordinate. Meteorolog-
icalonstraints can be from in-situ measurements such as weather balloons or measurement towers. For CH4 we use surface to specify that

constraints come from surface mixing ratio measurements.

Model Type Resolution Transport  Constraints
ERA5S global NWP 0.25°x0.25°x 137p x 1h IFS in-situ + satellite
(Hersbach et al., 2020)
CAMS hlkx global CTM analysis 0.25° % 0.25° x 137np x 6h IFS in-situ + satellite
(Peuch et al., 2022)
CAMS v2Irl  global CTM inversion opt. 2° x 3°x 34n x 6h TMS surface
(Segers, 2023)
PLS global CTM inversion opt.  1.9° x 3.75° x 39 x 3h LMDz surface or satellite
(Lin et al., 2023)
WRE-Chem regional NWP + CTM d01(d02): 9(3) km x9(3) km x50np x 1h ~ WRF CAMS v21rl

boundary conditions

the measurement coordinates to pick out interpolating points
from the model grid. In 4 dimensions, each simplex around
an observation point contains 5 vertices corresponding to 5
model coordinates in 4D. Barycentric linear interpolation is
then performed using each simplex’s 5 vertices to compute
a model value at a particular measurement location. This
method enables a fast, easy to implement and accurate com-
parison between modelled and measured data, by allowing
comparison along each instrument’s individual trajectory.

2.3.2 Layer analysis and statistical metrics
Our analysis systematically divided comparisons in 3 layers:

the boundary layer (BL), free troposphere (FT) and lower
stratosphere (LS). MAGIC2021 data and interpolated model
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data was categorised as within the BL if the measurement
height was below the BL height as computed by ERAS, in-
terpolated at the measurement location. The FT layer ex-
tended from the BL height up to the tropopause, which
was only reached by weather balloons. Tropopause height
was derived from observational data using the cold-point
tropopause (CPT) method (Eugenio and Macalalad, 2021).
Four statistical metrics were computed to assess model
performance against observations in each of the three pre-
viously defined layers and to compare the performance of
models. In the following, we note the model bias ‘A from
Willmott (1982), which is the mean difference between in-
terpolated model quantities and measured physical quanti-
ties over a sample of measurements, standard deviation o,
Pearson correlation p, and root-mean-square error RMSE.
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Circular statistics from Mardia (1972); Jammalamadaka and
Sengupta (2001) were applied to compare wind directions by
computing circular A, o, p and RMSE associated with model
and observed directions.

These metrics were used to draw Taylor diagrams (Taylor,
2001) which allow to assess a set of models against obser-
vations. These diagrams cleverly combine p, o and centred
RMSE (CRMSE) in a polar coordinate plot using the law of
cosines. The radial coordinate of a data point usually rep-
resents the standard deviation (r = o) whilst angular posi-
tion gives its correlation with observations (o = arccos(p)).
A reference point is set at (Oobs, Pobs) Where ogps is the stan-
dard deviation of the observations and pops = 1. Here we nor-
malise o to be able to compare quantities from different lay-
ers of the atmosphere onto the same plot: on = 0 /0ons. The
coordinates of the reference point become (1,1). The bet-
ter the model, the closer to this reference point it will be.
CRMSE can also be represented on the diagram, as the ra-
dial distance from the reference point. Taylor (2001) shows:

1 & o — 2
CRMSE = ﬁ Z I:(xlg)bs _ xobs) _ (ximod _ xmod)]

i

2 2
\/ O3bs T Omod — P00bsOmod

This metric is a measure of model spread around observa-
tional values after removing any bias. It is therefore useful to
quantify model noise but it lacks an assessment of distance
between model estimates and observations. To remedy this,
we chose to pair each Taylor diagram with a plot of RMSE
against A as in Kirni and Baptista (2016).

3 Weather data comparison: Results & Discussion
3.1 Horizontal wind

Relatively high noise was observed in vertical wind measure-
ments from aircrafts and radiosoundings, particularly when
compared to the low magnitudes of the measured values.
Moreover, several issues in the radiosounding data, such as
unphysical steps in the recorded values, led us to exclude ver-
tical wind data from our comparisons.

Figure 2 shows that both ERAS and WRF manage to gen-
erally capture the observed dominant wind directions. For ex-
ample, models and observations agree on a contribution su-
perior to 20 % from notherly winds in the free troposphere.
In the BL, observed winds are divided in 5 northerly and
southerly main components, which all contribute less than
20 % of the sampled winds. ERAS reproduces this distribu-
tion well, with multiple wind directions involved in low pro-
portions while WRF overrepresents contributions from the
main wind components (more than 30 % of northerly winds
in the BL). This pattern is also observed in the LS and to a
lesser extent in the FT.
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Overall, ERAS performs better in reproducing observed
wind speed distributions, particularly in the mid-troposphere,
and provides a more balanced representation of secondary
wind directions at higher altitudes. WREF, on the other hand,
tends to overrepresent dominant wind components while un-
derrepresenting secondary contributions, with consistent pat-
terns across its two domains. We now look at the statistical
performance of these models in terms of wind speed and di-
rection separately.

ERAS generally outperformed WRF in wind speed met-
rics across the three atmospheric layers, as shown in Fig. 3. It
ranked first in normalized standard deviation (o) and RMSE
for all layers, as well as in correlation (p) for the BL and
FT. Specifically, ERAS achieved a top rank in 75 % of wind
speed metrics (9 out of 12, Table 3), compared to WRF d01
(16.7 %) and WRF d02 (8.3 %). For example, in the BL,
ERAS ranked first in oy, p, and RMSE, though it ranked
third in bias (A), where WRF d01 performed best. Similarly,
in the FT, ERAS maintained its top position across all wind
speed metrics except for A, where WRF dO1 ranked first.
In the LS, ERAS continued to rank first in o, RMSE, and
‘A but fell short in p, where WRF d01 and d02 performed
better. These results highlight ERAS’s consistent strength in
reproducing observed wind speeds in all metrics.

For wind direction, as illustrated in Fig. 3, ERAS and WRF
showed more mixed performance. While ERAS5 ranked first
for some metrics in the FT and LS, WRF dO1 performed bet-
ter especially in the BL and LS, achieving the highest corre-
lation (o) and lowest RMSE in both layers. In the BL, WRF
dO1 also demonstrated strong performance in other metrics,
ranking first in p and A. Notably, WRF d01 outperformed the
finer domain (d02) in 75 % of wind direction rankings (9 out
of 12, Table 3), indicating that the coarser domain was often
better suited for capturing wind direction variability and er-
ror. ERAS, on the other hand, exhibited varying performance
across layers, with error metrics A and RMSE rank changing
with altitude (e.g. third in A & RMSE in the BL and FT but
first in the LS).

Overall, ERAS5 exhibited superior performance in wind
speed metrics across most layers, while WRF d01 showed
stronger results for wind direction, particularly in the BL and
LS. The relative performance of each model is summarised
in Table 3. The table ranks each model against the other 2
for each physical quantity, statistical metric and atmospheric
layer studied. A colour code is also given as a visual aid
(green for position 1, yellow for position 2 and red for po-
sition 3). Our model assessment can then be quantified by
computing the average rank of each model over all atmo-
spheric layers and statistical metrics. ERAS had an average
rank of 1.17 in terms of wind speed, in contrast to WRF
dO1 (2.08) and WREF d02 (2.75). For wind direction however,
both WRF dO1 and dO2 outperformed ERAS, with the same
average rank of 1.92, compared to 2.17 for ERAS.
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Figure 2. Wind rose plots for MAGIC2021 observations as well as ERAS and WREF simulations. The radial axis gives the proportion (in
%) of wind coming from a given direction given by the angular axis. Coloured bins represent the share of speed ranges shown in the legend
associated with each direction. Rows correspond to data products MAGIC2021 observations, ERAS, WRF d01 and WRF d02. Columns
correspond to atmospheric layers: Boundary Layer (BL), Free Troposphere (FT) and Lower Stratosphere (LS), described in Sect. 2.3.2.

3.2 Temperature

Figure 4 shows temperature profiles on the upper part of the
figure and temperature bias (A) profiles on the lower part.
Here the MAGIC2021 dataset is compared to ERAS, WRF
dO1 and WRF d02. Bias is computed such that a positive
AT means that modelled temperature was superior to ob-
servations on average over all MAGIC2021 measurements in
the particular bin considered. The lower-most part of the left
profiles, which compare temperatures above P = 800 hPa,
shows a negative bias of ~ 3 °C for all three models. Fur-
ther investigation of model performance against each instru-
ment separately shows that this bias was only present against

https://doi.org/10.5194/amt-18-5955-2025

AirCore data, while no significant bias was observed with
other instruments, which suggests that there could have been
an issue with AirCore data near the surface. In the middle
section (800 > P > 300hPa), models and observations fol-
low consistently the negative vertical gradient, with ERAS
better capturing profile features, which is allowed by its bet-
ter vertical resolution. Finally, in the lowest pressure levels,
a good agreement between ERAS, WRF and MAGIC2021 T
was found, but with more variation around AT = 0 for WRF.
WREF values cannot be compared to weather balloon data in
the LS above P =~ 50hPa as this was set as the upper limit
of the model domain. Overall, modelled temperatures repro-
duce well the temperatures measured during the campaign,
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Figure 3. Comparison between simulated and observed wind speed V (top) and direction 6 (bottom) with Taylor (left) and bias (A) versus
RMSE (right) diagrams. The radial axis of Taylor diagrams represents the normalised standard deviation of modelled wind speed/direction.
The angular axis represents correlation between modelled and observed wind speed/direction. Centred RMSE is represented by the radial
distance from the reference point. RMSE and bias are computed subtracting observed quantities to simulated quantities.

with a mean bias consistently inferior to 2° C across all lay-
ers.

Figure 6 shows the statistical intercomparison with all
models, metrics and atmospheric layers for both temperature
and humidity (RH), the top panel focusing on temperature.
It can be seen that all models performed very well in ev-
ery layer, being all close to o = 1 and correlating very well
with observations (p > 0.8). In terms of RMSE and ‘A, mod-
els also perform well, with RMSE < 2 and A <1°C in all
layers. Models generally reproduce temperature best in the
FT, followed by the LS, and then the BL across most statisti-
cal categories.

Table 3 shows that ERAS5 performed better than both WRF
domains in most statistical categories and layers in terms of
temperature as well, with an average rank of 1.17 for ERAS
versus an average rank > 2 for WRE. Overall, WRF d01
and d02 showed closely similar performance in all layers,
with WRF dO1 slightly but consistently outperforming d02
in most statistical metrics and layers (average rank of 2.08
for WRF d01 and 2.75 for d02).

Atmos. Meas. Tech., 18, 5955-5983, 2025

3.3 Humidity

As for temperature, relative humidity profiles for ERAS,
WRF d01 and WRF d02 are shown on Fig. 5. The top panel
shows the mean RH profile observed during MAGIC2021
and the corresponding mean interpolated profiles for each
model. The bottom panel shows the corresponding bias
profiles. The left handside profiles show that humidity in-
creased with height on average from the surface up to about
z=1.5km, which was well captured by all models. The
bias profiles also suggest RHgras > RHwrEd01 > RHwRFd02
throughout the highest pressure levels. In the middle block,
the models also captured the decrease in RH with height well;
however, the previously observed tendency of higher RH val-
ues in ERAS compared to WRF dO1 and WRF d02, is no
longer there. At lower pressure levels, RH strongly decreased
with height and reaches ~ 0 % just below z = 15 km which
was captured by all models but with an underestimation of
the observed RH values between 10 and 12 km.

The bottom panel of Fig. 6 shows the full statistical inter-
comparison with 4 metrics and 3 layers (BL, FT and LS) for
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Figure 4. Vertical temperature intercomparison between MAGIC2021 data and weather models. Observational data includes MAGIC2021
data from weather balloons, ATR42 and Cessna aircraft and was binned to fit model grids. Profiles are divided in three blocks (P > 800,
300 < P < 800 and P < 300hPa) which allow to illustrate results from our analysis layers (BL, FT and LS). Shaded areas represent the 1o
deviation from the mean temperature or temperature bias profiles, computed from binned data. Top: Mean temperature profiles computed
accross all flights from MAGIC2021 platforms (black) plotted with mean interpolated temperature profiles from models corresponding to
platform trajectories. Bottom: Bias profiles in the same pressure ranges. Bias is computed as the mean difference between interpolated model

quantities and measured physical quantities over each bin.

relative humidity. Models correlated best with MAGIC2021
measurements in the LS and FT, and less in the BL. Vari-
ability was also generally better represented in the FT and
LS than in the BL, with on being closer to 1. Model perfor-
mance was good overall, but showing worst numbers than for
temperature. on values ranged from 0.75 to 1.4 and p went
from just under 0.65 in the BL to ~0.9 in the FT. ERAS
performed once again better both in terms of correlation and
on than WREF in all layers. In terms of RMSE, RH was least
well represented in the FT, where a RMSE > 12 % was ob-
served for all models. The BL was where bias was highest, at
around 2 % on average, depending on the model. For WRE,
the bias observed in the BL was opposite to the bias in the
FT. All models showed their best performance in terms of
RMSE and bias in the LS, due to the low values of RH at
this altitude. ERAS5 showed consistently better performance
in terms of RMSE and bias whilst WRF d01 and d02 showed
better on performance in the FT and LS respectively.
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These results are summarised in Table 3 where ERAS gets
the first position in all layers and metrics, except for on in
the LS, where WRF dO1 and d02 did not simulate RH up to
the same height as ERAS, which could explain the better per-
formance of WRF in that layer. The overall performance of
WRF dO1 and d02 was similar, but WRF d01 did outperform
d02 in terms of average rank (2.17 for dO1 versus 2.67 for
d02).

3.4 Conclusions on weather data comparison

The good performance of both ERAS and WREF in terms of
horizontal wind speed and direction was not surprising as
they are widely used and well validated models. ERAS speed
scores were better than both WRF d0O1 and d02, and direc-
tion scores were about equivalent even though both WRF
domain slightly outperformed ERAS. Over all physical quan-
tities, atmospheric layers and statistical metrics, ERA5 ob-
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Figure 5. Vertical relative humidity intercomparison between MAGIC2021 data and weather models. Observational data includes
MAGIC2021 data from weather balloons, ATR42 and Cessna aircraft and was binned to fit model grids. Profiles are divided in three blocks
(P > 800, 300 < P < 800 and P < 300 hPa) which allow to illustrate results from our analysis layers (BL, FT, LS). Shaded areas represent
the 1o deviation from the mean RH or RH bias profiles, computed from binned data. Top: Mean RH profiles computed accross all flights from
MAGIC2021 platforms (black) plotted with mean interpolated RH profiles from models corresponding to platform trajectories. Bottom: Bias
profiles in the same pressure ranges. Bias is computed as the mean difference between interpolated model quantities and measured physical

quantities over each bin.

Table 3. Simulation rank depending on the meteorological quantity assessed for the three atmospheric layers and the four statistical metrics
considered in the study. Spd refers to wind speed, Dir to wind direction, T to temperature and RH to relative humidity comparisons. Best
performance (rank 1) shown in bold, poorest performance (rank 3) in italics.

Rank on ‘ Rank p ‘ Rank RMSE ‘ Rank A

Spd Dir T RH|Spd Dir T RH|Spd Dir 7 RH| Spd Dir T RH

ERAS5 BL 1 3 1 1 1 3 1 1 1 3 1 1| 3 3 1 1
FT 1 1 1 1 1 1 1 1 1 3 1 1 1 3 3 1

LS 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1

WRFd0Ol BL 2 2 2 2| 3 1 2 3| 2 1 2 2 1 1 3 3
FT 2 2 3 2 2 3 2 3| 2 2 2 2| 2 2 1 2

LS 3 02 2 1| 3 1 2 2| 2 3 2 2| 2 3 2 2

WRFd02 BL 3 1 3 3| 2 2 3 2| 3 2 3 3| 2 2 2 2
FT 3 3 2 3| 3 2 3 2| 3 1 3 3| 3 1 2 3

LS 2 3 3 2| 2 2 3 3| 3 2 3 3| 3 2 3 3
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Figure 6. Comparison between simulated and observed temperature (top) and relative humidity (bottom) with Taylor (left) and bias (A)
versus RMSE (right) diagrams. The radial axis of Taylor diagrams represents the normalised standard deviation of modelled 7/ RH. The
angular axis represents correlation between modelled and observed 7/ RH. Centred RMSE is represented by the radial distance from the
reference point. RMSE and bias are computed subtracting observed quantities to simulated quantities.

tained an average rank of 1.42, WRF d01 a rank of 2.06 and
WRF d02 a rank of 2.52. The fact that ERAS is a reanaly-
sis product could explain its better performance, as it bene-
fits from data assimilation unlike WRF. WRF could be ex-
pected to perform better than ERAS in the boundary layer,
given its fine resolution and use of an advanced PBL scheme
to model turbulence. In particular, A should get better with
higher resolution, however noise related metrics could be ex-
pected to get worse as higher resolution implies more poten-
tial noise. We indeed found lower A in both wind speed and
direction for WRF over ERAS in the BL. However, perfor-
mance did not improve significantly between dO1 and d02,
with dO1 even outperforming d02 in bias for wind direc-
tion in the BL. Metrics other than A are all influenced by
noise even though RMSE and on do not depend solely on
it. Thus we use CRMSE, represented by radial distance from
the reference point in Taylor diagrams, to assess model noise
performance. We find that WRF d01 and dO2 have slightly
higher CRMSE than ERAS5 in the BL & FT for wind speed
but not for direction which only partially confirms our hy-
pothesis. Mass et al. (2002); Gémez-Navarro et al. (2015)
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explained in more detail how higer resolution in simulations
can lead to worse performance in objective statistical assess-
ments. They demonstrated that, whilst simulations with finer
resolution could enhance the representation of physical pro-
cesses compared to coarser simulations, they are more sig-
nificantly influenced by timing and spatial inaccuracies. This
explains the better results obtained with ERAS, compared to
WRF d01 and WRF d02, also highlighting the challenges in-
volved in validating high-resolution models. It also under-
scores that employing a range of statistical measures enables
more robust evaluations of model performance. WRF out-
puts can be improved by nudging, which involves adjust-
ing model estimates using observations or reanalysis prod-
ucts, to help regional simulations fit observations better (Bul-
lock et al., 2014), but nudging was not utilised in the WRF
runs analysed here, to specifically compare WRF physics to
ERAS. Data assimilation could be implemented in our simu-
lations using WRFDA, the data assimilation system included
in WRF (Pattanayak and Mohanty, 2018) in order to directly
compare model physics, as well as quantifying the impact of
data assimilation on simulations in that region.
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Assessment of temperature was also characterised by an
overall very good performance from all simulations (A <
1K in all layers). Temperatures from weather balloons ap-
pear to be slightly biased (by about 2 K) in the BL. This could
be due to a lack of corrections of temperatures measured in
the boundary layer by the M20. Further checks did not find
any correlation between wind speeds and AT as measured by
the instrument, so no physical disturbance appeared to have
been interferring with measurements. This was unexpected
as calibration was performed prior to balloon release on the
ground, in that surface layer. It is worth noting that consis-
tent A > 0 was only found in some flights (002, 003, 004
on 21/08 and 22/08) that had A > 1K in the BL, the other
half of the flights not showing this characteristic. Investigat-
ing those particular flights in more detail appears necessary
to understand the origin of our findings.

Overall, WRF simulations were close to both ERAS and
MAGIC2021 data in terms of performance, which gives con-
fidence in the ability of the model to simulate the atmosphere
in our region of interest.

4 Assessment of CH4 simulations

4.1 Comparison between modelled and observed CHy4
profiles

CH4 mixing ratio profiles and CHy bias profiles (ACHy)
computed for several models versus MAGIC2021 data are
shown on Fig. 7. The left profiles show comparisons for
P > 800 hPa, the middle profiles 800 > P > 300 hPa and the
right profiles for P < 300 hPa. Only PLS Surf b results are
shown from the 6 different model products, as it performed
best overall (details shown in Fig. 8, Table 4 and Fig. A4).
In the P > 800 hPa profiles, CH4 mixing ratios from global
models were close to or smaller than CHy from MAGIC2021
measurements, while regional models simulated higher CHy
content than in-situ measurements. This was observed with
all three platforms (see Fig. A3 for details), with specifi-
cally PLS Surf b and CAMS v27r] showing the best fit to
the observed CH4 mixing ratios while CAMS hlkx CH4 mix-
ing ratios were negatively biased. Regional simulations from
WRF-Chem, mainly influenced by surface emissions in the
BL, produced mixing ratios higher than MAGIC2021 mea-
surements (of ~ 20—100 ppb in dO1 and ~ 20-50 ppb in d02).

In the 800 > P > 300 hPa profiles, CAMS hlkx mixing ra-
tios were consistently below MAGIC2021 measurements, by
about 25-50 ppb. PLS Surf b and CAMS v21rI simulations
performed well again with ACHy close to O throughout all
levels. Regional model biases decreased significantly with al-
titude (800-300 hPa), reducing the gap between dO1 and d02
showing similar bias as CAMS v217r/ and PLS Surf b.

In the LS, CAMS hlkx transitioned from a negative bias
in the FT to a strong positive bias exceeding 200 ppb at
P ~50hPa. PLS Surf b, CAMS v2/rl, and WRF-Chem
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displayed more complex bias profiles in this region. They
were characterised by a first peak in bias (50—100 ppb) near
250 hPa, followed by a decrease to —50-0 ppb between 175
and 100 hPa, and then a second increase to 100-200 ppb at
pressures below 100hPa. In the FT and LS, WRF-Chem
mixing ratios closely followed CAMS v2irl (product that
was used as boundary conditions). A deviation from this be-
haviour was observed in the LS above the first peak in bias
at approximately 300 hPa, likely due to transport differences
between WRF-Chem and TMS (the transport model used in
CAMS v21rl).

Figure 8 shows results from the comparison between
MAGIC2021 CH4 measurements and models according to
the four statistical metrics and the 3 atmospheric layers
used previously. In the BL, most (5/8) global simulations
underestimated the variability of atmospheric CHs con-
tent (on < 1). On the contrary, regional simulations signif-
icantly overestimated this variability with on > 3 for both
dO1 and dO2 domains. Correlation between model products
and MAGIC2021 measurements was also found to be low in
the BL, no simulations exceeding p = 0.8, with some reach-
ing values below p =0.4 (PLS NIES a and PLS UoL a).
In terms of bias and RMSE, global models had better per-
formance in the BL when compared to regional simulation
products, particularly PLS Surf a and b and CAMS v21r]
which all had RMSE < 10 ppb and absolute values of bias
< 1 ppb. Whereas global simulations all displayed a negative
bias, both WRF-Chem domains overestimated methane con-
tent in the BL, which corresponds to what was observed in
the profiles of Fig. 7.

The FT was also characterised by an underestimation of
variability by global models with most (7/8) having ox <
1. Regional simulations along with CAMS hlkx once again
overestimated variability in that layer, with 1.7 < on < 3.5.
Correlation performance was slightly better than in the BL,
with most (6/10) models showing p > 0.6. RMSE and bias
performance was also better in the FT than in the BL, with the
notable exception of CAMS hlkx that displayed a negative
bias of ~ 30 ppb as was seen in the profiles of Fig. 7.

In the LS, all global models had a similar performance
in terms of correlation, achieving the highest values out of
the three analysis layers (0.95 < p <0.99). Regional simu-
lations showed a lower correlation with MAGIC2021 mea-
surements, with p ~ 0.85 for both domains. Variability was
underestimated by all global models in the LS, with 0.68 <
oN < 0.95 while both domains of the regional simulations
slightly overestimated variabillity. Positive biases were ob-
served for all simulations in the LS, more particularly for
global models which showed 43 < A < 103 ppb. Regional
simulations managed to produce a lower bias, with A <
10 ppb for both WRF-Chem d01 and dO2. In terms of RMSE,
CAMS v21rl performed best among all global models with
RMSE ~ 60 ppb, which aligned with both WRF-Chem do-
mains. For PLS products, the “advanced” physics configura-
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Figure 7. Vertical methane intercomparison between MAGIC2021 data and chemistry-transport models. Observational data include

MAGIC2021 samples from AirCores, ATR42 and Cessna aircraft

and were binned to fit model grids. Profiles are divided in three blocks

(P > 800, 300 < P < 800 and P < 300 hPa) which allow to illustrate results from our analysis layers (BL, FT, LS). Shaded areas represent
the 1o deviation from the mean CHy or CHy bias profiles, computed from binned data. Top: Mean CHy profiles computed accross all flights
from MAGIC2021 platforms (black) plotted with mean interpolated CH, profiles from models corresponding to platform trajectories. Bot-
tom: Bias profiles in the same pressure ranges. Bias is computed as the mean difference between interpolated model quantities and measured

physical quantities over each bin.

tion (b) also showed better results than the “classic” physics
scheme (a), both in terms of RMSE and bias.

In conclusion, the evaluation of model simulations against
MAGIC2021 CH4 measurements revealed distinct perfor-
mance patterns across atmospheric layers. In the BL, global
simulations underestimated CHy variability and showed
lower bias and RMSE compared to regional simulations,
which overestimated both variability and CH4 content. In the
FT, regional simulations better represented variability, but
correlation remained low for most models, with improved
RMSE and bias relative to the BL. In the LS, global models
achieved high correlation with MAGIC2021 measurements
but displayed large positive biases, while regional simula-
tions provided lower biases and comparable RMSE perfor-
mance.
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4.2 Discussion of CH4 comparisons

Table 4 shows a comparative assessment of the simulated
atmospheric CH, content by the 10 modelling frameworks
against MAGIC2021 observational data. Consistently with
our previous discussion, CAMS v21rI shows the best overall
performance, in most metrics and layers, having an average
rank of 1.75. The table also allows to rank the PLS inver-
sions ensemble according to their average rank in all layers
and metrics used (shown in parenthesis): 1. Surf b (3.83),
2. Surf a (4.92), 3. UoL b (5.08), 4. NIES b (5.25), 5. UoL
a (7), 6. NIES a (7.58). Thus the worst performing simula-
tions were PLS NIES a and PLS UoL a, with PLS Surf a also
performing worst than PLS Surf b. This indicates that updat-
ing from the “classic” to “advanced” physics scheme makes
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a more important difference than a change in observational
constraint for these simulations.

We first start by discussing BL positive biases observed
in regional WRF-Chem CHj products. WRF-Chem d01
and d02 results presented in Figs. 7 and 8 are an average
over eleven different products for each of d01 and d02 do-
mains. As such, individual products had differing perfor-
mance scores in the four metrics of the study. To investigate
results from regional simulations in more depth, we show
results from individual WRF-Chem products in Fig. 9. This
figure shows the same 4-metric assessment as in Fig. 8, but
it focuses on individual WRF-Chem simulations, which dif-
fer by their input CH4 emissions from wetlands. WRF-Chem
d02 products performed better than dO1 in most layers and
statistical metrics (p performance was inventory dependent
and very close between dO1 and d02). For all products, the
assessment showed that mixing ratios were positively biased
in the BL and the FT, with a stronger bias in the BL. Most
global model products showed a negative bias in the BL (7/8)
and an underestimate of variability (5/8), contrary to WRF-
Chem mixing ratios which showed both a positive bias and
an overestimate of variability. This is consistent with an un-
derstimate/overstimate of surface emissions as weak sources
would both lead to a negative A and a decrease in variability,
whilst overestimated surface emissions would lead to both
a positive A and an overstimated variability of boundary
layer mixing ratios. This could also be explained by vertical
transport issues (e.g. an underestimation of the BL height)
in WRE, which could have participated in producing higher
CHy4 mixing ratios in the BL. However, the consistency be-
tween WRF-Chem simulations and MAGIC2021 data in the
FT implies that the vertical transport representation in WRF-
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Chem was accurate, thus indicating that CHy overestimates
in the BL from WRF-Chem products was more likely stem-
ming from wetland emission models. This was further con-
firmed by the relative scale of input emissions shown in Ta-
ble 1, which correlates with the relative scale of CHy overes-
timates in the BL shown in Fig. 9. Moreover, the particular
WRF-Chem set-up used in this study has been used in previ-
ous studies without showing any issues with BL or FT trans-
port (Lauvaux et al., 2012, 2016). Thus we deduced that in-
ventories overestimated the magnitude of wetland emissions
(which could also lead to overestimating flux variability).

These results first showed that low emissions are needed to
match observations when looking at averages over the whole
MAGIC2021 dataset. Wetland methane releases are typically
not homogeneously distributed and continuous in space and
time (Rinne et al., 2018; Waletzko and Mitsch, 2014) which
makes them hard to fully encompass in inventories. This is
reinforced by the fact that not only WetCHARTSs monthly
averaged emissions led to such overstimates, but also JSB-
HIM products which have a daily time resolution as well as a
higher spatial resolution and more complex underlying emis-
sion processes. Thus, a true improvement in the representa-
tion of wetland emissions would require sub-daily and sub-
kilometer resolution as there is no clear difference in perfor-
mance between monthly/0.5° and daily/0.1° resolution prod-
ucts.

This issue with wetland emission models could be in-
vestigated further by combining MAGIC2021 BL observa-
tions with high resolution WRF-Chem simulations and other
modelling techniques such as Lagrangian particle dispersion
modelling.
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The FT negative bias found between CAMS hlkx and
MAGIC2021 observations is similar to previous findings by
Membrive et al. (2017) where simulations similar to CAMS
hlkx (C-IFS forecast) were compared to a high resolution
profile from an AirCore launch in Canada during the Strato-
Science campaign (CNES — August 2014). More precisely,
the instrument (AirCore-HR) was deployed on a strato-
spheric balloon flight near Timmins, ON. (48.6°N). This
study compares well with ours because similar CH4 sources
can be found near both locations, and data was also col-
lected in August. Membrive et al. (2017) found A = —24 ppb
when comparing AirCore measurements to the C-IFS fore-
cast. We find an overall tropospheric A of —14.7 +16.6 ppb
when comparing MAGIC2021 versus CAMS hlkx, which is
a comparable result. Further conclusions cannot be drawn
from comparing these two studies alone, but this feature is
also consistently found when comparing AirCore profiles
from AirCore networks (AirCore-Fr, Crevoisier et al., 2023,
NOAA; Koffi and Bergamaschi, 2018) with CAMS forecast
and analysis products. This suggests the presence of a sys-
tematic CHy bias in the FT in CAMS forecast and analysis
products.

Whilst a significant tropospheric bias was only found be-
tween CAMS hlkx and MAGIC2021 measurements, LS anal-
ysis highlighted the presence of a strong positive bias for
all models (cf. Fig. 7). This is particularly important as a
stratospheric bias in CHy levels affects the performance of
models at reproducing the dry-air column-averaged mixing
ratio of methane (XCHy4), which has to be accurately repro-
duced in order to leverage satellite observations to measure
surface emissions of CHy (Ostler et al., 2016). To investigate
this further, we drew Fig. 10 which shows all MAGIC2021
AirCore profiles plotted along with mean and spread of cor-
responding interpolated model profiles. Measured CHy pro-
files show three distinct phases in the LS. The bottom of the
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interpolated profiles for each model and the coloured area represents
the 1o deviation from the mean. From the PLS ensemble, only the
best performing product (Surf b) is shown.

layer is characterised by a first strong gradient, typically from
P =400-300 to P =200hPa, which takes CH4 mixing ra-
tios from their tropospheric average of ~1950 ppb to about
1810 ppb. mixing ratios then remain stable for 100 hPa or
less before starting a sharp decrease again in the last layer,
between P =200 and P = 100 hPa. This overall structure is
in reality more complex when looking at individual profiles
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Table 4. CH, simulations ranking for the three atmospheric layers
and the four statistical metrics considered in the study.Best perfor-
mance (1-4) shown in bold, poorest performance (9-10) in italics.

Rank Rank Rank Ralﬁ

ON p RMSE A

CAMS hlkx BL 8 1 5 4
FT 1 1 10 10

LS 10 6 7 7

CAMS v21rl BL 4 3 2 2
FT 4 2 1 1

LS 3 1 2 3

PYVAR-LMDz- BL 6 9 8 8
SACS NIES a FT 10 6 9 9
LS 9 3 9 8

PYVAR-LMDz- BL 1 7 6 6
SACS NIES b FT 9 8 6 6
LS 6 5 4 5

PYVAR-LMDz- BL 3 10 7 7
SACS UoL a FT 8 9 8 8
LS 8 2 10 10

PYVAR-LMDz- BL 2 8 4 5
SACS UoL b FT 5 10 5 2
LS 5 4 6 6

PYVAR-LMDz- BL 7 6 3 3
SACS Surfa FT 7 5 3 3
LS 7 7 8 9

PYVAR-LMDz- BL 5 2 1 1
SACS Surfb FT 6 7 7 7
LS 4 8 5 4

WRF d01 BL 10 5 10 10
FT 3 4 4 5

LS 2 10 3 2

WREF d02 BL 9 4 9 9
FT 2 3 2 4

LS 1 9 1 1

and highlights the stratification of the atmosphere at these
altitudes.

Membrive et al. (2017) attribute LS A > 0 in C-IFS sim-
ulations similar to CAMS hlkx to an understimation of the
CHy4 stratospheric gradient, which then becomes too steep
higher in the stratosphere (Verma et al., 2017). We indeed
observe a growing positive model bias in the LS between 12
and 20km (or P =200 to P = 45hPa) on the bottom right
panel of Fig. 7). This bias then decreases and becomes pos-
itive for some simulations higher in the stratosphere. These
results were found for all global models including CAMS
hlkx, which is a similar product to the one assessed in Verma
et al. (2017) and Membrive et al. (2017). However, the 4-
metric assessment performed on models showed that cor-
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relation between MAGIC2021 measurements and all sim-
ulations had high correlation in the LS, which indicates a
good reproduction of CHy gradients by the models within
that layer. These results suggest that the CHy stratospheric
biases found here and in the literature have a complex ori-
gin. Fig. 10, showed that CH4 values from AirCores started
to decrease more strongly at lower altitudes than in models,
meaning that the reduction in CHs mixing ratios in the up-
per troposphere due to interaction with OH radicals could be
starting higher in models than in reality. Patra et al. (2011)
compared several simulations of CHy and CH3CCl3, includ-
ing some made with a set-up similar to the PLS model, and
showed that models differed in their bias with the same OH
field, indicating that other factors than the reaction between
CHy and tropospheric OH, such as other chemical reactions
or transport, are involved. Among the other important chem-
ical reactions, CHy is also depleted by chlorine (Cl) in both
the troposphere and stratosphere. Thanwerdas et al. (2022)
simulated the Cl sink in a CTM also using LMDz for trans-
port and found similar highly positive model biases near the
tropopause, on which changes in the Cl field had little to no
effect. Together, these results indicate that transport issues in
the assessed models are more likely to explain the observed
biases than factors related to chemistry.

The strength of CHy stratospheric decay has been linked to
the rate of stratosphere-troposphere exchanges (STE), which
is directly influenced by the Brewer-Dobson circulation (that
controls tropopause height tropopause folds) or fronts/cy-
clones (Holton et al., 1995; Thompson et al., 2014; Locatelli
etal., 2015). Modelling STE accurately is therefore crucial to
match observed CH4 mixing ratios at these altitudes because
they vary strongly over a short vertical distance depending
on the chemical content of the air masses within which mea-
surements are made. Our results regarding tropopause height
in temperature profiles (Fig. 4) show that outputs from the
IFS transport model (which is used in ERAS5 and CAMS
simulations) have good consistency with observations in the
lower stratosphere, indicating that transport issues might be
due to other reasons. CAMS hlkx has three to four times as
many vertical levels as the other products that are compared
to MAGIC2021 observations. In the LS, and especially at
the tropopause, this feature makes an important difference
in terms of structure complexity of profiles. As such, the
CAMS hlkx bias profile does not show the positive peak
of A ~50-100ppb for 300 > P > 200hPa that inversion-
optimised models (PLS, CAMS v21rI) do. This could be be-
cause it can capture a more realistic vertical structure of CHy
depletion near the tropopause, as shown in Fig. 10.

Patra et al. (2011); Thompson et al. (2014) showed
that STE were poorly modelled in a CTM set-up similar
to the PLS simulations used here. This poor performance
was attributed to a bad simulation of the Brewer-Dobson
circulation, which was too vigorous, inducing too much
stratosphere-troposphere mixing. A crucial difference be-
tween the set-up from Patra et al. (2011); Thompson et al.
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(2014) and ours was the number of vertical levels (19 in
their set-up versus 39 in ours). Locatelli et al. (2015) have
also suggested that more vertical levels would allow for
a better modelling of the Brewer-Dobson circulation, no-
tably allowing for a better computation of the tropopause
height and better mixing. Their hypothesis, suggesting that
a Brewer-Dobson circulation stronger in models than in re-
ality would enhance mixing and reduce the CHy gradient at
the tropopause fits well with our results, given that the model
with the most vertical levels is able to better reproduce ob-
served profile features. Nevertheless, this finding warrants
cautious interpretation, as CAMS hlkx simulations only dis-
play mediocre performance in the lower stratosphere (LS)
across our four statistical metrics. The comprehensive sum-
mary of our model assessment presented in Table 4 positions
CAMS hlkx at the 10th rank for oy, 4th for p, and 7th for
both ACH; and RMSE within the LS. It should be noted
that CAMS hikx represents a less refined product in relative
to other models, lacking surface CH4 emissions optimisation
or data assimilation included in other CAMS products such
as CAMS v2Irl. Potential next steps would involve compar-
ing LS observations with higher vertical resolution emission-
optimised CHy simulations, thereby enabling more definitive
conclusions on this matter.

While we saw that issues with individual chemical species
such as OH (Patra et al., 2011) or Cl (Thanwerdas et al.,
2022) could not explain the observed CH4 LS bias by them-
selves, it is possible that a combination of errors in chem-
istry modelling could partly explain it. Thus, another possible
way to improve the performance of chemistry-transport mod-
els in the LS would be to couple them with models that fo-
cus on stratospheric chemistry, such as REPROBUS (Lefévre
et al., 1994, 1998; Jourdain et al., 2008), which implement
stratospheric chemistry in more detail, notably taking into ac-
count more CHy sink molecules, thus potentially preventing
CH4 overestimates. Comparing AirCore profiles to LMDz-
Reprobus (Marchand et al., 2012) CH4 products would shed
some light on the impact of chemistry on modelled CH4 mix-
ing ratios in the LS.

4.3 Conclusions on CH4 comparisons

Our model performance intercomparison highlights impor-
tant differences between MAGIC2021 observations and
modelled CH4 mixing ratios, especially in the LS where
all models overestimate atmospheric methane levels. CAMS
hlkx analysis showed highest bias of all models in the LS
and also suffered from consistent underestimation of atmo-
spheric methane content in the FT. Inversion-optimised prod-
ucts showed better perfomance at every levels than CAMS
hlkx. However, CAMS hlkx denser vertical grid at high al-
titude proved to be a certain advantage to better resolve the
structure of CHy4 profiles at the tropopause. Among inversion
optimised global chemistry-transport models, CAMS v21r]
showed the best performance in terms of ACHy4. Standard
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physics and surface observational constraints were found to
be the best combination within the 6 PLS ensemble inver-
sions, this version (Surf b) showing a similar level of per-
formance as CAMS v2Irl. We also find that updating the
physics scheme from “classic” to “advanced” improves PLS
simulations more than a change in observational constraints.
Regional simulations were characterised by a strong overes-
timation of the BL CH,4 atmospheric content, which was not
found in global simulations. This overestimation hints toward
either an excess in wetland emissions from input bottom-up
models or a vertical transport problem in WRF-Chem. The
good correspondance between WRF-Chem simulations and
MAGIC2021 data in the FT indicate that the issue probably
lies with wetland emission models rather than with the verti-
cal transport representation in WRF-Chem.

5 Conclusions

ERAS reanalysis and WRF simulations were assessed us-
ing meteorological data from MAGIC2021. Methane in-situ
measurements from MAGIC2021 were also exploited to as-
sess atmospheric composition models: the analysis prod-
uct CAMS hlkx, the inversion-optimised product CAMS
v21rl, six PYVAR-LMDz-SACS (PLS) ensemble inversions
and WRF-Chem regional simulations. Over the six days of
MAGIC2021, meteorological data from ERAS5 showed bet-
ter agreement with observations than WRF on average, due to
both data assimilation and lower resolution that enhance per-
formance in such an exercise. WRF performance was how-
ever very close for all physical quantities assessed, which
gives us confidence in its ability to simulate regional at-
mospheric physics for MAGIC2021. Among global simu-
lations, inversion-optimised simulations of CH4 mixing ra-
tios performed best, especially close to the surface. CAMS
v21rl showed slightly better performance than the best prod-
uct from the PLS ensemble inversions. A detailed analysis
of regional simulations with WRF-Chem was performed, re-
vealing perfomance disparities among CH,4 products. No-
tably, near-neutral to strongly positive biases were observed
in the boundary layer, indicating a tendency of wetland emis-
sion models to overestimate CHy emissions, at least for the
limited region and timeframe captured by the observations.
CHy profiles were also characterised by performance dis-
crepancies near the tropopause, where CH4 content is de-
pleted mainly by its reaction with OH radicals, and can also
be affected by stratospheric intrusions. All models showed
a delayed vertical gradient of CHs mixing ratios near the
tropopause, leading to a positive bias in the stratosphere.
Comparisons with CAMS hlkx showed that high vertical res-
olution allows to better capture vertical structure of CHy pro-
files in the stratosphere, with a large overestimate still. These
results call for more work dedicated to improve the trans-
port and chemistry of models in the LS, which could be done
by separate stratosphere models, specialised in the task. Fi-
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nally, we aknowledge that the MAGIC2021 dataset is limited
in both spatial and temporal extents, limiting its ability to
fully assess models. While the MAGIC2021 campaign pro-
vides valuable observations, supplementing this with addi-
tional datasets could offer a more comprehensive evaluation
of model performance. This could be partly addressed by us-
ing data from other campaigns (e.g. CoMet 2.0 campaign
over Canada in the summer of 2022, https://comet2arctic.
de/, last access: 27 October 2025) together with data from
MAGIC2021. Still the results presented here represent a rare
opportunity to assess the performance of models against a
large, high resolution dataset, and over an area where few
measurements are usually taken, highlighting the ability of
extended campaigns at high latitudes to characterise local
processes. More frequent campagins could allow to extend
this kind of performance assessment of global and regional
models to other circumpolar regions and seasons, while also
allowing a long term tracking of atmospheric composition
changes in the Arctic.
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Figure A1l. Temperature intercomparison between MAGIC2021 data and weather models. Profiles are computed using full weather balloon
dataset and profile sections of ATR42 and Cessna flights. ERAS related profiles are shown in green, WRF dO1 in blue and WRF d02 in red.
Top: Mean temperature profiles accross all flights from each platform (black) plotted with modelled temperatures interpolated on platform
trajectories: Cessna (left), ATR42 (centre) and weather balloon (right). Middle: Temperature bias profile between for each platform: Cessna
(left), ATR42 (centre) and weather balloon (right). Bottom: Sections of temperature bias profiles correponding to the 3 analysis levels: BL
(left), FT (centre) and LS (right), where Cessna data is shown in dashed lines, ATR42 data in dotted lines and AirCore data in solid lines.
Shaded areas represent the 1o deviation from the mean temperature or temperature bias profiles.

https://doi.org/10.5194/amt-18-5955-2025

Atmos. Meas. Tech., 18, 5955-5983, 2025



5976 F. Langot et al.: Evaluating Weather and Chemical Transport Models
800 100 1
Cessna 16 400 AirCore

830 14
12 500 200
860
5 = — —
g 1.0 ;<E, 5 S ’E‘
a 890 N £600 = =
0.8 o o N
>
920 0.6 500
f 04 800
950
02
0 50 100
RH (%) 0 50 100 1000 1000
RH (%) RH (%
800 8 AirCore
Cessna 16 400 ATR42
7
830 14
6
500 %
12
860 ) 5
© = © = ©
¢ g £ 600 e Z é
a 890 0.8 N o N o N
3
920 7 06 5
) 800
4 04
950 i 1
02 & —
-20 0 20 -25 0 25 1000 55 0 250
ARH (%) ARH (%)
800 300
30.0
BL a0 T . UTLS
275
830 18 8 20
1.6 400 250
7
860
14 \ o 225
T = = = © T
S 800 128 E500 > °8 < 2002
o N o N o N
1.0 | 5 175
920 600 100
08 4 15.0
950 06 12.
3 200 5
0.4 800 ) 10.0
-50 -50 0 -20 0
ARH (% ARH (%) ARH (%)

Figure A2. RH intercomparison between MAGIC2021 data and weather models. Profiles are computed using full weather balloon dataset
and profile sections of ATR42 and Cessna flights. ERAS related profiles are shown in green, WRF dO1 in blue and WRF d02 in red. Top:
Mean RH profiles accross all flights from each platform (black) plotted with modelled RH interpolated on platform trajectories: Cessna (left),
ATR42 (centre) and weather balloon (right). Middle: RH bias profile for each platform: Cessna (left), ATR42 (centre) and weather balloon
(right). Bottom: Sections of RH bias profiles correponding to the 3 analysis levels: BL (left), FT (centre) and LS (right), where Cessna data
is shown in dashed lines, ATR42 data in dotted lines and AirCore data in solid lines. Shaded areas represent the 1o deviation from the mean
RH or RH bias profiles.
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Figure A3. Methane intercomparison between MAGIC2021 data and chemistry-transport models. Profiles are computed using the full
AirCore dataset and profile sections of ATR42 and Cessna flights. Top: Mean CHy4 profiles accross all flights from each platform (dotted grey
line) plotted with modelled CH4 interpolated on platform trajectories: Cessna (left), ATR42 (centre) and weather balloon (right). Middle:CHy
bas profile for each platform: Cessna (left), ATR42 (centre) and weather balloon (right). Bottom: Sections of CH4 bias profiles correponding
to the 3 analysis levels: BL (left), FT (centre) and LS (right), where Cessna data is shown in dashed lines, ATR42 data in dotted lines and
AirCore data in solid lines. Shaded areas represent the 1o deviation from the mean CHy4 or CHy4 bias profiles.
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Figure A4. Mean PYVAR-LMDz-SACS bias from all 6 configurations computed with MAGIC2021 data: Cessna (left), ATR42 (middle) and

AirCore (right) measurements.
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The full carbon footprint of the MAGIC2021 campaign is still
being estimated. For this study, we compute an approximate value
based on the highest emitters: aircraft flights. The Cessna from DLR
has a 675HP turbine engine and flew for 27h22min, which accord-
ing to Laboslpoint5 data equates to an emissions of 13 =1 tCO,.
The ATR42 from SAFIRE has a 3800HP turbine engine and flew
for 25h22min, which equates to emissions of 32 +2 tCO,. There-
fore the total carbon footprint of aircraft flights associated to this
paper is 45 £2 tCO;,. The balloon’s carbon footprint is more com-
plicated to estimate. Most recoveries were performed using a heli-
copter for which engine and flight time data were not part of the
MAGIC2021 dataset, resulting in a lack of information. Addition-
ally, the helium used to inflate campaign balloons is a potent green-
house gas that is released in the high troposphere/lower stratosphere
everytime a balloon is used. Working out the full carbon footprint
of radiosoundings therefore requires converting released helium to
CO, equivalent which has not yet been done for MAGIC2021. The
carbon footprint of campaign measurements involved in the study
presented here is therefore not complete, and probably totals to
more than 50 tCO,. The campaign as a whole will have a higher
carbon footprint still, as it includes the footprint of meals provided
during the campaign, travels to Kiruna for every team, additional
airborne measurements that were not used in this paper, as well
as tools, clothes and instruments that were bought especially for
MAGIC2021. Also neglected here is the footprint of the data analy-
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